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ABSTRACT

Recently, graph contrastive learning (GCL) has emerged as a promising and trend-
ing paradigm for graph representation learning, providing generalizable node em-
beddings for various downstream tasks. However, current GCL methods often fail
to fully exploit and encode the fine-grained graph structure information, leading
to less informative node representations. In this study, we argue for a holistic ap-
proach that accounts for both node attributes and fine-grained graph structures,
taking inspiration from spectral-based manifold learning techniques. Accord-
ingly, we introduce MIGCL, a cutting-edge contrastive representation learning
framework that employs cross-view adjacency reconstruction and feature orthog-
onalization. This dual approach not only retains the fine-grained graph/manifold
structure information but also minimizes feature redundancy, thus averting the
risk of representation collapse. To achieve feature orthogonalization, we em-
ploy an information-theoretic objective called Total Coding Rate. Our model
can also be interpreted as a practical implementation of the Maximum Entropy
Principle within the GCL context. Comprehensive experiments across three piv-
otal tasks: node classification, node clustering, and link prediction, affirm the
method’s efficacy and superiority. The implementation code can be found at:
https://anonymous.4open.science/r/MIGCL-21C1.

1 INTRODUCTION

Self-supervised learning (SSL) has emerged as a promising paradigm for learning more informa-
tive representations without relying on human annotations. Typically, SSL models are pre-trained
using carefully constructed pretext objectives, thereby serving as advantageous initializations for a
wide range of downstream tasks (Liu et al., 2022b). In this sense, SSL has witnessed substantial
advancements in the realm of graph representation learning, yielding performance, generalizability,
and robustness metrics that are comparable, if not superior, to those achieved by supervised methods
(Kipf & Welling, 2016; Veličković et al., 2019; Hassani & Khasahmadi, 2020; Chen et al., 2023).

A major branch of SSL methods is contrastive learning methods (Zhu et al., 2020; Zhang et al.,
2021; Li et al., 2022a), which aim to learn representations by maximizing the agreement between
two augmented instances. In the domains of computer vision (CV) and natural language processing
(NLP), these methods involve two essential ingredients (Wang & Isola, 2020; Li et al., 2022b; Tong
et al., 2023): (1) Representation of two different augmentations of the same instance should exhibit
proximity (invariance criterion); (2) The latent representation must avoid collapsing into a trivial
solution, e.g., all representations converge to a single point (collapse avoidance). While these crite-
ria have been effective for CV and NLP tasks, their applicability to graph-structured data, which is
inherently non-Euclidean, requires additional consideration. Given the topological interdependen-
cies among nodes in graph-structured data, we introduce a third objective: models are supposed to
capture essential information from the structural topology of graphs (structure preservation). This
is essential for encapsulating the nuanced relational dynamics specific to graph-structured data.

Numerous recent studies (Veličković et al., 2019; Zhu et al., 2020; Zhang et al., 2021; Thakoor
et al., 2022; Chen et al., 2023) have devised a variety of heuristics and strategies aimed at achieving
the first two objectives, resulting in significant performance improvements. However, these stud-
ies achieve structure preservation either implicitly or at a rudimentary level. For example, methods
such as GRACE (Zhu et al., 2020), CCA-SSG (Zhang et al., 2021), and BGRL (Thakoor et al., 2022)
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tacitly integrate structure information by utilizing Graph Neural Networks as encoders. Meanwhile,
DGI (Veličković et al., 2019) and MVGRL (Hassani & Khasahmadi, 2020) strive to encode global
structure information by maximizing mutual information between (sub-)graph-level and node-level
representations. Additional approaches like GCA (Zhu et al., 2021) and CSGCL (Chen et al., 2023)
employ structure-aware augmentations to enhance representation learning. Moreover, works such
as gCooL (Li et al., 2022a) and CSGCL (Chen et al., 2023) adopt a multi-view strategy contrasting
node-level and community-level representations in order to capture higher-order community struc-
tures. Despite these efforts, none explicitly focus on capturing fine-grained structure information in
graphs.

Graphs can be regarded as discrete analogs of continuous manifolds (Ni et al., 2019; Wu et al.,
2023), wherein nodes correspond to manifold points and edges approximate geodesic paths between
these points. Similar to graph representation learning, manifold learning aims to map the manifold-
structured data points to a low-dimensional representation space while preserving the manifold struc-
ture (Li et al., 2022b).

Drawing inspiration from Laplacian Eigenmaps (LE), a classical spectral-based manifold learning
method that preserves the geometric structure of the data pattern subject to the orthogonal condition
of latent features (Belkin & Niyogi, 2003; Ghojogh et al., 2023), we introduce Manifold Inspired
Graph Contrastive Learning (MIGCL). It follows the common practice of prior arts, generating
two views of an input graph via random augmentation and obtaining node representations through
a shared GNN encoder. Differently, our proposed approach harnesses a novel LE-motivated objec-
tive, where the cross-view adjacency reconstruction term preserves the fine-grained graph structure
information, the feature orthogonalization term eliminates redundant correlations among features to
prevent collapsed representation, and the view alignment term ensures that the learned representa-
tion remains invariant to augmentations of the same node instance. More specifically, we enforce the
cross-view node similarity matrix to approximate graph adjacency matrix and utilize an information-
theoretic objective Total Coding Rate (Ma et al., 2007) to achieve feature orthogonalization. Fur-
thermore, our theoretical analysis sheds more lights that MIGCL can be seen as an instantiation
of the Maximum Entropy Principle (Kesavan, 2009; Liu et al., 2022a) under the graph contrastive
learning setting..

In summary, our primary contributions are:

• We propose three essential ingredients of graph contrastive learning and design a novel
manifold learning inspired contrastive objective to satisfy these criteria.

• Formulation of a novel objective function incorporating cross-view adjacency reconstruc-
tion for fine-grained graph structure learning and the application of Total Coding Rate for
feature orthogonalization. We further elucidate the theoretical foundations of our model
via the Maximum Entropy Principle.

• We conduct a comprehensive evaluation of the proposed method on multiple real-world
datasets and three downstream tasks, i.e., node classification, node clustering, and link
prediction. The results demonstrate that our model achieves state-of-the-art performance.

2 BACKGROUND AND RELATED WORK

In this section, we first provide a formal description of the problem under investigation, followed by
a literature review over manifold learning and graph contrastive learning.

2.1 PROBLEM STATEMENT

Let G = (V, E) represent a graph, where V = {v1, v2, · · · , vn} and E ⊆ V × V denote the node set
and the edge set respectively. The graph G is associated with a feature matrix X ∈ Rn×p, where
xi ∈ Rp represents the feature of vi, and an adjacency matrix A ∈ {0, 1}n×n, where Ai,j = 1 if
and only if (vi, vj) ∈ E . During training in the self-supervised setting, no task-specific labels are
provided for G. The goal is to learn an embedding function fθ(A,X) that maps X to Z, where
Z ∈ Rn×d and d ≪ p. The pre-trained representations ought to encapsulate both attribute and
structure information contained in G and can be easily transferable to various downstream tasks
such as node classification, node clustering, and link prediction.
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2.2 MANIFOLD LEARNING

Manifold models have sparked considerable interest for their geometric description of how data col-
lected in high ambient dimension (e.g., pixels in an image) can vary with a few degrees of freedom.
Following the hypothesis that high dimensional data tend to lie in the vicinity of a low dimensional
manifold (Fefferman et al., 2013), manifold learning aims to map the manifold-structured data points
to a low-dimensional representation space while preserving the manifold structure. Among vari-
ous strategies, spectral-based manifold learning method, such as Laplacian Eigenmaps (LE), have
garnered considerable attention. LE constructs a graph by linking proximal data points and then
employs the eigenvectors of the graph’s Laplacian matrix for data representation (Belkin & Niyogi,
2003; Ghojogh et al., 2023). Given that the adjacency matrix of a network inherently serves as the
ground truth, LE is peculiarly well-suited for such contexts.

Laplacian Eigenmaps. Consider the dataset matrix X ∈ Rn×p. We desire d-dimensional em-
beddings of data points Z ∈ Rn×d where d ≤ p and usually d ≪ p. LE begins by constructing a
proximity graph G = (A,X), where the edge weights are built using one of many heuristics that
determine which nodes are close to each other and can be binary or real-valued (Belkin & Niyogi,
2003). Examples of such heuristics include k-nearest neighbors, ϵ-neighborhoods, heat kernels,
etc. Subsequently, LE seeks to find a representation Z by minimizing the following optimization
problem:

min
Z

∑
i,j

Ai,j ||zi − zj ||2 s.t. Z⊤Z = I. (1)

Eq. 1 can be interpreted as follows: (1) If xi and xj are close to each other, the corresponding
edge weight Ai,j is large. Consequently, minimizing the objective function involves minimizing the
term ||zi − zj ||2, which results in close zi and zj . This aligns with the expectation that close data
points should have similar embeddings. (2) Conversely, if xi and xj are far apart, Ai,j is small.
Hence, the objective function is small due to multiplication by the small weight Ai,j . Therefore, the
embeddings zi and zj are not of significant concern, as the objective function is already minimized.
(3) The constraint Z⊤Z = I is necessary to guarantee a non-trivial solution. Based on these
three observations, LE effectively captures local data structure by prioritizing neighboring points
while hoping to preserve the global structure through this localized fitting (Belkin & Niyogi, 2003).
However, this local focus could be perceived as a limitation of LE (Ghojogh et al., 2023). In Section
3.2.3, we will discuss in more detail and alleviate this concern to learn fine-grained graph structure
information.

2.3 GRAPH CONTRASTIVE LEARNING

In recent years, there has been significant advancement in the application of contrastive learning
techniques for graph-structured data (Liu et al., 2022b). In this section, we provide a comprehensive
overview of existing methods in graph contrastive learning (GCL). Our focus centers on the three
essential ingredients delineated in Section 1.

Invariance Criterion. The first one is invariance criterion, designed to generate consistent em-
beddings for multiple views of the same instance. This criterion is generally implemented through
similarity metrics such as cosine similarity or mean squared error between pairs of positive sam-
ples. From an optimization viewpoint, both approaches are functionally equivalent when employing
normalized embeddings, thereby shifting our focus towards the remaining criteria that differentiate
these methods.

Collapse Avoidance. The second one is collapse avoidance, an essential mechanism to inhibit the
degeneracy of the latent space into trivial solutions. For instance, Veličković et al. (2019), Hassani &
Khasahmadi (2020), Zhu et al. (2020), Zhu et al. (2021), Li et al. (2022a), and Chen et al. (2023) aim
to distribute embeddings uniformly in the latent space by repelling negative sample pairs. BGRL
(Thakoor et al., 2022), derived from BYOL (Grill et al., 2020), mitigates the collapse issue by
employing asymmetric architectures inspired by distillation. CCA-SSG (Zhang et al., 2021), as well
as our approach, revolve around regularization of the empirical covariance matrix of embeddings to
prevent the occurrence of informational collapse in which the variables carry redundant information.

Structure Preservation. The last one is structure preservation, i.e., encoding graph structure in-
formation within the embeddings to the fullest extent possible. Nearly all existing methods employ
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graph neural networks for implicit structural inclusion. Additionally, DGI (Veličković et al., 2019)
and MVGRL (Hassani & Khasahmadi, 2020) focus on maximizing the mutual information between
(sub-)graph-level representations and node-level representations to encode global structure informa-
tion. GCA (Zhu et al., 2021) and CSGCL (Chen et al., 2023) utilize structure-aware augmentations
to enrich representation learning. And, gCooL (Li et al., 2022a) and CSGCL (Chen et al., 2023)
contrast node-level and community-level representations across two different views, aiming to cap-
ture the higher-order community structure of a graph. However, these methods tend to implicitly
or coarsely capture graph structure information. Our work aims for a more explicit, fine-grained
structure representation using a cross-view adjacency reconstruction objective.

3 MANIFOLD INSPIRED GRAPH CONTRASTIVE LEARNING

3.1 FRAMEWORK

Our model is elegantly constructed with three key components: 1) A random graph augmentation
generator T . 2) A GNN-based graph encoder symbolized as fθ, where θ representing its parameters.
3) A novel objective function, inspired by Laplacian Eigenmaps, to guide the optimization process.

Graph Augmentation. The augmentation of graph data is a critical component of GCL, as it
generates diverse graph views, leading to more generalized representations that are robust against
variance (Liu et al., 2022b). In this study, we adopt the widely-used random graph augmentation
pipeline, prevalent in previous works (Zhu et al., 2020; Zhang et al., 2021; Thakoor et al., 2022).
Specifically, we employ feature masking and edge dropping to enhance both graph attributes and
topological information. The function T comprises all possible graph transformation operations,
and each t ∼ T corresponds to a specific transformation applied to graph G. It’s worth noting that,
to maintain focus on our novel objective function and ensure fair comparisons with existing methods,
we use commonly-adopted augmentation techniques. However, it is possible to seamlessly integrate
more complex random augmentations (Zhu et al., 2021; Chen et al., 2023) into our framework.
Further details regarding the employed augmentation functions can be found in Appendix B.2.

Training. During each training epoch, we first sample two random augmentation functions t1 ∼ T
and t2 ∼ T , and then generate two views G̃1 = (Ã1, X̃1) and G̃2 = (Ã2, X̃2) based on the
chosen functions. These two views are subsequently fed into the shared encoder fθ, including a
2-layer GCN (Kipf & Welling, 2017) and a 2-layer MLP, to extract the corresponding node embed-
dings: Z1 = fθ(Ã

1, X̃1) and Z2 = fθ(Ã
2, X̃2). Similar to Wang & Isola (2020), we further

ℓ2-normalize the node embeddings to reside on the unit hypersphere, which is also a prerequisite
for feature orthogonalization in our model (refer to Appendix C.2). To help better understand the
proposed method, we provide the PyTorch-style pseudocode for training MIGCL in Algorithm 1.

Inference. To obtain node embeddings for downstream tasks, the original graph G = (A,X) is
fed into the trained encoder fθ, yielding Z = fθ(A,X). Before applying them to downstream
tasks, these embeddings are also ℓ2-normalized.

3.2 MANIFOLD INSPIRED LEARNING OBJECTIVE

In this section, we elaborate on our manifold-inspired contrastive objective and demonstrate how it
satisfies the three essential ingredients of GCL outlined in Section 1.

3.2.1 TOTAL CODING RATING AS FEATURE ORTHOGONALIZATION

Corresponding to the feature orthogonalization restriction in Laplacian Eigenmaps (see Section 2.2),
we adopt an information-theoretic objective Total Coding Rating (TCR) (Ma et al., 2007; Liu et al.,
2022a; Han et al., 2022; Li et al., 2022b), to orthogonalize features and prevent collapsed repre-
sentations. TCR approximates the coding length in lossy data compression, and can be seen as a
computationally feasible alternative for quantifying the entropy of continuous random variables. In-
tuitively, maximizing TCR aligns with our objective of increasing the informativeness of learned
representations. Formally, given the representations Z ∈ Rn×d and an allowable distortion

√
ϵ,
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TCR is defined to be:

TCR(Z) =
1

2
log det

(
I +

d

nϵ
ZZ⊤

)
. (2)

Based on straightforward reasoning (Appendix C.2), it becomes evident that maximizing TCR pro-
motes the orthogonalization of latent features. Accordingly, we calculate the feature orthogonaliza-
tion loss for the generated graph views.

Lort = −1

2

(
TCR(Z1) + TCR(Z2)

)
. (3)

3.2.2 COMBINING WITH THE VIEW INVARIANCE PRIOR

In contrastive learning, the invariance criterion requires that different augmentations of the same
instance be close in the representation space (Wang & Isola, 2020). We maximize the cosine simi-
larity between multi-view node representations. With ℓ2-normalized Z1 and Z2, the invariance loss
is:

Linv = − 1

n

∑
i

(z1
i · z2

i ), (4)

where z1
i and z2

i are the representations of node vi in different views, and · represents the dot product
operation.

3.2.3 CROSS-VIEW ADJACENCY MATRIX RECONSTRUCTION

Laplacian Eigenmaps aims to embed nearby points closely, emphasizing local relationships (Section
2.2) (Ghojogh et al., 2023). This focus can obscure global structures, affecting downstream tasks
negatively (Table 4). To address this, our cross-view strategy, analogous to graph auto-encoders
(Kipf & Welling, 2016), balances local and global relationships. We define the structure preservation
loss as follows:

Lstr = − 1

n2 − n

∑
i

∑
j∈Ni

log σ(z1
i · z2

j ) +
∑
j /∈Ni

log
(
1− σ(z1

i · z2
j )
) , (5)

Here, Ni represents the neighbors of node vi, and σ(·) denotes the sigmoid function: σ(x) =
1/(1 + e−x). This objective cross-viewly pulls together connected nodes and pushes away discon-
nected nodes. Though distancing all non-neighboring nodes may seem counterintuitive, our ablation
study substantiates its importance (Table 4). We acknowledge that controlling the selection order of
neighbors could be another dimension to explore, but it falls outside the scope of this paper.

3.2.4 OVERALL OBJECTIVE

Combining collapse avoidance, invariance criterion and structure preservation, we formulate our
overall objective as follows:

L = Lort + λLinv + γLstr, (6)
where λ and γ are weights that balance the contributions of three terms Lort, Linv and Lstr.

Computational Complexity. The computation of the Lort term is relatively efficient due to the
commutative property of TCR: TCR(Z) = 1

2 log det
(
I + d

nϵZZ⊤) = 1
2 log det

(
I + d

nϵZ
⊤Z
)
.

Given Z ∈ Rn×d, the matrices ZZ⊤ ∈ Rn×n and Z⊤Z ∈ Rd×d have different dimensions.
Although the computation of log det

(
I + d

nϵZZ⊤) incurs a time complexity of O(n3), using
log det

(
I + d

nϵZ
⊤Z
)

reduces the complexity to O(d3), and typically d ≪ n. In our experiments,
we consider d from 64, 128, 256, making the log det(·) operation run in constant time with respect
to n. The complexities for computing Linv and Lstr are O(n) and O(n2 − n), respectively.

3.2.5 THEORETICAL INSIGHTS WITH CONNECTION TO INFORMATION THEORY

What makes for generalizable and informative representations? This question can be tackled
through the maximum entropy principle in information theory (Kesavan, 2009; Liu et al., 2022a).
This principle posits that the most informative probability distribution is the one with highest en-
tropy, devoid of added bias given a set of testable information. Translating this to graph contrastive

5



Under review as a conference paper at ICLR 2024

learning, our hypothesis posits that an effective representation should aim to maximize entropy
within the bounds set by data augmentation invariance and graph structure. Here, TCR serves as a
computable proxy for entropy. Consequently, our model operationalizes the maximum entropy prin-
ciple by striving to maximize the entropy of the representations through Lort, while still minimizing
Linv and Lstr to respect the given priors.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We assess the efficacy of our pre-trained embeddings across three key tasks: node
classification, node clustering, and link prediction. The evaluations are conducted on four diverse
datasets—Cora, WikiCS, Photo, and Computer. Dataset specifics are elaborated in Appendix B.1.

Baselines. We benchmark MIGCL against seven contemporary graph contrastive learning algo-
rithms: DGI (Veličković et al., 2019), MVGRL (Hassani & Khasahmadi, 2020), GRACE (Zhu
et al., 2020), GCA (Zhu et al., 2021), CCA-SSG (Zhang et al., 2021), gCooL (Li et al., 2022a),
and CSGCL (Chen et al., 2023). Additionally, we include Laplacian Eigenmaps (Belkin & Niyogi,
2003), VGAE Kipf & Welling (2016) and raw feature baselines in our evaluation.

Evaluation Protocol. Following the evaluation protocol in (Zhu et al., 2020), we first train unsu-
pervised models, then freeze encoder parameters for feature extraction. For node classification, we
employ logistic regression on twenty 1:1:8 train/validation/test random node splits for Cora, Photo,
and Computer, and use public splits for WikiCS. Node clustering is performed using KMeans, exe-
cuted twenty times. For link prediction, dot products between node pair representations are fed into
a logistic regression decoder, trained on twenty 8.5:0.5:1 train/validation/test random edge splits, as
described in Kipf & Welling (2016).

Metrics. Evaluation metrics include Micro-F1 and Macro-F1 for node classification; NMI and
ARI for node clustering; and AUC and AP for link prediction. Each metric is presented with its
standard deviation for robust assessment.

Implementation Details. We employ the official GitHub implementations for baseline methods
and build MIGCL in PyTorch. The encoder fθ uses a 2-layer GCN (Kipf & Welling, 2017) followed
by a 2-layer MLP. Distortion measure ϵ in Eq. 2 is 0.01. ELU activation (Clevert et al., 2015) and
Adam optimizer (Kingma & Ba, 2014) are used across datasets. For dataset-specific hyperparame-
ters, see Appendix B.3.

4.2 EXPERIMENTAL RESULTS

Evaluation on Node Classification and Node Clustering. The empirical results on node classifi-
cation and node clustering are presented in Table 1 and Table 2, respectively. These results demon-
strate that our proposed approach outperforms state-of-the-art methods across all four datasets. For
example, on the Photo dataset, our approach improves NMI and ARI by approximately 5% com-
pared to the previous state-of-the-art method, GRACE. This superiority can be attributed to three key
factors: maximally diverse representation, intra-class/cluster compactness, and inter-class/cluster
separation. Firstly, the optimization of TCR encourages the expansion of the latent space, facili-
tating the acquisition of highly diverse representations. Based on the homophily assumption, the
invariance criterion and the pulling together of connected node pairs contribute to increased com-
pactness within classes/clusters. Moreover, the pushing away of disconnected node pairs promotes
inter-class/cluster separation. These three properties of the learned representation significantly ben-
efit node classification and node clustering tasks.

Evaluation on Link Prediction. Table 3 presents our link prediction performance, which holds its
own against competing methods. This outcome is largely due to our novel cross-view adjacency ma-
trix reconstruction objective. By prioritizing the preservation of fine-grained structure information
in the graph, our approach is well-suited to meet the specific demands of link prediction tasks.

Ablation Study. To systematically examine the influence of each loss component, we conduct ab-
lation studies with varying combinations of Lort (Eq. 3), Linv (Eq. 4), Lstr (Eq. 5), and Lstr’s
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Table 1: Overall performance on node classification (in percentage).

Dataset Cora WikiCS Photo Computer
Metric MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1

RawFeat 55.8±2.5 49.0±3.6 72.9±0.5 69.3±0.8 83.1±1.6 78.6±2.9 77.6±1.0 67.4±1.9
LE 76.2±2.3 74.3±2.9 73.8±0.8 70.9±0.9 87.7±1.1 85.7±1.3 84.1±1.0 83.7±1.3

VGAE 78.4±2.4 77.9±0.5 75.1±0.7 67.0±1.0 91.7±1.1 90.3±1.4 87.6±0.9 86.8±1.0
DGI 83.2±2.1 82.0±2.4 78.3±0.6 75.2±0.7 91.7±1.1 90.4±1.3 88.0±0.8 86.7±0.9

MVGRL 83.5±2.5 81.5±2.7 77.6±0.5 74.3±0.7 92.0±1.0 90.5±1.4 87.4±0.9 85.5±1.3
GRACE 83.2±2.3 81.4±2.7 78.6±0.3 75.7±0.5 92.4±1.0 91.2±1.3 88.8±0.9 87.1±1.1

GCA 82.6±0.7 81.2±0.7 79.1±0.7 76.3±1.1 92.2±1.1 90.8±1.5 88.8±0.9 87.8±1.0
CCA-SSG 83.5±2.8 82.2±3.1 78.0±0.7 74.8±0.8 92.9±1.0 91.6±1.2 89.2±0.6 88.1±1.1

gCooL 82.8±2.0 81.7±2.3 79.0±0.4 76.3±0.6 92.4±1.1 90.9±1.7 88.5±0.6 87.3±1.4
CSGCL 83.3±2.1 82.1±2.5 79.0±0.7 76.1±0.9 92.7±0.9 91.5±1.0 89.7±0.7 88.6±1.2
MIGCL 84.5±2.3 83.0±2.5 79.5±0.3 77.1±0.5 93.2±0.9 92.0±1.2 89.9±1.1 88.8±1.1

Table 2: Overall performance on node clustering (in percentage).

Dataset Cora WikiCS Photo Computer
Metric NMI ARI NMI ARI NMI ARI NMI ARI

RawFeat 15.3±3.4 9.5±1.9 26.4±0.3 15.5±0.4 32.6±0.4 20.7±0.9 24.3±0.5 9.4±0.4
LE 45.8±0.7 34.0±1.2 38.7±1.6 28.7±2.0 51.2±2.0 33.7±2.5 47.0±1.3 32.4±2.7

VGAE 52.8±1.1 44.5±1.5 43.2±0.3 32.4±1.1 65.7±0.0 56.9±0.0 50.2±1.2 30.3±1.8
DGI 52.3±0.2 43.1±0.5 40.9±0.4 29.0±1.4 64.6±0.0 55.3±0.0 51.7±1.1 39.5±0.8

MVGRL 51.0±0.4 46.0±0.7 38.3±0.6 26.8±1.1 65.7±1.0 55.6±2.7 50.1±0.5 37.3±1.9
GRACE 52.8±1.1 46.3±1.8 47.2±0.5 40.3±0.6 67.6±0.8 57.1±0.9 51.9±0.1 32.6±0.9

GCA 49.0±0.4 41.1±0.2 46.5±0.9 39.0±1.3 64.5±0.4 55.3±1.5 53.0±1.3 32.0±1.9
CCA-SSG 55.1±1.6 47.0±2.2 45.4±0.1 36.7±0.0 63.8±0.0 54.7±0.0 52.1±0.1 37.6±0.2

gCooL 50.2±1.2 44.7±2.4 47.1±0.0 39.0±0.1 64.5±0.0 55.5±0.0 49.6±0.2 28.4±0.7
CSGCL 53.1±1.5 48.2±1.5 46.5±1.2 37.6±3.2 61.0±0.0 52.4±0.0 55.3±0.8 34.2±1.4
MIGCL 57.3±0.4 51.2±1.8 47.5±0.5 41.2±0.8 72.5±0.0 62.3±0.0 58.9±1.3 40.8±1.7

variant L′
str

1. We assess their impact on node classification, node clustering, and link prediction
across the Cora and Photo datasets. The outcomes are collated in Table 4 with the following key
observations: (1) Introducing the feature orthogonalization term Lort notably improves node classi-
fication metrics by facilitating more discriminative representations and mitigating feature collapse.
(2) Implementing the structure preservation term Lstr significantly boosts node clustering results,
attesting to its capacity to encode fine-grained graph structure information into node representations
effectively. (3) Opting for a standalone strategy of merely pulling nodes together, exemplified by
L′
str, results in a discernable performance dip, supporting the arguments laid out in Section 3.2.3. In

summary, the composite inclusion of all terms in our objective function is crucial for optimizing per-
formance. This integration not only enables MIGCL to acquire representations rich in fine-grained
graph structure information but also reduces feature redundancy. Driven by the three ingredients of
graph contrastive learning, i.e., invariance criterion, collapse avoidance, and structure preservation,
our model succeeds in generating highly generalizable and informative node representations.

1L′
str only cross-viewly pulls together connected nodes, i.e., L′

str = − 1
|E|

∑
i

∑
j∈Ni

log σ(z1
i ·z2

j ), while
Lstr also pushes away disconnected nodes.
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Table 3: Overall performance on link prediction (in percentage).

Dataset Cora WikiCS Photo Computer
Metric AUC AP AUC AP AUC AP AUC AP

RawFeat 83.1±0.8 85.1±0.8 92.9±0.1 92.6±0.1 86.1±0.2 84.6±0.3 85.3±0.1 83.7±0.2
LE 84.4±0.8 88.1±0.8 94.2±0.1 94.6±0.1 96.9±0.1 96.2±0.1 94.5±0.1 93.3±0.2

VGAE 92.5±0.6 93.3±0.6 97.6±0.0 97.5±0.0 97.1±0.1 97.0±0.1 97.3±0.0 97.3±0.1
DGI 93.9±0.5 94.5±0.6 98.0±0.1 97.9±0.1 97.6±0.1 97.3±0.1 97.2±0.1 96.9±0.1

MVGRL 92.9±0.6 93.4±0.7 97.5±0.1 97.4±0.1 97.1±0.1 96.9±0.1 96.5±0.1 96.3±0.1
GRACE 95.1±0.5 95.2±0.5 98.0±0.0 97.8±0.1 97.9±0.1 97.3±0.2 96.9±0.0 96.1±0.1

GCA 94.4±0.8 94.7±0.9 97.2±0.1 97.2±0.1 95.4±0.1 94.3±0.2 97.3±0.0 96.6±0.1
CCA-SSG 95.1±0.5 95.4±0.6 98.0±0.1 97.9±0.1 97.3±0.1 96.7±0.2 96.9±0.0 96.6±0.1

gCooL 94.7±0.5 95.2±0.5 97.9±0.1 97.8±0.1 95.8±0.1 94.9±0.2 97.4±0.1 96.7±0.1
CSGCL 95.3±0.5 95.8±0.6 92.9±0.1 94.7±0.1 94.7±0.1 93.7±0.2 97.8±0.0 97.2±0.1
MIGCL 94.9±0.4 95.5±0.5 98.1±0.0 98.1±0.1 97.7±0.1 97.5±0.1 97.9±0.0 97.7±0.1

Table 4: Ablation study on three downstream tasks, comparing combinations of objectives.

Variants
Cora Photo

MiF1 NMI AUC MiF1 NMI AUC

Lort + Linv 81.89±2.14 42.13±4.11 90.86±0.60 92.76±0.79 62.29±3.84 97.35±0.17
Lstr + Linv 79.91±3.06 50.02±0.19 91.71±0.70 91.90±1.06 67.43±0.81 95.61±0.12
Lort + Linv + L′

str 82.35±1.82 41.50±7.04 89.66±0.63 92.36±0.73 55.92±1.65 97.41±0.14
Lort + Linv + Lstr 84.47±2.27 57.30±0.40 94.90±0.43 93.21±0.85 72.53±0.01 97.66±0.09

Visualization of Node Representations. For a more intuitive understanding of the node repre-
sentations, we employ t-SNE (van der Maaten & Hinton, 2008) for dimensionality reduction. As
delineated in Figure 1, the MIGCL-generated representations exhibit marked intra-cluster compact-
ness and inter-cluster separation, thus underscoring the efficacy of our approach.

(a) RawFeat (b) DGI (c) CCA-SSG (d) MIGCL

Figure 1: t-SNE visualization of representations on Photo.

Effects of Weights λ and γ. We investigate the impact of the intensities of the invariance criterion
term and structure preservation term on performance by varying the trade-off hyperparameters λ
and γ. Performance outcomes for node classification, clustering, and link prediction are illustrated
in Figures 2 and 3 for Cora and Photo datasets, respectively. From these figures, we observe that
decreasing λ usually leads to a decrease in performance. Moreover, the lower-right half of the
heatmap generally outperforms the other half. The intuition behind these observations is that while
not all connected nodes truly belong to the same class, we can reasonably assume that different
views of the same node do belong to the same class. As a result, we recommend setting λ higher
than γ to prioritize the invariance criterion loss.
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Figure 2: Visualization of the effects of λ and γ on Cora.
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Figure 3: Visualization of the effects of λ and γ on Photo.

5 CONCLUSION

In this study, we identify three essential ingredients of graph contrastive learning: invariance crite-
rion, collapse avoidance, and structure preservation. These tenets inform the design of our novel
objective function, inspired by manifold learning. Leveraging total coding rate, we achieve feature
orthogonalization, while our cross-view adjacency matrix reconstruction captures fine-grained graph
structures. Moreover, we offer an information-theoretic lens to understand our model through the
Maximum Entropy Principle. Comprehensive experimental evaluations across node classification,
node clustering, and link prediction affirm the model’s superior performance.
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A ALGORITHM

Algorithm 1 PyTorch-style pseudocode for MIGCL

# A: adjacency matrix
# X: node features
# f: encoder network
# lambda, gamma: trade-off
#
# tcr: function to calculate total coding rate
# off_diagonal: off-diagonal elements of a matrix

# generate two views through random augmentation
A1, X1 = augment(A, X)
A2, X2 = augment(A, X)

# compute l2-normalized embeddings
Z1 = normalize(f(A1, X1))
Z2 = normalize(f(A1, X1))

# compute feature orthogonalization loss
loss_ort = - (tcr(Z1) + tcr(Z2)) / 2

# compute cross-view node cosine similarity matrix
Gram = mm(Z1, Z2.T)

# compute invariance criterion loss
loss_inv = - trace(Gram) / X.shape[0]

# compute structure preservation loss
Gram_ = sigmoid(off_diagonal(Gram))
A_ = off_diagonal(A)
loss_str = binary_cross_entropy(Gram_, A_)

loss = loss_ort + lambda * loss_inv + gamma * loss_str

B IMPLEMENTATION DETAILS

Table 5: Dataset statistics.
Dataset Type #Nodes #Edges #Features #Classes

Cora citation 2,708 5,429 1,433 7
WikiCS reference 11,701 216,123 300 10
Photo co-purchase 7,650 119,081 745 8
Computer co-purchase 13,752 245,861 767 10

B.1 DATASETS

We evaluate our model on four representative datasets: Cora, WikiCS, Photo and Computer. Their
detailed statistics are summarized in Table 5, and brief introductions are as follows:

• Cora (Kipf & Welling, 2017) is a widely recognized citation network dataset where nodes
correspond to publications, and edges depict the citations between them. Each node is
labeled based on the subject matter of the respective paper.

• WikiCS (Mernyei & Cangea, 2020) is a reference network constructed from Wikipedia. It
comprises nodes that correspond to articles in the field of Computer Science, where edges
are derived from hyperlinks. The dataset encompasses 10 distinct classes that represent
various branches within the field. Node features are computed as the average GloVe word
embeddings of the respective articles.

• Photo and Computer (Shchur et al., 2018) are two networks derived from Amazon’s co-
purchase relationships. In these networks, nodes represent goods, edges indicate frequent
co-purchases between goods, node features are represented by bag-of-words encoded prod-
uct reviews, and class labels are assigned based on the respective product categories.
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For all datasets, we use the processed version provided by Deep Graph Library (Wang et al., 2019).
All datasets are public available and do not have licenses.

B.2 GRAPH AUGMENTATION

We employ two graph data augmentation strategies designed to enhance graph attributes and topol-
ogy information, respectively. They are widely used in node-level contrastive learning (Zhu et al.,
2020; Zhang et al., 2021; Thakoor et al., 2022).

Feature Masking (FM). We randomly select a portion of the node features’ dimensions and mask
their elements with zeros. Formally, we first sample a random vector m̃ ∈ {0, 1}F , where each
dimension is drawn from a Bernoulli distribution with probability 1−pm, i.e., m̃i ∼ B(1−pm),∀i.
Then, the masked node features X̃ are computed by ∥Ni=1 xi ⊙ m̃, where ⊙ denotes the Hadamard
product and ∥ represents the stack operation (i.e., concatenating a sequence of vectors along a new
dimension).

Edge Dropping (EP). In addition to feature masking, we stochastically drop a certain fraction of
edges from the original graph. Formally, since we only remove existing edges, we first sample a
random masking matrix D̃ ∈ {0, 1}N×N , with entries drawn from a Bernoulli distribution D̃i,j ∼
B(1 − pd) if Ai,j = 1 for the original graph, and D̃i,j = 0 otherwise. Here, pd represents the
probability of each edge being dropped. The corrupted adjacency matrix can then be computed as
Ã = A⊙ D̃.

Similar to previous works (Zhu et al., 2020; 2021; Thakoor et al., 2022; Li et al., 2022a; Chen et al.,
2023), we jointly utilize these two methods to generate graph views. To provide different contexts
in the two views, the generation is controlled by two distinct sets of hyperparameters: pm1, pd1 and
pm2, pd2.

Table 6: Hypeparameter specifications of node classification and clustering.
Dataset pd1, pd2, pm1, pm2 λ, γ lr, wd #hid units #epochs

Cora 0.2, 0.4, 0.0, 0.2 1600, 200 1e-4, 1e-4 256-128 400
WikiCS 0.0, 0.6, 0.1, 0.0 1000, 50 1e-3, 1e-5 256-128 450
Photo 0.8, 0.8, 0.0, 0.0 1000, 1400 1e-3, 1e-5 128-64 450
Computer 0.6, 0.8, 0.0, 0.1 800, 600 1e-3, 1e-5 256-256 1500

B.3 DETAILED HYPERPARAMETERS

Detailed hyperparameters for both node classification and node clustering can be found in Table 6.
Notably, the hyperparameters for link prediction differ due to the corruption of the original graph
structure (see Section 4.1), and these specific hyperparameters are listed in Table 7.

Table 7: Hypeparameter specifications of link prediction.
Dataset pd1, pd2, pm1, pm2 λ, γ lr, wd #hid units #epochs

Cora 0.2, 0.1, 0.0, 0.2 1000, 1800 1e-3, 1e-5 256-128 400
WikiCS 0.0, 0.6, 0.1, 0.0 1500, 50 1e-3, 1e-5 256-128 400
Photo 0.5, 0.4, 0.0, 0.0 1000, 200 1e-3, 1e-5 128-64 500
Computer 0.6, 0.8, 0.0, 0.1 800, 10 1e-3, 1e-5 256-256 1500
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C UNDERSTANDING THE TOTAL CODING RATE

C.1 INSIGHTS OF THE TOTAL CODING RATE

We first present how to derive the total coding rate of entire node representations following Ma et al.
(2007). Suppose we have an embedding matrix Z ∈ Rn×d, and let ϵ be the error allowable for
encoding every vector zi in Z. In other words, we are allowed to distort each vector zi with random
variable vi of variance ϵ

d . So we have

ẑi = zi + vi,with vi = N (0,
ϵ

d
I), (7)

Then the covariance matrix of zi is

E

[
1

n

n∑
i=1

ẑiẑ
⊤
i

]
=

ϵ

d
I +

1

n
ZZ⊤, (8)

And the volumes of covariance matrix and random vector vi are

vol(Ẑ) ∝

√
det

(
ϵ

d
I +

1

n
ZZ⊤

)
,

vol(v) ∝
√

det
( ϵ
d
I
)
,

(9)

Then the number of bit needed to encode the Z is

TCR(Z) = log2

(
vol(Ẑ)

vol(v)

)
=

1

2
log2 det

(
I +

d

nϵ
ZZ⊤

)
. (10)

C.2 TOTAL CODING RATING AS FEATURE ORTHOGONALIZATION

Here we demonstrate that the optimization of Eq. 3 is equivalent to feature orthogonalization.

Proof. We start by considering the property of the log det function (Kang et al., 2015) and the
property of the Frobenius norm. For any matrix Z ∈ Rn×d, where d ≤ n, the following hold:

log det
(
I + aZZ⊤) = d∑

i=1

log
(
1 + aσ2

i

)
, (11)

||Z||2F =

d∑
i=1

σ2
i , (12)

where a is a real value, and σi represents the i-th singular value of the matrix Z.

Next, let us consider the following optimization problem:

max

d∑
i=1

log(1 + xi) s.t.
d∑

i=1

xi = C. (13)

As the function log(1 + x) is concave, the optimization of Eq. 13 reaches its maximum when each
xi is equal to C/d.

Since the rows of Z are ℓ2-normalized, i.e., ||Z||2F = n, we can reformulate the optimization
problem in Eq. 2 as:

max

d∑
i=1

log

(
1 +

d

nϵ
σ2
i

)
s.t.

d∑
i=1

σ2
i = n. (14)
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Optimizing Eq. 14 yields a solution where each σ2
i is equal to n

d . This uniform distribution
of singular values corresponds to diagonal covariance, i.e., Z⊤Z = n

d I . As we can obtain(√
d
nZ

)⊤(√
d
nZ

)
= I by scaling Z to

√
d
nZ, the optimization of Eq. 3 is equivalent to

achieving feature orthogonalization.

Proof of Eq. 11. For any matrix Z ∈ Rn×d and d ≤ n, we can always decompose it using singular
value decomposition (SVD) such that Z = UΣV ⊤, where U is an n × n orthogonal matrix, Σ is
an n× d diagonal matrix with non-negative singular values on its diagonal in non-increasing order,
and V is a d× d orthogonal matrix.

Then, we can rewrite log det
(
I + aZZ⊤) as follows:

log det
(
I + aZZ⊤) = log det

(
I + aUΣV ⊤(UΣV ⊤)⊤

)
= log det

(
I + aUΣV ⊤V Σ⊤U⊤)

= log det
(
I + aUΣ2U⊤)

= log det
(
U(I + aΣ2)U⊤)

= log det (U) det(I + aΣ2) det
(
U⊤)

= log det(I + aΣ2),

(15)

where the determinant of an orthogonal matrix U is equal to 1, and we used the fact that UU⊤ = I .
Moreover, we can use the properties of the logarithm to prove Eq. 11:

log det
(
I + aZZ⊤) = log det

(
I + aΣ2

)
= log

(
d∏

i=1

(1 + aσ2
i )

)

=

d∑
i=1

log
(
1 + aσ2

i

)
.

(16)

Proof of Eq. 12. The Frobenius norm of a matrix Z can be defined as ||Z||F =
√
Tr(Z⊤Z), where

Tr(·) denotes the trace.

Using the SVD, we can compute the squared Frobenius norm of Z:

||Z||2F = Tr(Z⊤Z) (17)

= Tr
[
(UΣV ⊤)⊤(UΣV ⊤)

]
(18)

= Tr(V Σ⊤U⊤UΣV ⊤) (19)

= Tr(V Σ⊤ΣV ⊤) (20)

= Tr(V ⊤V Σ⊤Σ) (21)

= Tr(Σ⊤Σ) (22)

=

d∑
i=1

σ2
i , (23)

where we used the properties of trace and the fact that V is orthogonal, so V ⊤V = I .

C.3 VISUALIZATION OF FEATURE COVARIANCE MATRIX

In order to gain a visual insight into the role of TCR, we present visualizations depicting the abso-
lute normalized covariance matrix of learned embeddings under different conditions: MIGCL with
only the TCR term and the invariance term, MIGCL without the TCR term, and MIGCL applied
to the Cora dataset, as illustrated in Figure 4. As can be seen, an evident diagonal structure is dis-
cernible within the latent feature space. Specifically, when training exclusively with the TCR term
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and the invariance term (as seen in Figure 4(a)), the on-diagonal elements closely approximate 1,
while the off-diagonal elements approach 0, indicating a substantial decorrelation of features. In
contrast, when the TCR term is omitted, the off-diagonal elements of the covariance matrix exhibit a
significant increase, as demonstrated in Figure 4(b). This surge in off-diagonal values suggests that
different dimensions fail to capture orthogonal information effectively. Moreover, the MIGCL fea-
ture space exhibits a proximity to a diagonal structure, albeit with noisier off-diagonal elements, as
depicted in Figure 4(c). This outcome underscores the importance of integrating the structure preser-
vation term and the TCR term within MIGCL. This integration not only enables MIGCL to acquire
representations rich in fine-grained graph structure information but also reduces feature redundancy.
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Figure 4: Visualizations of the normalized covariance matrix (absolute value) of learned features on
Cora.

D ADDITIONAL EXPERIMENTS

D.1 EFFECT OF THE PROJECTION HEAD

Similar to previous works, such as GRACE (Zhu et al., 2020) and gCooL (Zhu et al., 2020), we
also employ a 2-layer MLP projection head. Table 8 demonstrates that MIGCL yields a slight
improvement compared to MIGCL without the projection head.

Table 8: Effect of the 2-layer MLP.

Variants
Cora Photo

MiF1 NMI AUC MiF1 NMI AUC

MIGCL 84.47±2.27 57.30±0.40 94.90±0.43 93.21±0.85 72.53±0.01 97.66±0.09
w/o MLP 84.10±2.24 55.94±0.43 94.50±0.57 93.08±1.06 72.48±0.04 97.56±0.09

D.2 EFFECT OF THE DISTORTION MEASURE

Figure 5 depicts the performance of node classification and node clustering across various values
of the distortion measure ϵ in Eq. 2. The results demonstrate the robustness of our model to this
hyperparameter. Based on this observation, we set ϵ to 0.01 for all other experiments.

D.3 EFFECTS OF AUGMENTATION INTENSITY

We explore investigate the effects of augmentation intensity, specifically pd1, pd2, pm1, and pm2,
on downstream tasks of node classification and node clustering. Our experiments encompass Cora
and Photo datasets, where we vary these parameters from 0.1 to 0.9. To simplify visualization,
we set pd1 = pd2 and pm1 = pm2. All other hyperparameters remain unchanged as described
previously. The results are shown in Figure 6 and Figure 7. The highlighted sections of Figure 6(a)
and Figure 7(a) indicate that the performance of node classification remains relatively stable as long
as the feature masking ratio is not excessively large. Each dataset exhibits an optimal combination
of (pd, pm) that enhances generalization for classification and clustering tasks. Overall, our method
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Figure 5: Visualization of the effects of ϵ on Cora and Photo.

demonstrates robustness to augmentation intensity: by maintaining the feature masking ratio and the
edge dropping ratio within the appropriate range, our method achieves impressive and competitive
performance. Nevertheless, it remains crucial to select a proper augmentation intensity to learn more
generalizable and informative representations.
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Figure 6: Visualization of the effects of different augmentation intensity on Cora.
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Figure 7: Visualization of the effects of different augmentation intensity on Photo.
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D.4 T-SNE COMPARISON WITH BASELINES

Due to space limitations in the main text, we provide the t-SNE visualization of all the methods
in Figure 8. Here, we reach a similar conclusion to the main paragraph, that MIGCL effectively
learns highly structured representations characterized by both inter-cluster separation and intra-
cluster compactness.

(a) RawFeat (b) VGAE (c) DGI

(d) MVGRL (e) GRACE (f) GCA

(g) CCA-SSG (h) gCooL (i) CSGCL

(j) LE (k) MIGCL

Figure 8: t-SNE comparison with all baselines on Photo.
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D.5 PERFORMANCE ON OTHER DATASETS

We additionally evaluate the proposed method on two other citation networks: Citeseer and Pubmed
(Kipf & Welling, 2017). The experimental results, presented in Table 9, demonstrate that MIGCL
still delivers comparable performance, particularly in terms of node classification.

Table 9: Performance of node classification and node clustering on Citeseer and Pubmed (in per-
centage). OOM indicates ruuning out of memory on a 24GB NVIDIA GeForce RTX 3090 GPU.

Dataset Citeseer Pubmed
Metric MiF1 MaF1 NMI ARI MiF1 MaF1 NMI ARI

RawFeat 58.4±3.0 52.2±3.7 21.0±3.3 17.2±3.4 80.7±0.8 80.7±0.8 31.3±0.2 28.1±0.0
LE 53.0±2.8 47.4±2.9 23.2±0.1 18.5±0.1 78.3±0.7 76.8±0.9 29.4±0.0 27.3±0.00

VGAE 69.2±2.8 61.1±2.8 39.7±0.0 40.9±0.0 82.3±0.8 81.9±0.9 26.8±0.2 27.1±0.2
DGI 70.3±2.1 62.7±2.3 39.9±0.8 40.1±0.8 85.7±0.7 85.3±0.8 24.8±0.0 23.9±0.0

MVGRL 71.9±2.2 65.2±2.4 43.4±0.1 44.1±0.1 85.6±0.7 85.4±0.8 33.8±0.0 30.5±0.0
GRACE 71.3±1.9 62.7±1.7 40.0±0.3 41.3±0.2 85.8±0.7 85.5±0.7 22.0±0.0 18.4±0.0

GCA 71.7±2.3 63.5±2.8 41.1±0.3 41.7±0.3 86.3±0.7 85.9±0.8 31.6±0.1 30.8±0.2
CCA-SSG 72.9±2.3 66.0±3.1 43.7±0.2 44.8±0.3 85.4±0.8 85.0±0.9 31.7±4.7 28.3±5.8

gCooL 72.0±2.1 63.0±1.8 41.7±0.4 42.7±0.5 86.5±0.6 85.9±0.6 33.1±0.0 31.9±0.0
CSGCL 71.6±1.9 65.0±2.2 42.6±0.7 43.0±1.3 OOM OOM OOM OOM
MIGCL 73.9±3.0 67.2±3.0 41.2±0.1 40.6±0.1 86.6±0.6 86.0±0.7 33.7±0.1 32.5±0.1
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