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Abstract

Finding meaningful representations and distances
of hierarchical data is important in many fields.
This paper presents a new method for hierarchi-
cal data embedding and distance. Our method
relies on combining diffusion geometry, a central
approach to manifold learning, and hyperbolic
geometry. Specifically, using diffusion geometry,
we build multi-scale densities on the data, aimed
to reveal their hierarchical structure, and then em-
bed them into a product of hyperbolic spaces. We
show theoretically that our embedding and dis-
tance recover the underlying hierarchical struc-
ture. In addition, we demonstrate the efficacy
of the proposed method and its advantages com-
pared to existing methods on graph embedding
benchmarks and hierarchical datasets.

1. Introduction

Hierarchical data is prevalent in many fields of applied sci-
ence and engineering. Therefore, finding meaningful repre-
sentations and distances of hierarchical data is an important
scientific task. Hyperbolic geometry provides a powerful
tool for this purpose; due to their exponential growth, hy-
perbolic spaces can naturally represent data with tree-like
structures (Sarkar, 2011). Indeed, an abundance of methods
that involve hyperbolic geometry have been developed in
recent years. Notable examples include optimization-based
methods (Chamberlain et al., 2017; Nickel & Kiela, 2017;
2018; Chami et al., 2020) and combinatorial methods (Sala
et al., 2018; Sonthalia & Gilbert, 2020), to mention just a
few. Such hyperbolic geometry-based methods have been
successfully applied to central scientific tasks involving hier-
archical data in a broad range of fields, e.g., natural language
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processing (Tifrea et al., 2018), social networks (Verbeek &
Suri, 2014), computer vision (Khrulkov et al., 2020), infor-
mation retrieval (Tay et al., 2018), bioinformatics (Ding &
Regev, 2021; Lin et al., 2021), and reinforcement learning
(Cetin et al., 2022).

Despite their growing utility, existing methods for hyper-
bolic representation learning suffer from several notable
shortcomings. For example, methods based on optimiza-
tion of some objective function do not necessarily guarantee
optimal representation in terms of standard definitive qual-
ity metrics of tree-like geometries (Sonthalia & Gilbert,
2020) and could suffer from numerical instabilities (Mishne
et al., 2022). In the context of this work, perhaps the most
restrictive disadvantage of many methods for hyperbolic
representation learning is that they require the tree graph
or tree distance to be known in advance. However, often in
practice, we are only given observational data without any
prior information, and the underlying hierarchical structures
need to be recovered from the ground up.

In this paper, we present a new method for hierarchical data
embedding and distance recovery that provably reveals the
underlying tree-like structure. In contrast to existing meth-
ods, our approach can also be applied to observational data
without any prior knowledge of the underlying hierarchical
structure. Our method builds on diffusion geometry (Coif-
man & Lafon, 2006), which is a mathematical framework
that facilitates the analysis of high-dimensional data points
by capturing their underlying geometric structures. The
basic idea behind diffusion geometry is to analyze the simi-
larity between the data points through diffusion propagation.
It is based on the construction of a diffusion operator from
observations, which is tightly related to the heat kernel and
the Laplacian of the underlying manifold. Diffusion geome-
try has been mainly used for manifold learning, giving rise
to multi-scale low-dimensional representations and informa-
tive distances. In the past two decades, it has been shown
useful in a large number of applications from a broad range
of fields, for example, spectral clustering (Nadler et al.,
2005), signal processing (Talmon et al., 2013), multi-view
dimensionality reduction (Lindenbaum et al., 2020), dynam-
ical systems (Talmon & Coifman, 2013), anomaly detection
(Mishne & Cohen, 2012), datasets alignment (Shnitzer et al.,
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2022), variational autoencoders (Li et al., 2020), graph anal-
ysis (Cheng et al., 2019), hyperspectral image clustering
(Murphy & Maggioni, 2019), and non-rigid shape recogni-
tion (Bronstein et al., 2010), to name but a few.

We propose an embedding of high-dimensional observations
and the corresponding distance between observations that
extract their underlying hierarchical structure. Our method
conceptually consists of four steps. First, we build a col-
lection of diffusion operators at multiple scales, aiming to
reveal the underlying structure of the data. Second, we em-
bed each data point using the diffusion operator at each scale
into the Poincaré half-space, which is a particular hyperbolic
space model. Third, for each data point, we consider the
collection of its embedded points at all scales as a point in
the product manifold of hyperbolic spaces, whose mutual
relationships are designed to recover the hierarchical struc-
ture. We term this representation in the product manifold
hyperbolic diffusion embedding (HDE). Last, we present
the hyperbolic diffusion distance (HDD), which naturally
stems from the ¢; distance in the product manifold and the
Riemannian distance of the hyperbolic space. While ex-
isting methods of hyperbolic representation learning, e.g.,
(Nickel & Kiela, 2017; 2018), embed each high-dimensional
data point to a new point in hyperbolic space, our method
embeds each data point to a new point in a product of hy-
perbolic spaces (i.e., a collection of points in hyperbolic
spaces), thereby further using the hyperbolic geometry for
recovering the hierarchical structure.

We posit that our approach is fundamentally different from
existing work. Specifically, our approach combines several
components, e.g., diffusion and hyperbolic geometries, for
the first time, to the best of our knowledge. At first glance,
the combination might seem arbitrary, yet, we show theo-
retically that HDD is equivalent to the underlying hidden
hierarchical distance and that each component has a criti-
cal contribution to this result. In addition, we demonstrate
the applicability of HDD to hierarchical graph benchmarks,
single-cell RNA-sequencing data, and unsupervised hier-
archical metric learning tasks. We show that HDD, com-
pared to existing baselines and deep learning-based methods,
achieves improved empirical results, both in terms of two
standard quality measures of hierarchical representations
and in terms of the accuracy of downstream classification.
Furthermore, we demonstrate that HDD requires shorter run
times than most of the competing methods.

Our main contributions are as follows. First, we present a
new method for hierarchical data embedding and distance
recovery. Our method can receive only observational data
as input without prior knowledge. It is purely data-driven,
efficient, and theoretically grounded, and it does not rely on
deep learning, optimization, or combinatorial considerations.
Second, we propose to combine, for the first time to the

best of our knowledge, hyperbolic and diffusion geometries.
We exploit this combination and propose to embed data
points through their diffusion operators to hyperbolic spaces
in order to build a meaningful multi-scale distance metric.
Multi-scale distance metrics have been explored in the past
using functions defined on Haar wavelet bases (Gavish et al.,
2010), partition trees (Mishne et al., 2016; 2017), and dual
manifolds (Mishne et al., 2019). Here, we show that using
hyperbolic spaces, our multi-scale metrics are capable of
taking into account multiple scales of the observational data,
from the finest to the coarsest, which plays a key role in the
recovery of the hierarchical structure. Third, we showcase
improved performance compared to leading recent baselines
on several benchmarks, demonstrating accurate and efficient
hierarchical structure extraction.

2. Background

Diffusion Geometry. Diffusion geometry (Coifman &
Lafon, 2006) is a framework for high-dimensional data anal-
ysis. It is based on revealing similarities between the data
points by constructing multi-scale “diffusion” processes.
Under the manifold assumption (Fefferman et al., 2016),
i.e., assuming that the high-dimensional data lie on a low-
dimensional manifold, diffusion geometry facilitates the
recovery of the underlying manifold. Below, we outline the
main steps of the construction of diffusion geometry that
we utilize in our methods.

Let X = {x;}"_; be a set of data points in an ambient space
R™ that lie on a hidden manifold. Let W be a pairwise
affinity matrix, given by

W (i,i') = exp (—d*(i, ') /€) (D)

where d(-, -) represents a suitable distance between the data
points x; and x;/, and € is a tunable kernel scale parameter,
which in practice is often set as the median of distances
multiplied by a constant or adjusted according to the near-
est neighbors (Zelnik-Manor & Perona, 2004; Keller et al.,
2009; Ding & Wu, 2020). The set X and the affinity matrix
‘W form an undirected weighted graph, where X’ is the node
set and W is the edges’ weight matrix. By normalizing the
affinity matrix twice as follows

S(ii) =Y, W(i,j), @
D(i,i) =Y, W(i,j), ()

the resulting matrix P is viewed as a transition probability
matrix of a Markov chain defined on the graph.

W =S"'ws
P =D"'W,

The matrix P is termed diffusion operator since it can be
used to propagate mass between nodes on the graph. Let
p! = Ple; € R"™ be the density on the graph after ¢ dif-
fusion propagation steps, where e; € R"™ is the indicator
vector of the i-th node, and ¢ € (0, 1] is the diffusion time.
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Note that by definition, p} is a well-defined discrete distribu-
tion on the graph because pl(j) > 0 forany j =1,...,n,
and °7_, p(j) = 1. Note that considering multiple diffu-
sion times ¢ gives rise to a collection of multi-scale densities
for each data point. This construction provides a family
of multi-scale distances and embeddings, called diffusion
distance and diffusion maps, respectively (see Appendix A
for more details).

The diffusion operator recovers the underlying manifold
in the following sense (Coifman & Lafon, 2006). In the
limit n — oo and € — 0, the operator P/ converges to
the Neumann heat kernel of the underlying manifold, given
by H; = exp(—tA), where A is the Laplace-Beltrami
operator on the manifold. In other words, the diffusion
operator (matrix) is a discrete approximation of the heat
kernel on the manifold.

Poincaré Half-Space Model of Hyperbolic Space. Hy-
perbolic geometry is a non-Euclidean geometry with con-
stant negative curvature. In this work, we consider the
n-dimensional Poincaré half-space model of hyperbolic
space with curvature —1 (Beardon, 2012). It is defined
by H" = {x € R"|x(n) > 0} with the Riemannian metric

2 2 2
tensor ds? = LW @)L+ () - Given two points
x?(n)

x,y € H", the Riemannian distance is computed by

[[x — Y||2

2\/x<n>y<n>> @

where ||-||, is the Euclidean norm.

dpgn (x,y) = 2sinh ™! (

Product Manifolds and Distances. Product manifolds
(Turaga & Srivastava, 2016) provide a product space for
mixed curvature representation learning (Gu et al., 2018;
Skopek et al., 2020). Consider a set of Riemannian man-
ifolds denoted by {(M;, g;)}~ ;. The product manifold
is defined by the Cartesian product M = M; x My x
... X Mg, whose dimension is the sum of the dimensions
of the factor manifolds M;. The product manifold M is
equipped with the Riemannian metric tensor g = »_, g
(Ficken, 1939). Different distances can be considered in
M. In this work, we use the ¢; distance and show that this
choice enables the recovery of the underlying hierarchical
structure. The ¢; is defined by

L
(e, y) =3 da, (2l yh), )
=1

where = = (x!,...,25),y = (y',...,y%) € M such that

zt,yt € M;, and d aq, is the geodesic distance on M;.

3. Problem Formulation

The problem of learning hierarchical representations can
be formulated in both graph embedding context, e.g., as in
(Nickel & Kiela, 2017; Sala et al., 2018; Sonthalia & Gilbert,
2020), and in hierarchical distance recovery context, e.g., as
in (Dasgupta, 2016; Klimovskaia et al., 2020; Chami et al.,
2020; Sonthalia & Gilbert, 2020; Fang et al., 2021). Their
settings and goals are presented below.

In the graph embedding context, a tree graph G =
(X,E, W) is given, where X is the vertex set with n nodes,
£ is the edge set with the weight matrix W. In this case, the
vertex set X’ can be viewed as a discrete subset of a hierar-
chical metric space (7, d7), where the hierarchical distance
dr on the tree nodes X coincides with the shortest path
distance on the graph. Here, the objective is to find a node
embedding into a metric space whose distance approximates
the distance dr.

In practice, we are often given solely observational data
in a high-dimensional ambient space that is assumed to
have a latent hierarchical structure that is not explicitly
given. Therefore, our primary focus in this work is on the
hierarchical distance recovery context, where, given a set
of n data points X = {x;}"_; , we view these as a node set
of a hidden (tree) graph. Typically, the points are embedded
in some high-dimensional ambient Euclidean space, i.e.,
x; € R™, and they have an underlying hierarchical structure.
This is often formulated by assuming that the points lie in
a hidden hierarchical metric space (7, d1), where both the
space 7 and the hierarchical distance d are inaccessible.
Given the observations X, the goal in hierarchical distance
recovery is to find a distance that approximates the hidden
hierarchical distance d.

4. Hyperbolic Diffusion Distance

We begin by considering our primary problem setting of hi-
erarchical distance recovery. Let X = {x;}? ; be the data
set described above. We follow the construction of the dif-
fusion geometry described in Section 2. First, we build the
matrix W based on a Gaussian kernel as in Eq. (1), where
d is a suitable distance in the ambient space R™. Then, the
diffusion operator P is constructed according to Egs. (2)
and (3). Note that this procedure implicitly constructs a
graph G = (X, &, W), where X is viewed as the vertex set
and W is the weight matrix of the edges. Consequently,
P is a transition probability matrix of a random walk on
this graph (Coifman & Lafon, 2006). We present an illustra-
tion of the high-dimensional data set X’ and the underlying
hierarchical structure in Fig. 1(a).

This graph viewpoint associates the hierarchical distance
recovery and graph embedding contexts. Namely, in the case
of graph embedding, the tree graph G = (X, £, W) is given,
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Figure 1. An illustration of HDE and HDD. (a) Given a dataset X = {x;}ij—; C R™ with an underlying tree-like structure. (b) Build
a diffusion operator P by connecting neighboring points. Consider multiple scales of the operator on a dyadic grid {P2_k VK, for

K € Z{ . For each point z;, define a collection of propagated densities oF = P2ikei. Here, two densities that are propagated from
two points z; and x,/ are shown at various diffusion times on a dyadic grid. The different scales are represented by using different
colors. (c) HDE is given by (x : X — 7, which maps a point x; into a product of hyperbolic spaces H = H"*! x ... x H" "' using
{p¥(5) = \/#%(§) }1_o. The resulting multi-scale HDE of the two points x; and ;s are presented, where the colors correspond to the
colors in (b). Here, the square root of the propagated densities is shown on the x-axis, and the scales 2°“~2 of the HDE are shown on the
y-axis. (d) HDD is defined by the ¢, distance on the product of hyperbolic spaces .

and the diffusion operator P is defined as an approximation
of the heat kernel H = exp(—L), as described in Section
2. Therefore, from this point on, the two contexts coincide,
and the proposed method is applicable to both settings.

We consider a dyadic grid of diffusion times ¢ = 2% for k €
ZZ . Fig. 1(b) displays the propagated densities at several

diffusion times ¢ = 2. For convenience, let ¢¥, ¥ €

R™ denote ¢F = P2 "¢; and ©F(j) = /@F(j) for j =
1,...,n.

First, we propose to embed the point x; using the diffusion
operator P2", denoted by the pair (i, k), into the Poincaré
half-space model H"*! by concatenating ¥ with a function
of the diffusion time 2% as follows:

(i, k) = %5 = [(F) T, 2k2=2)T e H" L, (6)

where 0 < o < 1 is a parameter that scales the diffusion
propagation. We remark that the factor 272 added to the
diffusion time in Eq. (6) is an important weight term in the
heat kernel approximation, allowing to appropriately capture
the local intrinsic association between the hierarchies at each
diffusion time scale t = 27*.

Next, we extend the embedding by considering multiple
diffusion times {27*}X_ simultaneously, where K € Z7
denotes the maximal scale. The embedding space is the
product manifold H = H"t! x H**! x ... x H"t! of
(K +1) elements (i.e., H C ROTDE+D) and the multi-

scale HDE is a function (i : X — H defined by

Crla) = [GO)T.GHT.G)TL &) @)
Fig. 1(c) illustrates the multi-scale HDE of two points,
Crk (x;) and Cx (x;/), where K = 4. We used the Poincaré
half-space model because of its natural representation of the
diffusion time on a dyadic grid (i.e., t = 27 for k € Z7)
as well as its capability to represent multiple diffusion time
scales simultaneously.

Note that considering such a multi-scale embedding signif-
icantly departs from the common practice. Existing meth-
ods of hierarchical representation learning in the Poincaré
model, e.g., (Nickel & Kiela, 2017; Chami et al., 2020),
learns the hyperbolic embedding by an optimization method
that pushes points toward the boundary of the Poincaré
model or views the data points as tree leaves and attempts to
place their embedding close to the boundary of the Poincaré
model. In contrast, our method embeds each data point
as a collection of points in hyperbolic spaces, thereby fur-
ther exploiting the negative curvature of the space. Specif-
ically, by construction, when the diffusion time goes to
zero, the diffused densities concentrate at single points, i.e.,

Ple; =9 e;. This implies that when the scale k is large
(blue in Fig. 1), the propagated densities ¢ provide a local
view of the data, and by Eq. (6), the embedded points at
scale k are pushed toward the upper part of the Poincare half
space, giving rise to a fine-scale distance. Conversely, when
k is small (yellow in Fig. 1), we have a coarse-grained view
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Algorithm 1 Hyperbolic Diffusion Embedding and Distance

Input: Diffusion operator P € R™*", parameter o, and
maximum scale K

Output: Hyperbolic diffusion distance dypp (4, 4") for all
i,i’ € [1,n] and embedding X e R™*((n+1)(K+1))

UAV' =eig(P)
k<0
while k£ < K do
Ak — 1&27}C
X,  [\/(UALVT)T, 2ka=21 1T
k+—k+1
end while
X [XJ, X[, X7
for i,i' € {1,2,...,n} do
K
dyupp (,1) Z 2sinh ! (27t
k=0

g =%k |,)

7

end for

of the data, and in this case, the proposed embedding gives
rise to exponentially scaled distances, which are consistent
with the scaling of a tree distance. This argument is made
formal in the following statement.

Proposition 1. There is a constant 0 < C' < 1 such that
forany x;,x; € X and k1 < ks, k1,ky € Zar, we have

kz ) 1
C_Qf(kgfkl)a < 70 S '27(]6‘27](51)04. (8)

The proof of Proposition 1 is in Appendix B.

In terms of dimensionality, each diffusion operator embeds a
point into an n-dimensional density, which in turn is mapped
to H" 1. Then, considering the product space of (K + 1)
scales overall results in an (n + 1)(K + 1)-dimensional
HDE. This potential dimensionality increase also departs
from common practice that typically aims at dimension
reduction. However, as we show in Section 5, the gain is the
ability to recover the underlying hierarchical structure.

Finally, we propose a new distance called the Hyperbolic
Diffusion Distance (HDD), using the ¢; distance on the
product manifold #, which is defined in Eqgs. (4) and (5).
Formally, the HDD between two points z;, z;; € X is de-
fined by

dup (i,') = db} (Cx (2:), Cic (ir))

K

9

— Z 2sinh ™" (27F ||k — of, ©
k=0

2)

where « is the same parameter as in Eq. (6). Note that
the function sinh ™! in Eq. (9) arises from the Riemannian

distance in the hyperbolic space H" ! at each scale. In prac-
tice, it attenuates large distance values. Fig. 1(d) illustrates
this multi-scale HDD. We summarize the construction of
the proposed HDE and HDD in Algorithm 1.

5. Theoretical Justification

Here we show that the proposed HDE and HDD are theoret-
ically grounded. The intuition underlying the constructions
of HDE and HDD in Algorithm 1 is as follows. The diffu-
sion operator P? is designed to reveal the local connectivity
at diffusion time scale ¢. Considering multiple scales in a
dyadic grid associates different diffusion timescales, namely,
neighborhoods of different sizes. The multi-scale embed-
ding of the corresponding diffusion operators in hyperbolic
space naturally endows a hierarchical relationship between
the diffusion timescales, enabling the recovery of the under-
lying hierarchical structure. Next, we make this intuitive
explanation formal.

Theorem 1. For(0 < a < % and sufficiently large K and n,
the hyperbolic diffusion distance dypp is equivalent to d3*.

Theorem 1 implies that the proposed HDD recovers the un-
derlying hierarchical distance even when d is not given or
when we do not have access to the explicit tree structure. In
addition, Theorem 1 suggests that in practice, the parameter
« should be set to be close to % so that HDD approximates
the hierarchical distance. That is, for a — %, the obtained
dppp is approximately O-hyperbolic (Gromov, 1987).

Theorem 1 is stated under the assumption that (P*),¢ g 1]
is a point-wise approximation of the heat kernel, namely,
Pi(i,i') ~ a;(z;, z;), where as(-, -) is a heat kernel (Grig-
oryan, 2009). Such an approximation, mainly in the limit
n — oo and € — 0, was shown and studied in (Coifman &
Lafon, 2006; Singer, 2006; Belkin & Niyogi, 2008). In ad-
dition, three strong regularity conditions are required for the
above metric recovery result. Importantly, the heat kernel
admits these conditions (see Appendix C).

The first condition is an upper bound on the operator ele-
ments. There is a non-negative and monotonic decreasing
function f; : Ry — R and a number S > 0 such that
for any v < /3, we have fR+ 35 f) (1)dr /T < 0. The
square root of the operator elements for all ¢ € (0, 1] is then
upper-bounded by

VP < g (‘W) . Q0

t35 tF

The second condition is a lower bound on the operator
elements. There is a monotonic decreasing function g; :
Ry — Rand R > 0 such that for all ¢ € (0,1] and all
d7(z;,2;) < R, the square root of the operator elements
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is lower-bounded by

VP > g, (dT(fﬂx)) .oan

Nl
@

¢

The third condition is a Holder continuity condition. There
is a constant ® > 0 sufficiently small such that for all
t € (0,1], all z;,zy € X with dy(x;,zi) < ¢% and
all z; € X, the element value of the Hellinger measure
(Hellinger, 1909) is upper-bounded by

[VPU(i, j) = VPU, ) <
<dfr<xx>)20 L (dﬂm)> 12)

+7 5 +5

Here, we presented only the main results. The proof of
Theorem 1 and more details appear in Appendix C.

We conclude this subsection with a couple of remarks. First,
our results and derivations rely on and extend the work
of (Leeb & Coifman, 2016), who proposed a multi-scale
distance based on diffusion geometry and showed that it
approximates the geodesic distance on a closed Riemannian
manifold with non-negative curvature (Goldberg & Kim,
2012; Leeb, 2015), under the conditions of geometric and
semi-groups regularities. However, their approximation
does not apply to hierarchical structures, such as trees or
tree-like structures, that are negatively curved manifolds,
as we empirically demonstrate in Appendix E. Here, as a
remedy, motivated by the geometric insights presented in
(Leeb & Coifman, 2016), we follow the work of (McK-
ean, 1970; Grigor’yan & Noguchi, 1998; Frank & Kovarik,
2013; Zelditch, 2017) for heat kernels on negative curvature
spaces. Second, unlike Euclidean spaces where the product
of Euclidean spaces is Euclidean, i.e., (Rkl)’” = Rk1kz,
considering the product of (curved) hyperbolic spaces gives
(HF1)k2 o£ HEk2 for ky, ko € Z7F. Therefore, embedding
into the space H™(5+1) does not generate the same metric
as HDD, which admits a canonical Riemannian metric in H.
The specific construction of HDD is unique and essential to
recover the hierarchy.

6. Experimental Results

We investigate the proposed HDE and HDD in hierarchical
graph embedding and distance recovery contexts. Specifi-
cally, we apply it to (i) several graphs serving as benchmarks
for hierarchical graph embedding, (ii) single-cell gene ex-
pression data for the recovery of the hidden hierarchical
structure, and (iii) unsupervised hierarchical metric learn-
ing tasks. We refer to Appendix D for more details of
these experiments and to Appendix E for additional exper-
iments including a toy example and ablation study. The
code is available at the link https://github.com/
Ya-Wei0/HyperbolicDiffusionDistance.
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Figure 2. Distortion-MAP results of hierarchical graph embedding.
Each point represents the mean over the five benchmark graphs,
and the whiskers represent the standard deviation. The larger
the MAP and the smaller the average distortion, the better the
embedding quality.

6.1. Hierarchical Graph Embedding

We demonstrate our method in the context of hierarchical
graph embedding on five benchmark graphs, which were
considered in (Sala et al., 2018). These benchmarks include
(i) a small and fully-balanced tree consisting of 40 nodes,
(ii) a phylogenetic tree consisting of 344 nodes (Sanderson
et al., 1994; Hofbauer et al., 2016), (iii) a graph of disease
relations consisting of 516 nodes, (iv) a CS-PhD graph of
the relations between advisors and PhD students consisting
of 1025 nodes (De Nooy et al., 2018), and (v) a general rela-
tivity and quantum cosmology arXiv collaboration network
with 4185 nodes (Leskovec et al., 2007). These five graphs
contain trees, tree-like graphs, and dense graph.

Given each of these graphs, consisting of nodes and edges,
our goal here is to find a node embedding &(-) in a metric
space, where the metric d¢ represents the hierarchical dis-
tance d7 defined by the shortest path on the given graph.
For this purpose, we apply Algorithm 1 with o = % and
K €{0,1,...,19}. Implementation details are described
in Appendix D.

We compare our method to five hierarchical embedding
methods. The first is the tree representation (TR) obtained
by a divide-and-conquer tree construction (Sonthalia &
Gilbert, 2020). The second is the Poincaré embedding (PE)
(Nickel & Kiela, 2017), which is a neural network for graph
embedding that learns the hyperbolic representation in the
Poincaré model. Two additional methods are taken from
(Sala et al., 2018): a PyTorch (PT) implementation of an
SGD-based algorithm optimized over a principal geodesic
analysis loss function, and hyperbolic multi-dimensional
scaling (hMDS), which takes a pairwise distance matrix as
input and returns an embedding in hyperbolic space that
best represents the input distances. The fifth is the hyper-
bolic embedding obtained by the hyperbolic hierarchical
clustering (HHC) (Chami et al., 2020) using a continuous
relaxation of Dasgupta’s cost (Dasgupta, 2016). Following
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the experiment protocol in (Sala et al., 2018), we test em-
bedding spaces of dimensions 2, 5, 10, 50, 100, and 200
for the PE, hMDS, and PT methods, and the best results
are reported. In addition, following the common practice,
we also present the results of the PE into the 2-dimensional
Poincaré disk and denote it by PE-2.

To quantitatively evaluate the obtained embeddings, we use
two commonly-used fidelity measures. The first is the mean
average precision (MAP), which is given by

o T, 2, BE. €]

(13)

where Ny, = {z;,,..., 2,  } is the set of the neighbor-
hood of x; in the given graph, d(x;) is the degree of x;
in the given graph, and B(x, z;;) = {y|d¢(&(x:),£(y)) <
de(&(q),&(x4,))} is the set of points within the smallest
ball that is centered at £(x) and contains x;, in the embed-
ded space. The second measure is the average distortion
given by

Gr

2 ) xiFry€X

|de (€ (1), E(xv)) — d (i, zir)|

dT(mi, 351") (1

Note that the closer the MAP is to 1, the better the embed-
ding distance d¢ locally preserves the desired hierarchical
distance d7. In addition, the smaller the average distortion
is, the larger the (global) similarity between d¢ and d is.

Fig. 2 presents the MAP and distortion obtained by Algo-
rithm 1 and the competing methods. For brevity, we present
here the mean and standard deviation over the five bench-
marks, and the results for each benchmark separately appear
in Appendix E. We see that compared to the baselines, HDD
presents a trade-off. It yields the best MAP with a small
standard deviation, yet, its obtained distortion is larger than
TR, hMDS, and PT. Note that HDD is strictly better in
terms of MAP and distortion than the popular PE in two or
more dimensions. We report the run time and stability in
Appendix E, showing that HDD takes a remarkably shorter
computational time than PE, PT, and HHC. While HDD
requires a longer run time than TR, the advantage of HDD
over TR in terms of MAP is significant, as depicted in Fig. 2.

6.2. Single-Cell Gene Expression Data

We examine HDD in the context of hierarchical distance
recovery. In contrast to the graph embedding task, this
context fully exploits the use of the proposed multi-scale
diffusion geometry that is designed to reveal the hidden
hierarchical (tree) structure. For this purpose, we consider
single-cell RNA sequencing (scRNA-seq) data (Tanay &
Regev, 2017). It is argued that single-cell development can
be well modeled using hierarchical representations (duVerle
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Figure 3. Distortion-MAP results of scRNA-seq datasets: (a)
Zeisel and (b) CBMC. The larger the MAP and the smaller the
average distortion, the better the hierarchy distance recovery.
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Figure 4. Classification accuracy of scRNA-seq datasets: (a) Zeisel
and (b) CBMC.

et al., 2016), providing biological insights into cell develop-
mental trajectories and disease progression (van Galen et al.,
2019). Revealing the latent hierarchies underlying the cell
types is a key task in differentiating genetic treatments and
immune responses, which are useful for further biological
tasks.

We test two scRNA-seq datasets taken from (Dumitrascu
et al., 2021): (i) the mouse cortex and hippocampus dataset
(Zeisel) consisting of 3005 single-cells with seven cell types
and 4000 gene markers (Zeisel et al., 2015), and (ii) the
cord blood mononuclear cell study (CBMC) comprising
8617 single-cells with 13 cell types and 500 gene markers
(Stoeckius et al., 2017).

The single cells are viewed as samples in a high-dimensional
ambient space, where the genes are viewed as features.
Given these data, we apply Algorithm 1, obtaining an em-
bedding of the single cells into a hierarchical metric space.
We compare our method to the same baselines as in Section
6.1. A distance based on the cosine similarity computed in
the ambient space of the sScRNA-seq data expression lev-
els is used as the input distance for Algorithm 1 and the
competing methods. We note that the choice of distance in
the original space is critical. Here, we employed a distance
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Table 1. Classification accuracy of Zoo, Iris, Glass, and Segmentation datasets (highest accuracy in bold and second highest underlined).

Dataset (#Points, #Classes) HDD TR PE-2 PE hMDS PT HHC

Zoo (101,7) 0.898+0.012  0.854+0049 0.779+0.038 0.824+0018 0.822+0014 0.842+0015 0.861+0.044
Iris (150, 3) 0.883+0.007 0.859+0021 0.782+0030 0.846+0024 0.851+0010 0.895+0.009 0.852+0.019
Glass (214, 6) 0.654+0.011  0.607+0013  0.503+0.036 0.553+0027 0.609+0.013 0.556+0046 0.61040.007
ImaSeg (2310, 7) 0.701+0.024 0.654 +0.022 0.599+0017 0.679+0038 0.658+0016 0.641+0027 0.661+0.017

based on the standard and commonly-used cosine similar-
ity calculated in the ambient space based on prior research
(Jaskowiak et al., 2014).

To evaluate the embedding and distance, we use the same
quantitative measures as in Section 6.1. To compute these
measures, we exploit the fact that a tree graph of the cell
types is provided with each dataset. Importantly, this infor-
mation is used only for evaluation but kept hidden from the
distance recovery methods.

Fig. 3 presents the obtained MAP and average distortion of
Zeisel and CBMC. We see that HDD obtains the highest
MAP values by a large margin and the second-best result
in terms of the average distortion, which is very close to
the best result. The evaluation of the methods’ run times
(see Appendix E) shows that HDD is more efficient than PE,
PT, and HHC. This suggests that HDD is applicable to large
scRNA-seq datasets as well.

To further evaluate the results, we make use of the availabil-
ity of the cell labels in this dataset to also examine HDD
through classification. Specifically, we apply the nearest
centroid classifier with the recovered distance metric of
each method as input. The reported classification accuracy
is obtained by averaging over ten different runs; in each
run, the dataset is randomly split into 80% training set and
20% testing set. Fig. 4 displays the mean and the standard
deviation of the classification accuracy of Zeisel and CBMC.
We see that HDD outperforms the other methods by a large
margin for both Zeisel and CBMC datasets. This suggests
that HDD extracts well the tree-like structure underlying bi-
ological data. Conversely, we see that TR and hMDS, which
obtain small distortion in the graph embedding context, do
not perform well in this downstream task.

6.3. Unsupervised Hierarchical Metric Learning

We further test the proposed HDD in the context of unsu-
pervised hierarchical metric learning. We consider four
datasets from the UCI Machine Learning Repository (Dua
& Graff, 2017): (i) the Zoo dataset consisting of 101 data
points of seven types of animals with 17 features, (ii) the
Iris dataset comprising 150 samples from three kinds of Iris
plants with four features, (iii) the Glass dataset containing
214 instances of six classes with 10 features, and (iv) the

image segmentation (ImaSeg) dataset consisting of 2310 in-
stances from seven outdoor images with 19 features. These
datasets were used in (Chami et al., 2020) for evaluating
embedding and clustering in hyperbolic space under the
working assumption that they have some degree of under-
lying hierarchical structures. Here, the evaluation of HDE
and HDD is done through downstream classification based
on the (dis)similarity of the learned embedding and distance
(Jordan & Mitchell, 2015). Such evaluation is affected by
the hyperbolicity of the datasets, i.e., it depends on the ex-
tent the data adhere to hyperbolic geometry. Since there is
no such ground truth hierarchical information (in contrast to
the datasets considered in Section 6.2), the 4-hyperbolicity
cannot be naively computed. Still, following (Chami et al.,
2020), we posit that comparing different methods for hyper-
bolic embedding and distance on these datasets gives useful
information on the ability of HDD to reveal hierarchical
structures given only observational data, compared to the
competing methods.

The downstream classification is carried out in the same way
as in Section 6.2. Algorithm 1 and the baseline methods
are applied to these datasets with a distance based on cosine
similarity as an input without using any label information.
Then, a dissimilarity classification based on the learned
hierarchical distance using the nearest centroid classifier is
applied. We use cross-validation with ten repetitions, in
which the dataset is randomly divided into 80% training set
and 20% testing set.

The classification accuracy is presented in Table 1, showing
the mean and the standard deviation of the results averaged
over ten trials. We see that HDD outperforms the competing
methods in three out of the four datasets and obtains the
second-best classification accuracy in the remaining dataset.
These results further demonstrate that HDD gives rise to a
useful distance.

7. Conclusion

We presented a new method for hierarchical data embed-
ding and corresponding distance, termed HDE and HDD,
respectively, which can receive as input either a graph or
observational data with a hidden hierarchical structure. Our
method is primarily based on diffusion geometry that en-
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ables us to construct multi-scale propagated densities, which
are, in turn, embedded in a product of hyperbolic spaces.
We theoretically show that the ¢; distance between the em-
bedded points in this space is equivalent to the tree-like
distance in the hierarchical space of the input graph or data.
In contrast to the common practice in hierarchical data repre-
sentation using hyperbolic geometry, our method represents
each point as a collection of embedded propagated densities
rather than a single point in hyperbolic space. We test HDE
and HDD on benchmark graph embedding tasks and on
single-cell gene expression data sets, demonstrating signifi-
cant advantages compared to existing methods in terms of
standard quantitative metrics and run time. In addition, we
demonstrate that HDD can lead to improved downstream
classification accuracy on several benchmarks. Because our
method is computationally efficient, not based on optimiza-
tion or deep learning, and differentiable, we posit that it can
potentially be incorporated into various loss functions of a
broad range of downstream tasks. For example, combining
diffusion and hyperbolic geometry can be extended to deep-
based networks (Ganea et al., 2018; Chami et al., 2019),
which have been shown useful for hierarchical data learning
both theoretically and empirically.
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A. Additional Background
A.1. Diffusion Geometry

Broadly, the construction of diffusion geometry starts by defining a probability transition matrix P that describes how likely
it is to transition from one data point to another. This matrix is then used to construct a Markov process, which defines the
diffusion distance between data points, conveying a notion of distance between data points based on how easily one can
transition or “diffuse” from one point to another. Formally, the diffusion distance with time diffusion ¢ between two points x
and x’ is given by ||P?e; — Pte; || with an appropriate norm (see (Coifman & Lafon, 2006)). This diffusion distance is then
used to construct a family of multi-scale low-dimensional maps of the data set, termed diffusion maps. The diffusion maps in
¢ < n dimensions with diffusion time ¢ of a point x is given by W;(x;) = [A{v1(4), ..., Abve(i)] T, where {(\;, v;)}7, are
the eigen-pairs of the transition matrix P. It is shown that the Euclidean distances between the diffusion maps approximate
the diffusion distances (Coifman & Lafon, 2006). In (Coifman & Maggioni, 2006), diffusion operators with multiple scales
t on a dyadic grid were considered for multi-scale data representation, called diffusion wavelets.

A.2. Hyperbolic Geometry

The n-dimensional Poincaré half-space (Beardon, 2012) is a Riemannian manifold with constant negative curvature, defined

by H* = {x € R"’x(n) > 0} with the Riemannian metric tensor ds? = d"2(1>+‘1’;§$)(Z)“+d"2<")

k = —a? represents the Gaussian curvature of the hyperbolic manifold. In this work, we study the n-dimensional Poincaré
half-space with constant negative curvature —1 by setting a = 1.

, where ¢ > 0 and

The hyperbolic geometry can be characterized by Gromov’s §-hyperbolicity (Gromov, 1987; Ollivier, 2011).
Definition A.1. A metric space (X, d) is d-hyperbolic (Gromov, 1987) if there exists 6 > 0 such that for all four points
z,y,z,w e X
d(w,z) + d(y, z) < max{d(z,y) + d(w, z),d(z, 2) + d(y, w)} + 26. (15)
Proposition A.1. A 0-hyperbolic metric satisfies the triangle inequality:
d(w, z) < d(w,y) + d(z,y). (16)
Example A.1. The two-dimensional Poincare half-plane H? is (log 2)-hyperbolic.

A.3. Graph Preliminaries

Definition A.2. Let G = (V, E, W) be an undirected graph. The shortest path metric d1(u,v) is the length of the shortest
path from u to v.

Definition A.3. A metric d is a O-hyperbolic metric if there exists a tree T such that the shortest path metric d+ on T is
equal to d.

B. Proof of Proposition 1

Proposition 1. There is a constant 0 < C' < 1 such that for any z;, x;; € X and ky < ky for kq, ko € Zar , we have

sko sk
O 9—(ka—kna o Gun (%57, X;2)
Akl)

S “k
dHn+1 (X’L 1 s Xi/

< = .9 (ka—k1)a (17)

Ql =

Proof. For any kq,ke € Za' such that &y < ko and z;,x; € A, by the bounds of the Hellinger distance, we have
0<C§‘¢§17¢;€/1 gH@i‘W*QD?/z
2

< /2 for some constant ¢. We begin with the proof of lower-bound:
2

)
)

k2) sinh ™" (2_’“2“"’1 ‘ o — ok

il

ok gk . . _
dygnr (X7, %5')  sinh ™! (2*’“0‘*1 ng?l — cpf”}l

~ko &
dHn+1(Xi2,X

sinh™* (27 k20t ¢)
~ sinh7! (2*’“15”rl . \/5)

13
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1 (9—ksa+1 |
W & (et
- (2 kia+1 . )
¢ .2—(*’62—"01)@7

22

where transition (1) is due to sinh ™! (2) < z for z > 0 and 2sinh ! (27%F12) > 2=katl, for ) < 2 < V2,0 < a < 1,
and k € ZS‘ . Similarly, the upper bound is obtained by

dignir (K2, gk2)  sinh” t2ert||ob - ol )
dH"H(Xk %51)  ginh! (2 kratl H<Pk1 o 2)
sinh~ ( —k2a+l, )
sinh™ (2 kiatl . c)
27k2a+1 . \/i

- l . 2_k1a+1 -C

2\/7 kg kl)a

Taking C' = ﬁ gives the results. We remark that the lower bound can be tightly bounded by 2~ (*2=*1)e dye to

R
2) = Sinh71(27k1a+1||90 7<pk,2

ko ke snh—1(o—kaa+1|| k2 ko
dynt1 (xizvxi/z) _ sinh (2 ? le Py

L ki — % % ) = g~ (ka=kr)er O
d]}][n+1 (ﬂilvﬁi/l) Sinh71<27kla+1ngi17<p7‘,ll

y

C. Theoretical Analysis of Hyperbolic Diffusion Distance - Proof of Theorem 1

The theoretical analysis of HDD is motivated by and derived from the work presented in (Leeb & Coifman, 2016). In their
work, the authors considered the geometric regularity conditions on the diffusion semi-group of a multi-scale total variation
distance between probability measures (Goldberg & Kim, 2012; Leeb, 2015). More specifically, they presented a diffusion
ground distance, a multi-scale distance using L; distance between probability measures for approximating the geodesic
distance on a closed Riemannian manifold with non-negative curvature.

In our work, we focus on the hierarchical (i.e., tree or tree-like) structures that cannot be approximated by the work in
(Leeb & Coifman, 2016). To this end, we follow the work of (McKean, 1970; Grigor’yan & Noguchi, 1998; Frank &
Kovarik, 2013; Zelditch, 2017) for spaces with negative curvature and devise the HDD based on a multi-scale metric using
inverse hyperbolic sine function of a scaled Hellinger distance (Hellinger, 1909), which forms the ¢; distance on the product
manifold of the hyperbolic spaces.

First, we define the multi-scale metric HDD in a continuous space and introduce the properties of the diffusion semi-group.
Next, we establish the geometric regularities in the case of hierarchical datasets that are necessary for the multi-scale metric
to approximate the underlying tree metric. Last, we will show that the diffusion operators, which approximate the heat
kernel, satisfy these conditions, and therefore, the proposed HDD recovers the hierarchical structure underlying the data.

C.1. HDD in Continuous Space

Let X be a sigma-finite measure space in dimension n. We consider a measure p such that u(B(x,r)) < r”, where x € X
and r > 0. A family of kernels {a;(x,2") }+cr, is considered for z,2’ € X. Let f be a function defined in X'. We define
the operator A; by

Atf(a:)z/Xat(a:,x’)f(x')dx’. (18)

The operators {A; }rer . have the following properties (Coifman & Lafon, 2006; Coifman & Goldberg, 2021). (i) The
family of operators forms a semi-group such that for all £, ¢ € R, we have A, Ay, = Ay, ++,. (ii) The operator respects
the conservation property, that is, [, a¢(x,2’)da’ = 1. (iii) The operator is integrable such that [, |a¢(z,2’)|dy < C for
some constant C' > 0.

14
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We are only concerned with dyadic times ¢ € (0, 1] such that t = 27% for k € Zar . We first define the local geometric
measure at a single scale k£ using the unnormalized Hellinger distance (Hellinger, 1909) between the probability distributions,
given by

T(w,a') = | Vare (@) = Va9 - (19)

2

Then we define the multi-scale metric using the inverse hyperbolic sine function of the scaled Hellinger measure with the
scaling term 27***1  given by

To(z,2') = Z?sinh71 (27FH Ty (z,2')) = Z?sinh71 (2_’“”'1 H\/GQ—I@(.’L‘, ) = Vagr (2, )Hz) . (20)

k>0 k>0

where 0 < o < 1. Because the scaling parameters decay exponentially, the multi-scale metric can be approximated by the
first K terms:

K
To(z,2') ~ Tic(w,2') = 2sinh™" (27%F! Ty (x,27)) . (21)
k=0

C.2. Regularity Conditions

We impose geometric regularity on the multi-scale metric T.,. There are constants C' > 0 and o > 0 such that the integral of
the kernel and the multi-scale metric at scale k is upper-bounded by

/ i (x, 2" )T (z, 2" )da' < C27F, (22)
x

Let (X, d7) be a hierarchical metric space. There are three strong regularity conditions imposed on the family of operators
{Ay-+}rer, that allow for the proposed multi-metric 7% (z, 2’) to approximate d7.

The first condition is an upper bound on the kernel. There is a non-negative and monotonic decreasing function f; : Ry — R
and a number 8 > 0 such that for any v < (3, we have fH§+ 737 1 (7)d7 /T < 00. The square root of the kernel for all
t € (0, 1] is then upper-bounded by

ar(z,2') < =5 fi (1/)) : (23)
35 "

The second condition is a lower bound of the kernel. There is a monotonic decreasing function g; : Ry — Rand R > 0
such that for all £ € (0, 1] and all dr(x, 2") < R, the square root of the kernel is lower-bounded by

Voo, d) =~ <d7(”)) : (24)

t28 t%

N

The third condition is Hélder continuity. There is a constant © > 0 sufficiently small such that for all ¢ € (0, 1], all
x, 2’ € X with dr(x,2') < ¢% and all y € X, the element value of the Hellinger measure is upper-bounded by

Va(@y) - V@ 9l < (d’f("””“)@ L (d’fi”)) | (25)

7

C.3. Hierarchical Metric

We present the lower and upper bounds of the proposed multi-scale metric T, in Eq. (20), making it equivalent to the
hierarchical metric d.

Definition C.1 (Snowflake distance (Leeb, 2015; Leeb & Coifman, 2016)). The snowflake distance is a distance in the form
of d(+, )%, where d is a distance and 0 < s < 1.

We first present the upper bound of 1.
Proposition C.1. For any 0 < a < min{1, %} the multi-scale T, is upper-bounded by

To(z,2') < min{Ldg—’g(ac,x’)}. (26)
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Proof. Consider the dyadic levels K — 1 and K such that the tree distance is bounded from below and above by 275 <
dg-(x, 2') < 27K+ We have

To(z,2') = Z2sinh_1 (271‘30”“1 H\/a2_k(:c, Y =V ag—k (2, )H2>

k>0
1) —kat1
< 32| i) — Va7
k>0 2
= Z g~ kat? H\/%—k(x’ )= \/a2—k(33” )H
k>0 2
K )
(i) d@( / —ka+2q6%8 —ka+2
S dP(w,a')) 2 27 + ) 2

k=0 k=K+1
< d2(z, 2/ )2K2"F 4 o~ Ke
® s,
N d7— (z,2),

where transition (1) is due to sinh ™! (z) < z for z > 0, transition (2) is based on the Hélder continuity condition in Eq. (25)

6
implying that the Hellinger distance is bounded by H Vagr(z,-) — \/ag—r (2, H2 < (dTEE"‘)) , and transition (3) is

duetoa<%. O

Proposition C.1 implies that the upper-bound of the multi-scale metric T, is a thresholded Snowflake distance of dr. Below,
we will demonstrate the lower bound using the following two results.

Lemma C.1. Let p, q be two probability distributions on X. For a constant k € Z(‘f and 0 < a < 1, we have
2sinh ™" (275 ly/p — vall,) > 27" lp — g1, 27)
where H VD — \/QHQ is the unnormalized Hellinger distance between p and q.

Next, we introduce the lower bound of Ta

Lemma C.2 (Lemma 3 in (Leeb & Coifman, 2016)). Let R be the condition of the lower bound of the kernel in Eq. (24).
There are constants A > 1 and € > 0 such that whenever x,z' € X and t € (0, 1] satisfy At? < dr(z,2') < R, we have

lag—r (2, ) = ag-e(z’,)[1 = €. (28)

Proposition C.2. Let R be as in the condition of the lower bound of the kernel in Eq. (24). The multi-scale metric is
lower-bounded by X
Tolz,2') 2 d5 (x,2). (29)

g
Proof. Take A and € as in the conditions in Lemma C.2. We now take K € Z, such that 47(2.2) 45 bounded by

AP
_ dB (z,a’ _
2K < % < 27K+1 Then, we have

To(x,2') = ZZsinhA (2_1"0‘Jrl H\/asz-(m, Y = Vag-x (2, )Hg)

k>0

>3 2sinh~! (2*’““+1 H\/a2_k (@, ) — \/ag—r (2, -)Hz)

> 3 27 ay (@) — apn (@)l
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~ 271{(1
~ d3 (z,2")

where transition (1) is based on Lemma C.1 and transition (2) is applied by Lemma C.2 using the triangle inequality in
Eq. (16). O

Lemma C.3 (Lemma 4 in (Leeb & Coifman, 2016)). Let R be the condition of the lower bound of the kernel in Eq. (24).
1
There are constants C > 0 and n > 0 such that whenever d1(x,x’') > R and t¥ < nR, we have

lag—r(z,-) — ag—x (', -)||1 > C. (30)

Proposition C.3. Let R be the condition of the lower bound of the kernel in Eq. (24). There is a constant C' > 0 such that
when dr(xz,z’) > R, we have
To(z,2") 2 C. (€29

Proof. Take C' and 7 as in the conditions in Lemma C.3. Let K = {log2 (W)J . Then 2=% < (nR)?, and we have

To(z,2') = ZZsinh_l (27]“%1 H\/az_k(:v, Y = Vag—k (2, )HQ)

k>0

> Z 2sinh (2*’“0‘+1 H\/az—k(l', Y = ag—i (2!, )H )
k>K 2

G —ka /

> Y 27" lagw(w,-) — ag-n (2, )|
E>K

)

U5 ke
k>K

~ C(nR)*7,

where transition (1) is derived by Lemma C.1 and transition (2) is based on Lemma C.3. O

Proposition C.2 and Proposition C.3 guarantee that the lower-bound of the multi-scale metric is a thresholded Snowflake
distance of d7. We summarize it in the following corollary.

Corollary C.1. Under the conditions of upper and lower bounds of the kernel and the Holder continuity in Eq. (23), Eq. (24),
and Eq. (25), we have
Tz, ') 2 min{1,d5’ (z,2")}. (32)

Last, we summarize the equivalence of 7., to a thresholded snowflake metric by using Proposition C.1 and Corollary C.1.

Proposition C.4. If the conditions for the upper and lower bounds of the kernel and the Holder continuity on ag—« (x,2")
hold and if ;(B(x,r)) < r™, then for 0 < oo < min{1, %} the distance T, (x, x') is equivalent to the thresholded snowflake

distance min{1, dg‘ﬁ (x,x')}.

C.4. Heat Kernel on Trees

In the following, we show that Proposition C.4 holds for the heat kernel on a tree. For this purpose, we follow (McKean,
1970; Grigor’yan & Noguchi, 1998; Frank & Kovarik, 2013; Zelditch, 2017), showing that the necessary conditions imposed
on {a;(x,z") }ser, are satisfied.

In the following lemmas, the operator a; is considered as the heat kernel on tree.

Lemma C.4. There are constants A, B > 0 such that for all t € (0, 1] we have

. A2 /
a(z,2') < ti exp (—W) . (33)
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Lemma C.5. There are constants C, D > 0 such that for all t € (0, 1] we have

L2 /
exp (_MM) ) (34)

a(x,x') > n

~
w\s‘ Q

Lemma C.6. There are constants E, F > 0 such that for t € (0, 1] we have

.2 /
exp (—W) . (35)

E
Vaeai(z, )|, < -
IVsalaa)l, < <
Proposition C.5. If z,2’ € X are sufficiently close, then for a smooth function h : X — R, there is a point y lying on the

path on T from x to y such that
7% (z) — h2 (2")]* < [|VA(y)l| dF(z, 2"). (36)

Proof. Suppose r = dy(x,z’') is less than the injectivity radius on X. Let (¢) be the unit speed shortest path (with
respect to tree) connecting « and z’ such that y(0) = x and y(r) = 2’. Let h(t) = h(7(t)). Note that h(0) = h(z) and
h(r) = h(a’). By the mean value theorem, there is some point 0 < ¢ < r such that

T T M) =(VhGE), Y ().

Since v has unit speed, by the Cauchy—Schwarz inequality, we have
h(2") = h(@)| = (VR(y(E), o' E)d7(x, ") < [|Vh(a")] dr(z,2").
In addition, since h(-) > 0 and the unit speed on d, we have

B (a') — b3 (2)* < |Vh(z')]| dr(z,2') < |Vh(2)] d3(z, ).

O
Proposition C.6. There are positive constants H,1 > 0 such that for t € (0,1] and dr(z,z") < t2, we have
A2 (z, 2/ I-d2
Vaar - Ve < 178 e (- L0E), G7)
Vi-tz t
Proof. From Lemma C.6 and Proposition C.5, we have
E F-d?
V(e w) = var@ Wl < (w2~ exp ( ~ L 9TY)
Vi-t3 t

for some point y lying on the path of X between 2 and /. Because dr(z, ') < t2, the inequality dr(z,y) < ¢ also
holds. Then, we have
d7(u,x) < 2 (d7(u,y) + d7-(y, 2)) S 2 (d7(u,y) +1)

and

[Var(z,u) — a2, u)|?

E F . d%(u,
) o (00

E F.(d?(u,z) — 2t

E E. a2 (u, )
Sd%—(.’ﬁ,ﬂ:’/)m exp <27;(> .
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Theorem 1. For(0 < a < % and sufficient K, the multi-scale metric Tf is equivalent to dZT“.

Proof. By taking 5 = 2, Lemma C.4 and Lemma C.5 assure the condition of the upper and lower bounds of the kernel,
respectively. Proposition C.6 ensures the condition of the Holder continuity. Therefore, by applying Proposition C.4 we can
obtain the theorem. O

D. Additional Details on the Experimental Study

We present the setups and additional details of the experiments in Section 6. Our code is included in the supplemental
material. The experiments are performed on NVIDIA GTX 1080 Ti GPU. A fixed random seed 1234 is used in all the
experiments.

D.1. Baselines

The implementation of the competing methods is open-source. The code of tree representation (TR) (Sonthalia & Gilbert,
2020) can be found in the open-source implementation'. We use the PyTorch code in (Gu et al., 2018) for Poincaré
embedding (PE) (Nickel & Kiela, 2017), the code in (Sala et al., 2018) for the hyperbolic multi-dimensional scaling
(hMDS), and PyTorch (PT) code of an SGD-based algorithm, which are all open-source implementations?. The code
of hyperbolic hierarchical clustering (HHC) (Chami et al., 2020) can be found in the open-source implementation®. For
the graph embedding task, we also consider a two-dimensional hyperbolic embedding built by Sarkar’s combinatorial
construction (CC-2) (Sarkar, 2011) and report the hierarchical graph embedding quality in Table 2.

D.2. Datasets

We describe the datasets considered in the experiments in Section 6. They are all publicly available. (i) In the hierarchical
graph embedding, the hierarchical datasets considered here are structured as graphs with vertices and edges. Five benchmark
datasets in (Sala et al., 2018)* are used, including the small balanced tree, the phylogenetic tree, the disease, the CS-PHD,
and the Gr-Qc graphs. (ii) In the experiment of scRNA-seq, the datasets are high-dimensional data (samples) measured in an
ambient space (gene markers). Two open-source datasets in (Dumitrascu et al., 2021)° are considered: Zeisel (Zeisel et al.,
2015) and CBMC (Stoeckius et al., 2017). The pre-processing protocol of the scRNA-seq datasets adheres to (Dumitrascu
et al., 2021). (iii) In the downstream classification task, four datasets in the UCI Machine Learning repository (Dua & Graff,
2017)° are utilized, where the datasets consist of high-dimensional data (instances) collected in an ambient space (attributes).
The datasets we used are the Zoo, the Iris, the Glass, and the Image Segmentation datasets, which are used in (Chami et al.,
2020) for hierarchical clustering tasks.

D.3. Implementation Details

For the graph embedding task, the diffusion operator is computed by P = exp(—L), where L is the graph Laplacian matrix.
This computation is based on the relationship between the diffusion operator and the heat kernel described in Section 2.
For high-dimensional data, a distance based on the cosine similarity (sklearn.metrics.pairwise_distances)
computed in the ambient space is used in Eq. (1), and the diffusion operator is constructed as in Section 2. This distance is
also used in the distance-based competing methods, and the corresponding cosine similarity is used in the similarity-based
baselines. We compute HDD and the embedding according to Algorithm 1, with the parameter o = % and the maximal
scale K € {0,1,...,19}.

Remark. The computation of HDD in Eq. (9) involves the diffusion operator construction, calculating the multi-scale
distribution vectors, computing the scaled Hellinger distance between data points, and the summation over the inverse
hyperbolic sine functions. It could be computationally heavy when working with large-size datasets (i.e., more than ten
thousand data points). The construction of the diffusion kernels is typically the most computationally intensive step. For

1https://github.com/rsonthal/TreeRep
https://github.com/HazyResearch/hyperbolics
*https://github.com/HazyResearch/HypHC
*https://github.com/HazyResearch/hyperbolics/tree/master/data/edges
Shttps://github.com/solevillar/scGeneFit-python/tree/
62f88ef0765b3883f592031ca593ec79679a52b4/scGeneFit/data_files
6https://archive.ics.uci.edu/ml/datasets.php
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large-scale datasets, recent methods in diffusion geometry, such as those presented in (Moon et al., 2019; Tong et al., 2021;
Shen & Wu, 2022), have proposed various techniques (downsampling, interpolative approximations, and landmark diffusion,
respectively) to significantly reduce the run time and space complexity of diffusion (e.g., O(mn) in (Tong et al., 2021)
instead of O(mn?) and O(n'*+2#) in (Shen & Wu, 2022) instead of O(n?), where n and m represent the number of samples
and features in a data matrix, respectively, and 5 < 1 is a hyperparameter related to the size of the landmark set). These
techniques can be integrated into HDD, almost as is, enabling the analysis of datasets larger than ten thousand data points
using HDD.

E. Additional Experimental Results
E.1. Toy Example

In Fig. 5, we illustrate HDE and HDD on a toy example consisting of a five-level balanced binary tree. In Fig. 5(a), we plot
the given tree graph G = (T,E, W), where T = {xz}fio is the vertex set organized from the root to the leaves of the tree,
£ is the edge set connecting tree nodes, and W is the edge connectivity matrix. Then, the diffusion operator P is computed
by P = exp(—L), where L is the graph Laplacian of G. An illustration of the multi-scale propagated densities associated
with P and diffusion times in a dyadic grid is shown in Fig. 5(b). We see that the larger the scale k, the more local the
support of propagated densities, and the smaller the scale &, the wider the support of the densities. Fig. 5(c) depicts the HDE.
Each row represents the multi-scale representation in , denoted by (x (z;) = [(x9) 7, (x]) T, ..., (xF)T] ", of each node.
Here as well, we see that as the scale increases (from left to right), the representation becomes more local (concentrating at
the diagonal). Fig. 5(d) presents the obtained HDD of each node, where the nodes are colored according to their level in the
binary tree. For visualization, we depict the two-dimensional multi-dimensional scaling (MDS) (Cox & Cox, 2008) applied
to the nodes using HDD as the input distance. We observe that HDD indeed recovers the tree graph.
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(a) (b) (c) (d)

Figure 5. A demonstration of hyperbolic diffusion embedding and distance with an example of a five-level complete binary tree. (a)
Given a tree or tree-like graph G = (T, £, W), a diffusion operator P is constructed by the edge connectivity W. (b) The multi-scale
propagated densities {¢¥}3L, are computed at each node on 7. The rows represent the nodes ordered from the root to the leaves. The
columns represent the scale k. The size of the nodes and the color of the edges depict the density value at the nodes and the connectivity
between them at scale &, respectively. (c) The HDE of the nodes is plotted in rows from the small scales (left) to the large scales (right).
(d) 2D MDS based on HDD. Each point represents a node. The points are colored by the corresponding levels of the binary tree.

E.2. Hierarchical Graph Embedding

We report the obtained MAP and average distortion for the five hierarchical graph datasets in Table 2. The HDD of the
balanced tree, the phylogenetic tree, the disease, the CS-PHD, and the Gr-Qc graphs are respectively obtained with K = 3,
K =3,K =3, K =4, and K = 10. We examine the role of maximum scale K in Algorithm 1 in the ablation study in
Appendix E.3. We observe that further increasing the maximum scale does not vary the two fidelity measures, indicating
the convergence of our proposed method. Table 2 shows that HDD attains a MAP of 1.0 in the small balanced tree and
phylogenetic tree, comparable to the combinatorial representation learned from Sarkar’s construction (Sarkar, 2011) (CC-2).
For tree-like and dense graphs, HDD outperforms the optimization-based approaches PE, PT, and HHC. However, HDD has
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larger average distortions than TR, hMDS, PT, and CC-2 for most datasets. We remark that HDD is strictly better in terms
of MAP and average distortion than PE and HHC. Arguably, there is a trade-off between the two fidelity measures as noted
in (Sala et al., 2018). Our method leans more toward preserving local structure (MAP) at the expense of the global structure
(average distortion). In Table. 3, we summarize the execution time for hierarchical representation learning on graphs in this
experiment. We observe that HDD is the second or the third fastest algorithm for extracting hierarchical information among
the five graph datasets. While HDD is slower than the divide-and-conquer tree representation (TR), the obtained advantage
in MAP values shown in Fig. 2 and Table 2 are significant. In addition, we report that HDD is much more efficient than the
optimization-based methods: PE, PT, and HHC.

Table 2. MAP and average distortion (D,y) of hierarchical graph embedding.
HDD TR  PE-2 PE hMDS PT HHC CC-2

Balanced tree 1.0 0.942 0.830 0.861 1.0 0.964 0.901 1.0
Phylo tree 1.0 0931 0696 0.724 0.682 0902 0.884 1.0

A
< Diseases 0970 0.873 0.611 0912 0931 0943 0.831 0.808
= CS-PhD 0999 0954 0.623 0.781 0.562 0.682 0.774 0.792
Gr-QC 0.930 0.701 0.564 0.763 0.649 0.702 0.685 0.684
Balanced tree  0.144 0.102 0.446 0.229 0.062 0.131 0.284 0.010
- Phylo tree 0.520 0.304 0.841 0.641 0.087 0.207 0.696 0.009
Q§ Diseases 0206 0.187 0426 0.694 0.123 0.072 0.303 0.122
CS-PhD 0.274 0.194 0498 0442 0.162 0.243 0.382 0.288
Gr-QC 0.179 0202 0.298 0.246 0.542 0.108 0.274 0.334
Table 3. Computation time (in seconds) of hierarchical graph embedding.

Dataset (#Vertices, #Edges) HDD TR PE-2 PE hMDS PT HHC CC-2
Balanced tree (40, 39) 5.89-10° 4.41-107Y 122-102 8.89-10% 4.92-10° 9.48.10% 7.82-10! 1.63-10°
Phylo tree (344, 343) 4.01-10 9.83.107' 8.74-10> 1.24-10° 6.03-10' 6.33-10° 1.62-10> 2.17-10°
Diseases (516, 1188) 4.17-10%  1.02-10° 1.23.10® 3.09-10* 5.21-10' 1.68-10* 2.33-102 4.42-10°
CS-PhD (1025,1043)  6.44-101  1.90-10° 1.78-10* 5.62-10¢ 9.63-10' 2.50-10* 5.43.10> 7.93-10°
Gr-QC (4158, 13428) 9.12-10'  2.03-10° 2.89-10* 3.13-10° 1.94-102 3.43.10* 1.92-10° 9.37-10¢

E.3. Ablation Study

We conduct an ablation study to investigate the effectiveness of the different components in our method. First, we compare
HDD with the ¢ distance in the product manifold #, given by

K

43 (Caei), Goe(ww)) = 3 (25imh ™ (27505 o — o
k=0

)’ (38)

where K € Z{ is the maximum scale defined in the same way as in HDD. Note that dfjj is equipped with a Riemannian
structure (Ficken, 1939). In addition, we test single scales in the factor manifold H"** in the product manifold 7, given by

). (39)

dgnin (K], %5) = 2sinh " (2750 [k — oF

79

where k € Z{ represents the scale.

The results, comparing HDD, d%2, and the single scale embedding are presented in Fig. 6 for the graph embedding experiment
presented in Section 6.1. The five plots depict the distortion-MAP graph for the five datasets. In each plot, the blue circle,
green plus, and red star represent the result of HDD, dffl, and the single scale embedding, respectively. The color of the points
represents the parameter K (resp. k) for HDD and dﬁj (resp. single scale embedding). Note that when k£ = K = 0, HDD
and the single scale embedding coincide (i.e., d5} (Co(:), Co()) = dignt1 (X9, %9)). We observe that HDD outperforms
the other two alternatives, indicating that, indeed, the use of the ¢; norm and the multiple scales in Eq. (9) has a critical
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contribution to the extraction of the hierarchical structure, as guaranteed in Theorem 1. In addition, based on the results of
HDD and dg_f , we find that the larger K is, the better the embedding quality is. Conversely, the role of k plays an opposite
effect in the single embedding, as conveyed in Proposition 1. Last, we see that the results of HDD in terms of MAP and
average distortion converge for sufficiently large K, providing empirical support to the approximation in Eq. (21).
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Figure 6. Distortion-MAP plots of the five datasets for graph embedding. In each plot, the blue circle, green plus, and red star represent
the result of HDD, d%‘, and the single scale embedding, respectively. The color of the points represents the parameter K (resp. k) for
HDD and d% (resp. single scale embedding).

In addition, we conducted experiments that compare the performance of the proposed HDD with a variant in which the
hyperbolic distance is replaced by the following Euclidean distance

deue(i,1") = ||Cxe (23) = Cre (i)l - (40)

Our results are presented in Table 4, where we can see that using the Euclidean distance does not capture the hierarchical
structure. This empirical evidence demonstrates the importance of the hyperbolic distance in our method, showing that the
proposed construction of HDD is essential to the recovery of the hierarchy.

Table 4. MAP and average distortion (D,y) of hierarchical graph embedding using the Euclidean distance.
Balanced tree  Phylo tree Diseases CS-PhD  Gr-QC

% HDD 1.0 1.0 0.970 0.999 0.930
S  Euc 0.219 0.154 0.132 0.116 0.228

2 HDD 0.144 0.520 0.206 0.274 0.179
A Euc 0.694 0.712 0.736 0.688 0.781
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E.4. Single-Cell Gene Expression Data

The obtained MAP, average distortion, and classification accuracy of the scRNA-seq datasets are reported in Table 5. In the
gene expression data, the maximum scales used in Algorithm 1 for the Zeisel and the CBMC datasets are set to K = 9 and
K = 13, respectively. We note that they are slightly larger than the scales used in the graph embedding experiment due to the
larger size and dimensionality of the data. Observing the table, we see that HDD achieves the best MAP and the second-best
average distortion. In terms of classification accuracy, HDD outperforms all the competing methods in both scRNA-seq
datasets. We report the run time of HDD and the competing baselines in Table 6. Note that the optimization-based methods,
PE, PT, and HHC, require a much longer time to find the hierarchical representation, similar to the hierarchical graph
embedding task in Table 3. Yet, the additional computational time does not lead to improved embedding quality and
downstream classification accuracy. Our HDD obtains a slightly larger distortion than TR, and it is slower than TR. Yet, its
advantage in terms of MAP and classification accuracy is significant, as illustrated in Fig. 3, Fig. 4, and Table 5.

Table 5. MAP, average distortion (D), and classification accuracy of scRNA-seq datasets.

HDD TR PE-2 PE hMDS PT HHC
= MAP 0.996 0.803 0.779 0.788 0.710 0.542 0.853
& Dayg 0.169 0.121 0.278 0.223 0.213 0.581 0.482
N ACC. 0.862+0014 0.664+0039 0.712+0018 0.743+0018 0.802+0.041 0.597+0.098 0.811+0.039
o MAP 0.979 0.713 0.749 0.817 0.789 0.760 0.806
E Dy 0.297 0.254 0.522 0.489 0.364 0.473 0.323
O ACC. 0.832+0.023 0.741+0037 0.739+0061 0.752+0019 0.733+0.039 0.648+0.027 0.788+0.029

Table 6. Execution time (in seconds) of scRNA-seq datasets.
Dataset (#Points, #Classes) HDD TR PE-2 PE hMDS PT HHC

Zeisel (3005, 7) 1.13-102 1.09-10° 2.13.10* 221-10* 1.07-10> 1.07-10* 1.69-10°
CBMC (8617, 13) 5.91-102 2.48-10° 4.26-10* 4.66-10* 4.13.102 3.73-10* 4.54-10°
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