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ABSTRACT

In multi-view 3D human pose estimation, models typically rely on images cap-
tured simultaneously from different camera views to predict a pose at a specific
moment. While providing accurate spatial information, this traditional approach
often overlooks the rich temporal dependencies between adjacent frames. We
propose a novel 3D human pose estimation input method: the sparse interleaved
input to address this. This method leverages images captured from different cam-
era views at various time points (e.g., View 1 at time t and View 2 at time t+ δ),
allowing our model to capture rich spatio-temporal information and effectively
boost performance. More importantly, this approach offers two key advantages:
First, it can theoretically increase the output pose frame rate by N times with
N cameras, thereby breaking through single-view frame rate limitations and en-
hancing the temporal resolution of the production. Second, using a sparse subset
of available frames, our method can reduce data redundancy and simultaneously
achieve better performance. We introduce the DenseWarper model, which lever-
ages epipolar geometry for efficient spatio-temporal heatmap exchange. We con-
ducted extensive experiments on the Human3.6M and MPI-INF-3DHP datasets.
Results demonstrate that our method, utilizing only sparse interleaved images as
input, outperforms traditional dense multi-view input approaches and achieves
state-of-the-art performance.

1 INTRODUCTION

3D Human Pose Estimation (3DHPE) (Li et al., 2023; Baumgartner & Klatt, 2023; Bridgeman
et al., 2019; Qiu et al., 2019b; Zheng et al., 2020) has broad applications in fields such as dance
synthesis (Wang et al., 2024a; Yin et al., 2024; Wang et al., 2024b), action recognition (Karim
et al., 2024; Manakitsa et al., 2024), and virtual reality (Lampropoulos & Kinshuk, 2024; de Lur-
des Calisto & Sarkar, 2024). Especially in multi-view settings, utilizing images captured by multiple
synchronized cameras can provide more accurate and stable pose estimation results than single-view
methods (Hyla, 2016; Bridgeman et al., 2019; Zheng et al., 2021a; Pavllo et al., 2019b). However,
existing methods commonly adopt a single-moment dense input paradigm, where the model must
receive synchronized images from all views at each time step to predict the pose. Although this ap-
proach provides sufficient spatial information, its single-moment input structure presents three key
bottlenecks: redundant computational overhead, insufficient utilization of temporal information (Xu
et al., 2024b; Xie et al., 2024), and the inability to break through camera frame rate limitations. This
inefficient input mode leads to unnecessary computational waste and temporal information discon-
tinuity (Han et al., 2024; Liu et al., 2020a).

We propose a novel 3D human pose estimation input paradigm to solve this challenge: sparse in-
terleaved input. This method breaks the limitations of traditional synchronous input by cleverly
using images captured from different camera views at various time points as input. More specifi-
cally, Camera 1 captures an image at time t, followed by Camera 2 at t + δ, and so forth, with the
sequence culminating in Camera N at t+ (N − 1)× δ. This innovative method brings two core ad-
vantages. First, it efficiently utilizes spatio-temporal information and can be mathematically viewed
as a joint spatio-temporal sampling. The method cleverly leverages the temporal phase differences
of multi-view inputs to reconstruct a higher-frequency pose output signal in the temporal dimension.
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Figure 1: Common approaches for 3D multi-view pose estimation. (a) Our proposed sparse interleaved input, where each view selects a
single temporally interleaved image as input to leverage spatio-temporal information across views fully; (b) illustration of dense, full-frame
multi-view input; (c) keypoint interpolation input, which enhances the output frame rate; and (d) illustration of single-view image input.

Second, it fundamentally breaks through the single-camera frame rate limitation. Specifically, for N
fixed-frame-rate cameras with a fixed sampling rate of F , the sampling interval is N × δ. Due to the
interleaved sampling between views, the pose output interval is δ, which raises the camera’s effec-
tive sampling rate to N ×F , opening up a new path for 3D tasks requiring high temporal resolution.
To solve the computational latency problem in practical applications, we adopt a sliding window
optimization strategy, allowing the model to sample and process data instantly without waiting for
all cameras to complete their interleaved sampling, achieving efficient and real-time processing.

To achieve this goal, we designed an end-to-end framework named DenseWarper. This framework
can efficiently convert sparse interleaved inputs into dense outputs with high spatio-temporal consis-
tency. DenseWarper includes two core modules: spatial rectification and temporal fusion modules.
First, we use a spatial transformation module based on epipolar geometry to spatially rectify and
fuse 2D heatmaps, generating a preliminary dense heatmap. Next, we use a temporal fusion module
based on deformable convolution to learn and complete the temporal information in the heatmaps
implicitly. Finally, a precise 3D pose can be obtained through triangulation.

Our main contributions are as follows:

Pioneering Task Paradigm: We are the first to propose and define the 3D pose estimation task based
on sparse interleaved multi-view input. We provide a novel paradigm for efficiently utilizing spatio-
temporal information and potentially inspiring research in other multi-view 3D perception tasks.

DenseWarper Framework: We designed DenseWarper, which uses an innovative spatio-temporal
fusion mechanism to convert sparse interleaved inputs into dense pose outputs with high spatio-
temporal consistency. It breaks the frame rate limitations of traditional 3D tasks and, combined with
the sliding window strategy, achieves low-latency processing.

Rigorous Experimental Validation and Benchmark Establishment: We conducted comprehensive
experiments on the Human3.6M (Ionescu et al., 2013) and MPI-INF-3DHP (Mehta et al., 2017)
datasets. We reproduced numerous state-of-the-art 3D pose estimation algorithms and tested their
performance on the MPI-INF-3DHP dataset. Using a unified benchmark for the 2D part, we fill
a gap in testing benchmarks on MPI-INF-3DHP, providing a rigorous and reliable reference for
algorithms in this field.

Our code is available at this anonymous link. All implementation code and pre-trained models are
included in the supplementary materials and will be publicly released upon paper acceptance.

2 PROBLEM FORMULATION

Sparse Interleaved Multi-view Images. In this study, we introduce the concept of “Sparse In-
terleaved Multi-View Images” to describe a sequence of sparsely sampled images from multiple
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Figure 2: Overview of the DenseWarper architecture. A sliding window is used to sample sparse interleaved images, with a 2D pose estimation
model generating initial heatmaps for each view. Missing information is filled to create uncorrected heatmaps. These are then spatially fused
and corrected using an epipolar geometry-based method, yielding a spatially fused heatmap. Deformable convolutions are then applied for
temporal fusion. Finally, the resulting spatiotemporally enriched heatmap is processed via triangulation to obtain accurate 3D keypoints.

viewpoints in a multi-view setting. Specifically, we define them as a collection of sparsely sampled
images from multiple viewpoints, represented as:

D = {Ii}
⌊ N
M ⌋

i=1 , (1)

where M is the number of viewpoints V = {V1, V2, . . . , VM}, N is the total number of frames, and
i is the index of the input group. Each group Ii contains one image from each viewpoint, ranging
from the {M · (i−1)+1}-th frame of viewpoint V1 to the {M · i}-th frame of viewpoint VM . Here,
the i-th group is denoted as:

Ii =
{
I
M ·(i−1)+1
V1

, I
M ·(i−1)+2
V2

, . . . , IM ·i
VM

}
, (2)

where I
M ·(i−1)+j
Vj

∈ RH×W×3 represents the image from viewpoint Vj with frame number
M · (i− 1) + j. This structure ensures each time frame contains only one image from a specific
view, creating an interleaved sparse input.

Taking M = 4 as an example, the sparse interleaved inputs for the first two frame groups are
I1 =

{
I1V1

, I2V2
, I3V3

, I4V4

}
and I2 =

{
I5V1

, I6V2
, I7V3

, I8V4

}
.

Target for Modeling. Traditional multi-view 3D human pose estimation tasks rely on densely
synchronized multi-view images as input. In contrast, our approach leverages sparse interleaved
multi-view image sequences D.

The objective of our model is to predict a set of 3D skeletons S = {S1, S2, . . . , SN} ∈ RN×J×3,
where each Si ∈ RJ×3 represents the 3D pose coordinates at the i-th frame for J keypoints. We aim
to achieve pose estimation performance comparable to dense full-frame input. Formally, we define
the mapping as follows:

f : T (D,Φ, ϕ) = S, (3)
where Φ denotes the 3D pose estimation model designed for sparse interleaved inputs, ϕ represents
the camera parameters, S ∈ RN×J×3 is the resulting set of 3D skeletons, and J represents the
number of keypoints.

For each specific interleaved input group Ii, such as I1 = {I1V1
, I2V2

, I3V3
, I4V4

}, the model produces a
corresponding set of 3D skeletons {S1, S2, S3, S4}, where each skeleton Sn corresponds to the pose
at the n-th frame. This can be expressed mathematically as:

f : T ({IM ·(i−1)+j
Vi

}Mj=1,Φ, ϕ) = {SM ·(i−1)+1, . . . , SM ·i}, (4)

where IM ·(i−1)+j
Vi

∈ RH×W×3 is the image from view Vj at the frame number M · (i− 1) + j, and
SM ·(i−1)+j represents the predicted 3D pose coordinates for that time frame.

Sliding Window Mechanism. In conventional methods, a new input group Ii must wait for all M
views to complete sampling. For instance, with M = 4, the second group I2 = (I5V1

, I6V2
, I7V3

, I8V4
)

cannot be processed until I8V4
is available.

The sliding window method allows immediate processing once any view finishes sampling by
reusing previously computed heatmaps. For example, after V1 samples I5V1

, a new input can be
formed as:

I′2 = {I2V2
, I3V3

, I4V4
, I5V1

},

3
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Figure 3: Epipolar geometry-based spatial heatmap fusion architecture. (a) Geometric interpretation of the point-line relationship for keypoints
across different views; (b) the pipeline for spatial heatmap fusion based on epipolar geometry. For an inaccurate heatmap point q, we use
accurate points q′ from other views to correct it. First, we compute the corresponding epipolar lines in the other two heatmaps. Then, we
identify the maximum response along the line associated with q and add these values to the original response at q in its heatmap. This process
yields a spatially corrected heatmap. In the figure, non-diagonal heatmaps with masking represent the target heatmaps for correction, all
processed according to this method.

where I2V2
, I3V3

, I4V4
are already processed and cached.

This mechanism enables real-time incremental processing of sparse interleaved inputs without wait-
ing for all views. A caching mechanism simultaneously allows for the reuse of computed heatmaps,
thereby reducing latency and computational cost while maintaining estimation accuracy.

3 DENSEWARPER

Figure 2 illustrates our overall network structure, where our core module, DenseWarper, consists of
two main components. First, the sparse interleaved heatmaps are input into a spatial fusion module
based on epipolar geometry, producing an initially rectified dense 2D heatmap. Next, these initially
rectified heatmaps are processed through a temporal correction module, the warping module, which
integrates pose information from time frames to generate a dense heatmap with enhanced spatio-
temporal consistency. Finally, we utilize the Triangulation method (Iskakov et al., 2019; Remelli
et al., 2020b) to spatially reconstruct all rectified heatmaps, thereby obtaining the 3D human pose.
Section 3.1 introduces the concepts related to epipolar geometry and multi-view spatial heatmap
fusion; Section 3.2 discusses the temporal fusion process using Warper.

3.1 HEATMAP FUSION WITH EPIPOLAR GEOMETRY

3.1.1 BASIC CONCEPT OF EPIPOLAR GEOMETRY

Epipolar Geometry. It describes the geometric relationship between the corresponding points that
two cameras observe in a 3D scene. Readers can refer to (Hartley & Zisserman, 2003). This rela-
tionship is established by the epipolar constraint and the fundamental matrix (He et al., 2020; Xu &
Zhang, 2013; Zhang, 1998), which are widely used in tasks such as multi-view 3D reconstruction.

Let a 3D point Q ∈ R4, with its fourth dimension set to 1, be projected onto the image planes of
two cameras V1 and V2, with 2D projections q ∈ R3 and q′ ∈ R3 respectively, where the third
dimension of them is 1. The projection matrices P and P′ map Q onto each image plane can be
denoted as:

q = PQ, q′ = P′Q. (5)

According to epipolar geometry, the corresponding points q and q′ satisfy the epipolar constraint,
defined by a fundamental matrix F ∈ R3×3 as follows:

q′⊤Fq = 0. (6)

This constraint indicates that, given a point q in the first view, its corresponding point q′ must lie
on the epipolar line l′ = Fq in the second view, thus reducing the correspondence search from a 2D
region to a 1D line.

4
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Figure 4: The structure of the temporal fusion module (Warper). We perform temporal correction based on the initial corrected heatmaps
obtained from multi-view spatial fusion. For each heatmap in a target time frame (i.e., non-diagonal heatmaps in the figure), we compute
its difference with the corresponding accurate heatmap in the same view (the diagonal heatmap) and apply a temporal pose feature learning
module to correct the heatmaps along the temporal dimension further. We feed the computed differences into a stack of 3× 3 residual blocks,
followed by five 3× 3 convolutional layers with dilation rates d ∈ {3, 6, 12, 18, 24}. Each convolutional layer predicts a set of five offsets
o(d)(pn) for each pixel location pn, which are used to rewarp pose heatmap B. The five rewarped heatmaps are then summed, and the
resulting tensor is used to predict the target heatmap.

Application in Multi-View Fusion. In the DenseWarper model, we aim to use the Sampson dis-
tance to correct the heatmaps of missing time frames within each view, thereby fully leveraging
the information across different views. The appendix explains our framework’s epipolar geometry
principles and Sampson distance metric.

3.1.2 HEATMAP FUSION

As shown in Figure 2, we can obtain the corresponding heatmaps based on the RGB image input
(Gu, 2022; Zhang et al., 2021; Li et al., 2020). We define the first set of sparse interleaved heatmaps
as {H1

V1
(x),H2

V2
(x), . . . ,HM

VM
(x)}. For ease of discussion, all subsequent formulations will be

based on the first heatmap set, where Hn
Vj
(x) represents the heatmap for view Vj in the n-th frame

at location x, where j ∈ [1,M ]. To supplement the missing information, we first replicate each
heatmap Hn

Vn
(x) across the disappeared frames for each view, resulting in an expanded set H of

replicated heatmaps.

Thus, the expanded set H of heatmaps is formulated as:

H = {{H1
V1
(x),H1

V1
(x), . . . ,H1

V1
(x)}, {H2

V2
(x),H2

V2
(x),

. . . ,H2
V2
(x)}, . . . , {HM

VM
(x),HM

VM
(x), . . . ,HM

VM
(x)}}

(7)

where each original heatmap Hn
Vn

(x) is replicated M − 1 times to fill the blank in view Vn.

Due to incomplete alignment, the replicated heatmaps introduce spatial-temporal offsets, which can
be corrected using epipolar geometry. This approach aligns each replicated heatmap with precise
spatial information from other views. Since features at low-probability locations along the epipolar
line contribute minimally to cross-view fusion, exact correspondences between views are unnec-
essary. Instead, we select the maximum probability point along the epipolar line as the matching
point, which is a reasonable simplification, as accurate correspondences typically yield the highest
response. For instance, as shown in Figure 3, for each position x, we compute the epipolar lines in
the other views and fuse the maximum responses along these lines with the response at x.

Specifically, for each replicated heatmap Hn
v (x) in view v, we use the corresponding heatmap from

another view u (u ̸= v) to provide the correct spatial information. The correction process for each
heatmap Hn

v (x) in view v at the n-th frame is defined by:

Ĥn
v (x) = λHn

v (x) +
(1− λ)

M

M∑
u=1

max
x′∈pu(x)

Hn
u(x

′), (8)

where Ĥj
u(x) represents the corrected heatmap at location x in view u, λ is a balancing parameter

between the current and other views, and pu(x) denotes the epipolar line of x in view u. M is the

5
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Table 1: MPJPE Comparison with state-of-art pose estimation methods on Human3.6M (mm) using ground-truth and detected 2Dposes. Input
types: Single-view (Single), Multi-view full-frame (Full), Multi-view interpolated (Interp). Best in bold.

METHOD INPUT ACTIONS AVG
Dir. Disc. Eat. Greet. Phone. Photo. Pose. Pur. Sit. SitD. Smoke. Wait. Walk. WalkD. WalkT.

2D—Ground Truth (GT)

GLA-GCN (T=243) (Yu et al., 2023b) Single 26.6 27.2 29.2 25.4 28.2 31.7 29.5 27.0 37.8 40.0 29.9 27.0 20.5 27.3 20.8 28.5
KTP-Former (T=243) (Peng et al., 2024) Single 22.7 23.4 21.8 22.5 24.2 29.9 25.7 22.9 30.3 36.9 24.4 23.3 17.3 24.3 18.2 24.5
Adafuse (Zhang et al., 2021) Full 26.3 25.4 22.4 23.9 22.9 22.6 24.1 24.4 23.7 21.6 24.0 23.9 23.1 23.9 22.8 23.7
Adafuse + MCC (Su et al., 2021) Interp 26.0 25.6 22.2 23.6 22.3 23.9 23.8 24.3 24.4 23.3 24.4 23.9 22.3 24.9 22.4 23.8
Adafuse + SLERP (Chen et al., 2022) Interp 26.1 25.2 22.3 23.6 22.7 22.4 23.8 24.3 23.6 21.4 23.8 23.8 22.9 23.7 22.5 23.5
Adafuse Sparse 27.3 27.4 23.6 26.3 24.3 24.1 25.0 27.3 24.4 22.7 25.0 25.3 26.6 26.4 26.0 25.4
PPT (Ma et al., 2022) Full 23.2 26.3 22.0 22.9 25.2 23.1 23.8 28.5 31.2 25.2 27.4 23.6 26.5 23.4 25.0 25.2
PPT + MCC (Ma et al., 2022; Su et al., 2021) Interp 23.5 27.5 21.5 21.9 24.7 29.0 23.0 23.7 30.6 34.1 26.6 22.2 22.4 27.6 24.0 25.5
PPT + SLERP (Ma et al., 2022; Chen et al., 2022) Interp 23.0 26.0 21.6 21.6 24.9 27.1 22.8 23.3 28.2 32.4 24.9 22.1 23.1 26.2 24.7 24.8
PPT Sparse 24.4 27.1 22.8 24.6 25.8 24.2 25.8 28.2 31.1 25.8 28.2 25.2 28.4 27.4 28.2 26.4
Ours Sparse 23.2 22.5 21.0 21.9 20.5 21.2 20.5 22.0 21.2 19.7 21.4 20.5 22.1 21.8 20.7 21.3

2D—CPN

GLA-GCN (T=243) Single 41.4 44.4 40.8 41.8 46.0 54.1 42.1 41.5 57.9 62.9 45.1 42.8 29.3 45.9 29.9 44.4
KTP-Former (T=243) Single 37.7 39.7 35.9 37.7 42.1 48.0 38.7 39.2 52.5 56.2 41.3 40.0 26.8 39.6 27.6 40.2
FinePose (T=243) (Xu et al., 2024a) Single 40.3 40.7 36.4 37.6 42.6 44.2 36.9 36.5 50.7 50.8 41.3 39.4 30.7 39.5 29.8 40.2
Adafuse Full 35.0 37.1 32.2 34.9 35.2 36.6 33.0 34.6 40.5 41.3 37.2 35.3 33.8 37.4 33.1 35.8
Adafuse + MCC Interp 31.9 36.9 30.1 32.8 33.4 32.0 32.0 32.4 37.4 48.8 33.9 33.7 32.4 36.5 31.6 34.4
Adafuse + SLERP Interp 34.4 36.8 31.9 34.0 34.6 35.7 32.3 34.1 40.2 41.0 36.7 34.8 33.4 36.8 32.4 35.3
Adafuse Sparse 35.9 37.2 33.3 36.2 36.7 37.2 33.1 36.9 41.8 41.0 37.6 35.8 37.0 38.2 35.1 36.9
Sgraformer (Zhang et al., 2024) Full 35.7 36.8 32.1 35.9 36.2 37.1 32.8 33.3 39.5 44.9 36.9 35.1 32.4 37.0 32.2 35.4
Ours Sparse 32.0 35.2 30.0 32.4 33.0 34.4 30.2 32.3 38.9 40.1 35.5 32.9 31.4 36.0 30.4 33.6

2D—SimpleBaseline

GLA-GCN (T=243) Single 41.1 42.9 40.5 39.3 44.2 52.8 42.5 40.9 54.1 60.6 44.5 40.4 32.2 44.8 35.2 43.7
KTP-Former (T=243) Single 35.4 36.9 34.3 34.7 39.6 43.4 36.3 35.0 47.5 57.4 39.4 35.4 27.5 38.7 29.4 38.1
FinePose (T=243) Single 31.7 32.3 28.7 29.7 33.6 34.9 29.1 28.7 40.9 40.9 32.9 31.4 23.1 31.6 22.4 31.4
Adafuse Full 28.3 29.9 25.3 29.5 26.9 26.4 27.0 28.1 28.7 32.1 27.8 28.8 26.7 29.6 25.5 28.1
Adafuse + MCC Interp 27.6 30.0 25.1 29.4 26.5 26.9 26.4 27.9 29.2 32.3 27.9 28.5 26.4 29.9 25.4 28.0
Adafuse + SLERP Interp 28.3 30.0 25.3 30.5 26.9 26.4 26.9 28.1 28.7 32.1 27.7 28.8 26.8 29.6 25.5 28.1
Adafuse Sparse 29.9 30.6 26.1 31.2 27.9 27.4 27.7 30.2 29.7 32.3 28.5 29.8 30.8 31.0 29.0 29.5
Sgraformer Full 24.3 25.1 21.1 24.7 24.5 24.9 21.6 22.1 26.5 32.1 25.1 24.0 21.3 25.4 21.6 24.3
Ours Sparse 21.2 24.7 19.7 23.0 19.8 21.6 19.0 21.6 22.9 31.2 21.6 23.2 21.7 23.4 19.8 22.3

Note: Complete version with all baseline comparisons. Gray rows highlight our method. Action abbreviations:
Directions (Dir), Discussion (Disc), Sitting Down (SitD), Walking Dog (WalkD), Walking Together (WalkT).
Time frames (T=243) are shown where applicable. For the 2D pose estimation, we utilize ground truth, CPN
(Cascaded Pyramid Network), and SimpleBaseline to obtain the corresponding 2D pose sequences. T rep-
resents the number of input time frames. MCC (Motion Consistency and Continuity) and SLERP (Spherical
Linear Interpolation) are keypoint interpolation methods. MCC is a neural network-based interpolation method,
while SLERP is a traditional interpolation technique.

Table 2: P-MPJPE Comparison on with state-of-art pose estimation methods on Human3.6M (mm) using the ground-truth and detected 2D
poses. Input types: Single-view (Single), Multi-view full-frame (Full), Multi-view interpolated (Interp). Best in bold.

METHOD INPUT ACTIONS AVG
Dir. Disc. Eat. Greet. Phone. Photo. Pose. Pur. Sit. SitD. Smoke. Wait. Walk. WalkD. WalkT.

2D—SimpleBaseline-P-MPJPE

GLA-GCN (T=243) (Yu et al., 2023b) Single 32.1 35.1 33.2 32.0 35.4 40.9 33.1 33.4 43.5 50.0 36.5 32.5 25.5 37.1 27.1 35.2
KTP-Former (T=243) (Peng et al., 2024) Single 28.6 31.1 28.3 28.9 32.7 34.9 29.0 29.2 39.9 47.3 33.5 29.0 22.4 32.5 23.9 31.4
FinePose (T=243) (Xu et al., 2024a) Single 24.8 26.3 24.7 24.0 27.0 28.1 22.4 23.8 33.7 33.3 27.4 24.6 19.2 25.8 18.5 25.6
Adafuse (Zhang et al., 2021) Full 21.0 22.4 19.1 20.9 20.8 20.2 19.4 20.0 22.2 23.1 21.3 20.1 19.4 22.1 18.1 20.7
Adafuse + MCC (Zhang et al., 2021; Su et al., 2021) Interp 20.5 22.6 18.8 21.0 20.5 21.0 19.1 19.4 22.6 23.3 21.6 20.1 19.4 22.5 18.4 20.7
Adafuse + SLERP (Zhang et al., 2021; Chen et al., 2022) Interp 20.9 22.4 19.0 22.2 20.8 20.2 19.3 19.9 22.2 23.0 21.2 20.1 19.3 22.2 18.1 20.7
Adafuse (Zhang et al., 2021) Sparse 22.5 22.6 19.7 22.5 21.5 20.9 20.0 20.5 22.5 23.4 21.7 20.6 23.3 23.4 20.9 21.7
Sgraformer (Zhang et al., 2024) Full 19.9 20.1 18.1 18.2 20.8 20.3 17.1 17.7 23.0 26.2 21.9 18.6 17.7 20.7 17.9 19.9
Ours Sparse 20.3 22.9 17.8 18.2 17.9 19.0 15.6 17.4 21.3 27.3 18.9 18.2 19.0 20.5 16.6 19.4
2D—CPN-P-MPJPE

GLA-GCN (T=243) Single 37.5 39.9 37.9 39.0 39.5 46.8 37.3 36.9 50.6 54.3 41.4 37.0 28.5 29.4 29.9 37.1
KTP-Former (T=243) Single 32.4 34.8 31.9 32.0 37.7 39.6 33.0 33.0 45.7 49.9 38.7 32.2 25.6 37.1 27.5 33.2
FinePose (T=243) Single 31.3 33.0 30.6 30.8 35.8 38.6 31.4 31.7 44.0 48.8 37.2 30.4 24.4 35.4 26.5 34.0
Adafuse Full 26.6 27.8 24.3 25.8 27.7 26.7 25.3 25.6 30.6 27.6 28.5 25.1 24.5 28.5 23.6 26.9
Adafuse + MCC Interp 26.2 28.1 24.4 26.1 27.7 27.9 25.1 25.2 31.4 27.9 29.1 25.3 24.7 29.2 23.7 27.2
Adafuse + SLERP Interp 26.7 28.1 24.5 27.3 28.1 27.2 25.4 25.7 30.9 27.6 28.8 25.4 24.5 28.9 23.6 27.1
Adafuse Sparse 27.5 27.4 24.4 26.7 27.7 26.8 25.0 25.4 29.9 27.3 28.1 25.1 27.6 29.0 25.6 26.9
Sgraformer Full 28.0 28.0 25.6 25.0 30.8 29.9 25.6 25.7 35.0 32.6 29.3 25.9 24.8 30.1 25.6 28.3

Ours Sparse 26.1 28.5 23.2 23.1 25.1 25.9 21.7 23.2 30.0 31.9 26.2 23.5 24.2 27.3 22.3 26.1

number of camera views. The term max
x′∈pu(x)

Hn
u(x

′) represents the maximum response along the

epipolar line in view u.

Following spatial correction, this process ensures that the expanded set H of heatmaps accurately
captures spatial information across multiple views. By compensating for missing frames, this ap-
proach enhances the model’s robustness and improves the quality of 3D pose estimation in sparse,
interleaved multi-view scenarios. Consequently, it enables the generation of a spatially rectified,
dense, full-frame heatmap input derived from the initial sparse, interleaved heatmaps.
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3.2 WARPER: TEMPORAL POSE AGGREGATION

After performing epipolar geometry-based heatmap fusion as described in Section 3.1.2, we obtain
a set of partly corrected heatmaps Ĥi

Vj
(x) that integrate spatial information across multiple views

V = {V1, V2, . . . , VM}. We introduce a Warper module designed to capture temporal pose infor-
mation from adjacent frames, further enhancing the temporal consistency of the sparse heatmaps
(Pöppel, 1994; Zhang et al., 2019).

For each view Vj at a target frame n, when n ̸= M · i+ j, n ∈ [M · i,M · i+(M −1)], we compute
the difference between the corrected heatmap Ĥn

Vj
(x) and the heatmap from the sparse interleaved

input HM ·i+j
Vj

(x) to capture temporal changes between frames, which can be denoted as:

Φn
Vj
(x) = Ĥn

Vj
(x)−HM ·i+j

Vj
. (9)

This difference is then passed through a series of 3× 3 residual blocks to extract temporal features.
Following the residual blocks, we apply five 3×3 convolutional layers (Yu et al., 2017) with dilation
rates d ∈ {3, 6, 12, 18, 24}, allowing the model to predict a set of offset maps {o(d)Vj

(x)}5d=1 for each
pixel x in the heatmap. These offsets are used to warp the target heatmap deformably (Dai et al.,
2017), aligning it with temporal features. The details of the Warper module are shown in Figure
4. Thus, for each spatially corrected heatmap Hn

Vj
, we generate five temporally aligned warped

heatmaps by applying the offsets. These warped heatmaps are then aggregated by summation:

H̃n
Vj

=

5∑
d=1

Warper(Φn
Vj
, o

(d)
Vj

(x)), (10)

where Warper(·, o(d)Vj
(x)) represents the warping operation that uses the offset o(d)Vj

(x) to align each
pixel x in the heatmap. Notably, we trained a distinct warper model for each temporal mode.

This warping and aggregation process is applied to all interleaved frames in the sparse input set,
ensuring that each refined heatmap H̃n

Vj
integrates both spatial and temporal information. The re-

sulting tensor captures comprehensive pose information across views and time frames, improving
the robustness and accuracy of 3D pose estimation under sparse interleaved multi-view settings.

4 EXPERIMENT

4.1 DATASET

Human3.6M. Human3.6M is a large-scale benchmark dataset widely used for 3D human
pose estimation in controlled indoor environments. It consists of 3.6 million frames recorded
from four synchronized high-resolution cameras capturing 11 professional actors (6 male, 5
female) performing 15 distinct activities, including walking, sitting, and object interactions.
This dataset includes accurate 3D skeletal annotations obtained via a motion capture system
and full-body 3D scans of each actor, enabling precise analysis of both 2D and 3D poses.

Table 3: Reconstruction Error (MPJPE in mm) on the MPI-INF-3DHP
Dataset. Input 2D pose sequences are obtained using a SimpleBaseline
detector. T denotes the number of input frames. Best results are high-
lighted in bold.

MPJPE (SimpleBaseline(2D)) Input Method MPJPE ↓
GLA-GCN (T=243) Single 75.00

KTP-Former (T=243) Single 67.59
Adafuse Full 78.57

Adafuse + MCC Interpolation -
Adafuse + SLERP Interpolation 83.37

PPT Full 106.30
PPT + MCC Interpolation -

PPT + SLERP Interpolation 110.34
Ours sparse Interleaved 65.89

MPI-INF-3DHP. The MPI-INF-3DHP dataset
is a comprehensive resource for multi-view
3D human pose estimation, featuring annotated
frames from indoor and everyday settings. It
includes 8 actors (4 male, 4 female), each per-
forming 8 activity sets, such as walking, sit-
ting, complex exercises, and dynamic actions.
With diverse scenarios and multi-view record-
ings, the dataset enables robust evaluation of
models under varying conditions.

It is worth noting that the MPI-INF-3DHP
dataset has not been extensively trained with a 2D detector. We are the first to process and align
this dataset, and we will open-source all our models and codes in the experiments.
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Table 4: Model Parameter Count and Performance Efficiency. Performance Efficiency (MPJPE/mm per MB) is calculated as the ratio of
MPJPE (in mm) to model size (in MB). Smaller values of this metric indicate better trade-offs between performance (MPJPE) and model size
(MB), with more efficient models achieving lower MPJPE while maintaining smaller parameter sizes. The average latency specifically refers
to the computational time of a single model inference (in milliseconds).

Method Para.(M) ↓ Flops.(GFLOPs)↓ Average Latency. (ms)↓ Performance per MB (MPJPE/mm per MB) ↓
GLA-GCN (T=243) 69.99 51.13 24.10 0.624

KTP-Former (T=243) 103.85 51.64 24.11 0.367
FinePose (T=243) 269.23 287.32 82.24 0.117

Adafuse (T=1) 69.66 204.26 96.028 0.403
Adafuse + SLERP 69.66 204.26 96.03 0.403
Adafuse + MCC 72.25 204.26 96.028 0.388

Sgraformer + Full 81.23 204.28 99.19 0.299
Ours 76.51 111 .36 44.51 0.291

4.2 EVALUATION METRICS.

The MPJPE measures 3D pose accuracy via mean Euclidean distance between predicted (P̂ =
{p̂1, . . . , p̂J}) and ground truth (P = {p1, . . . , pJ}) joints:

MPJPE =
1

J

J∑
i=1

∥p̂i − pi∥2 (11)

where ∥ · ∥2 is Euclidean norm.

4.3 EXPERIMENTAL RESULTS

Results on the Human3.6M Dataset. We conducted extensive experiments on the Human3.6M
dataset using different 2D pose detectors to evaluate the effectiveness of our sparse interleaved ap-
proach. As shown in Table 1, our method consistently achieves new state-of-the-art performance
across various settings.

First, with ground truth (GT) 2D poses, our model achieves a minimum average MPJPE of 21.3mm.
This result is not only significantly better than all single-view methods (e.g., an improvement
of 25.2% over GLA-GCN’s 28.5mm) but also outperforms multi-view approaches like Adafuse
(23.7mm), yielding a performance gain of approximately 10.1%. Notably, our method achieves the
best performance on 12 out of 15 action categories, with a particularly low MPJPE of 19.7mm on
the challenging “SitDown” action, which is notably better than Adafuse’s 21.6mm.

Second, we used CPN and SimpleBaseline as 2D pose detectors to validate the model’s robustness in
real-world scenarios. With CPN, our method still achieves the best average MPJPE of 33.6mm, rep-
resenting a substantial 24.3% performance improvement over the single-view GLA-GCN (44.4mm).
Similarly, with SimpleBaseline, we achieve an impressive 22.3mm MPJPE, a significant improve-
ment of approximately 20.6% over Adafuse (28.1mm). Furthermore, our method achieves the best
result in 14 out of 15 action categories with this detector.

We also evaluated our model using the P-MPJPE metric, as shown in Table 2, which assesses the ac-
curacy of relative joint positions. With SimpleBaseline 2D inputs, our model’s average P-MPJPE is
only19.4mm, representing a 2.5% and 6.3% improvement over Sgraformer (19.9mm) and Adafuse
(20.7mm), respectively. Our method achieves the best P-MPJPE in 13 out of 15 action categories, for
instance, a remarkable 15.6mm on the “Pose” action, which is significantly better than Sgraformer’s
17.1mm. This result provides strong evidence that our sparse interleaved approach not only pre-
cisely reconstructs the absolute 3D pose but also accurately captures the intricate internal structure
and relative relationships of the human joints.

Results on MPI-INF-3DHP. As shown in Table 3. Our method demonstrates generalization ca-
pabilities on the more challenging MPI-INF-3DHP dataset, which features diverse outdoor settings
and complex motions. With SimpleBaseline, we achieve 65.89mm MPJPE, substantially outper-
forming both single-view methods (GLA-GCN: 75.00mm, KTP-Former: 67.59mm) and multi-view
approaches (Adafuse: 78.57mm, PPT: 106.30mm). This advantage extends to comparisons with
interpolation-based methods (Adafuse+SLERP: 83.37mm, PPT+SLERP: 110.34mm), highlighting
the effectiveness of our sparse interleaved input strategy in challenging real-world scenarios.

Model Efficiency Analysis. As shown in Table 4, our method exhibits significant advantages across
multiple performance indicators. First, with a parameter count of only 76.51M, it achieves an effec-
tive balance between model capacity and performance, being considerably more lightweight and ef-
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ficient than (FinePose) (269.23M). This demonstrates that our model attains high accuracy with sub-
stantially fewer parameters. In terms of performance efficiency (MPJPE/mm per MB), our method
achieves an impressive value of 0.291, notably surpassing (GLA-GCN) (0.624) and (KTP-Former)
(0.367). This highlights the model’s ability to provide higher accuracy per unit of model capacity.
Although (FinePose) attains a slightly lower MPJPE, its excessive parameter count and compu-
tational demand result in less favorable efficiency. Furthermore, our method achieves the lowest
average latency of 44.51 ms, which is significantly faster than (Adafuse) (96.03 ms) and (FinePose)
(82.24 ms), ensuring real-time responsiveness. In addition, our approach reaches a processing speed
four times that of the input FPS (4f ), further confirming its potential for real-time pose estimation
applications. Overall, our method is highly suitable for scenarios that require both high performance
and low latency.

Ablation Analysis. To validate the effectiveness of our key components, we conduct ablation studies
on both datasets using SimpleBaseline as the 2D detector. On Human3.6M, starting from a base-
line MPJPE of 36.06mm, the addition of spatial heatmap fusion improves performance to 31.54mm,
demonstrating the effectiveness of our epipolar geometry-based fusion strategy. Further, incorporat-
ing the Warper module reduces the MPJPE to 22.28 mm, yielding a 38.2% improvement compared
to the Spatial Fusion only baseline. The detailed results are presented in Table 5.

On the MPI-INF-3DHP dataset, our spatial fusion module reduces the error from 94.46mm to
88.63mm, while the complete model achieves a significantly lower error of 65.89mm, yielding an
overall improvement of 30.25%. These quantitative results substantiate the efficacy of both our
temporal and spatial fusion strategies across diverse datasets. The detailed experimental setup and
specifics are provided in the Appendix.

5 CONCLUSION

Table 5: Ablation study results. We conducted ablation studies on the Human3.6M and MPI-
INF-3DHP datasets to validate the effectiveness of the proposed space fusion module based
on epipolar geometry and the temporal fusion module Warper. We use SimpleBaseline as 2D
baseline model. We have bolded the best results.

Method Spatial Heatmap Fusion Warper Avg. ↓

Ours (Human3.6M)
✗ ✗ 36.06
✓ ✗ 31.54
✓ ✓ 22.28

Ours (MPI-INF-3DHP)
✗ ✗ 94.46
✓ ✗ 88.63
✓ ✓ 65.89

In this paper, we addressed
a fundamental limitation of
conventional 3D human pose
estimation: the reliance on
dense, synchronized multi-view
inputs. To this end, we pio-
neered a sparse interleaved input
paradigm that leverages the rich
spatio-temporal dependencies
often overlooked by traditional
methods. Our work makes two key contributions to the field. First, we introduced a new task
formulation by demonstrating that a high-frequency pose output can be accurately reconstructed
from sparse, temporally-interleaved inputs. Second, we designed the DenseWarper module, an
efficient end-to-end framework capable of transforming these sparse inputs into dense outputs with
high spatio-temporal coherence. Our extensive experiments on the Human3.6M and MPI-INF-
3DHP datasets rigorously validate that our approach surpasses conventional dense input methods
and achieves state-of-the-art performance. This breakthrough highlights our method’s ability to
challenge the long-held assumption of dense synchronized inputs fundamentally. Ultimately, our
research provides a compelling proof-of-concept for the future of resource-efficient, real-time 3D
perception, paving the way for applications in domains requiring high temporal resolution, such as
robotics and VR/AR.

Limitation. Our method has not been explored under non-uniform intervals or extremely low-
frame-rate camera sampling. For cases with extensive inter-camera sampling intervals, as shown in
Figure 5 in the appendix, our method may struggle to extract and recover spatio-temporal informa-
tion effectively. Consequently, our approach is, to a certain extent, dependent on the density of the
multi-view input stream, particularly in the temporal dimension.

Future Work. Our work opens up several promising directions for future research. First, we plan
to extend our sparse interleaved input paradigm to other multi-view 3D tasks, such as object detec-
tion, to explore its generalizability and provide new insights into these fields. Second, we will delve
deeper into the theoretical underpinnings of our novel input method, examining it from the perspec-
tive of interpretability. Future work will also focus on enhancing the model’s robustness under more
challenging conditions, including sparse and irregular sampling.
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ETHICS STATEMENT

Our research aims to advance 3D human pose estimation by proposing a sparse interleaved in-
put paradigm that addresses the insufficient spatio-temporal information utilization and frame rate
limitations of traditional methods. All data used in this paper is from publicly available bench-
mark datasets (Human3.6M and MPI-INF-3DHP) where personal identifying information was
anonymized prior to release. We made no modifications to these datasets to re-identify any in-
dividual. We confirm that this study did not involve the direct participation of human subjects.
We believe our proposed technology, which includes the sparse interleaved input paradigm and the
DenseWarper module, is designed solely to enhance computational efficiency and poses no risk of
harmful applications, bias, or privacy infringement. We declare that the research and writing of this
paper have adhered to the principles of academic integrity, with all citations and references clearly
acknowledged.

REPRODUCIBILITY STATEMENT

To ensure the full reproducibility of our work, we provide all necessary information within this
paper and its supplementary materials. The source code for our proposed DenseWarper framework,
including the model implementation, training configurations, and evaluation scripts, will be made
available via an anonymous link in the supplementary materials. Our experiments are based on the
publicly available Human3.6M and MPI-INF-3DHP datasets, with all data processing steps also
detailed in the supplementary materials. These measures ensure our work can be fully verified and
built upon by the research community.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

This paper utilized a large language model (LLM) as a general-purpose assist tool to aid or polish
the writing. The LLM’s role was strictly limited to improving the clarity, grammar, and style of the
text. It was not used for research ideation, data analysis, or the generation of core scientific content.
The authors take full responsibility for the content, originality, and accuracy of the paper.

REFERENCES

Tobias Baumgartner and Stefanie Klatt. Monocular 3D Human Pose Estimation for Sports Broad-
casts Using Partial Sports Field Registration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 5109–5118, 2023.

Lewis Bridgeman, Marco Volino, Jean-Yves Guillemaut, and Adrian Hilton. Multi-Person 3D Pose
Estimation and Tracking in Sports. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pp. 0–0, 2019.

Yujun Cai, Liuhao Ge, Jun Liu, Jianfei Cai, Tat-Jen Cham, Junsong Yuan, and Nadia Magnenat
Thalmann. Exploiting Spatial-Temporal Relationships for 3D Pose Estimation via Graph Con-
volutional Networks. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 2272–2281, 2019.

Long Chen, Haizhou Ai, Rui Chen, Zijie Zhuang, and Shuang Liu. Cross-View Tracking for Multi-
Human 3D Pose Estimation at Over 100 FPS. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3279–3288, 2020.

Tianlang Chen, Chen Fang, Xiaohui Shen, Yiheng Zhu, Zhili Chen, and Jiebo Luo. Anatomy-
Aware 3D Human Pose Estimation With Bone-Based Pose Decomposition. IEEE Transactions
on Circuits and Systems for Video Technology, 32:198–209, 2021.

Yilun Chen, Zhicheng Wang, Yuxiang Peng, Zhiqiang Zhang, Gang Yu, and Jian Sun. Cascaded
Pyramid Network for Multi-Person Pose Estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 7103–7112, 2018.

Ziyi Chen, Akihiro Sugimoto, and Shang-Hong Lai. Learning Monocular 3D Human Pose Estima-
tion With Skeletal Interpolation. In ICASSP, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
Convolutional Networks. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 764–773, 2017.

Maria de Lurdes Calisto and Soumodip Sarkar. A Systematic Review of Virtual Reality in Tourism
and Hospitality: The Known and The Paths to Follow. International Journal of Hospitality Man-
agement, 116:103623, 2024.

Jia Gong, Lin Geng Foo, Zhipeng Fan, Qiuhong Ke, Hossein Rahmani, and Jun Liu. DiffPose:
Toward More Reliable 3D Pose Estimation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13041–13051, 2023.

Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3D Semantic Segmentation
with Submanifold Sparse Convolutional Networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 9224–9232, 2018.

Zuguang Gu. Complex Heatmap Visualization. Imeta, 1:e43, 2022.

Dehao Han, Shijie Yang, Ping Zhao, Xiaoming Chen, Chen Wang, and Vera Chung. Enhancing
Scene Understanding in VR for Visually Impaired Individuals with High-Frame Videos and Event
Overlays. In Proceedings of the IEEE International Conference on Consumer Electronics, pp. 1–
5, 2024.

Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2:1–655, 2003.

Yihui He, Rui Yan, Katerina Fragkiadaki, and Shoou-I Yu. Epipolar Transformer for Multi-View
Human Pose Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pp. 1036–1037, 2020.

Mir Rayat Imtiaz Hossain and James J Little. Exploiting Temporal Information for 3D Human Pose
Estimation. In Proceedings of the European Conference on Computer Vision, pp. 68–84, 2018.

Wenbo Hu, Changgong Zhang, Fangneng Zhan, Lei Zhang, and Tien-Tsin Wong. Conditional Di-
rected Graph Convolution for 3d Human Pose Estimation. In Proceedings of the ACM Interna-
tional Conference on Multimedia, pp. 602–611, 2021.

Pawel Hyla. Multi-Camera Triggering and Synchronization Issue: Case Study. Journal of KONES,
23:193–200, 2016.

Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3.6M: Large Scale
Datasets and Predictive Methods for 3D Human Sensing in Natural Environments. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 36:1325–1339, 2013.

Karim Iskakov, Egor Burkov, Victor Lempitsky, and Yury Malkov. Learnable Triangulation of
Human Pose. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 7718–7727, 2019.

Boyuan Jiang, Lei Hu, and Shihong Xia. Probabilistic Triangulation for Uncalibrated Multi-View 3D
Human Pose Estimation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 14850–14860, 2023.

Misha Karim, Shah Khalid, Aliya Aleryani, Jawad Khan, Irfan Ullah, and Zafar Ali. Human Action
Recognition Systems: A Review of the Trends and State-of-the-Art. IEEE Access, 12:36372–
36390, 2024.

Georgios Lampropoulos and Kinshuk. Virtual reality and gamification in education: a systematic
review. Educational Technology Research and Development, 72:1691–1785, 2024.

Chuan-Kang Li, Hong-Xin Zhang, Jia-Xin Liu, Yuan-Qing Zhang, Shan-Chen Zou, and Yu-Tong
Fang. Window Detection in Facades Using Heatmap Fusion. Journal of Computer Science and
Technology, 35:900–912, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Han Li, Bowen Shi, Wenrui Dai, Hongwei Zheng, Botao Wang, Yu Sun, Min Guo, Chenglin Li,
Junni Zou, and Hongkai Xiong. Pose-Oriented Transformer with Uncertainty-Guided Refinement
for 2D-to-3D Human Pose Estimation. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 1296–1304, 2023.

Sijin Li and Antoni B Chan. 3D Human Pose Estimation from Monocular Images with Deep Convo-
lutional Neural Network. In Proceedings of Asian Conference on Computer Vision, pp. 332–347,
2014.

Sijin Li and Antoni B Chan. 3D Human Pose Estimation from Monocular Images with Deep Con-
volutional Neural Network. In Proceedings of the Asian Conference on Computer Vision, pp.
332–347, 2015.

Wenhao Li, Hong Liu, Hao Tang, Pichao Wang, and Luc Van Gool. MHFormer: Multi-Hypothesis
Transformer for 3D Human Pose Estimation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13147–13156, 2022.

Kenkun Liu, Rongqi Ding, Zhiming Zou, Le Wang, and Wei Tang. A Comprehensive Study of
Weight Sharing in Graph Networks for 3D Human Pose Estimation. In Proceedings of the Euro-
pean Conference on Computer Vision, pp. 318–334, 2020a.

Ruixu Liu, Ju Shen, He Wang, Chen Chen, Sen-ching Cheung, and Vijayan Asari. Attention Mecha-
nism Exploits Temporal Contexts: Real-Time 3D Human Pose Reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5064–5073, 2020b.

Diogo C. Luvizon, David Picard, and Hedi Tabia. 2D/3D Pose Estimation and Action Recognition
Using Multitask Deep Learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5137–5146, 2018.

Diogo C Luvizon, Hedi Tabia, and David Picard. Human pose regression by combining indirect part
detection and contextual information. Computers & Graphics, 85:15–22, 2019.

Haoyu Ma, Zhe Wang, Yifei Chen, Deying Kong, Liangjian Chen, Xingwei Liu, Xiangyi Yan, Hao
Tang, and Xiaohui Xie. PPT: Token-Pruned Pose Transformer for Monocular and Multi-view
Human Pose Estimation. In Proceedings of the European Conference on Computer Vision, pp.
424–442, 2022.

Nikoleta Manakitsa, George S Maraslidis, Lazaros Moysis, and George F Fragulis. A review of ma-
chine learning and deep learning for object detection, semantic segmentation, and human action
recognition in machine and robotic vision. Technologies, 12:15, 2024.

Julieta Martinez, Rayat Hossain, Javier Romero, and James J Little. A Simple yet Effective Base-
line for 3D Human Pose Estimation. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 2640–2649, 2017.

Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotnychenko, Weipeng Xu, and
Christian Theobalt. Monocular 3D Human Pose Estimation in the Wild Using Improved CNN
Supervision. In Proceedings of the International Conference on 3D Vision, pp. 506–516, 2017.

Rahul Mitra, Nitesh B. Gundavarapu, Abhishek Sharma, and Arjun Jain. Multiview-Consistent
Semi-Supervised Learning for 3D Human Pose Estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6907–6916, 2020.

Gyeongsik Moon and Kyoung Mu Lee. I2l-meshnet: Image-to-lixel prediction network for accurate
3d human pose and mesh estimation from a single rgb image. In Proceedings of the European
Conference on Computer Vision, pp. 752–768, 2020.

Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee. Camera Distance-Aware Top-Down Ap-
proach for 3D Multi-Person Pose Estimation From a Single RGB Image. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10133–10142, 2019.

Sungheon Park, Jihye Hwang, and Nojun Kwak. 3D Human Pose Estimation Using Convolutional
Neural Networks with 2D Pose Information. In Proceedings of the European Conference on
Computer Vision, pp. 156–169, 2016.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Georgios Pavlakos, Xiaowei Zhou, and Kostas Daniilidis. Ordinal Depth Supervision for 3D Hu-
man Pose Estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7307–7316, 2018a.

Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and Kostas Daniilidis. Learning to Estimate 3D
Human Pose and Shape from a Single Color Image. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 459–468, 2018b.

Pavlakos, Georgios and Zhou, Xiaowei and Derpanis, Konstantinos G. and Daniilidis, Kostas.
Coarse-To-Fine Volumetric Prediction for Single-Image 3D Human Pose. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 7025–7034, 2017.

Dario Pavllo, Christoph Feichtenhofer, David Grangier, and Michael Auli. 3D Human Pose Estima-
tion in Video With Temporal Convolutions and Semi-Supervised Training. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7753–7762, 2019a.

Dario Pavllo, Christoph Feichtenhofer, David Grangier, and Michael Auli. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7753–7762, 2019b.

Jihua Peng, Yanghong Zhou, and PY Mok. KTPFormer: Kinematics and Trajectory Prior
Knowledge-Enhanced Transformer for 3D Human Pose Estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1123–1132, 2024.
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A RELATED WORK

A.1 3D HUMAN POSE ESTIMATION

Early approaches to 3D human pose estimation relied heavily on direct regression from 2D images
to 3D coordinates (Li & Chan, 2014; 2015; Moon et al., 2019; Park et al., 2016; Pavlakos et al.,
2018a; Tekin et al., 2016; Wehrbein et al., 2021; Luvizon et al., 2018; 2019; Moon & Lee, 2020;
Pavlakos, Georgios and Zhou, Xiaowei and Derpanis, Konstantinos G. and Daniilidis, Kostas, 2017;
Shen & Tang, 2024; Rommel et al., 2024). With the advent of deep learning, two-stage methods be-
came prevalent, first detecting 2D keypoints and then lifting them to 3D space (Martinez et al., 2017;
Chen et al., 2021; Hossain & Little, 2018; Liu et al., 2020b; Pavllo et al., 2019a; Zheng et al., 2021b;
Li et al., 2022; Zhang et al., 2022; Tang et al., 2023; Shan et al., 2023; Cai et al., 2019; Hu et al.,
2021; Liu et al., 2020a; Xu & Takano, 2021; Yu et al., 2023a; Zhao et al., 2019a; Zou & Tang, 2021;
Gong et al., 2023; Li et al., 2023; Zhao et al., 2022; Zhu et al., 2021). Recent methods have incor-
porated additional constraints such as bone length consistency (Zhao et al., 2019b) and anatomical
priors (Pavlakos et al., 2018b) to improve estimation accuracy. Furthermore, self-attention mecha-
nisms (Zheng et al., 2020) and graph neural networks (Zou et al., 2020; Zhao & Tulsiani, 2024) have
been introduced to capture long-range dependencies and structural relationships in human poses.

A.2 MULTI-VIEW 3D POSE ESTIMATION

Multi-view approaches have demonstrated superior performance to single-view methods due to
their ability to resolve depth ambiguity. Traditional methods typically use triangulation-based tech-
niques (Hartley & Zisserman, 2003; Qiu et al., 2019a; Zhang et al., 2021; Mitra et al., 2020; Shuai
et al., 2022; Zhou et al., 2023) to reconstruct 3D poses from synchronized multi-view 2D detections.
Recent learning-based approaches have explored various ways to fuse multi-view information. Qiu
et al. (Qiu et al., 2019b) proposed cross-view fusion using epipolar geometry, while Remelli et
al. (Remelli et al., 2020a) introduced a lightweight architecture for real-time multi-view pose esti-
mation. Rhodin et al. (Rhodin et al., 2018) leveraged geometric consistency across views to improve
unsupervised learning of 3D pose estimation. However, these methods generally rely on dense, syn-
chronized multi-view inputs, which can be computationally expensive and may not fully utilize
temporal information.

A.3 TEMPORAL INFORMATION IN POSE ESTIMATION

Temporal information is crucial for robust pose estimation, particularly in challenging scenarios with
occlusions or motion blur. Previous work has explored various approaches to incorporate temporal
information, including recurrent neural networks (Hossain & Little, 2018) and temporal convolu-
tions (Pavllo et al., 2019b). Recent works like Zheng et al. (Zheng et al., 2021a) have proposed
combining spatial and temporal attention mechanisms to capture motion dynamics better. However,
most existing methods process temporal information within a single view, potentially missing valu-
able cross-view temporal correlations. Approaches like (Sun et al., 2018) have attempted to bridge
this gap by incorporating temporal consistency constraints in multi-view settings.

A.4 SPARSE AND EFFICIENT VISION METHODS

Recent trends in computer vision have shown increasing interest in efficient processing methods.
Sparse convolutions (Graham et al., 2018) and attention mechanisms (Zhu et al., 2020) have been
proposed to reduce computational overhead while maintaining performance. In multi-view tasks,
sparse view selection (Zhang et al., 2020; Zhao & Tulsiani, 2024) and adaptive sampling strategies
have been explored, though primarily for static scene reconstruction rather than dynamic human
pose estimation. Notable works like (Jiang et al., 2023) have introduced probabilistic frameworks
for efficient multi-view processing.

A.5 GEOMETRIC FEATURE WARPING

Our work builds upon recent advances in geometric feature warping, particularly in the context
of multi-view feature fusion. Epipolar geometry has been extensively used for cross-view feature
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alignment (He et al., 2020), while deformable convolutions (Dai et al., 2017) have shown promise
in handling dynamic spatial transformations. Recent works (Chen et al., 2020) have explored the
integration of geometric constraints with learning-based feature warping. However, combining these
techniques for spatio-temporal feature warping in sparse multi-view scenarios remains largely un-
explored.

B CODES AND MODELS

We have organized the code for our method in the codes directory and compiled the checkpoint
files used in the experiments, as shown in Table 6. Upon publication of the paper, we will re-
lease the code and pretrained models. Detailed usage instructions for the code are provided in the
“/codes/DenseWarper/README.md” file for reference.

Model Name Dataset Performance (Metric) Checkpoint Name Model Source
GLA-GCN(T=243) MPI-INF-3DHP MPJPE: 75.00 mm GLA-GCN 3DHP.bin Reproduced

KTP-Former(T=243) MPI-INF-3DHP MPJPE: 67.59 mm KTP-Former 3DHP.bin Reproduced
Adafuse MPI-INF-3DHP MPJPE: 78.57 mm Adafuse 3DHP.pth.tar Reproduced

Adafuse (Zhang et al., 2021) + MCC (Su et al., 2021) MPI-INF-3DHP MPJPE: - mm MCC 3DHP.pth.tar Reproduced
Adafuse + SLERP (Chen et al., 2022) MPI-INF-3DHP MPJPE: 83.37 mm - Reproduced

PPT MPI-INF-3DHP MPJPE: 106.30mm PPT 3DHP.pth.tar Reproduced
PPT + MCC MPI-INF-3DHP MPJPE: - mm MCC 3DHP.pth.tar Reproduced

PPT + SLERP MPI-INF-3DHP MPJPE: 110.34 mm - Reproduced
Ours MPI-INF-3DHP MPJPE: 65.89 mm Ours 3DHP.pth.tar Reproduced

GLA-GCN(T=243) (CPN) Human3.6M MPJPE: 40.39 mm GLA-GCN CPN.bin Original
FinePose(T=243) (CPN) Human3.6M MPJPE: 40.20 mm - Reproduced

KTP-Former(T=243)(CPN) Human3.6M MPJPE: 40.18 mm KTP-Former CPN.bin Original
Adafuse (CPN) Human3.6M MPJPE: 35.81 mm Adafuse H36M.pth.tar Original

Adafuse + MCC (CPN) Human3.6M MPJPE: 34.42 mm MCC H36M.pth Original
Adafuse + SLERP (CPN) Human3.6M MPJPE: 35.27 mm - Original

Sgraformer (CPN) Human3.6M MPJPE: 35.40 mm - Reproduced
Ours (CPN) Human3.6M MPJPE: 33.57 mm Ours H36M.pth.tar Reproduced

GLA-GCN(T=243) (SimpleBaseline) Human3.6M MPJPE: 43.74 mm GLA-GCN.bin Reproduced
FinePose(T=243) (SimpleBaseline) Human3.6M MPJPE: 31.40mm - Reproduced

KTP-Former(T=243)(SimpleBaseline) Human3.6M MPJPE: 38.08 mm KTP-Former.bin Reproduced
Adafuse (SimpleBaseline) Human3.6M MPJPE: 28.06 mm Adafuse H36M.pth.tar Original

Adafuse + MCC (SimpleBaseline) Human3.6M MPJPE: 27.95 mm MCC H36M.pth Original
Adafuse + SLERP (SimpleBaseline) Human3.6M MPJPE: 28.10 mm - Original

Sgraformer (SimpleBaseline) Human3.6M MPJPE: 24.32 mm - Reproduced
Ours (SimpleBaseline) Human3.6M MPJPE: 22.28 mm Ours H36M.pth.tar Reproduced

Table 6: Pretrained Models List. We conducted extensive experiments on the Human3.6M and MPI-INF-3DHP benchmark datases using a
combination of open-source models and reproduced code. Here, “reproduced” means we reimplemented and retrained the model code, while
“original” indicates we used open-source models for testing.

C EXPERIMENTAL DETAILS

C.1 EXPERIMENTAL SETTINGS

In our experiments, we proposed the DenseWarper module for spatiotemporal fusion. All mod-
els were trained using two RTX A100 GPUs. Table 7 provides a comprehensive overview of the
parameter settings used for training DenseWarper compared to other models.

Method Loss LR Epoch Batch Optimizer

GLA-GCN(T=243) MPJPE 0.01 200 512 Ranger

KTP-Former(T=243) WMPJPE+MPJVE+
temporal consistency loss 0.00008 200 1024 AdamW

Adafuse MSE 0.0001 50 4 Adam
Adafuse + MCC MSE 0.0001 50 4 Adam

Adafuse + SLERP MSE 0.0001 50 4 Adam
PPT 2dSmoothLoss 0.001 200 32 Adam

PPT + MCC 2dSmoothLoss 0.001 200 32 Adam
PPT + SLERP 2dSmoothLoss 0.001 200 32 Adam

Ours 2dSmoothLoss 0.001 50 4 Adam

Table 7: Experimental parameter settings for comparative analysis with different models.
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C.2 OTHER EXPERIMENTAL DETAILS

Experimental Details on Human3.6M (Ionescu et al., 2013).

In this dataset, we employed three types of 2D pose detection methods to evaluate the performance
of our models: GT, CPN (Chen et al., 2018), and SimpleBaseline (Xiao et al., 2018).

Among them, GT and CPN provide only the 2D coordinates of each keypoint, while SimpleBaseline
directly outputs heatmaps for each keypoint. To ensure consistency in data formats, we generated
heatmaps for the 2D coordinates of GT and CPN using a Gaussian distribution. Conversely, for
SimpleBaseline, we extracted the 2D coordinates by identifying the locations of the maximum values
in its heatmaps. This preprocessing ensures that GT, CPN, and SimpleBaseline data all have two
forms: 2D coordinates and heatmaps.

Regarding model inputs, KTP-Former (Peng et al., 2024) and GLA-GCN (Yu et al., 2023b) require
2D coordinates, while Adafuse and DenseWarper use heatmaps as input. In contrast, the PPT model
adopts an end-to-end architecture, taking only the raw images as input without relying on 2D pose
detection results.

This setup allows a comprehensive evaluation of the models under different input formats.

Experimental Details on MPI-INF-3DHP (Mehta et al., 2017).

The processing method for this dataset is consistent with that of the Human3.6M dataset. We se-
lected the same 17 keypoints corresponding to those in Human3.6M and used four camera views,
specifically views 0, 2, 7, and 8.

For this dataset, we employed the SimpleBaseline method for 2D pose detection, using a model
trained in-house. SimpleBaseline generates heatmaps for each keypoint. To facilitate further pro-
cessing, we extracted the 2D coordinates by identifying the locations of the maximum values in the
heatmaps, thereby obtaining both 2D coordinates and heatmaps as input formats.

In terms of model inputs, KTP-Former and GLA-GCN take 2D coordinates as input, while Adafuse
and DenseWarper require heatmaps. The PPT (Ma et al., 2022) model, in contrast, employs an
end-to-end architecture that uses only raw images as input without relying on any 2D pose detection
results.

To ensure a fair comparison, all models were trained and tested using results derived from Simple-
Baseline.

D EPIPOLAR GEOMETRY

In the main text, we introduced the fundamental principles of epipolar geometry and the line-of-sight
methods that employ epipolar geometry for multi-view fusion. Here, we expand upon these topics
and provide a more detailed exposition.

I. MATHEMATICAL FOUNDATION OF EPIPOLAR GEOMETRY

Epipolar geometry defines the geometric relationships between two camera views, essential for
multi-view feature matching and reconstruction. Using the pinhole camera model, a 3D point
X = [X,Y, Z, 1]T is projected onto the image plane as a 2D point q = [u, v, 1]T :

q = PX, (12)

where P = K[R | t] is the 3×4 projection matrix. The intrinsic matrix K defines focal lengths and
principal points, while the extrinsic parameters [R | t] describe the camera’s rotation and translation
in the world coordinate system.

Given two cameras with projection matrices P and P′, a 3D point X is projected onto the two
images as q and q′:

q = PX, q′ = P′X. (13)

Eliminating X leads to the epipolar constraint:

q′⊤Fq = 0, (14)
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where F is the 3× 3 fundamental matrix, encapsulating the geometric relationship between uncali-
brated cameras. If intrinsic parameters are known, the essential matrix E can be derived:

E = [t]×R, E = K′⊤FK. (15)

Here, [t]× represents the skew-symmetric matrix of the translation vector t.

The epipolar geometry also defines epipoles and epipolar lines. The epipoles, e and e′, are the
projections of one camera’s optical center onto the other’s image plane, satisfying Fe = 0 and
F⊤e′ = 0. For a point q in the first image, the corresponding point q′ in the second must lie on the
epipolar line:

l′ = Fq, l = F⊤q′. (16)
This reduces the search space for matching points from 2D to 1D, significantly improving efficiency.

II. EPIPOLAR GEOMETRY FOR MULTI-VIEW FUSION

Epipolar geometry is crucial in multi-view fusion for feature matching, 3D reconstruction, and op-
timization:

1. Feature Matching: The epipolar constraint reduces the matching search space to epipolar lines,
filtering mismatches by validating q′⊤Fq = 0.

2. Triangulation: Matched points are used to estimate the 3D position X via linear triangulation:{
q× (PX) = 0

q′ × (P′X) = 0.
(17)

To refine accuracy, non-linear optimization minimizes the reprojection error:

min
X

∑
k

∥qk − πk(X)∥2, (18)

where πk(X) projects X onto the k-th camera.

3. Optimization: Incorporating the epipolar constraint into the optimization objective ensures geo-
metric consistency:

min
X

∑
k

∥qk − πk(X)∥2 + λ
∑
i<j

(
q⊤
j Fijqi

)2
. (19)

This enhances robustness against noise and improves multi-view consistency.

Epipolar geometry provides the theoretical foundation for effective feature alignment, matching, and
3D reconstruction, enabling precise multi-view fusion in computer vision applications.

4. Reprojection Distance. In multi-view matching tasks, the lines V1q and V2q
′ may not intersect

precisely at the 3D point Q. To obtain the optimal estimate of Q, we define the reprojection distance
dReproj as the minimum sum of squared distances from the estimated 3D human keypoint Q̂ to the
projections q and q′:

d2Reproj = min
Q̂

(
d2(q,PQ̂) + d2

(
q′,P′Q̂

))
, (20)

where d(·) denotes the Euclidean distance, and dReproj represents the reprojection error between q
and q′.

5. Sampson Distance. To simplify the calculation, we adopt an approximation of the reprojection
distance known as the Sampson distance, defined as:

dSampson =
q′⊤Fq

(Fq)21 + (Fq)22 + (F⊤q′)
2
1 + (F⊤q′)

2
2

, (21)

where F is the fundamental matrix, and subscripts 1 and 2 refer to the first and second elements of a
vector, respectively. Sampson distance allows us to measure the geometric error between two points
without explicitly solving for the intermediate 3D point Q̂.
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View 1

View 2

View 3

View 4

(a) Frame Interval: 1 (b) Frame Interval: 6 (c) Frame Interval: 12

Figure 5: Results of spatiotemporal heatmap fusion and correction using different frame intervals on the Human3.6M dataset. The camera
sampling interval in the Human3.6M dataset is 50ms. Panels (a), (b), and (c) represent the results of spatial heatmap fusion with frame intervals
of 1 frame, 6 frames, and 12 frames, respectively.

Ours

Ground 
Truth
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Figure 6: Visualization results showing the effects during continuous motion.

Ours

Ground
Truth

Input

Figure 7: Visualization results demonstrating the effects during complex motion.
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Camera Sampling Interval �

View 2

View 3

View 4

View 1

Camera Sampling Interval � ∗ �

Sparse Input Dense Output

Figure 8: Illustration of frame rate enhancement through interleaved multi-view input. The camera frame rate f = 1/δt, where δt represents
the camera sampling interval. With a fixed camera frame rate, the input frame rate can be effectively increased using interleaved multi-view
inputs, reaching up to M × f , where M denotes the number of camera viewpoints.

E SUPPLEMENTARY EXPERIMENTAL RESULTS

In the experiments, we further investigated the relationship between our epipolar geometry-based
spatial heatmap fusion module and the temporal frames of the cameras. Theoretically, as the tem-
poral frame interval increases (i.e., the camera sampling frequency decreases), the displacement of
the heatmap points to be calibrated becomes larger, making heatmap fusion more challenging. As
shown in Figure 5, the displacement of heatmaps from different views also increases under these
conditions. In our experiments, the camera frame rate was set to 50 fps, which enabled effective
heatmap fusion. This demonstrates that our method performs well under standard camera sampling
conditions.

Additionally, we visualized the results of our method by comparing the 3D skeletons estimated
from sparse interleaved inputs with the ground truth. The experimental results demonstrate that
our method achieves accurate 3D skeleton estimation, effectively leveraging both the temporal and
spatial information embedded in the sparse interleaved inputs. This validates the capability of our
approach to transform sparse inputs into dense outputs. Figures 6 and 7 respectively present visual-
izations of 3D skeletons for continuous actions and complex, challenging actions.

E.1 SPARSE INPUT FOR UPSAMPLING

As shown in Figure 8, when the staggered intervals of cameras with different viewpoints are control-
lable, we can achieve data upsampling on the coefficient input mode, and this method is applicable
to all 3D multi-view tasks.
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