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Abstract

Despite their proficiency in various language tasks, Large Language Models
(LLMs) struggle with combinatorial problems like Satisfiability, Traveling Sales-
man Problem, or even basic arithmetic. We address this gap through a novel trial
& error approach for solving problems in the class NP, where candidate solutions
are iteratively generated and efficiently validated using verifiers. We focus on the
paradigmatic task of Sudoku and achieve state-of-the-art accuracy (99%) com-
pared to prior neuro-symbolic approaches. Unlike prior work that used custom
architectures, our method employs a vanilla decoder-only Transformer (GPT-2)
without external tools or function calling. Our method integrates imitation learning
of simple Sudoku rules with an explicit Depth-First Search (DFS) exploration
strategy involving informed guessing and backtracking. Moving beyond imitation
learning, we seek to minimize the number of guesses until reaching a solution. This
is achieved using depth-1 guessing, showing empirically that almost all Sudoku can
be solved using the puzzle’s rules with at most one guess. We provide a rigorous
analysis of this setup formalizing its connection to a contextual variant of Min–Sum
Set Cover, a well-studied problem in algorithms and stochastic optimization.

1 Introduction

Large Language Models (LLMs) based on the Transformer architecture have shown remarkable per-
formance in a wide range of Machine Learning tasks, achieving state-of-the-art results on language un-
derstanding and generation benchmarks [VSP+17, BMR+20, RWC+19]. Trained to predict the next
token in large text corpora, these models acquire strong reasoning abilities, but whether they perform
genuine logical reasoning or rely on pattern-matching remains under debate [VMO+23, DLS+23].
Prompting strategies such as Chain-of-Thought and its many variants [NAGA+21, WWS+22,
YYZ+23, WWS+23, BBK+24, CMWC23, KTF+22, ZSH+23, MTG+23] have enabled LLMs to
exhibit multi-step reasoning capabilities and solve even complex mathematical problems [HBK+21].
Yet, LLMs still struggle in more structured domains like arithmetic and combinatorial optimization.
Controlled evaluations on synthetic tasks, including algorithmic puzzles, formal grammars,
logic-based games, and arithmetic problems, have revealed consistent failure modes of current
models and methods [LAG+22, LHB+23, NLW23, AZL23, YXLAZ24a, YXLAZ24b, LSL+24].
At the same time, the literature highlights that Transformer-based models have the potential to leverage
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Table 1: Performance of five state-of-the-art LLMs on solving Sudoku puzzles in 9×9 format. The
first two are general-purpose LLMs, while the remaining three are reasoning-focused models.

Model Board Accuracy Cell Accuracy Time (sec./puzzle)
GPT–4o 0.00% 44.62% 1.60
Gemini–1.5 Pro 0.00% 31.70% 3.20
GPT–o3 mini 0.00% 30.99% 265.70
Gemini–2.5 Flash 0.00% 20.00% 250.80
DeepSeek–R1 0.00% 41.48% 510.40

internal mechanisms like attention to capture combinatorial structure without specialized heuristics
or external tools. However, appropriately training them to display this behavior remains a major
challenge and an active topic of research in robustness and generalization.

In this work, we focus on improving reasoning in LLM-style Transformers for combinatorial problems.
We develop a framework for teaching Transformers to identify a path towards a solution to a
combinatorial problem through effectively exploring different alternatives with trial-and-error. Our
framework relies on training the model to distinguish valid and invalid solutions and incrementally
builds a solution with clever guesses. This approach applies in very general settings and can be used
to solve any combinatorial problem that belong to the NP-class, like Satisfiability, Clique detection or
the Traveling Salesman Problem, where verifying a valid solution can be done efficiently.

Our primary testbed in this work is Sudoku, chosen for its well-defined rules, extensively studied
difficulty levels, and widespread use as a reasoning benchmark. A standard Sudoku puzzle consists
of a 9 × 9 grid, subdivided into nine 3 × 3 boxes. The grid is partially filled with digits from 1
to 9, and the goal is to complete it subject to the following rules: (i) each cell contains exactly
one digit, (ii) each row contains every digit exactly once, (iii) each column contains every digit
exactly once, and (iv) each box contains every digit exactly once. We focus on the standard Sudoku
puzzles, while our approach can be directly applied to its generalized form with n× n grids which is
NP-complete [YS03] and thus equivalent to any problem in the class NP.

Solving Sudoku puzzles without external tools is extremely challenging even for state-of-the-art
industrial-scale LLMs. We evaluated several models, including OpenAI GPT [AAA+23], Google
Gemini [TAB+23], and DeepSeek [GYZ+25], on randomly generated Sudoku puzzles. As shown in
Table 1, none of these models were able to produce correct solutions. We tested both general-purpose
LLMs and reasoning-focused variants, since Sudoku demands logical reasoning. General-purpose
models generated answers quickly, whereas reasoning-oriented models ran significantly longer as
they attempted step-by-step strategies mirroring human solving patterns. However, once they made
an incorrect inference, these models could not backtrack and revise their solutions, often ending with
contradictory board states. Additional details are provided in Appendix B.

Beyond these general-purpose models, several methods have been proposed in the literature to solve
Sudoku puzzles via Deep Learning although often relying on specialized architectures. [MKPZ11]
investigates a Neural Network (NN)-based approach based on Hopfield Networks as an integer
optimization tool, addressing its convergence limitations through a coprocessor NN designed to
solve linear programming problems. [PPW18] introduces the Recurrent Relational Network (RRN),
a generalization of the Relational Network [SRB+17], to evaluate multi-step relational reasoning.
Their method involves multiple rounds of message passing between Sudoku puzzle cells to arrive at a
solution. [YIL23] explores solving Sudoku puzzles using a Recurrent Transformer model, integrating
Sudoku’s constraints directly into both the model architecture and the training process.

While effective in solving even difficult puzzles, these prior models diverge from the LLM paradigm,
and their architectural customizations limit the transferability of their insights to combinatorial
reasoning with LLMs. Moreover, these methods follow a direct solution approach: given the initial
state of the puzzle, the network attempts to predict the entire solution in a single forward pass. This
design introduces critical limitations. First, there is no mechanism for error recovery, so if the model
generates an incorrect solution, it cannot easily revise or correct its output. Second, the reasoning
process remains opaque. Unlike humans, who solve puzzles step-by-step, these models do not expose
their intermediate decision-making, resulting in behavior that is difficult to interpret or trust.
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Closer to our work, [SDWP24] study how a causal language model (GPT-based) can reliably solve
Sudoku puzzles. By reframing Sudoku as a next-token prediction task over transcripts of human-
like reasoning based on known Sudoku strategies, their Causal Transformer learns to imitate and
apply these heuristics incrementally, typically executing simpler strategies before tackling more
complex ones. This approach showcases the promising capability of Autoregressive Transformers
to successfully internalize and deploy multi-step reasoning procedures in a more interpretable way.
However, their proposed method trains the Transformer on a structured sequence of logical steps,
which do not allow the model to make mistakes. This inherently limits its problem-solving capability
to strategies present in the training data whereas a large fraction of puzzles are not solvable by simple
logic steps. As such, its performance is significantly worse than previous task-specific models and
even for puzzles solvable by logic, the model is still not perfect potentially due to the complexity of
applying the given chain of heuristics.

Another line of works investigates the reasoning capabilities of Masked Diffusion Models (MDMs) in
language generation through the Sudoku task. [YGG+25] show the potential of MDMs to outperform
autoregressive models in reasoning and planning with fewer parameters, highlighting their potential
impact on downstream applications. [KSK+25] investigate the same models, exploring sampling
strategies and token ordering effects, and propose an adaptive inference method that further improves
performance. While [SDWP24] is more closely related to our work, our results are also comparable
to those of [KSK+25], who outperformed [YGG+25]. This demonstrates that our methodology
surpasses all existing state-of-the-art approaches for solving combinatorial tasks such as Sudoku.

2 Methodology

In this work, we introduce a novel framework for reasoning with Transformers. Our method combines
imitation learning with trial-and-error search, enabling models to go beyond learned heuristics. For
combinatorial problems such as Sudoku, a verifier exists that can check whether a partial or complete
assignment satisfies the problem’s rules; we therefore use this verifier to validate the correctness
of each attempted instance. Specifically, when no further logical steps can be applied, the model
is trained to make informed guesses, just as humans do. Crucially, it can backtrack when a guess
eventually leads to a dead end, and attempt alternative continuations in a Depth-First Search (DFS)
manner. By coupling simple learned rules with the flexibility to explore, while continuously relying on
the verifier for correctness checks, our method navigates the solution space efficiently. The resulting
Causal Transformer solves puzzles robustly and interpretably, showcasing emerging behaviors of
progressive reasoning and self-correction.

Our experiments showcase the capability of Transformers to learn this algorithmic behavior. Specif-
ically, we observe that the models effectively learn to fill the values based on the Sudoku rules.

Causal
Transformer

[SDWP24]

MDM

[KSKKC25]

RRN

[PPW18]

Recurrent
Transformer

[YIL23]

Imitation
Learning

Beyond
Imitation

60

80

100

B
oa

rd
A

cc
u

ra
cy

%

67

75 80

92

82

93

98.9 99.8

[Ours]

Figure 1: Comparison of board accuracy with previous state-of-the-art models on 100K randomly
generated Sudoku. As some models are trained on a different dataset, we retrain them using our
random Sudoku generator and report their increased accuracy with shaded bars.
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When direct rule application is exhausted, the model guesses a candidate value and recovers cor-
rectly from incorrect guesses by backtracking when a dead end is identified, as in the DPLL al-
gorithm [DP60, DLL62]. As a result of these learned abilities, our method achieved near-perfect
accuracy on Sudoku puzzles (99%), demonstrating state-of-the-art performance for a NN-based
Sudoku solver (see Figure 1).

Our framework applies to any NP problem, whose solutions are hard to find but easy to verify. To
demonstrate its generality, we also apply it to the canonical NP-complete problem of Satisfiabil-
ity [Coo71], specifically the 1-in-3 SAT variant, where each clause contains three literals and exactly
one must be true. Even in this task, our trained Transformer is able to correctly find solutions 99%
of the time. Note that 1-in-3 SAT is a canonical NP-complete problem, and by the Cook-Levin
theorem [Coo71], any problem in NP can be written as 1-in-3 SAT. However, some problems may
benefit from problem-specific optimizations and therefore, we provide a library in Appendix F.2 that
lets one generate transcripts for any problem in NP by providing the appropriate components.

A key ingredient for our framework is generating appropriate training transcripts via a DFS routine
that guesses partial assignments, checks them for correctness, and either recurses or backtracks as
needed. We represent the problem-solving process as a sequence of discrete actions and use an
action-level tokenization. This allows us to use a multiple-target approach during training, where
the output of each token is treated as a distribution of probabilities over the next possible actions
(soft-labels), enabling richer learning signals compared to single-target approaches. We provide an
efficient Python library (written in C) for generating the transcripts and the corresponding targets
(see Appendix F.2). The library can be easily extended to provide reasoning transcripts for any
combinatorial problem.

Beyond imitation learning. Whereas earlier studies struggled with accurately solving Sudoku,
our approach can teach Transformers to solve combinatorial problems with near-perfect accuracy.
Our thesis is that once LLMs can learn to solve different problems correctly, the next milestone is to
also minimize the reasoning time. In fact, it is well-known that any combinatorial problem can be
solved given sufficient time. As long as Transformers can reliably detect valid solutions to a problem,
they can also solve it by randomly generating tokens and checking whether the produced transcript
contains a solution. According to the “infinite-monkey” theorem [Mon], an infinitely large sequence
of random tokens will almost-surely contain a valid solution to the problem instance.

For the second part of our work, we aim to use the predictive abilities of Machine Learning to
efficiently navigate the space of solutions with the goal of minimizing the expected number of
reasoning steps. While in the first part, our goal was to imitate how humans solve problems
systematically, in this stage we aim to do even better. Humans themselves are limited in their ability
to solve combinatorial problems and the DFS method outlined above only works for small instances;
it quickly becomes intractable as problem size increases. In fact, we do not know of efficient methods
for solving most problems in the class NP which is reflected by the major open problem of P vs NP. An
important promise of using Machine Learning for combinatorial problems is to develop data-driven
methods for solving problems more efficiently than hand-crafted methods can.

Minimizing the time to solution is known as the min-sum objective in combinatorial optimization. To
perform a theoretically grounded analysis of this setting, we make two important assumptions: (i)
one-level guessing, where we only allow the method to make a single guess and any second guess
counts as failure, and (ii) non-adaptive guessing, where for every new guess point we proceed without
retaining any memory of previous attempts. Under these restrictions, any instance solvable with one
guess will eventually be solved in finite expected time. Remarkably, on randomly generated Sudoku
boards, a single guess suffices to correctly solve ∼99.8% of them: after applying the standard set
of simple rules, nearly every board admits a backdoor i.e. a guess that, when followed by those
same rules, completes the puzzle. In this setup, optimizing the probability of correctly guessing the
backdoors directly corresponds to minimizing the solution length. We formulate this problem as a
contextual variant of the MIN-SUM SET COVER, a problem commonly studied in algorithms and
stochastic optimization (see Appendix E). Through this connection, we identify a novel loss function
that directly captures the length of the solution and outperforms the standard Cross-Entropy loss, both
theoretically and empirically. Our experiments show that for the Sudoku task the solution lengths
of the trained model compare favorably to those of an oracle that knows the correct values of all
remaining cells without knowing which are backdoors.
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Despite its simplicity, this setup remains surprisingly effective, even outperforming the previous multi-
level guessing method. This advantage arises because, in our beyond imitation learning approach,
training uses only successful trajectories, i.e., those that contain the correct guess. While imitation
learning provides richer supervision by including both correct and incorrect guess tokens, it also
encourages the model through next-token prediction to continue generating incorrect tokens, rather
than identifying the correct path. By excluding incorrect tokens from the training data, our approach
goes beyond imitation learning and concentrates learning on high-value decisions that directly lead to
a solution.

Experimental setup and puzzle generation. All our experiments follow a Causal Transformer
(GPT-2 variant [RWC+19]) that is identical to that of [SDWP24] to allow for a direct comparison.
The model comprises 8 layers, each with 8 self-attention heads, an embedding dimension of 576,
and a feed-forward network with hidden dimension 3456 (6 × the embedding size). The model also
employs causal masking within its attention layers to prevent access to future tokens. In total, this
model contains 42M parameters.

We train and evaluate our model using randomly generated Sudoku. We deviate from previous
works that used pre-existing datasets, such as the one provided by [Rad20], striving for a clean and
interpretable distribution of Sudoku puzzles. In particular, our generator works exactly as follows:

Out of the 6,670,903,752,021,072,936,960 distinct Sudoku boards that exist, it
picks one uniformly at random and removes entries based on a uniformly random
permutation of the 81 cells, skipping an entry if its removal yields > 1 solution.

This process results in a nearly identical distribution of puzzles to the Kaggle dataset used in previous
work but arises in a very principled way. Relying solely on static datasets can introduce bias into the
evaluation, as these datasets may represent only a selective portion of the true distribution. Moreover,
having a generator instead of a dataset is more appropriate for combinatorial problems allowing
stream-like training and avoiding overfitting issues as every puzzle is only seen once. We release an
efficient generator as a Python library (written in C), named SudokuPy1, but the same distribution can
also be reproduced using the description above. Full functionality details appear in Appendix F along
with a description of the random generator for random instances of 1-in-3 SAT that we use.

Summary of our contributions. Our key contributions can be summarized as follows:

A novel trial-and-error reasoning framework. We introduce a principled trial-and-error reasoning
framework for solving combinatorial puzzles using LLM-style Causal Transformers. This framework
leverages two key ingredients:
(i) Action-Level Tokenized Transcript Generation: A method for representing the problem-solving
process as a sequence of discrete actions. Importantly, during training, we utilize a multiple-target
approach, where the output of each token is treated as a distribution of probabilities over the next
possible actions (soft-labels), enabling richer learning signals compared to single-target approaches.
(ii) Exploration Beyond Heuristics: The ability to explore the solution space through informed
guessing and backtracking, going beyond reliance on handcrafted heuristics.

State-of-the-art performance on challenging combinatorial tasks. Our LLM-style architecture
achieves a near-perfect accuracy of 99% on Sudoku puzzles, surpassing previous NN methods.
Furthermore, we attain 99% accuracy on the 1-in-3 SAT task showcasing the framework’s versatility
(see Appendix G).

Principled optimization of the guessing process. We theoretically analyze and optimize the
crucial guessing component of our framework by reframing it as a contextual MIN-SUM SET COVER
problem. Through this connection, we identify a novel loss function that directly captures the length
of the solution and outperforms the standard Cross-Entropy loss, both theoretically and empirically.

A standardized benchmark with an efficient puzzle generation library. To facilitate future
research, we introduce a fast and lightweight Python library for generating uniformly random
Sudoku puzzles from the entire solution space. This enables streaming-like training and provides a
standardized benchmark for evaluating and comparing different reasoning models.

1Code available at https://github.com/gpt-reasoning/sudokupy
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Figure 2: Example of a training transcript. Values in blue brackets indicate the multiple valid labels
for the output of each token during the rule-application step. Yellow brackets show the set of valid
candidates when the model reaches a guess token at a given level. The selected guess is shown as a
gray circle with yellow outline. If it leads to a dead end, a follow-up guess is made at the same cell.

3 Imitation learning – DFS algorithm

3.1 Method overview

Baseline approach and rule logic. In [SDWP24], the authors train a GPT-2 variant to solve Sudoku
puzzles using supervised imitation learning. Their training data consists of step-by-step solution
transcripts that progressively apply seven human-crafted strategies (namely the Lone Single, Hidden
Single, Naked Pair, Naked Triplet, Locked Candidate, XY Wing, and Unique Rectangle), ordered
from simpler to more complex. For token encoding, each cell is represented using three tokens: (r, c,
v), where r and c denote the cell’s row and column indices, and v is the digit placed at that position.

In our approach, rather than incorporating complex human-designed strategies into the training tran-
scripts, we rely solely on applying the four fundamental Sudoku rules. These essentially correspond
to the heuristics Lone Single and Hidden Single. Specifically, during rule-based inference, we fill
cell values according to the following constraints: (i) if an unfilled cell (r, c) can only be filled with
one value, fill it, (ii) if in a row r the digit v can only be filled in a single position, fill it, (iii) if in a
column c the digit v can only be filled in a single position, fill it, (iv) if in a 3× 3 box the digit v can
only be filled in a single position, fill it.

Encoding choice. We adopt a novel tokenization strategy, encoding each move as a single 3-digit
number ranging from 111 to 999, with the first digit representing the row r the second the column c
and the third the value v. This differs from [SDWP24], that use 3 separate tokens for the row, column
and value. Our action-level representation reduces the input sequence length by a factor of 3, leading
to faster training iterations and more efficient solution generation during evaluation.

Multiple targets. In standard language modeling tasks, each training example consists of a fixed
sentence, and the model is trained to predict a single next token at each step. In contrast, combinatorial
puzzle transcripts often permit multiple valid next moves at any given point. To leverage this property,
we modify the loss function to support multiple next-token predictions, rather than assuming a single
deterministic target. Specifically, instead of using the standard Cross-Entropy loss − log pi, we use
the sum of Cross-Entropies across all valid targets: −∑i∈S log pi, where S denotes the set of all
valid next tokens at that step. This enables the model to treat one input as having multiple plausible
continuations, enriching its exposure to diverse sequence paths during training. Our experiments
demonstrate that this adjustment facilitates faster learning of the task (see Figure 3).

Algorithm. Our algorithm is trained using transcription sequences (see Figure 2) that proceed
through the following steps. The input begins with the sequence of moves (tokens) corresponding
to the initially filled cells, followed by a “start” token s. Given this input, the model first attempts
to fill all resolvable cells by iteratively applying the basic Sudoku rules. If the board is completed
during this phase, the model outputs the “end” token e. Otherwise, it outputs a “rules end” token r,
indicating that no further cells can be filled using rules alone and that guessing is required.
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At this point, the model outputs the current “guess level” token (an integer from 1 to 99 representing
the number of active guesses) and proceeds to select an informed guess from the remaining valid
candidates. This guessed move becomes the next token. The model then re-enters the rule-application
phase and fills in as many cells as possible based on the updated board.

If unresolved cells remain, the model increases the guess level and repeats the guess-and-fill process.
In the event of a conflict (e.g., no valid values exist for a cell in the current state of the board), the
model outputs a “dead end” token d to signal failure at the current search path. It then backtracks to
the last guess level and selects a new guess different from the one that led to the conflict. This guess
is made on the same cell by selecting a different potential value.

This combination of rule application, informed guessing, and backtracking continues recursively with
a DFS approach until a valid solution is found or a maximum-allowed sequence length is reached. At
inference, we get the solution choosing for any cell its last assigned value in the generated sequence.

3.2 Benchmarks

We evaluate our model across four distinct datasets to benchmark its performance and ensure
generalization: (i) Random: our own puzzle generator, used to produce both training data and a
held-out 100K test set, (ii) Kaggle unfiltered: the Kaggle dataset [Rad20], a uniformly sampled
collection of 3M puzzles, from which we randomly sample 100K for evaluation, (iii) Kaggle filtered:
a 1.9M puzzle subset of the unfiltered Kaggle dataset, curated by [SDWP24] to include only puzzles
solvable using seven Sudoku strategies, and (iv) RRN: the dataset introduced by [PPW18], consisting
of 180K training and an 18K test set, stratified by clue count (ranging from 17 to 34 initial givens).

3.3 Results

We begin by evaluating how effectively the Transformer learns to apply basic Sudoku rules, and
examine how our design choices, specifically the action-level token encoding and multi-target loss,
affect the speed and efficiency of learning. In this setting, rule-logic accuracy is defined as the model’s
ability to correctly fill all cells resolvable by rule-based inference. If even a single such cell is left
unfilled or incorrectly filled, the entire board is considered incorrect. Figure 3 shows the evolution
of rule-logic accuracy during training on our Random dataset, plotted against the number of tokens
seen (in billions), which also correlates closely with training time. We compare three configurations:
(i) the baseline setup from [SDWP24] using their triplet tokenization and single-target loss, (ii) our
compact encoding with single-target loss, and (iii) our full approach with both compact encoding and
multi-target loss. While all configurations eventually achieve high accuracy, our method substantially
accelerates learning, with the multi-target variant reaching near-perfect performance much earlier.

We then track the evolution of board accuracy throughout training on the full Sudoku-solving task,
across three test sets: Random, Kaggle unfiltered, and RRN. As shown in Figure 4, our generated
puzzles yield board accuracy curves that closely mirror those from the Kaggle set, rising in parallel
throughout training. This suggests that our generator samples uniformly from the puzzle space,
similar to the Kaggle dataset, while also offering the advantages of stream-like training and full
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Table 2: Board accuracy comparison of neural Sudoku solvers across training and test sets.

Method Train Data
Test Data

Random Kaggle Kaggle RRN
unfiltered filtered

RRN [PPW18]
RRN 79.30% 79.60% 90.70% 98.90%

Random 92.40% 92.40% 98.30% 97.90%

Recurrent Transformer [YIL23]
RRN 82.20% 82.10% 93.90% 99.50%

Random 92.60% 92.50% 99.30% 99.00%
Causal Transformer [SDWP24] Kaggle filt. 67.16%† 67.16% 87.18% 94.80%
MDM [KSK+25] Kaggle filt. 74.97%† 74.97% 89.49% -‡

Causal Transformer Trial & Error (ours) Random 98.90% 98.90% 99.50% 99.40%
†Accuracy approximated from Kaggle unfiltered performance due to dataset similarity.
‡Accuracy is unreported because the model code has not been released.

distribution coverage. In contrast, the RRN dataset appears easier to solve in practice, with board
accuracy rising more quickly, which indicates that its puzzles may be biased toward simpler instances.

Regarding training, our model is trained using puzzles generated by our random generator. For the
baselines, the Causal Transformer from [SDWP24] was trained on the Kaggle filtered dataset; the
same holds for MDM [KSK+25]. The RRN [PPW18] and Recurrent Transformer [YIL23] models
were originally trained on the RRN dataset. For a fair comparison, we also trained these models on
our random generator using their released training code.

The following key takeaways emerge from the comparative analysis in Table 2: first, our trial-and-error
Transformer achieves significant improvements over the Causal Transformer baseline [SDWP24],
with absolute accuracy gains of 31.7% (Kaggle unfiltered), 12.3% (Kaggle filtered), and 4.6%
(RRN). Notably, while their model is restricted to puzzles solvable by seven human-crafted strategies
(covering only 1.9M of Kaggle’s 3M puzzles), our method generalizes across the full distribution,
achieving 98.9% accuracy on all 3M puzzles. Also, while domain-specific models like RRN and the
Recurrent Transformer achieve strong performance on the RRN benchmark, our method outperforms
them by 6-7% on the more diverse Random and Kaggle datasets, even when these competitors are
enhanced by training on our random generator. For example, our model achieves 98.9% vs. their
92.4-92.6% on Random dataset. Finally we see that training on our random generator improves
performance on diverse datasets (e.g., RRN’s +13.1% gain on Random test) while preserving RRN
benchmark accuracy (97.9% vs. 98.9% when RRN-trained), demonstrating broad coverage without
compromising specialization.

4 Beyond imitation learning – optimizing guesses

In our previous approach, we used imitation learning to teach Transformers to solve combinatorial
problems, achieving near-perfect accuracy. Having reached this milestone, we now shift our focus
from correctness to efficiency. Our goal is to leverage the predictive power of Transformers to
minimize the expected reasoning time, measured by the number of steps needed to reach a valid
solution. To this end, we focus on optimizing the guessing steps, as they constitute the primary source
of variability in solution length.

To study this systematically and connect with theoretical foundations, we study a simplified variant
of our setup. We impose two constraints: (i) depth-1 guessing, where only a single guess is allowed
before restarting; and (ii) non-adaptive policies, where each failed attempt triggers a full restart with
no memory of past guesses. This reduced problem closely resembles the MIN-SUM SET COVER
problem, where the objective is to choose elements (guesses) that cover (solve) the problem as early
as possible in expectation. We analyze theoretically the connection in Appendix D, where we quantify
the performance degradation of non-adaptive methods compared to adaptive ones.

Despite its simplicity, the setup remains surprisingly effective: on randomly generated Sudoku boards,
our policy achieves 99.8% accuracy on instances from our random generator; even beating the
previous multi-level guessing method. This means that 99.8% of random Sudoku can be solved by
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Figure 5: One-level guessing with restarts. The figure illustrates both training and decoding. During
decoding, a guess is sampled from the output of the guess node. If the guess is not a backdoor, even
if correct, subsequent application of rules fails to produce a solution and a restart is triggered.

first applying a fixed set of simple rules until only a single backdoor guess is required; once that guess
is made, the same simple rules are sufficient to complete the solution. This property, firstly uncovered
in our work, and is of independent interest. Note that backdoor move refers to such a single guess
such that once it is made, the same simple rules can complete the entire solution. Identifying the
correct backdoor is non-trivial. Since our model does not know in advance which cell is the backdoor,
it often requires multiple guesses before finding the right one (see Figure 6).

Our method is illustrated in Figure 5. Unlike our earlier deterministic (argmax) generation policy,
here we sample guesses from the model’s token distribution at the guess node. If the sampled guess
leads to a full solution via rule application, the process terminates; otherwise, it restarts. Crucially,
only successful trajectories, those containing the correct guess, are used for training. This design
makes the approach more efficient than our previous imitation learning setup: while imitation learning
includes incorrect guess tokens and thus provides richer supervision, it also encourages the model
to learn to predict subsequent wrong tokens via next-token prediction, rather than immediately
identifying the correct path. By excluding incorrect guesses from the training data, this approach
goes beyond imitation learning focuses learning on high-value decisions. The guess node, viewed
as a single decision step, may represent either a single action/token or a thinking sequence (see
Appendix D). This process continues until a valid trajectory terminates at an “end” token, indicating
completion. This framework offers a tractable yet powerful setting to study how well LLMs can
prioritize high-value guesses under uncertainty.

Central to our optimization is the training objective applied at the output of the guess node, which
must encourage the model to concentrate probability mass on all valid backdoor moves. Specifically,
if S is the set of valid backdoor moves at a given guess node, and pi denotes the probability assigned
to each such move, we consider different losses for optimization. The loss corresponding to the
expected number of trials is L1 = (

∑
i∈S pi)

−1 whereas the standard Cross-Entropy loss with
multiple targets is L2 = −∑i∈S log pi. For numerical stability during training, we minimize logL1,
implemented using the log-sum-exp trick. One can interpret the L1 loss in terms of a geometric
distribution: we treat each good guess as a Bernoulli trial where a “success” means finding a valid
backdoor. Not every correct guess actually works as a backdoor, so each attempt can succeed or fail.
The goal is to minimize the expected number of trials needed to find a working backdoor; analogous
to minimizing the expectation in the geometric distribution.

In Appendix E, we theoretically compare the two losses L1 and L2 showing that L1 is theoretically
optimal whereas L2 may result in excessively long sequences. Figure 6 compares empirically the
performance of the two loss functions, L1 and L2, against two reference baselines using a cumulative
histogram. The x-axis indicates the number of guesses required to reach a valid solution, while
the y-axis shows the percentage of instances solved within that number of guesses. To interpret
the results, we compare our method against two theoretical oracles: a) upper-bound oracle and b)
lower-bound oracle. The upper-bound oracle corresponds to knowing the full Sudoku solution but
not which cells are backdoors. This corresponds to guessing the correct value for a random unfilled
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Figure 6: Cumulative histogram of guesses needed to solve Sudoku instances for two losses and two
baselines. The lower bound corresponds to random guessing among the remaining candidates for all
unfilled cells, while the upper bound corresponds to random guessing the correct value among all
unfilled cells without knowing which are backdoors. Remarkably more than 80% of the puzzles are
solved with fewer guesses than the oracle upper bound.

cell (after the basic rules are applied) but this guess may not be a backdoor resulting in a restart. The
lower-bound is similar but does not assume we know the solution. After the basic rules are applied, it
chooses a uniformly random (cell, value) combination that does not conflict with the existing values,
i.e. appears valid but may not be correct and restarts if the combination is not a backdoor. Note that
a backdoor must necessarily be correct as the solution to a Sudoku is always unique. Both oracles
serve only as reference curves, one optimistic (upper bound) and one pessimistic (lower bound), to
help contextualize the results. They are purely theoretical and not tied to transformers or any specific
model architecture.

We observe that both of our loss functions significantly outperform the lower bound. Notably, the
theoretically optimal loss L1 achieves the best performance, especially in the low-guess regime, with
a steeper curve and a median of just 1.5 guesses. The sum of Cross-Entropies loss L2 also performs
well, closely matching the upper bound and achieving a median of 2.2 guesses compared to 2.3 for
the upper-bound baseline. These results confirm that both losses guide the model effectively, while
L1 offers a meaningful advantage in reducing the expected number of trials.

5 Summary, limitations and future work

In this work, we demonstrate that Transformers can be trained to solve combinatorial problems by
effectively exploring solution paths through trial and error. Starting with imitation learning, we teach
the model to make guesses and backtrack when simple rules are not sufficient which leads to nearly
perfect accuracy of 99% on the Sudoku and the 1-in-3 SAT tasks. Beyond imitation learning, we
introduce a principled optimization strategy based on the MIN-SUM SET COVER problem. This
approach addresses the inefficiencies of naive guessing, resulting in optimized inference time. For the
Sudoku task it even results in higher board accuracy of 99.8%. Our approach is directly compatible
with any LLM training pipeline as it is based on standard causal Transformers and only requires using
our appropriate transcript sequences and corresponding multi-target losses. We hope that these ideas
will enable increased performance of LLMs in tackling combinatorial tasks.

While very effective for the Sudoku task, our method for optimizing the number of guesses is limited
to depth-1 and non-adaptive policies. Extending the optimization beyond these two constraints is an
interesting direction for further research. Even with non-adaptivity, we can still consider randomized
multi-level policies as performing a random walk in the search tree of guesses until a valid solution is
reached. Optimizing over such policies would automatically identify how deep the search should
go, which guess to make next and when to backtrack even if no dead-end has been identified. While
the architecture could directly follow that of Figure 5 restarting to previous guess nodes if the model
chooses so, training the weights appropriately requires carefully thinking about the corresponding
loss functions. This is an interesting challenge to explore both theoretically and empirically.
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and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The theoretical component of this research is clearly presented, with complete
and accurate proofs provided in Section E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All important details of the experimental setup are presented in the main
body, while specific information about the model’s training hyperparameters is provided in
Section C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Both the code associated with this paper and the Python libraries, described in
detail in Sections 2, and F, are both publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All important details of the experimental setup are presented in the main
body, while specific information about the model’s training hyperparameters is provided in
Section C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, appropriate information about the statistical significance of the experi-
ments is provided throughout the paper. Our experiments are based on synthetic tasks of
Sudoku and SAT. We conducted the experiments on very large samples from fixed distribu-
tions of valid instances for both problems and report the number of samples taken typically
in the order of 100,000. As such the reported percentages are highly accurate in the reported
precision.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All computational resources are mentioned in Section C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in this paper fully complies with all aspects of the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: This research primarily aims to advance our understanding of LLMs in
combinatorial problems. As such, it does not have any direct societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: LLMs trained on toy and controlled tasks such as Sudoku puzzles or SAT
problems do not pose any risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All previously existing models and datasets are properly cited in the main
paper. Additionally, for the pre-existing code used to implement our Sudoku generator, we
provide the license and terms of use in Section F.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Both the code associated with this paper and the Python libraries, described in
detail in Sections 2, and F, are both publicly available.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourced data or research involving human
participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: This paper does not involve crowdsourced data or research involving human
participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: This research primarily aims to advance our understanding of LLMs in the
context of combinatorial problems. To this end, we have developed a pipeline using the GPT-
2 architecture, which is clearly explained and presented in the main paper. Our work also
includes comparative experiments with previous research approaches, as well as evaluations
against industrial models such as OpenAI, Gemini, and DeepSeek.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Related work

Sudoku. Sudoku puzzles are played on an n2 × n2 grid divided into n× n blocks. The standard
version has a rank of 3, resulting in a 9 × 9 grid. Solving a Sudoku puzzle is an NP-complete
problem [YS03], meaning that while verifying a solution is computationally efficient, finding one is
generally hard. Although there are more than 6.67× 1021 possible Sudoku grids, only approximately
5.47B are essentially distinct after accounting for symmetries. A valid Sudoku puzzle must have
a unique solution. It has been proven through exhaustive computational analysis [MTC14] that at
least 17 clues are required to ensure a unique solution. Further insights into Sudoku, its mathematical
properties, and solving techniques can be found in related works [FJ06, RJ06].

Beyond the traditional text-based representation of Sudoku, as described in the main body, several
studies have approached the problem from a visual perspective. These models, often referred to as
neural-symbolic (NeSy) systems, perform constraint satisfaction by reasoning over their outputs to
produce structured predictions. Typically, this involves some form of joint reasoning that integrates
prior knowledge and constraints directly into the prediction process. SATNet [WDWK19] is a
differentiable MAXSAT solver that employs semi-definite program relaxations to solve MAXSAT
problems. It can be integrated as a layer within Deep NNs to tackle composite learning tasks that
combine visual perception with logical reasoning, such as solving hand-written visual Sudoku puzzles.
SATNet is notable for its ability to learn to solve visual Sudoku without relying on hand-crafted rules
or symbolic supervision. However, subsequent work by [CFLS20] identified a critical flaw in the
experimental setup: a label leakage issue that inadvertently exposed the model to information about
the correct outputs during training. This issue was later addressed by [TRS21], who introduced a
self-supervised clustering and distillation process for training a visual classifier within the SATNet
architecture. Their approach uses self-supervised pre-training to solve visual Sudoku, effectively
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addressing the Symbol Grounding Problem observed in the original SATNet method. Recent research
continues to explore visual representations of Sudoku and to develop new NeSy models. Examples
include the work of [APD+22, PDA+23, MAB+23, vKTT+23, MMMG24]. Recently, another line
of work has explored the visual representations of Sudoku using Spatial Reasoning Models, a variation
of diffusion/flow models, demonstrating their ability to solve Sudoku [WPSL25, PWSL25].

MIN-SUM SET COVER problem. The MIN-SUM SET COVER problem is a fundamental combi-
natorial optimization problem that models sequential decision-making. In this setting, there are n
boxes, each containing a hidden value drawn from a known distribution. Opening a box incurs a
known cost, and the value revealed is either 0 or ∞. A scenario is said to be covered if at least
one opened box reveals the value 0 [FLT02]. The goal is to determine which boxes to open and
which value to select, in order to minimize the total cost. This total cost includes both the costs
of opening boxes and the value selected. The MIN-SUM SET COVER problem can be seen as a
simplified version of the PANDORA’S BOX problem [Wei79]. There is a substantial body of literature
focused on the MIN-SUM SET COVER problem, aiming to improve approximation guarantees and
to investigate various generalizations. These generalizations encompass a wide range of settings,
including but not limited to, selecting boxes without prior inspection, correlations among boxes,
requirements to inspect boxes in a specific order, and situations involving more complex combinato-
rial constraints [MBMW05, AGY09, BGK10, AG11, SW11, ISVDZ14, INZ16, FKN+21, BBFT23].
Similarly, the PANDORA’S BOX problem itself is also well studied in the literature, with many
works exploring its generalized settings to account for more complex information structures
and decision-making frameworks [Dov18, FLX18, Sin18, GJSS19, BK19, BFLL20, CGT+20,
SS21, BDP22, CGMT23, BC23, FLL23, GT23, BEFF23, MT23, DFH+23]. In addition, both
MIN-SUM SET COVER and PANDORA’S BOX problems have been studied from a machine learning
perspective, as it naturally combines algorithmic and learning aspects. Work in this direction has
considered frameworks involving sample complexity and online learning models [EHLM19, GT22,
BGKM20, FKK+20, CBCMP21, GHTZ21, BM23, BBT23, ACG+24, GKSW24].

B Solving Sudoku with frontier models

We evaluated the performance of several industrial-scale models from the OpenAI GPT [AAA+23],
Google Gemini [TAB+23], and DeepSeek [GYZ+25] families, considering both general-purpose
and reasoning-oriented versions. None of these models were able to produce correct solutions. The
general-purpose models generate responses quickly but inaccurately, which made it feasible to test
them on 1,000 Sudoku puzzles. In contrast, reasoning models require significantly more time for
inference; therefore, we limited their evaluation to 10 representative samples. Additionally, we tested
the models GPT-o1, GPT-o3, GPT-o4 mini, and Gemini-2.5 Pro. In every attempt, these models spent
the entire inference process producing intermediate steps, without ever generating a final solution.
For this reason, we have not included them in the result tables.

To further explore the impact of input representation on model performance, we tested three distinct
formats for encoding Sudoku puzzles. Examples of each format are provided below.

• Single-line format: A single string of 81 digits (with 0 indicating empty cells), such as:
000100000000030960007000402300006000000040000806000120603050009290000
380500800000

• Grid format (9×9): A standard 9-line grid with 9 digits per line, such as:
000100000
000030960
007000402
300006000
000040000
806000120
603050009
290000380
500800000

• Triplet format (row, column, value): A sequence of 3-digit numbers where the first digit is
the row index, the second is the column index, and the third is the cell value, such as:
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110 120 130 141 150 160 170 180 190 210 220 230 240 253 260 279 286
290 310 320 337 340 350 360 374 380 392 413 420 430 440 450 466 470
480 490 510 520 530 540 554 560 570 580 590 618 620 636 640 650 660
671 682 690 716 720 733 740 755 760 770 780 799 812 829 830 840 850
860 873 888 890 915 920 930 948 950 960 970 980 990

As shown in Tables 3–8, the evaluated models consistently fail to solve Sudoku puzzles across
three different encoding formats. This failure occurs even when prompts explicitly suggest Sudoku
solving strategies the models could follow. When prompts do not guide them to apply logical
rules, the models tend to rely on external code or a backtracking algorithm. Backtracking relies on
brute-force search rather than reasoning, making it less generalizable and frequently inefficient in
challenging cases. Moreover, it can produce suboptimal or incorrect solutions, especially under time
or resource constraints. As shown in the tables below, although Sudoku is a complex reasoning task,
general-purpose models typically achieve, in most of the cases, slightly higher cell accuracy than
reasoning-specific models, and they do so with significantly faster inference.

Reasoning models, tend to follow Sudoku-solving strategies more systematically than general-purpose
models. However, they exhibit two key weaknesses. Firstly, their inference times are significantly
higher. As shown in Table 4, the best-time performing general-purpose model completed a puzzle in
1.6 seconds on average, whereas the best reasoning model required 214.9 seconds in the single-line
encoding format, an increase of 134.3%. Secondly, while reasoning models apply strategies in a
more step-by-step fashion, they lack the flexibility to revise incorrect inferences. Once they make
a mistake, they often continue along an invalid solution path, preventing them from arriving at a
correct final answer. In some cases, they spend the entire inference process generating intermediate
reasoning steps without ever completing the puzzle.

B.1 Single-Line format

The prompt used in this case was as follows:

Prompt

Solve the following Sudoku puzzle using logical reasoning only. Do
not use or simulate any external code, algorithms, or automated
solvers (e.g., backtracking). Instead, apply human-style solving
techniques such as lone singles, hidden singles, naked pairs,
naked triples, locked candidates, pointing pairs, X-Wing, Swordfish,
XY-Wing, unique rectangles, and other logical strategies typically
used by experienced Sudoku solvers. The puzzle is represented as
a single line of 81 digits (0 means empty cell): {puzzle_string}
Return only the final solution as a single line of exactly 81 digits,
with no extra explanation or formatting.

Table 3: Performance of two state-of-the-art LLMs on solving 1,000 Sudoku puzzles (in single-line
format), evaluated by board-level accuracy and average inference time per puzzle.

Model Board Accuracy Cell Accuracy Time (sec./puzzle)
GPT–4o 0.00% 46.39% 1.60
Gemini–1.5 Pro 0.00% 34.9% 3.20

Table 4: Performance of three reasoning state-of-the-art LLMs on solving 10 Sudoku puzzles (in
single-line format), evaluated by board-level accuracy and average inference time per puzzle.

Model Board Accuracy Cell Accuracy Time (sec./puzzle)
GPT–o3 mini 0.00% 29.38% 214.90
Gemini–2.5 Flash 0.00% 22.22% 253.80
DeepSeek–R1 0.00% 39.26% 588.20
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B.2 9×9 format

The prompt used in this case was as follows:

Prompt

Solve the following Sudoku puzzle using logical reasoning only. Do
not use or simulate any external code, algorithms, or automated
solvers (e.g., backtracking). Instead, apply human-style solving
techniques such as lone singles, hidden singles, naked pairs,
naked triples, locked candidates, pointing pairs, X-Wing, Swordfish,
XY-Wing, unique rectangles, and other logical strategies typically
used by experienced Sudoku solvers. The puzzle is represented as
9 lines of 9 digits each (0 means an empty cell): {puzzle_string}
Return only the final solution as a single line of exactly 81 digits,
with no extra explanation or formatting.

Table 5: Performance of two state-of-the-art LLMs on solving 1,000 Sudoku puzzles (in 9×9 format),
evaluated by board-level accuracy and average inference time per puzzle.

Model Board Accuracy Cell Accuracy Time (sec./puzzle)
GPT–4o 0.00% 44.62% 1.60
Gemini–1.5 Pro 0.00% 31.70% 3.20

Table 6: Performance of three reasoning state-of-the-art LLMs on solving 10 Sudoku puzzles (in 9×9
format), evaluated by board-level accuracy and average inference time per puzzle.

Model Board Accuracy Cell Accuracy Time (sec./puzzle)
GPT–o3 mini 0.00% 30.99% 265.70
Gemini–2.5 Flash 0.00% 20.00% 250.80
DeepSeek–R1 0.00% 41.48% 510.40
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B.3 (Row, Column, Value) format

The prompt used in this case was as follows:

Prompt

Solve the following Sudoku puzzle using logical reasoning only. Do
not use or simulate any external code, algorithms, or automated
solvers (e.g., backtracking). Instead, apply human-style solving
techniques such as lone singles, hidden singles, naked pairs,
naked triples, locked candidates, pointing pairs, X-Wing, Swordfish,
XY-Wing, unique rectangles, and other logical strategies typically
used by experienced Sudoku solvers. The puzzle is given as a list of
3-digit numbers separated by spaces. Each number represents a cell:
the first digit is the row (1–9), the second is the column (1–9), and
the third is the value (0–9, with 0 meaning empty): {puzzle_string}
Return only the final solution as a list of 3-digit numbers separated
by spaces, each indicating row-column-value (e.g., 123 for row 1,
column 2, value 3), with no extra explanation or formatting.

Table 7: Performance of two state-of-the-art LLMs on solving 1,000 Sudoku puzzles (in (Row,
Column, Value) format), evaluated by board-level accuracy and average inference time per puzzle.

Model Board Accuracy Cell Accuracy Time (sec./puzzle)
GPT–4o 0.00% 27.54% 6.00
Gemini–1.5 Pro 0.00% 44.45% 3.80

Table 8: Performance of three reasoning state-of-the-art LLMs on solving 10 Sudoku puzzles (in
(Row, Column, Value) format), evaluated by board-level accuracy and average inference time per
puzzle.

Model Board Accuracy Cell Accuracy Time (sec./puzzle)
GPT–o3 mini 0.00% 29.51% 289.80
Gemini–2.5 Flash 0.00% 25.19% 245.40
DeepSeek–R1 0.00% 31.85% 672.30

C Additional experimental details (Table 2)

Regarding the comparative results in Table 2, the RRN [PPW18] and Recurrent Transformer [YIL23]
models were originally trained on the RRN dataset. We report their performance on the RRN test set
based on the results published in their respective papers. To evaluate these models on additional test
sets, we reproduced them using their publicly available code. We also retrained both models on our
Random dataset by replacing the original training data with our own.

The Causal Transformer from [SDWP24] was trained on the filtered Kaggle dataset; we report its
performance on both the Kaggle filtered and RRN test sets as published in their paper. The same
holds for [KSK+25], where we report their results as published in their work. For the unfiltered
Kaggle test set, [SDWP24] report the results of the Causal Transformer [SDWP24] in their paper,
and we additionally computed the board accuracy on the full 3M dataset.

Regarding our approach, our Transformer-based model builds on Andrej Karpathy’s open-source
minGPT implementation (MIT License, GitHub Code). All experiments were conducted using
PyTorch [PGM+19] on a single NVIDIA A10G GPU.

We trained our model for 3M steps (about 168 GPU hours) with a batch size of 32 using the AdamW
optimizer [KB15]. A linear learning rate schedule was applied: the rate was linearly increased to
1× 10−4 during the first 5 steps (warmup), then linearly decayed to zero over the remaining training
steps.
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Figure 7: Expanded view of the guess node from Figure 5. The guess node is implemented as a guess
token followed by a sequence of 81 thinking tokens (shown in orange), which form the scratchpad.
Arrows represent full self-attention within the scratchpad and from the guess token to the thinking
tokens. As in previous figures, all tokens attend causally to preceding tokens, but causal attention
arrows are omitted for clarity.

D Additional details on optimizing guesses

Figure 7 illustrates our implementation of the guess mechanism. We design the guess node of Figure 5
as a guess token followed by a fixed sequence of 81 thinking tokens, which together form what we
call the scratchpad. These thinking tokens correspond one-to-one with the 81 cells of a Sudoku board
and are assigned fixed positional embedding indices from 1 to 81. Each thinking token is trained to
predict the correct value of its corresponding cell (similarly to [YIL23]).

While the rest of the sequence follows standard causal attention, the scratchpad introduces a local
window of full self-attention: the guess token attends to all 81 thinking tokens, and they attend to one
another. Each scratchpad token also attends causally to all preceding tokens in the sequence. This
structure is useful for the guessing step, as it allows the model to consider a full board solution and
base its next guess on multiple coordinated cell predictions.

During evaluation, whenever the model outputs the guess token, we augment the input sequence by
appending the scratchpad tokens, enabling a single forward pass with full attention between the guess
token and the scratchpad. From this forward pass, we extract the model’s output at the guess token
and use it as the next generated token.

After this step, the scratchpad is removed from the input, and the generation proceeds normally in an
autoregressive manner by appending the newly generated token to the existing sequence.

This approach maintains a next-token generation pipeline, while introducing a task-specific reasoning
step at the guess token to leverage the Transformer’s prediction power.

E Connection to the MIN-SUM SET COVER problem

We now describe the MIN-SUM SET COVER problem, in the terminology of our work. This models
a depth-1 search problem where the goal is to find which guess would lead to a valid solution.

In this problem, there are n potential choices one can take but only a subset S of them are valid.
While the exact subset S is unknown, it is known that the subset is drawn from a given distribution
D. In the simplest variant, it costs 1 time unit to explore any choice and once a choice is made, one
directly observes whether that choice was valid or not but receives no additional information. The
goal in this problem is to find a policy π that explores different options and minimizes the expected
time until a valid solution is obtained. More formally, defining for every policy π and every subset S,
T (π|S) the expected time until a valid choice i ∈ S is made under policy π, we seek to find the best
policy that minimizes:

min
π

ES∼D [T (π|S)]
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In the absence of additional feedback, the best policy takes the form of a permutation of all choices 1
to n. For such a permutation π,

T (π|S) = arg
n

min
i=1

πi ∈ S

Computing the optimal policy given a distribution over sets D is significantly challenging even if
the distribution D is explicitly given. In fact, as [FLT02] show it is NP-hard to approximate the
optimal policy better than a factor of 4. Obtaining 4-approximate policy can be done in a number of
different ways, e.g. via a greedy algorithm [FLT02] or solving a linear programming relaxation and
performing randomized rounding [GT22].

Theorem E.1 (From [FLT02]). It is NP-hard to compute a policy that approximates the optimal by a
factor better than 4. The greedy policy that always selects the most likely choice conditional on the
set not being covered by the choices explored so far is 4-approximate.

We note however, that these policies require heavy optimization and estimating the conditional
distribution after several number of choices have already been explored. In contrast, naive methods
that directly order choices by the marginal probabilities that the guess is valid are highly suboptimal
and may end-up costing Θ(n)-times more than the optimal policy.

Example E.1. Suppose that D is simply the set {1, ..., n− 1} with probability 2/3 and the set {n}
with probability 1/3.

In such a case, a method based only on the marginals would explore all choices 1 through n − 1
before exploring the choice n taking time at least n/3 in expectation. In contrast, the optimal policy
is to first explore option 1 and then option n taking time 1 · 2

3 + 2 · 1
3 = 4

3 in expectation.

Optimizing over MIN-SUM SET COVER policies is non-trivial and requires customized objectives.
To simplify the optimization, we propose restricting focus to a simpler class of policies that are
non-adaptive and do not depend on the choices made so far. Such policies are inherently randomized,
and we treat π as a probability distribution over the choices. Every time the policy π selects a choice
i with probability πi irrespective of what has been tried so far.

Definition E.1. A policy is called non-adaptive if the choice that it explores at every round is
independent of the current time t and choices explored up to time t.

Evaluating the expected time until a valid choice is identified takes a simple form. At any time
step, the probability that a valid choice is taken is π(S) =

∑
i∈S πi. Therefore the expected time

T (π|S) = 1∑
i∈S πi

.

We thus seek to minimize

ES∼D

[
1∑

i∈S πi

]
(1)

This gives a natural loss function capturing the time to make a valid choice which is a convex
optimization problem over the convex space of probability distributions over n elements ∆(n) ≜
{π ∈ [0, 1]n :

∑n
i=1 πi = 1} and can thus be solved efficiently with stochastic gradient descent

(SGD). To see this, note that the function 1/x is convex when x > 0, and thus 1∑
i∈S πi

is convex
as a composition of a convex function with a linear function and the overall loss is convex as an
expectation of convex functions.

Restricting over non-adaptive policies may come at a cost as some choices may be explored multiple
times increasing the time until a solution is found. However, the following theorem that we establish
guarantees that the total time of the optimal non-adaptive policy is at most O(log n) times that of the
optimal permutation.

Theorem E.2. For any distribution D over sets S ⊆ [n], it holds that for any permutation τ :

min
π∈∆(n)

ES∼D

[
1∑

i∈S πi

]
≤ Hn · ES∼D

[
arg

n
min
i=1

{τi ∈ S}
]

where Hn = 1 + 1
2 + 1

3 + · · ·+ 1
n = Θ(log n) is the n-th harmonic number.
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Proof. Fix a permutation τ and let qi be the probability that a random S ∼ D is covered in exactly i
steps. The cost of permutation τ i.e. ES∼D [argminni=1{τi ∈ S}] is given by

∑n
i=1 qi · i.

Without loss of generality assume that τi = i. Now consider a non-adaptive policy π that sets the
probability πi ∝ √

qi i.e. πi =
√
qi∑n

j=1

√
qj

.

We now have that

ES∼D

[
1∑

i∈S πi

]
≤

n∑
i=1

qi
1

πi
=

(
n∑

i=1

√
qi

)2

where the inequality follows from the fact that the qi-fraction of sets S that are covered in i steps
according to τ must contain the element i.

To complete the proof we need to show that
(∑n

i=1

√
qi
)2 ≤ (

∑n
i=1

1
i )(
∑n

i=1 iqi) which follows
from the Cauchy-Schwartz inequality on the sequences ai =

√
iqi and bi =

1√
i
.

Remark E.1. Using the loss function of Equation (1), results in solutions with bounded approximation
to the optimal policy. In contrast, if one treats the problem as a multi-class classification task and
attempts to use a loss function such as a weighted Cross-Entropy Loss

ES∼D

[
αS

∑
i∈S

log
1

πi

]
the approximation would be much worse. This is because the Cross-Entropy loss can be rewritten
entirely as a function depending only on the marginals

∑
i βi log

1
πi

for some given weights βi and
as we established in Example E.1, this leads to paying a linear multiplier in the total expected time.

E.1 From Sudoku to contextual MIN-SUM SET COVER problem

Mapping: the choices are the moves to be suggested as backdoors, and the goal is to efficiently figure
out which backdoor given as a hint would result in a correct solution.

While the above analysis considers a fixed distribution over sets, in our setting we wish to exploit
information about the instance to quickly pin-down the correct choice. While in our setting there is
no stochasticity as all information about which choices would lead to solutions is directly encoded
in the initial state, such a mapping may be very incompressible and may not be representable even
by large NNs. As such stochasticity arises due to this loss of information. We can thus view the
problem as a generalization of MIN-SUM SET COVER where the current state is given as a context x⃗
and the goal is to learn a mapping from context to a search policy (distribution over choices). In this
generalization, we are given a distribution D over contexts x⃗ ∈ Rd and sets S ⊆ [n], a class Π of
contextual policies π : Rd → ∆(n) and we seek to minimize:

min
π∈Π

E(x⃗,S)∼D [T (π(x⃗)|S)]

If the class Π contained all linear mappings i.e. π = Ax, the loss function presented in Equation (1)
would remain convex as a function of the entries of A, and one can again optimize it via SGD. In
general, we apply our method over mappings given by complex NNs and Transformers so optimality
is not-guaranteed but hopefully we can converge to good local minima.

What is guaranteed however, is that as long as every choice gets assigned non-trivial probability of
being selected we will eventually arrive at a solution.

E.2 Multiple-levels of guessing

Our discussion so far focused on single level of guessing which corresponded to
MIN-SUM SET COVER. One can define a generalization of the problem on arbitrary trees. We
can still consider randomized non-adaptive policies as performing random walks in the tree until a
node that corresponds to a valid solution is reached. Optimizing over non-adaptive policies would
boil down to estimating the transition probabilities of a (absorbing) Markov Chain so that the time to
solution (time to absorption) is minimized.
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While this is a very interesting extension to explore both theoretically and experimentally, this comes
with additional challenges that were out of scope of the current work. We plan to do explore them
however in future work.

F Libraries of data generators

F.1 SudokuPy: a fast Sudoku puzzle generator

In this section, we introduce SudokuPy; a fast Python library, primarily implemented in C, that
generates uniformly random Sudoku puzzles in a principled way from the full distribution of valid
Sudoku grids. For combinatorial problems like Sudoku, it is essential to generate diverse, truly
random instances rather than rely on static datasets, allowing stream-like training and avoiding
overfitting issues as every puzzle is only seen once. SudokuPy addresses this need by enabling on-
the-fly generation of puzzles along with their corresponding solutions, making it particularly suitable
for large-scale data generation and advanced AI training for standardized benchmarks in research.
The library ensures principled and efficient puzzle generation by sampling from the full distribution
of valid grids using precomputed permutation tables and optimized indexing. It includes a high-
performance C-based solver to validate and generate puzzles, significantly improving computational
speed. SudokuPy can be installed as the Python package sudokupy. It is distributed under the
MIT License, ensuring free accessibility, and the distribution can also be reproduced following the
description below.

The core functionality of our generator is described and illustrated in Figure 8. In this figure, the input
to our library function is shown in blue: the number P, which specifies how many Sudoku puzzles
to generate. The output is highlighted in green and labeled S; it represents the generated Sudoku
puzzles.

The process starts by generating a uniformly random number between 1 and
6,670,903,752,021,072,936,960, which corresponds to the total number of valid Sudoku
puzzles. This number is then mapped to a fully solved Sudoku board using precomputed permutation
tables and the functions board_encode and board_decode, which together form a one-to-one
mapping. In the next stage, the generator gradually removes numbers from the completed board
using the puzzle_generator function. After each removal, the generator verifies that the puzzle
still has a unique solution by calling the puzzle_solver function. While puzzle_generator
handles the random deletion of entries, puzzle_solver ensures that the puzzle remains valid. The
puzzle_solver is C-based function integrated with our package, ensuring high performance even
on systems lacking a native C compiler. For user convenience, we provide the black-box function
named as sudokupy_generator, which takes an integer as input and returns that many random
Sudoku puzzles along with their corresponding solutions.

Permutation 
Table

Filled Sudoku
Board

board encode

board decode

Unfilled Sudoku
Board

puzzle generator

puzzle solver

Process of Generating 
Random Sudoku

P
uniform

S

sudokupy generator

SudokuPy

Figure 8: Main process and features of the uniform Sudoku puzzle generator, SudokuPy
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F.2 Transcripts library

The Transcripts library is primarily implemented in C, and it can be installed and used as a Python
package. It provides transcripts for a wide range of problems, including Sudoku and 1-in-3 SAT
problem which are used in this work. It automatically supports any combinatorial problem as long as
the user can implement the following functions.

// Generate a (random) problem instance
Problem generate_instance(GeneratorParameters *params);

// Given a problem instance p encodes it into tokens
int problem_tokens(Problem *p, int *tokens);

// Provides the initial partial solution to the problem p.
Potentially empty.

PartialSolution initial_solution(Problem *p);

// The tokens corresponding to valid guess actions
int guess_next_tokens(PartialSolution *s, Problem *p, int *tokens);

// If a guess fails , provide the alternative tokens to try next.
int alternatives_next_tokens(int guess_token , PartialSolution *s,

Problem *p, int *tokens);

// Find the next action tokens according to logic rules
int logic_next_tokens(PartialSolution *s, Problem *p, int *tokens);

// Given a partial solution obtains a new partial solution by
applying the given action token

PartialSolution apply_token(PartialSolution *s, Problem *p, int
token);

// Checks if the solution is complete or whether errors exist
int is_complete(PartialSolution *s, Problem *p);

The transcripts library uses this interface to run a DFS search on top of the partial solutions to the prob-
lem and provides complete transcripts along with multi-targets for the corresponding combinatorial
problem.

G 1-in-3 SAT problem

Definition. Given N Boolean variables x1, . . . , xN and a Boolean formula ϕ with M clauses in
3-Conjunctive Normal Form

ϕ = C1 ∧ · · · ∧ CM , where Ci = (ℓi1 ∨ ℓi2 ∨ ℓi3),

and each literal ℓij ∈ {xk,¬xk}, the 1-in-3 SAT problem asks for a truth assignment to the N
variables such that exactly one literal in each clause is true.

Instance generation. We use the following concrete process for generating 1-in-3 SAT instances
that is popular in the literature. Starting from a random assignment for the n variables, we create a
random clause using 3 random literals on 3 distinct variables and reject if the clause is not satisfied
by exactly 1 literal. We repeat this process until m clauses are selected. In contrast to the Sudoku
task, this is not guaranteed to have a unique solution but as the initial chosen assignment is a solution
it is guaranteed to be solvable.

Transcript generation. To generate the transcript, we make guesses by assigning a value to a
random variable. We also apply the following logic rules to figure out additional assignments if
possible:

• Positive inference. If a clause has a literal that was fixed to be positive, the remaining two
literals must be negative.
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• Negative inference. If a clause has a literal that was fixed to be negative, the other two literals
must have different values. While this does not give us a new value, it allows replacing,
instances of one literal with the negation of the other. Combined with the following rule this
lets us infer additional assignments.

• Same variable inference. If a clause contains a variable x twice, the value of the other
literal is automatically determined. If the variable appears with opposite signs, the other
literal must be negative while if it appears with the same sign, the other literal must be
positive and the literals corresponding to the variable x must be negative.

We generate the transcript by applying the above rules whenever possible and make a guess if no
additional assignment can be inferred.

Example of a 1-in-3 SAT transcript with N = 25 and M = 15 is provided below.
(14, -13, 24), (18, -5, -12), (7, -10, -4), (15, 5, -11),
(-3, -21, -25), (25, -13, -11), (-17, -7, -8), (12, 1, -16),
(-22, 18, -24), (-8, 19, -17), (-6, 8, -24), (-3, 2, -1),
(21, -22, -15), (8, 14, -4), (23, -22, -20), s, r,
L1, 4, r,
L2, 18, 12, -1, 5, 22, 11, 3, -15, -2, 16, -21, 24, 13, 25, -14, 6, 8, r,
L3, -17, -19, 7, 10, r,
L4, -9, r,
L5, 20, r,
L6, 23, r, e

Metric. We evaluate the performance in terms of board accuracy, as in Sudoku. In this case, a
board is correct if all the clauses have exactly one satisfied literal.

Results. In the 1-in-3 SAT problem for N = 25 and M = 15 we achieve 99.10% board accuracy.
During evaluation, for each variable we keep the last assigned value in the generated sequence.
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