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ABSTRACT

Flow Matching (FM) is a simulation-free method for learning a continuous and
invertible flow to interpolate between two distributions, and in particular to gen-
erate data from noise in generative modeling. In this paper, we introduce Local
Flow Matching (LFM), which consecutively learns a sequence of FM sub-models
and each matches a diffusion process up to the time of the step size in the data-
to-noise direction. In each step, the two distributions to be interpolated by the
sub-model are closer to each other than data vs. noise, and this enables the use of
smaller models with faster training. The stepwise structure of LFM is natural to be
distilled and different distillation techniques can be adopted to speed up genera-
tion. Theoretically, we prove a generation guarantee of the proposed flow model
in terms of the y2-divergence between the generated and true data distributions.
In experiments, we demonstrate the improved training efficiency and competitive
generative performance of LFM compared to FM on the unconditional genera-
tion of tabular data and image datasets, and also on the conditional generation of
robotic manipulation policies.

1 INTRODUCTION

Generative modeling has revolutionized the field of machine learning, enabling the creation of real-
istic synthetic data across various domains. Recently, diffusion models (Ho et al.|[2020; |Song et al.
2021) started to take over earlier models like Generative Adversarial Networks (GAN) (Goodfellow
et al., 2014)), Variational Autoencoders (VAE) (Kingma & Welling, 2014) and Normalizing Flows
(Kobyzev et al.| [2020), offering benefits in terms of stability, diversity, and scalability. Diffusion
models have found diverse applications in audio synthesis (Kong et al., 2021, text-to-image syn-
thesis (Rombach et al., [2022)), imitation learning for robotics (Chi et al.| [2023), among others. A
notable advantage of score-based diffusion models is their simulation-free training, meaning that the
training objective is a “score matching” loss taking the form of an L? loss averaged over data sam-
ples. Under a Stochastic Differential Equation (SDE) formulation (Song et al., |2021)), this allows
training of a continuous-time score function parametrized by a neural network from a large amount
of data in high dimensions.

Compared to the SDE generation in diffusion models, the Ordinary Differential Equation (ODE)
generation of a trained diffusion or flow model is deterministic and typically uses fewer time steps.
Using an ODE formulation, Flow Matching (FM) models (Lipman et al., 2023} |Albergo & Vanden-
Eijnden, 2023} [Liu}, 2022)) proposed a simulation-free training of flow models based on regressing
vector fields using an L? “matching” loss and have shown state-of-the-art generation performance
on various tasks, including text-to-image generation (Esser et al.| 2024), humanoid robot control
(Rouxel et al.| [2024), audio generation (Guan et al.| 2024)), and application to discrete data in pro-
gramming code generation (Gat et al.} 2024). The simulation-free training of flow models signif-
icantly alleviates the computational issue of earlier Continuous Normalizing Flow (CNF) models
using likelihood-based training |Grathwohl et al.| (2018)). Going beyond the fast generation of ODE
flow models, recent works on model distillation (Salimans & Hoj 20225 [Liu et al., 2023; Song et al.}
2023)) have shown that the generation of large (diffusion and flow) generative models can be signif-
icantly accelerated and in some cases computed in an extremely small number of steps.

In this work, we propose a simulation-free training technique of CNFs called “Local Flow Match-
ing” (LFM), which can be seen as a stepwise version of FM, and we call previous FMs the global
ones. The proposed LFM trains a sequence of small (sub-)flow models, which, after concatenation,
transport invertibly from data to noise and back. In each sub-flow, any FM model can be plugged
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in. In other words, the global FM tries to interpolate directly between noise and data distributions
which may differ a lot, while our local FM breaks down the job into smaller steps and interpolates
between a pair of distributions which are closer to each other (namely “local”) in each step, see Fig-
ure[T] Because the source and target distributions are not too far away, we expect to train a local FM
model with potentially smaller model and faster convergence in training. This would allow reduced
memory load and computational cost without sacrificing model quality. In addition to the benefits
when training from scratch, our framework is compatible with various distillation techniques, and
we empirically found that our model can have advantage over global FMs after distillation.

Specifically, in each step of LEM, we train a sub-flow model to interpolate between (p,—_1,p5),
where p}, evolves from p,_; along the diffusion process for time up to the step size. The forward
process (data-to-noise) starts from p, being the data distribution and ends at some p which is close
to normal distribution. The reverse process (noise-to-data) uses the invertibility of each sub-flow
model to generate data from noise by ODE integration. The construction of using (the marginal
distribution of) a diffusion process as a “target” in each step allows us to theoretically prove the
generation guarantee of LEM by connecting to the diffusion theory.

The stepwise approach in our work is inspired by similar constructions in the literature, including
block-wise training of ResNet under the GAN framework |Johnson & Zhang| (2019) and flow-based
generative models implementing a discrete-time gradient descent in Wasserstein space following
the Jordan-Kinderleherer-Otto (JKO) scheme (Alvarez-Melis et al., |2022; Mokrov et al., 2021} [Xu
et al., 2023bj |Vidal et al., 2023). Unlike previous models, the proposed LFM is simulation-free,
which allows application to high-dimensional data like large images and robotics data as shown in
our experiments.

In summary, the contributions of the work are:

* To generate data from the normal distribution, we propose to train a consecutive series of
FM sub-models which approximately follow the diffusion process in the data-to-noise di-
rection. Such breakdown of the global flow into small pieces makes the pair of distributions
closer to each other in each step, and then the FM sub-model can be obtained with reduced
model size and faster training convergence. Concatenation of all the sub-models provides
an invertible flow that can go from noise to data in the reverse direction.

* Theoretically, we prove the generation guarantee, namely how the generated distribution
by LFM approximates the data distribution P, under x? divergence which implies Kull-
back—Leibler (KL) and Total Variation (TV) guarantees. We prove an O(£'/?)-x? guaran-
tee, where ¢ is the L? error of FM training objective, and the other technical assumptions
are motivated by our stepwise FM to the OU process. Our theory applies when data density
is regular and also covers cases when P merely has finite second moments (where we use
a short-time initial diffusion to smooth P), e.g., when P is compactly supported.

* Our framework allows readily plugging in different designs of the FM in each local sub-
flow model. In addition, the stepwise structure of LFM renders it natural to be distilled, and
our approach is compatible with different distillation techniques. Empirically, the proposed
LFM shows improved training efficiency and competitive generative performance against
existing FM methods on likelihood estimation, image generation, and robotic manipulation
tasks. The model gives strong performance when trained from scratch and in the distilled
setting.

Notations. We use the same notation for the distribution and its density (with respect to the
Lebesgue measure on R%) when there is no confusion. For a distribution P, My(P) :=
Jga llz]PdP(z). Let P, = {PonR?, s.t., Ms(P) < co}. The Wasserstein-2 distance, denoted
by W» (P, Q), gives a metric on Py. For T : R — RY, T4 P denotes the pushforward of P, i.e.,
Ty P(A) = P(T~'(A)) for a measurable set A. We also write T p for the pushforwarded density.

1.1 RELATED WORKS

Continuous normalizing flow (CNF). CNF uses a neural ODE model (Chen et al.| [2018)) opti-
mized by maximizing the model likelihood, which the ODE parametrization can compute, on ob-
served data samples (Grathwohl et al.,[2018]). To facilitate training and inference, subsequent works
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have proposed advanced techniques such as trajectory regularization (Finlay et al., [2020; Onken
et al., [2021)) and block-wise training (Fan et al., [2022; | Xu et al., 2023b)). These techniques help
stabilize the training process and improve the model’s performance. Despite successful applications
in time-series analyses (de Bézenac et al.| |2020), uncertainty estimation (Berry & Meger], [2023),
optimal transport (Xu et al., |2023a)), and astrophysics (Langendorff et al.,|2023), a main drawback
of CNF is its computational cost, since backpropagating the neural ODE in likelihood-based training
is expensive (non-simulation free) and not scalable to high dimensions.

Simulation-free flow models. Flow Matching (FM) models (Lipman et al., [2023; |Albergo &
Vanden-Eijnden, (2023} [Liul [2022)) are simulation-free and a leading class of generative models.
We review the technical details of FM in Section [3.1] FM methods are compatible with different
choices to interpolate two random end-points drawn from the source and target distributions, e.g.
straight lines (called “Optimal Transport (OT) path”) or motivated by the diffusion process (called
“diffusion path”) (Lipman et al.| |2023)). Later works also considered pre-computed OT interpolation
(Tong et al.| |2023), and stochastic interpolation paths (Albergo et al.| [2023). All previous works
train a global flow model to match between the two distributions, which could require a large model
that takes a longer time to train. In this work, we propose to train multiple smaller flow models. Our
approach is compatible with any existing FM method to train these so-called local flows, making it
a flexible and extensible framework.

Accelerated generation and model distillation. Model compression and distillation have been
intensively developed to accelerate the generation of large generative models. [Baranchuk et al.
(2021)) proposed learning a compressed student normalizing flow model by minimizing the recon-
struction loss from a teacher model. For diffusion models, progressive distillation was developed
in (Salimans & Hol [2022), and Consistency Models (Song et al., 2023) demonstrated high quality
sample generation by directly mapping noise to data. For FM models, (Liu et al., 2023) proposed
to distill the ODE trajectory into a single mapping parametrized by a network, which can reduce the
number of function evaluations (NFE) to be one. The approach was later effectively applied to large
text-to-image generation (Liu et al., [2024). More recent techniques to distill FM models include
dynamic programming to optimize stepsize given a budget of NFE (Nguyen et al.l 2024). In our
work, each local flow model can be distilled into a single-step mapping following (Liu et al.|[2023),
and the model can be further compressed if needed. Our framework is compatible with different
distillation techniques.

Theoretical guarantees of generative models. Guarantees of diffusion models, where the gener-
ation process utilizes an SDE (random) [Lee et al.| (2023)); |Chen et al.| (2022} 2023a)); Benton et al.
(2024b)) or ODE (deterministic) sampler Chen et al.|(2023b;|2024); L1 et al.| (2024azb)); Huang et al.
(2024), have been recently intensively developed. In comparison, there are fewer theoretical find-
ings for ODE flow models both in training (forward process) and generation (reverse processes) like
CNF or FM. For FM models, WW,-guarantee was proved in|Benton et al.| (2024a) and in (Gao et al.,
2024)) with sample complexity analysis. The Wasserstein bound does not imply KL or TV bound,
which are more relevant for information-theoretical and statistical interpretation. For CNF trained by
maximizing likelihood, non-parametric statistical convergence rates were proved in (Marzouk et al.,
2024). KL guarantee of a step-wisely trained CNF model motivated by JKO scheme (Xu et al.,
2023b) was proved in (Cheng et al.,|2024), yet the approach is likelihood-based and not simulation-
free. Recently, (Silveri et al.,[2024) proved KL guarantee for an SDE interpolation version of the FM
model introduced in (Albergo et al.,2023). Our work analyzes a stepwise ODE FM model, which
is simulation-free, and the guarantee is in x? divergence which implies KL (and TV) guarantees.

2 PRELIMINARIES

Flow models and neural ODE. In the context of generative models, the goal is to generate data
distribution P, which is usually only accessible from finite training samples. When P has density
we denote it by p. A continuous-time flow model trains a neural ODE (Chen et al.,[2018) to generate
data distribution p from a standard distribution ¢, which is typically A/(0, I) and called “noise”.

Specifically, a neural ODE model provides a velocity field v(z, t; #) on R¢ x [0, T] parametrized by
a neural network, and 6 consists of trainable parameters. In a flow model, the solution of the ODE

&(t) = v(z(t),t;0), te€[0,T], x(0)~ po, (1)
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Local Flow Match

data p,

Figure 1: Illustration of the proposed LFM model. In the n-step step, a local FM model is trained
to interpolate from p,,_; to p; and it gives the learned (invertible) transport map 7;, which pushfor-
wards p,,_1 to p,. The concatenation of the N sub-models gives a flow between data and noise.

where py is a distribution, and we denote the law of x(¢) as p;. Whenever the ODE is well-posed, it
gives a continuous invertible mapping from the initial value x(0) to the terminal value x(7T'), and the
inverse map from z(7") to 2(0) can be computed by integrating the ODE (T)) reverse in time. Thus,
we can either set pg to be noise and pr to be data or the other way round. Earlier flow models like
(continuous-time) CNFs (Grathwohl et al.l 2018)) train the flow v(x,t; #) based on likelihood, i.e.
letting py be noise and maximizing the likelihood of pr on data samples. Such approaches are not
simulation-free and can be difficult to scale to large-size computations.

Ornstein-Uhlenbeck (OU) process. The OU process in R? observes the following SDE
dX; = —Xydt + \@th, )

where the equilibrium density is ¢ oc e=" with V(z) = ||z|?/2. In other words, ¢ is the standard
normal density A/(0, I). Suppose Xy ~ po which is some initial density at time zero (the initial
distribution may not have density), and denote by p; the marginal density of X; for ¢ > 0. The
time evolution of p, is described by the Fokker—Planck Equation (FPE) 0;p; = V - (p:VV + Vp,),
V(x) = ||«||?/2, which determines p; given the initial value pg. We also introduce the operator
(OU)§ and write

pi = (OU)gpo. 3)
Equivalently, p; is the probability density of the random vector Z; := e~ !X, + 0,Z, where 07 :=
1—e= 2, Z ~ N(0, I;) and is independent from X.

3 LocCcAL FLOW MATCHING (LFM)

The essence of the proposed LFM model is to break down a single flow from data to noise (and
back) into several pieces, and apply FM on each piece sequentially. We introduce the method in this
section, and further algorithmic details are provided in Section[5]

3.1 REVIEW OF FLOW MATCHING

Flow Matching (Lipman et al.,|2023)), also proposed as “‘stochastic interpolants” (Albergo & Vanden-
Eijnden, 2023)) and “rectified flow” (Liu, [2022), trains the flow v(x, ¢; #) by minimizing an L? loss
and is simulation-free; our stepwise approach in this work will be based on FM. Rescale the time
interval to be [0, 1]. FM utilizes a pre-specified interpolation function I; given two endpoints z; and
z, (; for ‘left’ and , for ‘right’) as

d)(t) = It('rlaxT)7 te [07 1]7 (4)
where z; ~ p, x, ~ ¢, and I; can be analytically designed. The (population) training objective is
1
. d
win [ o 0(6(0).6:6) - o0 Bt )
o Jo dt

and, as has been proven in the literature, the velocity field v that minimizes (3)) has the expression
v(z,t) = By o, [ £ 1:(21,2,)| (21, ) = z] and it induces a flow that transports from p to g. We
call this v the farget velocity field, and say that the FM model interpolates the pair of distributions
(p,q). See Sectionfor more algorithmic details of FM, such as the choice of I;.
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3.2 STEPWISE TRAINING OF N FM SUB-MODELS

We propose to train a sequence of N FM sub-models (called sub-flows) on time [0, T, each by its
own training objective to interpolate a pair of distributions, and collectively the N sub-flows fulfill
the transport from data p to noise g (and back by the reverse flow). Our method will train the [NV
sub-flows sequentially, where in each step the flow tries to match the terminal density evolved by the
OU process of time up to the step size. Because the step size is not large and the pair of end-point
distributions to interpolate are not far away, we call our method local FM.

Training. On the time interval [0, 7', we first specify a time step schedule {v,,}2_, >, v, = T,
and for the simplest case 7, = v = T'/N. Suppose the data distribution P has a regular density py
— if not, we can apply a short-time diffusion to P, and take the resulting density as pg, see more in
Section[4.3] Starting from po (when n = 1), we recursively construct target density p;; by

p:], = (OU)gnp’ﬂfla

where the operator (OU)E is as defined in (EI) In other words, let x; ~ p,,_1, and

zpi=e a1 —e g, ap~ppo, g~N(0,1g), g Laj, (6)

then the marginal distribution of z,. is p}. We now train the n-th sub-flow, denoted by 9,,(z, ¢; 8), by
FM to interpolate the pair (p,,—1, p%) using @)@G) (the time interval [0, 7, is rescaled to be [0, 1] in
FM training). The velocity field ©,, can have its own parametrization 6,,, which then can be trained
independently from previous sub-flows.

After the sub-flow ©,, is trained, it provides a transport map 7, that maps z,,_1 ~ p,—1 to =, by

Tn
Ty = Tn(xn—l) = x(’}/n) =Tp—1+ / 6n(x(t)a t; g)dta (7)
0

where x(t) solves the ODE &(t) = 0y, (x(t),t;6) from 2(0) = x,,_1. The mapping T,, is invertible
and T, ! is by integrating the reverse-time ODE. We denote the distribution of z,, as p,,, that is,

Pn = (Tn)#pn—l-

From this p,,, we can train the next sub-flow by interpolate (py,p},, ;). This recursive scheme is
illustrated in Figure

If the flow matching in n-th step is successful, then we expect the trained v,, makes p, ~ pJ.
Define the time stamps {t,}"_o, to = 0, t,, — t,_1 = 7, and then txy = T. If p, exactly
equals p!, = (OU)J"p,—1, then over N steps we have py = (OU){ py, which approximates the
equilibrium ¢ exponentially fast as 7" increases. In practice, the trained flow has some finite flow
matching error and p,, has some discrepancy from py,, yet if the error is small, we still expect py ~ ¢,
assuming T' = ) 1, is sufficiently large. This will be theoretically analyzed in SectionE}

In practice, when training the n-step sub-flow, the finite samples of p,,_; are obtained by transporting
samples from pg through the previous sub-flows. This pushforward from p,,_; to p,, can be done for
all training samples once the n-th sub-flow is trained, see Algorithm[I] The proposed LEM model
can be trained from scratch, and we also distill the model to improve generation efficiency. See
Section [3 for details.

Generation. Once the N sub-flows are trained, we go backward from the N-th to the 1st sub-
flows to generate data from noise. Specifically, we sample yy ~ ¢, and let y,, 1 = T, *(y,,) for
n = N,---,1, where T,; ! is computed by integrating the ODE with velocity field 9,, reverse in
time. We then use yo as the generated data samples. The closeness of the distribution of g to the
data distribution P will be theoretically shown in Section 4]

4 THEORETICAL GUARANTEE OF GENERATION

In this section, we prove the generation guarantee, namely how the generated density by the trained
LFM model is close to the true data distribution. All proofs are left to Appendix
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4.1 SUMMARY OF FORWARD AND REVERSE PROCESSES

Recall that P is the distribution of data in R?, and ¢ the density of A/(0, ). The procedures of
training and generation in Section [3] can be summarized in the following forward (data-to-noise
training) and reverse (noise-to-data generation) processes respectively:

(forward) p = po ipl KEN ~-T—N>pqu,
! ;! ! ®)
1 2 N

(reverse) p = qo Qn s aN = ¢,
where T, is by the learned n-th step sub-flow as defined in (7). When P has a regular density p we
set it as pg; otherwise, py will be a smoothed version of P, see more below. The reverse process
gives the final output samples which have density gg. The goal of our analysis is to show that ¢y =~ p,
namely the generated density is close to the data density.

To keep exhibition simple, we consider when ~,, = v > 0 for all n. Using the time stamps ¢,,, the n-
th step sub-flow is on the time interval [t,,_1, t,,], which can be shifted to be [0, «]. Our analysis will
be based on comparing the true or target flow (that transports to terminal density p;, ) with the learned
flow (that transports to terminal density p,,), and we introduce the notations for the corresponding
transport equations.

For fixed n, on the shifted time interval [0, ], the target flow and the learned flow are induced by the
velocity field v(z, t) and O(x, t) = 0, (z, t; 0) respectively. We omit ,, in the notation. As was shown
in Section the target v depends on the choice of I, yet it always transports from p,,_; to pJ.
Let pi(x, t% the law of z(t) that solves the ODE with velocity field v, where 2(0) ~ p,_1, and
pt(x,t) be the law of x(¢) that solves the ODE with the learned 9. (p; is not necessarily the density
of an OU process X, though p., = p* = (OU)J"p,—1.) We also denote p(z,t) as p; (omitting the
variable x) or p (omitting both 2 and t), depending on the context, and similarly for p(x,t). The
target and learned flows have the transport equations as

Hp+V - (pv) =0, po=Dpn_1, py=Dps.

. % . . )
atp+v (p”U) :0, PO = Pn—1, Py = Pn-

4.2 EXPONENTIAL CONVERGENCE OF THE FORWARD PROCESS IN X2

We introduce the following assumption about the learned flow 0,,:

Assumption 1. (A0) For all n, the learned ©,, ensures that Ty, and T, ! are non-degenerate (Def-
inition , and, on the time interval [t,_1,1,] shifted to be [0,7], [ [pa lv — 0| pdadt < %
Without loss of generality, assume € < 1.

The training objective of FM is equivalent to minimizing the L? loss f(;/ Jga llv—"2||? pdzdt (Albergo
& Vanden-Eijnden, 2023)), thus our ¢ is the learning error of FM (in each step and uniform for all ).

Assumption 2. There are positive constants C1,Cs, L such that, for all n, on the time interval
[tn—1,tn] shifted to be [0,7],

(Al) py, ps for any t € [0,] are positive on R and p;(x), pi(x) < Cle"|$‘|2/2,'
(A2)Vt € [0,7], pt, pr are Ct on R and ||V log py(z) ||, |V log p¢(z)|| < L(1 + ||=
(A3)Vt € [0,79], [pa (L + [[2])?(0}/p7)(x)dz < Co.

), Vo € RY;

>

Att =0, pg = o = Pn—1, thus Assumption 2]requires that f = p,, forn =0, 1,--- satisfies
T 2
fla) < G2 Vlog f(@)]| < L+ lal), [ (4 el (@)do < oy 10)

by (A1)(A2)(A3) respectively. The first two inequalities require p,, to have a Gaussian decay enve-
lope and the score of p,, has linear growth (can be induced by Lipschitz regularity), and the third
inequality can be implied by the first one. The condition (T0) poses regularity conditions on py which
can be satisfied by many data densities in applications, and, in particular, if P has finite support then
these hold after P is smoothed by an initial short-time diffusion (Lemma[A.6).

Technically, Assumption [2] poses the Gaussian envelope and regularity requirements on all p,, and
also p; and p, for all time. This can be expected to hold at least when FM is well-trained: suppose p;
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satisfies (A1)(A2) for all ¢ due to the regularity of v (by the analytic I; and the regularity of the pair
of densities (pn—1, p%)), when the true and learned flows match each other, we have p ~ p, thus we
also expect (A1)(A2) to hold for p;; Meanwhile, the ratio p;/p; is close to 1 and if can be assumed
to be uniformly bounded, then (A3) can be implied by the boundedness of [,.(1 + [z[|)?p¢(z)dx
which can be implied by the Gaussian envelope (A1) of p;.

Proposition 4.1 (Exponential convergence of the forward process). Under Assumptions

Cy 1/2

X (palla) < ™" (polla) + T— ¢

forn=1,2,---, where the constant C, defined in is determined by C1, Cs, L, v and d.

(1)

4.3 GENERATION GUARANTEE OF THE BACKWARD PROCESS

P with regular density. Because the composed transform Ty o- - -oT} from py to p is invertible,
and the inverse map transforms from ¢ = ¢ to qo, the smallness of x*(px||gx) implies the small-
ness of x2(pol/qo) due to a bi-directional version of data processing inequality (DPI), see Lemma
[A.4] As aresult, the exponential convergence of the forward process in Proposition[d.T]directly gives
the x2-guarantee gy = p.

Theorem 4.2 (Generation guarantee of regular data density). Suppose P € 'Ps has density

p, let po = p and py satisfies @ Under Assumptions if we use the number of steps
N > 5= (log x*(pollg) + 3 log(1)) ~ log(1/e), we have x*(pllqo) < Ce'/?, C = (1 + 1=*=7).

By that KL(p|lq) < x2(pllq) (Lemma |A.5), the x>-guarantee of O(c'/2) in Theorem 4.2 implies
that KL(p||qo) = O(¢'/?), and consequently TV (p, go) = O(c'/*) by Pinsker’s inequality.

P up to initial diffusion. For data distribution P that may not have a density or the density does
not satisfy the regularity conditions, we introduce a short-time diffusion to obtain a smooth density
ps from P and use it as po. This construction can ensure that ps is close to P, e.g. in W, distance,
and is commonly used in diffusion models (Song et al., 2021)) and also the theoretical analysis
(known as “early stopping”) (Chen et al.| [2023al).

Corollary 4.3 (Generation of P up to initial diffusion). Suppose P € Ps and for some 6 < 1,
po = ps = (OU)J(P) satisfies (10) for some Cy, Cy and L. With po = ps, suppose Assumptions

hold, then for N and C' are as in Theorem .2} the generated density qo of the reverse process
makes x*(ps||qo) < Ce'/2. Meanwhile, Wy (P, ps) < C56%/2, C5 := (Ma(P) + 2d)'/2.

In particular, as shown in Lemma [A.6] when P is compactly supported (not necessarily having
density), then for any 6 > 0, there are Cy, Cs and L such that pg = p; satisfies (I0). This will
allow us to make W5 (P, ps) arbitrarily small. Generally, the theoretical constants Cy, Cy and L
may depend on &, and consequently so does the constant C'in the x? bound. At last, similarly to
the comment beneath Theorem the O(e'/?)-x? guarantee in Corollary of gy =~ ps implies
O(e'/?)-KL and O('/*)-TV guarantee.

Algorithm 1 Local Flow Matching (LFM) from scratch

5 ALGORITHM N—1

n=1"

Input: Data samples ~ pg, timesteps {7,
Output: N sub-flows {9, }_;

5.1 TRAINING LFM FROM SCRATCH I: forn=1,...,Ndo
The training of LEM is summarized in Al- % Drawwiamples x_ ~ pp—1 and z, ~ P =
gorithm [I]  We call each sub-flow FM (OU)g"pn—1 by (6) (Whenn = N, let pj; = q)

In each block. 3¢ Innerloop FM: optimize 0, (z,¢;6) by minimiz-
: ing (3) with mini-batches
if n < N — 1 then

a step or a “block”.
any FM algorithm can be adopted. In
our experiments, we consider the follow-

ing choices of I;(z;, z,) in (@), following S Push-forward the.samples ~ Pp_1 to be sam-
(Lipman et al., 2023} |Albergo & Vanden- . pl.es ~ pp by T}, in (7)
Eijnden, 2023): (i) Optimal Transport; 0  endif

7: end for

Ii(z, x) = 21 + t(x, — 2y), (i) Trigono-
metric: I;(z;, z,) = cos(§mt)x; + sin(3mt)z,. The selection of time stamps {v, }5 ;' depends on
the task and is explained in Appendix In our experiments, we use N up to 10. In each sub-flow,
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(a) (b) © (d) (© () (g (h)
True samples LEM FM InterFlow  True samples LEM M InterFlow
from p NLL=2.24 NLL=2.35 NLL=2.36 fromp NLL=2.60 NLL=2.64 NLL=2.64

Figure 2: Generative performance and NLL comparison (lower is better) on 2D data.

there are no restrictions on the architecture of v,,(x, t; §). We use fully connected networks for vec-
tor data and UNets for images. When the sub-flows are independently parametrized, we reduce the
model size of each block assuming that the target flow to match is simpler than a global flow, which
also reduces memory load and facilitates the innerloop training of FM. In computing the pushfor-
ward (Line 5 in Algorithm [T)) and in generation, the numerical integration of neural ODE follows
the procedure in (Chen et al.| 2018).

5.2 DISTILLATION OF LFM

Inspired by (Liu et al.,2023), we propose to distill an N-block pre-trained LEM model into N/ < N
steps distilled model, where N = N’k for some integer k. Each of the N’ sub-models can be
distilled independently if parametrized independently. The detail is in Algorithm If the pre-
trained LFM has independently parametrized blocks, we keep the sub-model size if & = 1 and
increase the model size if the distillation combines original blocks (¥ > 1). The composition of the
N’ distilled sub-models generates data from noise in N’ steps.

6 EXPERIMENTS

We apply the proposed LEM to simulated and real datasets, including tabular data (Section[6.2)), im-
age generation (Section[6.3)), and robotic manipulation (Section[6.4). We demonstrate the improved
training efficiency and generative performance of LFM compared to (global) flow models, and we
also show the advantage of LFM after distillation on image generation.

6.1 TWO-DIMENSIONAL TOY DATA

The task is to generate distributions in 2D that have no analytic form, and we consider the “tree”
and “rose” examples (Figure[2). We compare our LFM against previous FM models: FM (Lipman
et al., [2023, Example II) and InterFlow (Albergo & Vanden-Eijndenl [2023). To ensure a fair com-
parison, we maintain an identical training scheme for all methods, including the specification of
optimizers, batch size, and number of training batches. Further details regarding the experimental
setup are provided in Appendix [C} The accuracy of the trained models is evaluated using the nega-
tive log-likelihood (NLL) metric in (26). Figure [2] shows that LEM achieves good generation of the
distribution and slightly better NLL in comparison.

6.2 TABULAR DATA GENERATION

We apply LFM to a set of tabular datasets (Papamakarios et al., 2017, where the generation perfor-
mance is quantitatively measured by test NLL. We use the following baselines, including both dis-

Table 1: Test NLL (lower is better) on tabular data, where d refers to the data dimension. The lowest
NLL is in bold and the 2nd lowest NLL is underlined. All baseline values are quoted from their
original publications, where “-” entries indicate this dataset was not used.

| LFM InterFlow JKO-iFlow AdaCat OT-Flow nMDMA CPF BNAF FFJORD

TV | 061 057 040 056 030  -178 052 061 046
Py 1243 21235 943 <1127 920 843 -10.36 -1206  -8.59
MINEONE | 995 1042 1055 1414 1055 1860 1058 895  10.43
BIDSay | 15780 -15622  -157.75 - 15420 - 15499 -157.36  -157.40
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Table 2: FID (lower is better) comparison of LFM against InterFlow and FM under same model
sizes. FIDs with the symbol * are quoted from the original publication. Note that InterFlow uses the
Trig interpolant and FM uses the OT interpolant to train the global flow.

CIFAR-10 Imagenet-32 Flowers-128
FID Batchsize # of batches| FID Batch size # of batches | FID Batch size # of batches
LFM (Trig interpolant) ~ 8.45 200 5 x 10* 7.00 256 2 x 10° |59.7 40 4 x 107
InterFlow 10.27* 400 5 x 10° 8.49* 512 6 x10° |65.9 40 4 x 104
LFM (OT interpolant)  8.55 200 5x 10T | 7.20 256 2x 10° [55.7 40 4 x 101
FM 12.30 200 5x 10t | 751 256 2x 10° [70.8 40 4% 10*

crete and continuous flows, to compare against: InterFlow (Albergo & Vanden-Eijnden| 2023)), JKO-
iFlow [2023b), AdaCat (Li et al} [2022)), OT-Flow (Onken et al.,[2021), nMDMA

et al.L 2021)), CPF (Huang et al.|[2021)), BNAF (De Cao et al.,[2020), and FFJORD (Grathwohl et al.}
2018). Additional experimental details can be found in Appendix |C| The results are shown in Table

Il where the proposed LFM is among the two best-performing methods on all datasets.

6.3 IMAGE GENERATION

We apply LFM to unconditional image generation of 32 x 32 and 128 x 128 images. We compare LFM
with InterFlow and FM in terms of Frechet Inception Distance (FID) before and after distillation.
To ensure a fair comparison, we maintain the same network size for both methods, and more details
of the experimental setup are provided in Appendix [C}

32 x 32 images. We use the CIFAR-10 (Krizhevsky & Hinton, [2009) and Imagenet-32
2009) datasets. As shown in Table [2] LFM requires significantly less computation in training than
InterFlow, and it achieves lower FID values. LFM also shows improved training efficiency against
FM. We present generated images by LEM in Figure [3 and additionally, by the distilled LEM in
Figure[A.2|(NFE = 5) which shows an almost negligible reduction in visual quality.

128 x 128 images. We use the Oxford Flowers (Nilsback & Zisserman), 2008)) dataset. We first
train LFM and InterFlow/FM to reach the same FIDs on the test set, with the global flows requiring
1.25-1.5x more training batches to do so. Subsequently, we distill LE'M using Algorithm [A.T] and
InterFlow/FM according to 2023). Quantitatively, Table [2] shows lower FID under the
same number of training batches and Table [3] shows lower FID by LFM under 4 or 2 NFEs after
distillation. This shows that in addition to efficiency in training from scratch, LEM after distillation
also achieves lower FID. To show the qualitative results, we give generated images in Figure [3]
and noise-to-image trajectories in Figure [A.1] Figure [A3] further showcases high-fidelity images
generated by LFM after distillation with 4 NFEs.

Table 3: FID comparison of LFM and InterFlow before and after distillation on Flowers 128 x 128.
Pre-distillation  Distilled @ 4 NFEs Distilled @ 2 NFEs

LEM 59.7 71.0 75.2
InterFlow

Figure 3: Unconditional image generation by LFM on 32 x 32 (i.e., CIFAR10 (upper left) and
Imagenet-32 (lower left)) and 128 x 128 images (i.e., Flowers (upper right) and LSUN Church

@ (lower right)).
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Table 4: Success rate (see (27), higher is better) of FM and LFM for robotic manipulation on
Robomimic (Mandlekar et al., [2021). We evaluate both methods for 100 rollouts and report suc-
cess rates at different epochs in the format as (Success rate, epochs).

Lift Can Square Transport Toolhang
(0.94,200) (0.88,200) (0.60, 200)
(0.98,500) (0.94,750) (0.81, 1500)
(0.97,200) (0.87,200) (0.75, 200)
(0.99, 500) (0.93,750) (0.88, 1500)

FM | (1.00, 200) (0.52, 200)

(1.00, 200) (0.53, 200)

©
¥

LEFM
[ ]

v é

(a) Lift (b) Can (c) Square (d) Transport (e) Toolhang

Figure 4: Robotic manipulation on Robomimic (Mandlekar et al.,[2021). Top row: initial conditions
(IC). Bottom row: successful completions. Each task starts from an IC and manipulates the robot
arms sequentially to reach successful completion in the end.

6.4 ROBOTIC MANIPULATION

We consider robotic manipulation tasks from the Robomimic benchmark (Mandlekar et al., 2021)),
which consists of 5 tasks of controlling robot arms to perform various pick-and-place operations
(Figure ). E.g., the robot may need to pick up a square object (Figure fa)) or move a soda can from
one bin to another (Figure[db). Recently, generative models that output robotic actions conditioning
on the state observations (robot positions or camera image embedding) provide state-of-the-art per-
formance on completing these tasks 2023). However, it is difficult to transfer pre-trained
diffusion or flow models (on natural images) to the conditional generation task here, because the
state observations are task-specific and contain nuanced details about the robots, objects, and envi-
ronment, which are not present in natural images but are necessary to be understood by the model
to determine the appropriate actions. Therefore, it is often needed to train a generative model from
scratch to directly learn the relation from the task-specific state observations to the actions.

We train a (global) FM model and the proposed LEM from scratch, where the total number of param-
eters is kept the same for both methods. Additional experimental details are in Appendix [C.2] As
shown in Table [d] LEM is competitive against FM in terms of the success rate, and the convergence
is faster in some cases (indicated by the higher success rate at early epochs). The performance on
the “Toolhang” task does not improve with longer training, as identified in 2023).

7 DISCUSSION

The theoretical analysis can be extended from several angles: First, we analyzed the x? guarantee
and induced KL and TV bounds from the former. One may obtain sharper bounds by analyzing
KL or TV directly and possibly under weaker assumptions. E.g., Lemma 2.19 in (Albergo et al.|

can be used to derive a KL bound for the one-step FM under similar assumptions as our
Assumption A2). Second, we currently assume that T}, ! is exact in the reverse process (gener-
ation). The analysis can be extended to incorporate inversion error due to numerical computation
in practice, possibly by following the strategy in (Cheng et al), 2024). Meanwhile, the proposed
methodology has the potential to be further enhanced. In our current experiments, we learn the FM
blocks independently parametrized as 9(zx, t; 6,,). If we introduce weight sharing of 8,, across n, it
can impose additional time continuity of the flow model. In addition, it would be useful to explore
more distillation techniques under our framework and to extend the approach to more applications.

10
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A PROOFS

Denote by Leb the Lebesgue measure.

Definition A.1 (Non-degenerate mapping). 7" : R? — R is non-degenerate if for any set A C R¢
s.t. Leb(A) = 0, then Leb(T~1(A)) = 0.

A.1 PROOFS IN SECTION 4.2
Proof of Proposition The proof is based on the descending of x?(p,,||q) in each step. Note that
under (A1), by the argument following (T3)) below, we have py/q € L?(q) i.e. x*(pollq) < .

We first consider the target and learned flows on [t,,—1,t,] to establish the needed descending ar-
guments for the n-th step. We shift the time interval to be [0,7], T := ~ > 0, and the transport
equations of p and p are as in (9). Define

G(t) =X (pella).  G(t) = x*(pella)- (12)
By the time endpoint values of p and p as in (9)), we have
G(0) = G(0) = X*(pa-rlle), G(T)=x*(@lla), G(T) = x*(pnlla)-
We will show that a) G(T") descends, and b) G(T') ~ G(T), then, as a result, G(T") also descends.

We first verify the boundedness of G(t) and Gi(t) at all time. By definition, we have (we write
integral on R¢ omitting variable 2 and dx for notation brevity)

Gl = [l [ g = (B,

when the involved integrals are all finite, and similarly with é(t) and p;. To verify integrability,
observe that under (Al),

2 ~2 2 ,—||z||? 2

PL(2), PL(z) < Cte ™ _ O e, o (27)=4/2. (13)
q ’ q - cde*Hx”Q/? Cd ’

This shows that p;/q, p+/q and thus (p;/q — 1), (p+/q — 1) are all in L?(q) for all . In particular,

this applies to pg = po = po by taking n = 1 and ¢ = 0. Thus, G(t), G(t) are always finite.
Additionally, (T3) gives that

G(t),G(t) < (C1/eca)? =1 < (Ch/ea)?, Ve [0,T), (14)

Our descending argument is based on the following two key lemmas:

Lemma A.2 (x2-contraction of OU process). x2(p%|lq) < e 2"x%(pn_1/l9).

This implies that G(T) < e~ 27G(0).
Lemma A.3 (G(T) ~ G(T)). x*(pnllq) < X205 \lq) + Cae'/?, with Cy defined in 20).
Lemma [A.2] follows standard contraction results of the diffusion process, and Lemma [A 3] utilizes

the approximation of p /= p due to the learning of the velocity field © ~ v. We postpone the proofs
of the two lemmas after the proof of the proposition.

With the two lemmas in hands, we can put the n steps together and prove (T1). Define
En = x2(pallq), Bi=e 2 <1, a:=Cuel/?,

and then Lemmas give that
En S 5En71 + a.

By induction, one can verify that

a(l—pm) «
E,<p"Eg+ ——— < ["FEy+ ——
n_ﬂ o+ 1—/8 _ﬂ 0+1_ﬁ7
which proves (11) and finishes the proof of the proposition. [
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Proof of LemmalA.2] The lemma follows the well-understood contraction of x? divergence of OU
process, see e.g. Bolley et al.|(2012). Specifically, on the time interval [0, 7], T = =, the initial
density p,,_1 renders x?(p,_1|lq) < oo, because p,_1/q = po/q € L*(q) by the argument fol-
lowing (T3). For the OU process, since the equilibrium density ¢ oc e=" with V(z) = ||z?/2, we
know that ¢ is strongly convex and then satisfies the Poincaré inequality (PI) with constant C' = 1.
By the argument in Eqn. (3) in|Bolley et al.| (2012)), the PI implies the contraction claimed in the
lemma. O

Proof of Lemma[A-3] We prove the lemma by showing the closeness of x2(p,|q) = G(T) to
X*(p;]lq) = G(T). By definition (T2),

p - p
G(t) = IIj 172y, Gt) = IIj — 1320y, VtE[0,T].

We will use the triangle inequality |\/G () — 1/ G(t)| < H% - %‘HLz(q). Observe that
Pt Pt 12 - (pr — Pt)2 . (ﬁt - Pt)2 Pt < Cy (ﬁt - pt)2
=== ——= —F"<— | ———, 15)
q q q pr 4 ca by

where the inequality is due to the pointwise bound % < %1 which follows by (A1) and the
expression of ¢ with ¢4 as in (I3). We introduce

A 2
F(t) ::/M = /(@ ~1)%p, 20, (16)
Pt Pt
and then we have
IVG(T) —/G(T)| < H% - %nm < (C1/ea) 2V/F(T). (17)

Next, we will bound F(T') to be O(e), and this will lead to the desired closeness of G(T") to G(T).
e Bound of F(T):

We will upper bound F(T') by differentiating F'(¢) over time. By definition (T6), £(0) = 0, and
(omitting ; in p; and p; in the equations)

S () = / (& =120+ 25 - (@~ Eoup

= /—QV : (pv)(g -1)+V- (p%?)((%)2 —1) (by transport equations (9))

and the last row is by that V(%) = £(Vlog p — Vlog p). Thus,

T 2
ey = 1/F’(lt)dt = / / (v— 1) - (Vlog p — Vlog p) = duwdt.
2 2 0 JRrd P

Then, by Cauchy-Schwarz, we have

1/2

1 T 1/2 T 3
SF(T) < / / v — 0|2 pdadt / / IVlogp— Viogp)|* L dxdt | . (18)
2 0 JRd 0 JRrd P
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By the flow-matching error assumption (A0), we have the first factor in the r.h.s. of (I8)) bounded
by e. Meanwhile, the technical conditions (A2)(A3) together imply that for all ¢ € [0, T,

[ 19108 e = Viog I 8)de < 21 [ (14 el (o) @) < (2LPCa
thus the second factor in (I8) is upper bounded by +/(2L)?C>T. Putting together, we have
F(T) S 2(2L)\/ CQTE = CgE, 03 = 4L\/ CQ’}/ (19)

e Bound of G(T") — G(T):
With the bound (I9) of F'(T'), we are ready to go back to (I7), which gives
VM) < VGT) + (Crfea) /2T,
Together with that G(T) < (C1/cq)? by (T4), this gives that
G(T) < G(T) + 2(C1 fea)*?\/C3e'? + (C1/ca)Cse < G(T) + Cye'/?
where we used that ¢ < 1 by (A0) and
Cy :=2(C1 /cq)**\/C5 + (C1 /cq)Cs. (20)

The fact that G(T') < G(T') + C4e'/? proves the lemma. O

A.2 PROOFS IN SECTION[4.]3]

Lemma A .4 (Bi-direction DPI). Let Dy be an f-divergence. If T" : R? — R? is invertible and for
two densities p and q on RY, Typ and T'yq also have densities, then

Dy (pllg) = Dy(Typl|Txq)-

Proof of LemmalA.4} Let X1 ~ p, Xo ~ ¢, and Y7 = T(X;), Yo = T(X3). Then Y; and Y5 also
have densities, Y1 ~ p := Txp and Y5 ~ ¢ := Tlq. By the classical DPI of f-divergence (see,
e.g., the introduction of Raginsky| (2016)), we have D;(5||¢) < Dy (p||g). In the other direction,
X; =T7YY;),i = 1,2, then DPI also implies D (p||q) < Ds(p||q). O

Proof of Theorem Under the assumptions, Proposition {f.T|applies to give that

C

N 1

Cloxlla) < eV mollg) + 7— 57"

Then, whenever e_Q“YN x%(pollg) < €'/ which is ensured by the N in the theorem, we have

Ypnllg) < (1 + T— 27) 1/2 Let T} := Ty o---oT}, which is invertible, and p = (TlN)#po,
qn = (T{) 4£qo. We will apply the bi-directional DPI Lemmato show that

X2 (pollao) = x> (T) ol (TY) 240) = X*(pnllan) = x*(pwlla), Q1)

which then proves the theorem.

For Lemma[A.4]to apply to show the first equality in (21)), it suffices to verify that po, go, pn, gy all
have densities. po has density by the theorem assumption. From Definition one can verify that
a transform 7' being non-degenerate guarantees that P has density = 7. P has density (see, e.g.,
Lemma 3.2 of (Cheng et al.,2024)). Because all 7}, are non-degenerate under (A0), from that py has
density we know that all p,, has densities, including py. In the reverse direction, gy = ¢ which is
the normal density. By that 7}, ! are all non-degenerate, we similarly have that all ¢,, has densities,
including qg. O

Lemma A.5. For two densities p and q where X2 (p||q) < oo, KL(pllq) < x2(p|lq).
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Proof. The statement is a well-known fact and we include an elementary proof for completeness.
Because x2(p|¢) < oo, we have (p/q — 1) and thus p/q € L?(q), i.e. [ p*/q < oc. By the fact that
logz < @ —1forany z > 0,log L(z) < E(z) — 1, and then

KL(pllq) = /plogg < /p(s -1)= /% —1=x*(pllq)
O

Proof of Corollary@#3] Let p, = (OU)§(P). Because M,(P) < oo, one can show that
Wa(ps, P)? = O(t) as t — 0. Specifically, by Lemma C.1 in (Cheng et al., 2024), W5 (p;, P)? <
t2 My(P) +2td. Thus, fort < 1, Wa(ps, P)? < (My(P)+2d)t. This proves Wy (P, ps) < C56'/2.

Meanwhile, pg = ps satisfies the needed condition in Theorem the claimed bound of x2(ps||qo)
directly follows from Theorem [4.2] O

Lemma A.6. Suppose P on R? is compactly supported, then, ¥t > 0, p; = (OU)L(P) satisfies
satisfies (10) for some Cy, Co and L (which may depend on t).
Proof of Lemmal[A.6] Suppose P is supported on By := {z € R, ||z|| < R} for some R > 0.
By the property of the OU process, p; is the probability density of the random vector
Zy=e 'Xo+orZ, Z~N(01;), Xo~P, Z1 Xo. (22)

where 07 = 1 —e 2. We will verity the first two inequalities in (T0), and the third one is implied by
the first one. (The third one also has a direct proof: Ms(ps) = E|[Zs||? = e~ 2 My(P) + 02d < oo,
then the third condition in (T0) holds with Cy = 1 + e=2° My (P) + o2d.)

The law of Z, in (22)) gives that

]. —t 2 2
- —llz=e""ylI*/(209) g P (4)). 23
pt(l.) /]Rd (27T0't2)d/2e (y) ( )

This allows us to verity the first two inequalities in (T0) with proper C; and L, making use of the
fact that P is supported on Bg. Specifically, by definition,

1 X — e*ty —t, 112 2
\V/ - _ —lz—e""wll*/(207) g p
pf(z) /Rd (27TUt2)d/2 ( O,tz >€ (y)a

and then, because ||z — e y| < [|z]| + ey < ||z]| + e 'R,

x| +e "R 1 llomemty|2 /(202 ||| + e "R
v < lz—e"ll"/(207) g p _ e At )
[Vpe(2)]| < o? e (271’O't2)d/26 (y) o2 pe(z)

This means that L
IVo@)ll _ llz] +e'R
pe(x) of ’

which means that the 2nd condition in (T0) holds with L = -5 max{1, e "R}.

To prove the first inequality, we again use the expression (23). By that ||z < |z —e~"y||+|e "y,
and that ||y|| < R, we have
1] < lle = e~"yl1* + 2z — e~ yllle"yll + lle~"y]?
< llz = e~ty|2 + 2(Jall + e R)e "R + ¢~ R?
=llz — e7"yl|* + 2¢ " Rl|=]| + 3¢~ R,
and thus

1 2 o —t o —2tp2
o—laetyl?/20?) o~ rp (el =267 Rl =3~ &%)

2, o=t —2t B2
_ gl el
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Inserting in (23), we have that

3e—2tR2
1 2, e" 'R 202
— ozl + " ||| e "7
r) < oye 7 = ———— .
pt( )— t ) t (27T0't2)d/2
For py(x) < Cre~ 121772 it suffices to have O s.t.
L(1—L)||z|2+e LB
a L A 24)
ay
—2t .
Because ¢t > 0, 1 — % = 7—===r < 0, the rh.s. of (24) as a function on R? decays faster than
t

e=cl=l* for some ¢ > 0 as ||z|| — oo, and then the function is bounded on R?. This means that
there is C; > 0 to make ([24) hold. This proves that the first inequality in (I0) holds for p;. O

B DETAILS OF LFM SCHEDULE AND NLL. COMPUTATION

B.1 SELECTION OF LFM SCHEDULE

Given a positive integer N > 1, we specify {%}ﬁ;f via the following scheme:
Yo =p" " le,n=1,2,... (25)
where the base time stamp ¢ and the multiplying factor p are user-specified hyper-parameters.
B.2 NEGATIVE LOG-LIKELIHOOD COMPUTATION
Based on the instantaneous change-of-variable formula in neural ODE |Chen et al.|(2018), we know

that for a trained flow model v(z(t),¢;60) on [0, 1] that interpolates between p and ¢, the log-
likelihood of data x ~ p can be expressed as

log p(z) = log q(z(1)) Jr/o V- o(x(s), s;0)ds, z(0) = x,

where V - (-, s; 0) is the trace of the Jacobian matrix of the network function.

Our trained LEM has N sub-flows 0, (-, ¢;0) forn = 1,..., N. The log-likelihood at test sample
x ~ p is then computed by

N 1
logp(e) =loga(an) + 3 [ V- ula(s).si6)ds, 26)
n=1 0
where starting from zy = =,

1
Ty = Tp_1 —I—/ On(x(8),8;0)ds, x(0) = xp_1
0

Both the integration of ©,, and V - 9, are computed using the numerical scheme of neural ODE. We
report NLL in log, (known as “nats”) in all our experiments.

Algorithm A.1 Distillation of LEM

Input: Samples ~ g,, n =0,--- , N, generated by a pre-trained /N-block LFM
Output: N’ = N/k distilled sub-models {T:P (-)}2V,.
1: forn=1,...,N' do
2: Train f(x;602) via mingp E(z 2n_1)~(an—iman i) | (@n = Tn—1) = f(Tn-1; 6P)
3: Output TP (x) =z + f(z;02).
4: end for

I
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C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

To train LFM sub-flows, we use the trigonometric (Trig) interpolant on 2D, tabular, and image gen-
eration experiments (Sections [6.1H6.3) and use the optimal transport interpolant on robotic manip-
ulation (Section[6.4). During inference per block, we employ the Dormand-Prince-Shampine ODE
sampler with tolerances of 1e-5 for 2d and tabular data, 1e-4 for 32x32 images, and 1e-3 for 128x128
images. We use 1 Euler step on the robotic manipulation experiments as prior works have shown the

inference efficiency of FM on such tasks 2024).

C.1 2D, TABULAR, AND IMAGE EXPERIMENTS

In all experiments, we use the Adam optimizer 2014) with the following parameters: 3; =
0.9, 82 = 0.999, ¢ = le — 8; the learning rate is to be specified in each experiment. Additionally,
the number of training batches indicates how many batches pass through all N sub-flows per Adam
update.

On two-dimensional datasets and tabular datasets, we parameterize local sub-flows with fully-
connected networks; the dataset detail and hyper-parameters of LFM are in Table[A.1]

On image generation examples, we parameterize local sub-flows as UNets (Nichol & Dhariwal,
2021), where the dataset details and training specifics are provided in Table[A.2]

C.2 ROBOTIC MANIPULATION

In the context of generative modeling, this task of robotic manipulation can be understood as per-
forming sequential conditional generation. Specifically, at each time step ¢ > 1, the goal is to model
the conditional distribution A;|O;, where O; € RO denotes the states of the robots at time ¢ and
A, € R4 is the action that controls the robots. During inference, the robot is controlled as we itera-
tively sample from A;|O; across time steps t. Past works leveraging diffusion models have reached
state-of-the-art performances on this task 2023)), where a neural network vy (e.g., CNN-
based UNet (Janner et al., [2022)) is trained to approximate the distribution A;|O; via DDPM
et al., [2020). More recently, flow-based methods have also demonstrated competitive performance

with faster inference (Hu et al.} 2024)).

We use the widely adopted success rate to examine the performance of a robot manipulator:

#£success rollouts
#rollouts
Specifically, starting from a given initial condition O, of the robot, each rollout denotes a trajectory
S = {01,41,0s,...,Ar,Or} where A;|O; is modeled by the generative. The rollout S is a

success if at any ¢ € 1,...,T, the robotic state O; meets the success criterion (e.g., successfully
pick up the square as in the task “lift” in Figure {a)).

Success rate = € [0,1]. (27)

We also describe details of each of the 5 Robomimic tasks below, including dimensions of observa-
tions Oy and actions A; and the success criteria. The initial condition and final successful completion
were shown in Figure[d] Table[A.3]contains the hyper-parameter setting in each task, where we use

the same network and training procedure as in 2023).

Figure A.1: Noise-to-image trajectories by LEM: Flowers (left) and LSUN Church (right).
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(a) LEM before distillation. (b) LFM after distillation.

Figure A.2: Unconditional image generation on Imagenet-32 before and after distillation. We distill
LFM into a 5-NFE model.

Rose Fractal tree POWER GAS MINIBOONE  BSDS300
Dimension 2 2 6 8 43 63
# Training point 2,000,000 2,000,000 1,615,917 852,174 29,556 1,000,000
Batch Size 10K 10K 30K 50K 1000 500
Training Batches 50K 50K 100K 100K 100K 30K
Hidden layer width 256 256 256 362 362 512
(per sub-flow)
# Hidden layers 3 3 4 5 4 4
Activation Softplus Softplus ReLU ReLU ReLU ELU
# sub-flows N 9 9 4 2 2 4
(¢, p) in 23} (0.025,1.25) (0.025,1.25)  (0.15,1.3) (0.05, 1) 0.35,1) 0.25,1)
Total ## parameters in M 1.20 1.20 0.81 1.06 0.85 3.41
(all sub-flows)
Learning Rate (LR) 0.0002 0.0002 0.005 0.002 0.005 0.002
LR decay
(factor, frequency in batches) (0.99, 1000)  (0.99, 1000)  (0.99, 1000) (0.99, 1000)  (0.9,4000) (0.8, 4000)
Beta a, 3, time samples (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0,0.5) (1.0, 1.0) (1.0, 1.0)

Table A.1: Hyperparameters and architecture for two-dimensional datasets and tabular datasets. The
table is formatted similarly as (Albergo & Vanden-Eijnden, 2023| Table 3).

Lift: The goal is for the robot arm to lift a small cube in red. Each O; has dimension 16 x 19 and
each A; has dimension 16 x 10, representing state-action information for the next 16 time steps
starting at ¢.

Can: The goal is for the robot to pick up a coke can from a large bin and place it into a smaller target
bin. Each O; has dimension 16 x 23 and each A, has dimension 16 x 10, representing state-action
information for the next 16 time steps starting at ¢.

Square: The goal is for the robot to pick up a square nut and place it onto a rod with precision. Each
Oy has dimension 16 x 23 and each A; has dimension 16 x 10, representing state-action information
for the next 16 time steps starting at ¢.

Transport: The goal is for the two robot arms to transfer a hammer from a closed container on one
shelf to a target bin in another shelf. Before placing the hammer, one arm has to also clear the target
bin by moving away a piece of trash to the nearby receptacle. The hammer must be picked up by one

(b) InterFlow distillation @ 4 NFEs. FID = 80.0.

Figure A.3: Qualitative comparison of LFM and InterFlow after distillation.
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CIFAR-10 Imagenet-32  Flowers =~ LSUN Churches

Dimension 32x32 32x32 128x128 128x128
# Training point 50,000 1,281,167 8,189 126,227
Batch Size 200 256 40 40
Training Batches 5% 10* 2 x 10° 4 x 10* 1.2 x 10°
Hidden dim (per sub-flow) 128 114 128 128
# sub-flows NV 4 5 4 4
(c,p) in (23) (0.3, 1.1) (0.3, 1.1) (0.5, 1.5) (0.4, 1.5)
Total # parameters in M (all sub-flows) 160 120 464 464
Learning Rate (LR) 0.0001 0.0001 0.0002 0.0002
U-Net dim mult [1,2,2,2,2] [1,2,2,2] [1,1,2,3,4] [1,1,2,3,4]
Beta «, 3, time samples (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0)
Learned ¢ sinusoidal embedding Yes Yes Yes Yes
# GPUs 1 1 1 1

Table A.2: Hyperparameters and architecture for image datasets. The table is formatted similarly as
(Albergo & Vanden-Eijnden, 2023 Table 4).

Lift Can Square Transport Toolhang
Batch Size 256 256 256 256 256
Training Epochs 200 500 750 1500 200
Hidden dims
(per sub-flow) [128,256,512] [128,256,512] [128,256,512] [176,352,704] [128,256,512]
# sub-flows N 4 4 4 2 4
(¢,p) in (0.15, 1.25) (0.2, 1.25) 0.2, 1) 0.5, 1) (0.25, 1.25)
Total # parameters in M
(all sub-flows) 66 66 66 67 67
Learning Rate (LR) 0.0001 0.0001 0.0001 0.0001 0.0001
# GPUs 1 1 1 1 1

Table A.3: Hyperparameters and architecture for robotic manipulation under state-based environ-
ment on Robomimic (Mandlekar et al., 2021).

arm which then hands over to the other. Each O; has dimension 16 x 59 and each A; has dimension
16 x 20, representing state-action information for the next 16 time steps starting at t.

Toolhang: The goal is for the robot to assemble a frame that includes a base piece and a hook piece
by inserting the hook into the base. The robot must then hang a wrench on the hook. Each O; has
dimension 16 x 53 and each A; has dimension 16 x 10, representing state-action information for
the next 16 time steps starting at t.
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