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Figure 1: Video editing results by Via. VIA excels in precise and consistent editing across diverse video
tasks. Top: consistent results over long videos with a duration of 1 minute, which is challenging in current
literature. Bottom: consistent results for precise local editing.

Abstract

Video editing serves as a fundamental pillar of digital media, spanning applications in en-
tertainment, education, and professional communication. However, previous methods often
overlook the necessity of comprehensively understanding both global and local contexts,
leading to inaccurate and inconsistent edits in the spatiotemporal dimension, especially for
long videos. In this paper, we introduce VIA, a unified spatiotemporal VIdeo Adaptation
framework for global and local video editing, pushing the limits of consistently editing
minute-long videos. First, to ensure local consistency within individual frames, we designed
test-time editing adaptation to adapt a pre-trained image editing model for improving con-
sistency between potential editing directions and the text instruction, and adapt masked
latent variables for precise local control. Furthermore, to maintain global consistency over
the video sequence, we introduce spatiotemporal adaptation that recursively gather con-
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sistent attention variables in key frames and strategically applies them across the whole
sequence to realize the editing effects. Extensive experiments demonstrate that, compared
to baseline methods, our VIA approach produces edits that are more faithful to the source
videos, more coherent in the spatiotemporal context, and more precise in local control.
More importantly, we show that VIA can achieve consistent long video editing in minutes,
unlocking the potential for advanced video editing tasks over long video sequences.

1 Introduction

With the exponential growth of digital content creation, video editing has become essential across various
domains, including filmmaking (Frierson, |2018; Dancyger|, [2018)), advertising (Mei et al., [2007; Kholisoh et al.,
2021)), education (Calandra et al., 2008} [2009), and social media (Jackson, [2016} |Schmitz et al., 2006)). This
task presents significant challenges, such as preserving the integrity of the original video, accurately following
user instructions, and ensuring consistent editing quality across both time and space. These challenges are
particularly pronounced in longer videos, where maintaining long-range spatiotemporal consistency is critical.

A substantial body of research has explored video editing models. One approach uses video models to
process the source video as a whole (Ku et al.l|2024; [Liu et al.| 2023b). However, due to limitations in model
capacity and hardware, these methods are typically effective only for short videos (fewer than 200 frames).
To overcome these limitations, various methods have been proposed (Xing et al., |2023; Wu et al.| [2023; |Guo
et all [2023; [Wu et al. |2024). Another line of research leverages the success of image-based models (Ho &
Salimans), 2022; |[Nichol et al., 2022; |Podell et al.||2023; [Avrahami et al., 2022} |Brooks et al.,|2023) by adapting
their image-editing capabilities to ensure temporal consistency during test time (Khachatryan et al., |2023;
Geyer et al., 2024} Wu et al., |2024; Qi et al., |2023; Wang et al., [2023)). However, inconsistencies accumulate
in this frame-by-frame editing process, causing the edited video to deviate significantly from the original
source over time. This accumulation of errors makes it challenging to maintain visual coherence and fidelity,
especially in long videos. A significant gap remains in addressing both global and local contexts, leading to
inaccuracies and inconsistencies across the spatiotemporal dimension.

To address these challenges, we introduce V1A, a unified spatiotemporal video adaptation framework designed
for consistent and precise video editing, pushing the boundaries of editing minute-long videos, as shown in
Fig. First, our framework introduces a novel test-time editing adaptation mechanism that tune the
image editing model on dataset generated by itself using the video to be edited, allowing the image editing
model to learn associations between specific visual editing directions and corresponding instructions. This
significantly enhances semantic comprehension and editing consistency within individual frames. To further
improve local consistency, we introduce local latent adaptation to control local edits across frames, ensuring
frame consistency before and after editing.

Second, effective editing requires seamless transitions and consistent edits, especially for long videos. To
address this, we introduce spatiotemporal attention adaptation to maintain global editing coherence across
the edited frames. Specifically, we propose gather-and-swap to gather consistent attention variables from the
model’s architecture and strategically apply them throughout the video sequence. This approach not only
aligns with the continuity of the video but also reinforces the fidelity of the editing process.

Through rigorous evaluation, our methods have demonstrated superior performance compared to existing
techniques, delivering significant improvements in both local edit precision and the overall aesthetic quality
of the videos. Moreover, our approach is considerably faster than previous methods due to the parallelized
swapping process. To the best of our knowledge, we are the first to achieve consistent editing of minute-long
videos. Our main contributions are as follows:

e We introduce V1A, a novel framework designed to enable faithful, consistent, precise, and fast video
editing. Our approach pushes the boundaries of current video editing methods, ensuring both local and
global consistency across the entire video.
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o We introduce a novel spatiotemporal attention adaptation and test-time adaptation mechanism,
enabling coherent, text-driven video edits by maintaining global consistency across frames and semantic
consistency within individual frames, leveraging an image editing model for video editing.

e Our approach outperforms existing techniques in human evaluation and automatic evalua-
tion, delivering significantly better performance in terms of editing quality and efficiency.

2 Related Work

2.1 Text-driven Video Editing

Text-driven video editing is a process of modifying videos according to the user’s instructions. Inspired by
the remarkable success of text-driven image editing (Avrahami et al.| 2022; |Brooks et al., [2023; ' Tumanyan
et al.,|2023; [Sheynin et al.,|2023;|Zhang et al.,|2023)), extensive methods have been proposed for video content
editing (Ouyang et all, 2024} |[Feng et al., 2024; [Li et al., |2024; Yang et al., |2024; |Zhang et al., |2024; |Qin,
et al. |2023; [Khachatryan et al.| 2023} |Geyer et al., [2024; [Wu et al.| 2024} Qi et al., |2023; [Wang et al., |2023;
Ku et al., [2024). One paradigm for video editing is to adapt an image-based model to video. For example,
Khachatryan et al|(2023) adapts image editing to the video domain without any training or fine-tuning by
changing the self-attention mechanisms in Instruct-Pix2Pix to cross-frame attentions. |Geyer et al.| (2024)
explicitly propagates diffusion features based on inter-frame correspondences to enforce consistency in the
diffusion feature space. [Yang et al.[(2023b)) construct a neural video field to enable encoding long videos with
hundreds of frames in a memory-efficient manner and then update the video field with an image-based model
to impart text-driven editing effects. [Ku et al.| (2024)) plug in any existing image editing tools to support an
extensive array of video editing tasks. However, these methods are constrained by their ability to maintain
global and local consistency, limiting to edit short videos within seconds. To efficiently enable longer video
editing, [Wu et al.| (2024)) centers on the concept of anchor-based cross-frame attention, firstly achieving
editing 27-second videos. In our work, we built upon this line of work and improve editing consistency,
firstly pushing the limits of editing to minutes-long videos.

2.2 Spatiotemporal Consistency

Ensuring spatiotemporal consistency is critical for video editing, especially for long videos. |Qi et al.| (2023)
makes the attempt to study and utilize the cross-attention and spatial-temporal self-attention during DDIM
inversion. Wang et al. (2023|) proposes a spatial regularization module to fidelity to the original video.
Park et al.| (2024) presents spectral motion alignment (SMA), a framework that learns motion patterns
by incorporating frequency-domain regularization, facilitating the learning of whole-frame global motion
dynamics, and mitigating spatial artifacts. |Ceylan et al.| (2023)) and [Wu et al.| (2023)) improve the design of
spatial attention to cross-frame attention to ensure consistency. In our work, we further ensure consistency
inside the anchor-based frames and propose a two-step gather-swap process to adapt spatiotemporal attention
for consistent global editing.

3 Preliminaries

Diffusion Models. In this work, we adapt an image editing model for instruction-based video editing.
Given an image x, the diffusion process produces a noisy latent z; from the encoded latent z = £(x) where
the noise level increases over current timestep ¢ over total T steps. A network €y is trained to minimize the
following optimization problem,

Inein]Ey,e,t |:H6_69(2t7t76(61)7cT)Hi| (1)

where € € N(0,1) is the noise added by the diffusion process and y = (cr, ¢y, ) is a triplet of instruction,
input image and target image. Here ey uses a U-Net architecture (Ronneberger et all 2015)), including
convolutional blocks, as well as self-attention and cross-attention layers.

Attention Layer. The attention layer first computes the attention map using query, Q € R™*? and key,
K € R™*? where d, n, and ny are the hidden dimension and the numbers of the query and key tokens
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Figure 2: Overview of Via framework. For local consistency, Test-time Editing Adaptation finetunes the
editing model with augmented editing pairs to ensure consistent editing directions with the text instruction,
and Local Latent Adaptation achieves precise editing control and preserves non-target pixels from the input
video. For global consistency, Spatiotemporal Adaptation collects and applies key attention variables across
all frames.

respectively. Then, the attention map is applied to the value, V.€ R"*¢ as follows:

' : _ QK'
Z' = Attention(Q, K, V) = Softmax( )V, (2)
Vd
Q=27ZW, K=CW,, V=CW,, (3)

where W, Wy, W, are the projection matrices to map the different inputs to the same hidden dimension
d. T denotes the matrix transpose. Z is the hidden state and C is the condition. For self-attention layers,
the condition is the hidden state, while the condition is text conditioning in cross-attention layers.

Cross-frame Attention. Given N frames from the source video, cross-frame attention has been employed
in video editing by incorporating K and V from previous frames into the current frame’s editing process
let al. [2023b; Wang et al., 2023; Wu et al., 2024), as shown below:

chrr [KC'LII'I'7 Kgroup] T
Vd

where Kgroup = [K°, ..., K*] and Vgoup = [V?,..., V¥], and k is the group size. By incorporating Kgroup
and Vgoup during the video editing process for each frame, the temporal consistency is improved. In this
paper, we improve cross-frame attention with a two-stage gather-swap process to significantly improve the
spatiotemporal consistency.

¢ = Softmax ( > [chrh Vgroup]7 (4)

4 The Via Framework

Below, we outline the distinct methodologies that form the foundation of our approach. We introduce a
unified framework to tackle key challenges in instruction-guided video editing, with a focus on ensuring
editing consistency and spatiotemporal coherence across video frames by leveraging an image editing model,
as shown in Fig. 2] For a video to be edited, we first tune the editing direction of the editing model as the
test-time adaptation in Sec. then edit each frame by Spatiotemporal Adaptation as in Sec. With
external masks, we could further achieve targeted editing.

4.1 Test-Time Editing Adaptation for Local Consistency

When adapting image editing models for video editing, the same instructions must yield consistent semantic
interpretations across frames—for example, every frame should exhibit the same degree of darkness when
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instructed to “make it night.” Additionally, non-target elements in each frame must remain unchanged; for
instance, a table should remain intact when the instruction is to replace an apple with an orange. To address
these challenges, we propose two orthogonal approaches to achieve consistent local editing.

Inspired by DreamBooth (Ruiz et al., [2023), which employs inference-time fine-tuning to associate specific
objects with unique textual tokens, we similarly link visual editing outcomes with corresponding instructions,
as shown in Fig. We begin with a pipeline to generate the in-domain tuning set without the need for
external resources. The image editing model W first edits a randomly sampled frame S;o0¢ from the video to
be edited to get editing result Fyoot- Then we apply random affine transformations to both the edited frame
and source frame. Consider Fj, as affine transformation:

T = {(Fx(9), Fr(E),I) | Fi. € F} (5)

where F is the set of transformations. The tuning set T' consists of triples: source image, edited image,
and editing instruction. Then the editing model is tuned on the triplets that is generated by itself from the
video to be edited. Therefore, the model learns to map specific visual editing directions to the corresponding
instructions for the video. This (i) multiplies training samples, preventing over-fitting to one pose, and (ii)
mimics the small viewpoint or scale changes that naturally occur from frame to frame, letting the model
learn an edit that stays stable even when the camera or objects shift slightly. The resulting augmented set
makes test-time adaptation far more effective at preserving local consistency across the entire video.

For the second challenge, where edits target specific areas, video models often unintentionally affect untar-
geted regions. In image editing, background preservation involves inverting the source image into latent
space and blending it with the generated latent using a mask to control edits (Cao et all |2023; |Gu et al.|
2024). However, directly applying this approach to video editing causes severe glitching issues, as the gen-
erated areas do not stay aligned across frames. To address this, we propose Local Latent Adaptation
in the context of video editing. The core behind it is Progressive Boundary Integration, which blends
the inverted and generated latents at each timestep, confining edits to designated areas while preserving
non-targeted regions. Please check Appendix for more details. Our approach ensures strict adherence to
editing instructions, focusing solely on specified areas. Our approach smoothly merges source and target
latents via linear interpolation between 0 and 1 over the time series. The mathematical representation is
given by:

M(z,y) -4, ift<T and M(z,y) =1
Mt(w):{ (x.) - £ (z.)

M(z,y), otherwise
Z:arget _ Mt . Zfdit + (1 o Mt) A Z;’nverted (7)
21 = Sample(z/*79°" @, t) (8)

Here, M is the giving binary mask and M(z, y) is predefined as 1 in a target area and 0 elsewhere. Within
this central area, M(z,y) incrementally decrease from 0 to 1 over T steps, while the values outside this
central region remain unchanged. ® denotes the attention output within the U-Net architecture at each
diffusion step. Note that other parameters such as editing instruction are ignored for simplicity. To assist
VIA framework, we built a mask generation process as in the Appendix.

4.1.1 Automatic Mask Generation

We present an automated mask generation pipeline aimed at enhancing user experience and streamlining the
editing process, particularly for large-scale edits. Editing instructions often specify modifications to specific
regions, but current end-to-end models tend to alter unintended areas. To address this, we designed an
automated pipeline for mask generation, as illustrated in Fig. [

First, a Large Vision-Language Model (GPT-4V in our experiment) is prompted to generate a textual
description, P, of the region to be modified for each frame. Using this description, we follow Grounded-
SAM |Ren et al.|(2024) to apply the Segment Anything model (Kirillov et al.|2023) and Grounding DINO |Liu
et al.| (2024) to extract a mask that accurately delineates the target area for editing. It is important to note
that we did not use GPT-4V during comparisons with baselines in the original paper.
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Figure 3: Automatic mask generation. A single frame from the video, along with a tailored text prompt
encapsulating the editing instruction, is fed into a Large Vision-Language Model (LVLM), such as GPT-4,
to generate a text description that specifies the region to be edited. If the designated editing area does
not cover the entire image, this text description is then passed into a segmentation model, such as the
Segment Anything model, to create a mask for the targeted region. This automated process allows for
precise identification of the area to be modified, ensuring that only the relevant portion of the image is
edited, while preserving the integrity of the rest of the frame.

In the optimal setting, VIA involves further tuning in the local adaptation process, which some baselines
do not utilize. For fairness in comparisons, we degraded our model to use only Spatiotemporal Adaptation
during all evaluations. This ensures that our results are directly comparable to baseline models without
additional enhancements from local adaptation or the automated mask generation process.

4.2 Spatiotemporal Adaptation for Global Consistency

For long video editing, maintaining smooth transitions without glitches or artifacts is essential. Attention
variables within the U-net have been found to correlate strongly with the generated content. To ensure
consistent global editing, we propose a two-step gather-and-swap process to adapt spatiotemporal attention,
as illustrated in Fig. @] In this method, the gathered group is uniformly applied across all frames, ensuring
internal coherence throughout the editing process.

Firstly, in the gather stage, the model progressively edits the image, with key K and value V from previous
frames in the group, rather from their own K¢y and Veyer,

chrrKTrcv
= softmax [ ———="= | Vorev, 9
? ( Vd ’ )

1 1
Kgr—gul)) = [Kgr)oupa Kcurr]7 Vg—gu;)) = [Vg?oupa chrr] (10)

Since K¢y and Vi, are calculated by the ¢ from the last layer, which already has a stronger dependency
on other frames, the saved elements have a stronger consistency with previous group elements, leading to
in-group consistency in Kgijulg and Vgﬁ(julg. Here t denotes the frame index, and group means evenly sampled

frames from the source video.
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(a) Gather attention group (b) Edit all frames with attention group

Figure 4: The gather-and-swap process for video editing. The left part of the diagram illustrates the
gathering process. We initially sample &+ 1 frames evenly distributed throughout the video. The first frame
undergoes standard editing using an image editing model, during which the attention variables are captured
and stored. For each of the subsequent k frames, the attention variable from the preceding frame is swapped
in, and its own attention variables are also preserved. In the right part, the collected attention variables from
all k£ + 1 frames are swapped into the editing process of each frame. This includes applying the previously
gathered attention variables to enhance the consistency and quality of edits across the sequence.

In the second stage, we apply the attention group to the editing process of all frames, including those used
initially to generate the attention group. Expanding K and V does not change the output, as QKT remains
structured, and multiplication with V keeps the dependency on @ and V. Thus, a signal can integrate
information from multiple others. This approach resolves the inconsistency in the group frames, where they
initially have less dependency on other frames. Throughout the editing process, each frame continues to
refrain from using its own attention variables, instead relying on the shared attention group to maintain
consistency across the entire video. This ensures that all frames, even the earlier ones, are edited with a
global perspective, reducing discrepancies between frames.

currKTrou
¢ = softmax <Q\[dgp> Veroups (11)

In this way, all frames share the same attention group, leading to maximum coherence between the edited
frames and enabling the swap process to be distributed across multiple GPUs, which significantly reduces
editing time. Moreover, while previous work has primarily relied on self-attention for cross-frame consistency,
we discovered that cross-attention also plays a crucial role in maintaining coherence. Combining both
self-attention and cross-attention mechanisms capturing a broad representation of frame differences and
maximizing consistency in the edits. Fig. [ illustrates the two stages, where A represents both K and V.

Table 1: Human evaluation results. We compare our model with five previous open-source methods from
three aspects. ‘Tie’ indicates the two models are on par with each other. Only spatiotemporal adaptation is
used when compared with baseline models.

‘Ours Rerender Tie ‘Ours TokenFlow Tie ‘ Ours AnyV2V Tie ‘Ours Video-P2P Tie ‘Ours Tune-A-Video Tie

50.50 34.00 15.5|75.75 16.00 8.25/56.00 29.00 15.00{74.00  16.25 9.75|70.25 20.75 9.00
47.25 35.00 17.75/38.00 31.50  30.5|53.50 23.25 23.25/80.50 9.50 10.00(68.75 20.75 10.5
53.50 29.00 17.5|61.75 22.75 15.5/63.50 30.00 6.5 [63.75  22.75 13.5 |56.00 22.25 21.75

Instruction Following
Consistency
Overall Quality

5 Evaluation

In this paper, we adapt image editing model MGIE (Fu et all 2024) for video editing. Please refer to
the Appendix for performance on other backbone. We conduct both qualitative and human evaluations
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Table 2: Automatic evaluation results. VIA outperforms open-sourced video editing models in automatic
metrics. Only spatiotemporal adaptation is used when compared with baseline models.

Via  Rerender TokenFlow AnyV2V Video-P2P Tune-A-Video

Frame-Acc T 0.869 0.734 0.587 0.533 0.587 0.601
Tem-Con 1 0.983 0.954 0.932 0.856 0.912 0.927
Pixel-MSE | 0.011 0.016 0.018 0.026 0.020 0.019

Latency(sec) 16 406 450 570 612 529

against open-source state-of-the-art baselines, including Fairy (Wu et al., |2024)), AnyV2V (Ku et al., 2024),
Rerender (Yang et al [2023a)), Tokenflow (Geyer et al., 2024), Video-P2P (Liu et al., |2023b)), and Tune-A-

Video (Wu et al.} 2023). For the comparison with AnyV2V, we use the first edited frame generated by Via
as the starting point for the evaluation. Please refer to the Appendix for details about the implementation
process of the baselines. We used 800 videos for the test set, where 400 of them are short video, and the
remaining range from 1 minutes to 2 minutes. Short videos are collected from Panda-70M and long videos
are from https://www.shutterstock.com/video. We used DDIM for both forward and reverse process.

5.1 Quantitative Evaluation

Human Evaluation. We began by conducting a human evaluation. Since many baselines are unable to
handle long videos, we limited the video length to 4-8 seconds to ensure a fair comparison. All videos were
standardized to a frame size of 512x512 pixels. A total of 400 videos were sampled for human evaluation to
compare the performance. The evaluation focused on three key criteria: Instruction Following, assessing
accuracy in executing user commands; Consistency, ensuring coherence across frames without abrupt
changes; and Overall Quality, gauging visual appeal and smoothness. Results in Tab. [d] show that Via

excelled in all metrics compared with other baselines.

AL
‘7 gi{j‘i - t\zr e
iy b=

(1-a, 1 min) Source Video. (1-b) “Replace into an alien”. (2-a, 1 min) Source Video. (2-b) “Make the background yellow”.

*Qa‘t

(3-b) “Remove the background™.

(3-a, 20 seconds) Source Video.

(4-a,15 seéonds) Source Video. (4-b) “Make‘th tree green”. (5-a, 8 seconds) Source Video. (5-b) “Place do on Monet's warer/iis”.

Figure 5: Local editing results. VIA is capable of performing a wide range of localized editing tasks,
where only specific regions or pixels within a frame are modified. The video length is introduced in the text
below the video frames.

Automatic Evaluation. We also conducted automatic evaluation as in Tab. Frame-Acc
[2023} [Yang et al. [2023a)) measures the percentage of frames where the edited image has a higher CLIP
similarity to the target prompt than the source prompt; Tem-Con (Esser et al.,[2023)) measures the temporal
consistency via computing the cosine similarity between all pairs of consecutive frames. Following
, we also use Pixel-MSE to calculate the difference between the edited frame and its previous
frame warped with the optical flow calculated from the source frame pairs. Note that it is normalized by
the maximum possible MSE difference. VIA outperformed all other models across these metrics, delivering
superior accuracy and consistency while also achieving faster processing speeds. We did not use test-time
adaptation for VIA, as some of the baseline models do not inherently benefit from it, which ensured a fair
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Figure 6: Global editing results. Via demonstrates robust global editing performance across various
videos using a consistent set of editing instructions, producing high-quality results. The videos are of length
2-minute, 1-minute video, 30 seconds, and 7 seconds.

comparison. Additionally, we calculated the evaluation latency of the editing process, which was carried
out on an A100 machine with 8 GPUs. The global adaptation process could be distributed across multiple
GPUs to further accelerate the process. Detailed speed analysis can be found in the Appendix.

5.2 Qualitative Results

Local Editing Results. Fig. |5| showcases the performance of VIA on various local editing tasks, where
only specific parts of the frame are modified. VIA excels at accurately identifying the target area and
applying precise edits. VIA demonstrate strong performance on general local editing tasks including both
background modification and foreground object modification. The two 1-min long video in the first
row speficially presented its precise control. Besides, VIA enables local stylization, surpassing traditional
techniques limited to full-image changes, whose enhanced control opens up new creative possibilities in video
editing.

Global Editing Results. Fig.[6]highlights the global editing capabilities of VIA across a range of videos. A
uniform set of editing instructions was used across different videos, resulting in coherent and visually appeal-
ing modifications throughout. The bottom example specifically illustrates VIA’s proficiency in understanding
and consistently applying visual effects across all frames, ensuring seamless transitions and maintaining the
integrity of the visual narrative across the entire video.

Long Video Editing. A direct consequence of the high consistency feature in our video editing framework
is its proficiency in handling longer videos, as demonstrated throughout this paper. Currently, existing video
editing models cannot handle minute-long videos due to architectural limitations, making direct comparisons
challenging. To address this, we evaluate long video editing by concatenating individually edited chunks,
where VIA significantly outperforms the baselines. For more details, see Sec. [5.3] One of our baselines,
Fairy , has not made their code publicly available, but they report that their model supports
videos up to 27 seconds in length. We compare our results on the same video in their website using identical
editing instructions, as shown in Fig.[7] ViA demonstrates superior global and local consistency, which can
be attributed to our unified adaptation framework.

Qualitative Comparison. In Fig.[8] we present two examples of video editing to showcase the performance
of VIA in comparison to other models. In the first example, the video depicts rapidly moving clouds
against a blue sky, with the instruction to "Set the time to sunset." Despite the swift movement of the
clouds, which places a high demand on temporal consistency, ViA demonstrates excellent coherence across
frames. The Editing Adaptation process allows VIA to effectively align the visual effect with the concept of
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(b) Falry Model

Figure 7: Comparison with the baseline model on the long video. We present the editing results
from a 27-second video.

Source Video Source Video
Instruction: “Set time to be sunset” (a) Ours Instruction: “Change to black chimpanzee” (a) Ours

AnyV2V (c) To kenﬂow

d) Rerender e) Tune-A- Vldeo

Figure 8: Qualitative comparison with baselines. V1A is able to produce consistent editing results.

Source Video, Instruction: " Make it Van Gogh style" Source Video, Instruction: " Add a sense of nostalgia"
t=0 =20 t=40 =60 , (a) Our full mode t=0  t=40 t=80  t=120  (a) Our full model

e

(b) Without Cross-Attention Swap  (c) Without Test-Time Adaptation
P!

Figure 9: Ablation Study on components in Via on long video. In the left example, the hat color and
visual style are less consistent without distinct component handling. In contrast, the right example shows
a uniform visual style applied consistently across frames, with each component maintaining its appearance.
Test-time adaptation ensures stable visual effects that follow the specified instructions. Without the gather-
swap technique, object consistency across frames is weakened. Additionally, incorporating cross-attention
alongside self-attention improves consistency and reduces artifacts.

"sunset," ensuring smooth and realistic changes. In contrast, other models struggled to execute the command
adequately. The AnyV2V model partially achieved the desired visual effect by leveraging the initial frame
generated by VIA. On the right, we show an object-swapping example where a monkey moves from within
the frame to outside of it. The challenge lies in maintaining a smooth transition from the full subject
to a partially visible one. While other methods often introduce artifacts between the edited frames and
the original video, VIA seamlessly swaps the subject’s identity, preserving visual coherence and continuity
throughout the transition.

From this comparison, we found that (1) VIA outperforms the baselines in both editing quality and processing
speed. It ensures smooth transitions in edited videos, even when dealing with rapidly moving objects, while

10
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some models, such as AnyV2V, generate noticeable artifacts. (2) ViA demonstrates strong performance in
adhering to complex instructions, where other models often struggle. While competing methods experience
degraded performance with intricate commands, VIA consistently follows the instructions, applying edits
accurately across all frames.

Ablation on Individual Components. In Fig. [0] we first present qualitative results for ablation. We
analyze the impact of various components of VIA on the editing of long videos. Our experiments indicate
that the quality of the initial edited frames plays a critical role in determining the overall visual quality, as
information from these root frames propagates throughout the video sequence. Test-time adaptation further
enhances the model’s ability to closely follow the editing instructions, improving overall consistency. When
gather-and-swap is omitted and the model relies solely on cross-frame attention, inconsistencies start to
emerge between frames. Additionally, although self-attention is commonly employed to ensure consistency,
we found that the inclusion of cross-attention significantly improves the quality of video editing. In the left
example, the hat color and visual style lack consistency due to the absence of distinct component handling.
In contrast, the right example demonstrates a cohesive visual style applied uniformly across frames, with each
component retaining its appearance. For additional ablation studies, and analysis on detailed components
such as Progressive Boundary Integration, please refer to the Appendix.

Tab. presents a quantitative ablation in which each core component of VIA is removed in
turn—Cross-Attention (CA), Test-Time Adaptation (TTA), Spatiotemporal Adaptation (SA), Local La-
tent Adaptation (LLA), Progressive Boundary Integration (PBI), and the affine augmentations used during
TTA—while the full model appears in the leftmost column. The full configuration yields the highest scores
across all metrics (e.g., 0.826 for Frame-Acc and 0.942 for Tem-Con on long videos). Eliminating any single
module consistently degrades performance: SA and LLA cause the largest drops (up to 0.034 on Frame-Acc
and 0.032 on Tem-Con), TTA and PBI each lower accuracy and temporal coherence by roughly 0.02-0.03,
and CA or the affine transforms introduce smaller but still noticeable declines. The uniform decline across
both long- and short-video benchmarks confirms that every component contributes meaningfully to spatial
fidelity and temporal stability, validating the necessity of VIA’s full design.

Table 3: Quantitative Ablation Study. CA means Cross-Attention; TTA means Test-Time Adapta-
tion; SA means Spatiotemporal Adaptation; LLA means Local Latent Adaptation; PBI means Progressive
Boundary Integration. Affline means affline transformation.

ViA w/oCA w/oTTA w/oSA w/oLLA w/oPBI w/o Affine

(Long) Frame-Acc 1 0.826  0.814 0.801 0.803 0.792 0.805 0.814
(Long) Tem-Con 1 0.942  0.923 0.913 0.909 0.910 0.920 0.921
(Short) Frame-Acc 1 0.869 0.852 0.844 0.842 0.833 0.857 0.847
(Short) Tem-Con 1 0.983  0.952 0.943 0.928 0.955 0.968 0.966

5.3 Long Video Comparison

Since prior methods do not support long video editing, we divide long videos into 5-second segments, edit
each segment separately, and then concatenate the results. VIA significantly outperforms other baselines
by a large margin. However, independently editing each chunk introduces noticeable inconsistencies. As an
example shown in Fig. applying AnyV2V |[Ku et al.| (2024) to two consecutive chunks results in visibly
different editing effects across segments.

5.4 Speed Analysis

VIA not only achieves great performance, but also offers impressive speed. The fine-tuning process takes
approximately 1 minute, regardless of the video’s length. For the global adaptation process, it takes In-
structPix2Pix (Brooks et al., 2023]) about 1 second per frame, and MGIE (Fu et al., [2024) around 3 seconds
per frame.
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1st Frame of 1st chunk 1t Frame of 2nd chunk 1st Frame of 1st chunk 1st Frame of 2nd chunk

Figure 10: Editing results from two consecutive 5-second chunks. The editing instruction is “Change the
video to Japanese Woodprint painting.” Even with the same model and random seed, the editing results can
vary, leading to noticeable inconsistencies in the concatenated video.

Table 4: Comparison with baselines using concatenated edited videos. We evaluate our model
against five previous open-source methods across three aspects. A ‘Tie’ indicates comparable performance
between models. Since prior methods do not support long video editing, we divide long videos into 5-second
segments, edit each segment separately, and then concatenate the results.

‘Ours Rerender Tie ‘Ours TokenFlow Tie ‘ Ours AnyV2V Tie ‘Ours Video-P2P Tie ‘Ours Tune-A-Video Tie

53.50 31.00 15.50{72.75 13.00  14.25/58.00 25.00 17.00{72.50 18.50 9.00 |70.25 21.25 8.50
45.25 36.00 18.75/36.00  32.50 31.5152.50 21.50 26.00{78.50 10.50  11.00|70.75 19.75 9.50
53.00 27.00 20.00/70.75 15.50 13.75|72.50 13.25 14.25/61.75 14.75  23.50|58.00 25.50 16.50

Instruction Following
Consistency
Overall Quality

Distribution Across GPUs: Once we gather the frames, the editing for all frames can be performed on
different GPUs simultaneously, as the frame editing process only depends on the fixed group frames. We
utilize 8 GPUs for processing, which helps manage the load effectively.

Total Processing Time for a 600-frame video:

o MGIE: 60 (fine-tuning) + 3*8%0 = 285 seconds.

« InstructPix2Pix: 60 (fine-tuning) + 228% = 135 seconds.

For the comparison with baselines, where only spatiotemporal adaptation is used (without fine-tuning or
local adaptation), the time is:

« MGIE (without fine-tuning): 2%8%0 = 225 seconds.

1x600

s = 75 seconds.

¢ InstructPix2Pix (without fine-tuning):

6 Broader Impact Statement

VIA enhances video editing precision and efficiency, offering transformative benefits across multiple domains.
In creative industries and education, it enables filmmakers, advertisers, and educators to produce high-
quality, long-form content more efficiently. By reducing production costs and improving editing workflows,
it allows for richer storytelling, clearer instructional videos, and more engaging educational materials.

Another key impact is the democratization of video editing. By simplifying advanced editing techniques,
VIA empowers non-professional users to create polished videos for social media, marketing, and personal
projects. This expanded accessibility fosters greater creative expression while maintaining brand consistency
and visual appeal in digital content.

While VIA brings significant advancements, it also raises ethical and environmental considerations. The
ability to seamlessly edit long videos introduces concerns about deepfakes and misinformation, highlighting
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the need for ethical safeguards and detection mechanisms. At the same time, its optimized processing reduces
computational costs, promoting more sustainable video production.

Overall, VIA has broad applications across industries, offering new creative possibilities while necessitating
responsible and ethical implementation.

7 Conclusion

This paper introduces a novel video editing framework that tackles the critical challenges of achieving
temporal consistency and precise local edits. Our approach surpasses the limitations of traditional frame-
by-frame methods, delivering coherent and immersive video experiences. Extensive experiments show that
our framework outperforms existing baselines in terms of handling temporal dynamics, ensuring local edit
precision, and enhancing overall video aesthetic quality. This advancement paves the way for new possibilities
in media production and creative content generation, setting a new benchmark for future developments in
video editing technology.
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