Under review as a conference paper at ICLR 2024

POINT NEIGHBORHOOD EMBEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Point convolution operations rely on different embedding mechanisms to encode
the neighborhood information of each point in order to detect patterns in 3D space.
However, as convolutions are usually evaluated as a whole, not much work has been
done to investigate which is the ideal mechanism to encode such neighborhood
information. In this paper, we provide the first extensive study that analyzes such
Point Neighborhood Embeddings (PNE) alone in a controlled experimental setup.
From our experiments, we derive a set of recommendations for PNE that can help
to improve future designs of neural network architectures for point clouds. Our
most surprising finding shows that the most commonly used embedding based
on a Multi-layer Perceptron (MLP) with ReLU activation functions provides the
lowest performance among all embeddings, even being surpassed on some tasks by
a simple linear combination of the point coordinates. Additionally, we show that a
neural network architecture using simple convolutions based on such embeddings
is able to achieve state-of-the-art results on several tasks, outperforming recent
and more complex operations. Lastly, we show that these findings extrapolate to
other more complex convolution operations, where we show how following our
recommendations we are able to improve recent state-of-the-art architectures.

1 INTRODUCTION

In computer vision, point clouds are one of the most commonly used representations to process and
store 3D data. This is because point clouds are a compact representation and most 3D acquisition
hardware produces point clouds as their output. In the past years, the advances in 3D acquisition
hardware, and therefore the number of available point clouds, allowed the development of data-driven
methods to solve different 3D scene understanding problems. In particular, the pioneering work of
() opened the door to new neural network architectures which were able to process
point clouds directly. Since then, researchers have developed several convolution operations for point
clouds trying to mimic the success of Convolutional Neural Networks (CNN) for images (
. 2019; » 2019; » 2018; » 2018; » 2022).
The most commonly used convolution operations for point clouds can be divided into two main
groups based on the embedding function used to encode the neighborhood information of each
point: Kernel Points (KP) embeddings and MLP-based embeddings. The KP-based embeddings
define a set of points in the receptive field and a correlation functlon to compute the embedding of
each neighboring point (,). MLP- based
embeddings, on the other hand, use an MLP to learn the embeddmg functlon (
,). However, prev10us work has presented such PNE
as part of a convolutlon operatlon and little attention has been given to which of these embedding
mechanisms improve learning and what are desirable properties for such embeddings.

To fill this gap, in this work, we present the first extensive study in a controlled experimental setup
that analyzes the performance of different PNE on several downstream tasks. From our experiments,
we derive a set of best practices to improve PNE design that will help the development of future
neural network architectures. Among our findings, we show that, in general, KP embeddings provide
better performance than commonly used MLP embeddings. Surprisingly, our experiments show that
commonly used MLP-based embeddings with ReLU (,) activation functions provide
the lowest performance of all, and in some cases do not provide an improvement over the use of the
point coordinates directly. Moreover, we show that the neighborhood selection mechanism plays a
crucial role in the final performance of the model, where a Ball-query (BQ) method is more stable

Under review as a conference paper at ICLR 2024

than the commonly used k-Nearest Neighbors (KNN). We also show how a neural network using such
embeddings in a simple convolution operation can achieve state-of-the-art results on several tasks,
improving over recent and more complex convolution operations and architectures. Lastly, we show
how our recommendations can be used to modify existing convolution operations, leading to better
performance and more stable training. The code will be made publicly available upon acceptance.

2 STATE OF THE ART

Neural network architectures to directly process unstructured point clouds have been an active area of
research in the last few years. The groundbreaking work of () proposed the PointNet
architecture. This neural network processed each point coordinate independently by an MLP which
resulting features were then aggregated over the whole point cloud to perform a final prediction.
Later, the same authors proposed an extension of such architecture, PointNet++ (,), in
which they used similar ideas but in a hierarchical design, imitating conventional CNNs for images.
After, several authors followed up on these works and proposed more advanced neural network
architectures: (), (), (), and ()
proposed convolution operations based on KP embeddings. On the other hand,

() and () investigated operations where the embedding is learned with an MLP.

Despite the efforts to develop a successful convolution operation for point clouds commonly used
benchmarks were dominated by sparse d1screte convolutions (,).
However, recent research (s s) has shown that the improvements
brought by such methods came from the data augmentation and training strategies rather than the
convolution operation. These works proposed simple MLP-based convolutions that are able to achieve
new state-of-the-art results on several data sets. Moreover, in a similar line of research, several authors
have proposed MLP-based convolution operations using different self-attention mechanisms (

) which have been shown also to outperform sparse convolutions.

> 5 s s

3 BACKGROUND: CONVOLUTION OPERATION

In the core of most neural network architectures for point clouds, there is a convolution operation
that detects patterns at each point location. In this paper, we use a general definition of convolution
operation, that encompasses several existing works.

I
Flx)=>" Y F(y)kelely —x)) (1)

c=0yeN(x)

where F!(x) is the feature c of layer [in position x, A/(x) is the set of neighboring points of x, y is
a neighboring point of x, « is the learnable continuous kernel, and e is the embedding function.

Note that in this definition, x and y do not have to belong to the same point cloud, which allows using
the convolution to transfer features between different point clouds. Also, note that this definition
of convolution does not capture all ex1st1ng convolution operations such as recent attention-based
operations (,). To incorporate such architectures, the
input to the embeddmg e should be updated to take the features of points z and y instead. However,
we use this simple framework to analyze the embedding functions, and, as we will show later, the
insights gained from this work can be used to improve embeddings on more complex operations.

Neighborhood Neighborhood selection is a design decision that can significantly impact the
performance of the final convolution operation independently of the neighborhood embedding used.
Moreover, different embeddrngs might perform differently based on the neighborhood selection.
Several methods (, ,) have used kNN to select the neighboring points
of a given position x. This method simplifies the code design in common learning frameworks that
work with tensors since it ensures that each point has the same number of neighbors. However, this
method can generate receptive fields w1th different sizes for two locations in space due to variable
point densities (, ; ,) Another commonly used approach is to use
ball-query (; ,) to select all
points at a distance 7 to the query pomt X. Contrary to kNN this approach has a fixed receptive field

Under review as a conference paper at ICLR 2024

Kernel Point Embeddings
Gaussian Triangular Box

None

MLP Embeddings
n GELU RelLU

Si
Emb. Grads Emb. Grads Emb. Grads

Figure 1: Different point neighborhood embeddings visualized in 2D. Colors represent the absolute
value in each embedding dimension. Next to each embedding, we illustrate the gradient norm. Top:
Point neighborhood embeddings based on kernel points with different correlation functions, Box,
Triangular, and Gaussian functions. Bottom: Point neighborhood embeddings based on MLP with
different activation functions, ReLU, GELU, and Sin activation functions. Moreover, the axis direction
of each dimension is represented with a line. Right: Direct 3D coordinates are used as embedding.

Grads

independent of the point density. However, it makes the implementation of convolutions cumbersome
due to the variable number of neighbors. In this work, we test all PNE with both approaches.

Embedding function In this work, we define the neighborhood embedding function e as a function
of the relative neighbor position y — z, e : R® — R¥, where F is the dimension of the embedding.
This function can be any type of function that captures the shape of the neighborhood and helps train
the kernel, e.g. identity function, point correlations, or can even be learned by a small MLP.

Kernel We define our kernel as a function that takes as input the embedding dimensions of each
neighbor and predicts the kernel value used in the convolution operation, x : R¥ — R!. This function
is usually learned and the one performing the detection of patterns. Multiple definitions of x exist,
but, here we use a simple linear combination of the input embedding dimensions. When put together
for all the input and output features of a layer, the kernel is learnable tensor £ € R'*O*F where I is
the number of input features, O is the number of output features, and E is the embedding size.

4 POINT NEIGHBORHOOD EMBEDDINGS

In this section, we discuss the most commonly used neighborhood embedding mechanisms in point
convolutional neural networks and new embedding mechanisms derived from other architectures.

4.1 KERNEL POINT EMBEDDINGS

Several authors have suggested using as embedding the correlation to a set of kernel points placed on
the receptive field (Thomas et al., 2019; Atzmon et al., 2018; Mao et al., 2019). These methods can
be structured along two axes: correlation function used and position of kernel points.

4.1.1 CORRELATION FUNCTION

The correlation function of a KP embedding is a function that defines the correlation between the
neighboring point and the kernel points. Next, we analyze existing correlation functions.

Box. The correlation function most similar to discrete convolutions is the box function. This
function has been used in the past in cartesian (Hua et al., 2018) or in spherical coordinates (Lei et al.,
2019) to encode the neighborhood information. More recently, this approach has been used in discrete
3D transformer architectures to encode the relative position of points within a voxel (Lai et al., 2022).

Under review as a conference paper at ICLR 2024

An illustration of this correlation function and its gradients w.r.t. the point coordinates is depicted
in Fig. 1. When analyzed, we can see that each function used to compute the dimensions of the
embedding has independent support, which results in a point embedding similar to one-hot encoding
where only one dimension has a value equal to one and the rest are zeros. Moreover, we can see that
the support of the embedding is equal to the receptive field, i.e. all points inside of the receptive
field have an embedding with a norm higher than zero. We can also see that this embedding function
is not continuous. Lastly, with this embedding, two different points can have the same embedding.
When looking at the gradients, we can see that point coordinates have zero gradients everywhere in
the receptive field, which might make this embedding not suited for tasks where gradients for point
coordinates are required, e.g. generative models.

Triangular. () proposed a triangular function as correlation function, defined as:

ej(x) = max (1 — ”ijX”,O> 2)

where p; is the j kernel point, and o is a parameter that controls the extent of the embedding function.
See Fig. | for an illustration. This embedding, contrary to the Box embedding, is continuous. A
variation of a point coordinate results in most cases on a different embedding. Moreover, with the
correct o, the support of the embedding is equal to the receptive field. When looking at the gradients,
we can see that gradients w.r.t to point coordinates are higher than zero. However, we can see that this
embedding function is not differentiable due to the discontinuities introduced by the max function.

Gaussian. Several authors have suggested to use Gaussian functions as a correlation function (
, ; ,). This approach uses a Gaussian centered at each kernel point:
—lp;—xI?
ej(x) =e 202 3)
where o controls the extent of the function. This embedding has similar properties as the Triangular
embedding. However, their main difference is that this embedding is differentiable, see Fig. 1.

4.1.2 KERNEL POINT POSITIONS

Another important design choice of KP embeddings is the location of the kernel points. In the
following paragraphs, we discuss existing choices of kernel points arrangement.

Regular grid. Most of the works that rely on Box (; ,)
and Gaussian (,) correlation functions proposed ?* ﬁf
to use kernel point positions followmg aregular grid structure. This setup is a natural
evolution of discrete convolutions, where the space is discretized into voxels. However, J}

for continuous point positions and Radial Basis Function (RBF) such as Gaussian or
Triangular functions, all areas might not be part of the support. The accompanying
figure illustrates this in 2D. Note that this effect increases in higher dimensions.

Platonic solids. () suggested optimizing the point posi-
tions in a pre-processing step to guarantee equal coverage of the receptive field.
This process resulted in the vertex positions of platonic solids for a specific number

of points. The accompanying figure presents the kernel point arrangement following

the vertices of an icosahedron. This kernel point arrangement is more suited for

continuous point coordinates since the space is equally covered by the correlation

functions and does not suffer from the same problems of a regular grid placement.

Adaptative locations. () also proposed to learn these kernel point positions from
a previous convolution operation with fixed kernel point positions. However, this method requires
additional regularization losses to push the kernel point locations to the surface of the patch.

4.2 MULTI-LAYER PERCEPTRON EMBEDDINGS

One of the most commonly used PNE is to use a single-layer MLP followed by an activation
function (, ; , ; , ; , ;):

e(x) = a(Wx +b) 4

Under review as a conference paper at ICLR 2024

where « is the activation function. This choice of embedding function is due to the universal
approximation properties of such networks. Most of existing works have used a ReLLU (,

) activation function as their choice of . In the following paragraphs, we describe this choice of
activation function and propose to use two additional activation functions.

ReLU. The ReLU activation function (,) clamps negative values to zero. Fig. 1
illustrates the resulting embeddings and their gradients. We can see that the support of embedding
dimensions overlaps, which can make two dimensions of the embedding redundant. Moreover, the
support of the embedding might not be equal to the receptive field, as there can be areas for which
all embedding dimensions are equal to zero. When looking at the gradients, we can see that this
embedding is not differentiable with zero-gradient areas, which might make learning W difficult.

GELU. Extensive research efforts have been devoted to finding a differentiable version of the

ReLU activation function (, ; s). Recent state-of-the-art
models in different areas of computer vision (, ja; ;a) have switched ReLU activation
functions (R) by GELU activation functions (,), leading to

improved performance on several tasks. In this paper, we propose to use GELU activation functions on
MLP-based PNE. This activation function is defined as z®(z) where ®(x) is the Gaussian cumulative
distribution function. Fig. 1 illustrates the resulting embeddings and their gradients. We can see
that we obtain almost the same embedding as the one obtained with the ReL.U activation function.
However, when we look at the gradients we can see that not only the embedding is differentiable on
the whole receptive field but we also have gradients higher than zero almost everywhere.

Sin. Recent works on implicit representations using MLP have proposed to use trigonometric

functions as activation functions (,) or as the initial embedding of world posi-
tions (,). This approach is related to the Fourier Transform where spatial coordinates
are decomposed into different frequencies. Recently, () also suggested using such

an approach for point cloud learning. Similar to these works, we use the sin function as a possible
activation function, see Fig. 1. We can see that the embedding is differentiable with gradients higher
than zero almost everywhere in the receptive field. Compared to GELU, sin activation function
provides higher gradients to the central point, whereas GELU has almost zero gradients when the
biases are initialized to zero. More importantly, for the sin activation function, the range of the
embedding is restricted to the range [—1, 1], while in GELU it is unbounded for the positive axis.
This might pose a problem for kNN neighborhoods with outlier points.

5 EMBEDDING EVALUATION

In this section, we describe the experiments carried out to evaluate the different PNE.

5.1 NETWORK ARCHITECTURE

In our experiments, we use an encoder-decoder architecture. The input point cloud is processed
using convolutions and a set of Metaformer blocks (R) with convolutions at their
core. The process is repeated for different point cloud resolutions obtained using the Cell-Average
method (s), increasing the cell size in each level by a factor of two. To transfer
features between different point clouds, we use a convolution operation. For classification tasks,
we perform global pooling on the last level and a linear layer performs the final predictions. For
segmentation, we use a decoder with skip connections similar to ().

5.2 PNE

We evaluate three different MLP embeddings by selecting different activation functions, ReLU,
GELU, and Sin functions. We use an embedding dimension of E = 16. Moreover, we evaluate three
different KP embeddings by selecting different correlation functions, Box, Triangular, and Gaussian.
As kernel points, following the motivation of kernel point placement described in SubSec. 4.1.2, we
place 12 kernel points on the vertices of an icosahedron. Moreover, we create an additional kernel
point on the center of the receptive field, resulting in £/ = 13 embedding dimensions. Lastly, we also

Under review as a conference paper at ICLR 2024

Table 1: Comparison of different PNE on the tasks of classification, ScanObjNN, and semantic
segmentation, ScanNet.

Neigh. Emb. Type ScanObjNN ScanNet
Acc mAcc mloU mAcc
Box 92.5 +£02 91.1 +04 72.7 £03 80.7 + 04
KP Trian 92.6 +0.2 91.0 £ 02 72.4 +05 80.4 +03
Gauss 929 +06 N 91.6+07 EEEE 731403 Emmm 80.8 +02
BQ ReLU 91.1 406 89.6 + 07 714 +06 794 +07
MLP GELU 92.8 +0.2 914 +03 71.9 £ 04 80.0 04
Sin 919 +£0.1 Em 90.6 £0.1 = 724 +03 EE 80.1 £ 0.4 mm
None 924 +0.1 91.1 +0.1 71.1 £03 78.9 +0.1
Box 91.3 +05 89.9 +08 722 £02 80.3 +02
KP Trian 914 +08 90.0 +0.7 723 +03 79.9 02
Gauss 91.0 +£05 89.2+03 72.5 +£0.1 . 80.6 + 0.2 mm
KNN ReLU 89.9 + 04 88.0 + 0.8 71.0 + 04 78.9 + 06
MLP GELU 91.0 +£0.7 89.8 + 1.1 71.0 £03 79.1 £02
Sin 92.2 +0.1 m 90.6 £ 0.1 m 72.1 £02 N 79.8 £0.1 E
None 90.1 +£09 88.3 +0.1 704 +0.2 78.8 £0.2

evaluate not using an embedding at all, where the point coordinates are directly used as embedding
dimensions, resulting in ¥ = 3 embedding dimensions.

Since different embedding mechanisms have different embedding dimensions F, the size of the tensor
representing the kernel significantly varies, x € R’*9*¥_ This makes the resulting models have
different number of parameters, making them difficult to compare. Therefore, we apply a learnable
matrix that transforms the resulting embedding dimension to a common embedding dimension size,
E = 16 in our experiments, which results in an equal number of parameters for the same architecture.

Moreover, since neighborhood selection can play a crucial role in the performance of an embedding,
we test all experiments with kNN and BQ neighborhood selection methods. We use k£ = 16 in kNN
and, in BQ, we use as radius = sd, where d is the cell size of the subsampled point cloud and s
a scale factor that selects on average 16 neighbors over all layers (s = 2). Moreover, for BQ we
position the kernel points at distance .6r and at distance 1.2 in kNN, being r/ the average neighbor
distance over the whole training set.

5.3 DATASETS

We evaluate all PNE on two tasks, classification and semantic segmentation. While in classification
a model can perform the task from sparsely sampled point clouds, in segmentation the model is
more sensitive to small variations of point positions. We believe these two tasks are representative of

common tasks in 3D computer vision. Therefore, we use the ScanObjNN (,) dataset for
classification and the ScanNetV2 (s) dataset for semantic segmentation.
ScanObjNN (,). This dataset is composed of 3D scans of real objects for which each

needs to be classified into one of 13 different classes. The dataset provides 2, 315 objects for training
and 587 for testing. The raw scans contain 3D coordinates, [z, y, z], for each point, its normal,
[z, Ny, 1], and color, [r, g, b]. The dataset defines three different variants of the task. OBJ_.ONLY,
where only points of the object are provided to the network, OBJ_BG, where points from the object
and the surrounding objects are input to the model, and PB_T50_RS, where the objects are perturbed
by random rotations, scaling, and translations. We evaluate different PNE on OBJ_ONLY, and
compare to state-of-the-art methods on OBJ_BG and PB_T50_RS. Performance is measured with
overall accuracy and per class mean accuracy.

Under review as a conference paper at ICLR 2024

0.66 1.07
. o02022) 5-0.3 (92.9) 5-0.4 (92.8) 05 gq B scanobiN 5] KNN = %
'5 ScanNetV2
(2]
3
(U]
. o=03(913) 5=0.4 (92.6) 6=0.5 (92.33) : 00
8
) . Figure 3: Variance of the normalized distance to
£ the farthest point in each neighborhood for the

different layers of the network. We can see that
Figure 2: RBF correlation functions with different BQ neighborhood selection maintains a low vari-
o and their classification performance. Small o ance even for the ScanObjNN dataset composed
makes the support smaller than the receptive field. of single shapes. kNN, on the other hand, has a
Big o makes the functions overlap. higher variance on the neighborhood selection.

ScanNetV2 (R). This dataset is composed of real 3D scans of 1, 513 different rooms.
Among the different tasks of this benchmark, we focus on the task of semantic segmentation where
the network has to predict the class of the object to which each point belongs among 20 different
classes. For each point in the 3D scan, 3D coordinates, [z, y, z|, its normal, [n,, n,,n.], and color,
[r, g, b], are provided. The 1,513 rooms are divided into two splits, 1,201 rooms for training and
312 rooms for validation. Additional 100 rooms are provided for testing where the ground truth
annotation is not available. We use the validation set to compare PNE and the validation and test set
to compare to other methods. Performance is measured with per class mean IoU and accuracy.

5.4 RESULTS

Tbl. 1 presents our main results, where the mean and standard deviation are computed over three runs.

KP. We can see that all KP embedding methods achieve good performance on all tasks, always
improving over not having an embedding at all. Moreover, we can see that all correlation functions
achieve similar performance on all tasks, with Gaussian correlation function being the one that
obtains slightly better performance. Fig. 2 presents the results on the task of object classification
when we increase/decrease the parameter o of the two RBF used as correlation functions, Triangular
and Gaussian. Increasing o makes the support of the correlation functions overlap, leading to a
decrease in performance. On the other hand, decreasing o, reduces the overlap, but makes some areas
of the receptive field not part of the support.

MLP. When we look at the results obtained by MLP-based PNE, we can see that the most com-
monly used embedding, using a ReLU activation function, achieves the worst performance of all.
For classification, this method achieves even worse performance than not using an embedding at
all, indicating that this embedding is not a good option for capturing the neighborhood information.
However, when we apply the two activation functions suggested in this paper, GELU and Sin, we can
see that the performance of the model increases, always surpassing not using an embedding. When
these two methods are compared, we can see that Sin activation function surpasses GELU in almost
all tasks. This difference increases significantly for KNN neighborhoods, where the restricted range
of the Sin function is able to better cope with outlier points.

KP vs MLP. Results show that using a KP-based embedding on average performs better than using
an MLP-based embedding. However, when using the Sin activation function in MLP embeddings the
performance gap is reduced and in some cases even surpassing all KP embeddings.

kNN vs BQ. When comparing the results of PNE for different neighborhood selections, we can
see that on average, BQ neighborhood selection provides a performance improvement over kINN.
We believe this might be the result of the variable receptive field of KNN. This will result in a large
embedding norm for some MLP-based embeddings, ReLU and GELU, and some outlier points not
being part of the support for some KP-based embeddings, Gaussian and Triangular. To confirm that
this variance exists, we analyze the receptive field extent for KNN and BQ neighborhood embeddings.
Fig. 3 presents the variance of the distance to the farthest point in each neighborhood normalized
by the cell size used for subsample each level. We can see that for BQ, the variance is low for all

Under review as a conference paper at ICLR 2024

layers and datasets. For kNN, we can see that this variance is higher. Moreover, we can see that
for object classification, this variance significantly increases for deeper layers of the network. Point
clouds in this task represent single objects and, on lower point cloud resolutions, with kNN translates
to large receptive fields for some shapes. For the task of semantic segmentation, objects are usually
surrounded by other objects, making the receptive field less variable. This might explain the poor
performance of kNN on the ScanObjNN dataset.

5.5 BEST PRACTICES

In this section, we summarize a set of good practices for selecting PNE on convolution operations for
points clouds: (1) Overall, KP-based neighborhood embeddings provide the most stable performance
when compared to MLP. (2) Despite common practices, for KP embeddings, Triangular correlation
functions provide slightly worse performance than Gaussian correlation functions. (3) Contrary to
current trends in the field, ReLU activation functions should be avoided on MLP embeddings, and
continuous differentiable activation functions such as GELU and specially Sin should be used instead.
(4) As neighborhood selection method, BQ presents an advantage over kNN where the variance of
the receptive field extent highly depends on the tasks at hand.

From the experiments presented in this paper, we summarize a set of best practices for designing
new PNE: (1) The results suggest that continuous and differentiable functions provide better learning
signal for the convolution operation, ReLU vs. GELU and Triangular vs. Gaussian. (2) Moreover,
the results in Fig. 2 suggest that the support of the embedding should be equal to the receptive field.
(3) Lastly, having a bounded range helps the embedding function to cope with outlier points in KNN.

5.6 COMPARISON TO STATE-OF-THE-ART

In this section, we show how a neural network architecture using as convolution a simple linear
combination of KP embeddings with Gaussian correlation functions is able to outperform other more
complex architectures. We compare our model to recenmethods on the semantic segmentation task of
the ScanNet v2 dataset and on the tasks OBJ_BG and PB_T50_RS from the ScanObjNN dataset.

Following common practices in the ScanNetV?2 dataset, we report mean intersection over union on the
validation and test sets. Tbl. 2 shows that our model is able to outperform all standard convolutional

approaches based on points such as PointNet++ (,), PointConv (,),
KPConv (,), or PointMetaBase (s), and all standard convolutional
approaches based on voxels such as SparseConv (,), MinkowkiNet (s

), or MinkowskiNet+RetroFPN (,). When compared to recent transformer-based
architectures such as Stratified Transformer (,), PointConvFormer (,),
Point Transformer v1 (R) and v2 (R), Fast Point Transformer (

s), or OctFormer (s), we can see that our model also surpasses most of these
methods, only outperformed by Point Transformer v2 (,) and OctFormer (,)
on the validation set, and by OctFormer (,) on the test set. These results show that using a

well-designed PNE with a simple convolution can achieve state-of-the-art results, improving over
some of the recent more complex operations based on attention. However, as we show in the next
section, the findings presented in this paper can be used to improve these complex operations too.

Tbl. 3 presents the results of our model on the different tasks of the ScanObjNN data set. We
can see that our model, despite using a simple linear combination of the embedding dimensions

as convolution, significantly outperforms existing methods such as MVTN (,)
on all of the tasks, and even recent architectures such as PointMLP (,), the recent
PointNeXt (s), or even pre-trained models such as P2P-HorNet (R).

5.7 IMPROVING OTHER ARCHITECTURES

Lastly, we evaluate how the recommendations of this paper can improve existing and more complex
convolution operations and architectures. We select the recent PointTransformerv?2 architecture (

s). In the attention modules of this architecture, the operation includes relative positional
information of the neighboring points to modulate the attention. This relative position is encoded
with an MLP with hidden neurons equal to the number of features of the layer and a ReLU activation
function. Following the recommendations listed in this paper, we substitute this embedding with an

Under review as a conference paper at ICLR 2024

Table 2: Mean IoU on the test and validation sets Table 3: Results on the test sets of the ScanOb-

of ScanNet V2. jNN dataset.

Method Input Res. Val. Test Method OBJ.BG PB_T50_.RS
PointNet++ points — 535 557 MVTN 92.6 82.8
PointConv points - 61.0 66.6 PointMLP - 85.4
KPConv points 4cm 69.2 68.4 PointNeXt - 87.7
SparseConv voxel 2cm 693 725 P2P-HorNet - 89.3
Point Transf. points — 70.6 -
PointMetaBase points - 72.8 714 Ours 2.9 204
Fast Point Transf. points - 72.1 - Validation mioU Validation Loss
MinkowskiNet voxel 2cm 722 73.6

+ RetroFPN voxel 2cm 740 744 il
Stratified Transf. points 2cm 74.3 73.7 p——
PointConvFormer points 2cm 74.5 749
Point Transf. V2 points 2cm 754 75.2 Original (73.0) M None (73.3) M MLP-GELU (73.8)
OctFormer voxels lem 75.7 76.6

- Figure 4: Validation mIoU and loss curves of
Ours points 2cm 749 75.5 PointTransformerv2 using different PNE.

MLP with a differentiable activation function, GELU, and an embedding dimension of 16. Moreover,
we also evaluate the performance of the model if no embedding is used and the attention is modulated
by a simple linear combination of the point coordinates. Fig. 4 shows the results of this experiment
for the validation set of the ScanNetV2 dataset, with a sampling resolution of 5 cm. First, we can
see that by not using any embedding the performance of the model slightly improves, supporting the
findings of our previous experiments and indicating that an MLP with a ReLU activation function is
usually not adequate to process the relative position of neighboring points. Moreover, we can see
that the improved embedding (MLP-GELU) provides an increase in performance over the standard
architecture. More importantly, Fig. 4 shows that both, not using an embedding and MLP-GELU,
result in a more stable training, obtaining better mIoU and, in the case of MLP-GELU, less over-fitting.

6 LIMITATIONS

Although the recommendations and findings of this paper can help to improve existing architectures
or to design new ones, the behavior of these might vary depending on each specific operation or
architecture. Therefore, even though these recommendations can serve as a good starting point for
the initial steps of the network design, all embedding types should be tested.

7 CONCLUSIONS

In this paper, we have shown that neighborhood embeddings are a key component in the design of
learning architectures for point clouds. Moreover, we have presented the first extensive evaluation of
these embeddings in a controlled experimental setup. From these experiments, we derive a set of best
practices to help future designs of convolution operations or neural network architectures for point
clouds. These recommendations contradict established design choices such as the use of MLP embed-
dings with ReLU activation functions or kNN as a neighborhood selection method. Furthermore, we
have shown that an architecture based on a simple convolution that uses such improved embeddings
is able to achieve state-of-the-art results on several downstream tasks, outperforming most of the
existing methods. Lastly, we have shown how our recommendations can be used to improve existing
more complex convolution operations such as PointTransformerv2 (s).

We hope our work improves the development of future architectures for point clouds and is able to
inspire future research in the development of learning operations for point clouds or further improve
existing ones.

Under review as a conference paper at ICLR 2024

REFERENCES

M. Atzmon, H. Maron, and Y. Lipman. Point convolutional neural networks by extension operators. ACM
Transactions on Graphics (Proc. SIGGRAPH), 2018. 1,2, 3,4

Alexandre Boulch. Convpoint: Continuous convolutions for point cloud processing. Computers & Graphics,
2020. 2

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski convolutional
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 2,8

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). In International Conference on Learning Representations, ICLR, 2016. 5

MMDetection3D Contributors. MMDetection3D: OpenMMLab next-generation platform for general 3D object
detection. https://github.com/open—-mmlab/mmdetection3d, 2020. 15

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Niefiner.
Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2017. 6,7

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on
Learning Representations (ICLR), 2021. 13

Caron et al. Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021a. 5

Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, ICLR, 2021b. 5

Yu et al. Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022a. 5

Zhuang et al. A convnet for the 2020s. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022b. 5

Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network. Biological Cybernetics, 1975.
1,5

Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3d semantic segmentation with submanifold
sparse convolutional networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 2, 8

Abdullah Hamdi, Silvio Giancola, and Bernard Ghanem. Mvtn: Multi-view transformation network for 3d shape
recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021. 8

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint, 2016. 5

Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vazquez, Alvar Vinacua, and Timo Ropinski. Monte carlo
convolution for learning on non-uniformly sampled point clouds. ACM Transactions on Graphics (Proceedings
of SIGGRAPH Asia 2018),2018. 1,2, 4

Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Pointwise convolutional neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. 3, 4

Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollar. Panoptic feature pyramid networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. 5, 13

Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia. Stratified
transformer for 3d point cloud segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022. 2,3, 8

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural networks without
residuals. In International Conference on Learning Representations (ICLR), 2017. 14

H. Lei, N. Akhtar, and A. Mian. Octree guided CNN with spherical kernels for 3D point clouds. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019. 3, 4

10

https://github.com/open-mmlab/mmdetection3d

Under review as a conference paper at ICLR 2024

Haojia Lin, Xiawu Zheng, Lijiang Li, Fei Chao, Shanshan Wang, Yan Wang, Yonghong Tian, and Rongrong Ji.
Meta architecture for point cloud analysis, 2022. 1, 2,4, 8

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019. 14

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local geometry in
point cloud: A simple residual MLP framework. In International Conference on Learning Representations
(ICLR), 2022. 8

Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Interpolated convolutional networks for 3d point cloud
understanding. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2019. 1, 2,
3,4

Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, and Francis Engelmann. Mix3D: Out-of-Context Data
Augmentation for 3D Scenes. In International Conference on 3D Vision (3DV), 2021. 14, 15

Chunghyun Park, Yoonwoo Jeong, Minsu Cho, and Jaesik Park. Fast point transformer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022. 8

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep learning on point sets for 3D
classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR),2017a. 1,2

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. Conference on Neural Information Processing Systems (NIPS), 2017b. 2, 8

Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Hammoud, Mohamed Elhoseiny, and Bernard
Ghanem. Pointnext: Revisiting pointnet++ with improved training and scaling strategies. In Advances in
Neural Information Processing Systems (NeurlPS), 2022. 1,2, 8

Danila Rukhovich, Anna Vorontsova, and Anton Konushin. Fcaf3d: fully convolutional anchor-free 3d object
detection. In European Conference on Computer Vision, 2022. 15

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In Advances in Neural Information Processing
Systems (NeurlPS), 2020. 5

Leslie N. Smith and Nicholay Topin. Super-convergence: Very fast training of residual networks using large
learning rates. arxiv preprint, 2017. 14

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal,
Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn high frequency
functions in low dimensional domains. Advances in Neural Information Processing Systems (NeurIPS), 2020.
5

Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, Francois Goulette, and
Leonidas J. Guibas. Kpconv: Flexible and deformable convolution for point clouds. Proceedings of
the IEEE International Conference on Computer Vision (ICCV),2019. 1,2,3,4,5,8, 13

Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh Nguyen, and Sai-Kit Yeung. Revisit-
ing point cloud classification: A new benchmark dataset and classification model on real-world data. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2019. 6

Peng-Shuai Wang. Octformer: Octree-based transformers for 3d point clouds. ACM Transactions on Graphics
(SIGGRAPH), 2023. 8

Ziyi Wang, Xumin Yu, Yongming Rao, Jie Zhou, and Jiwen Lu. P2p: Tuning pre-trained image models for point
cloud analysis with point-to-pixel prompting. Advances in Neural Information Processing Systems (NeurlPS),
2022. 8

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point clouds. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019. 1,2,4,8

Wenxuan Wu, Qi Shan, and Li Fuxin. Pointconvformer: Revenge of the point-based convolution, 2023. 2, 4, 8

Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, and Hengshuang Zhao. Point transformer v2: Grouped vector
attention and partition-based pooling. In Advances in Neural Information Processing Systems (NeurlPS),
2022. 2,4,8,9

11

Under review as a conference paper at ICLR 2024

Peng Xiang, Xin Wen, Yu-Shen Liu, Hui Zhang, Yi Fang, and Zhizhong Han. Retro-fpn: Retrospective feature
pyramid network for point cloud semantic segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2023. 8

Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan Qi. Paconv: Position adaptive convolution with
dynamic kernel assembling on point clouds. 2021. 14

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and Shuicheng Yan.
Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022. 5, 13

Renrui Zhang, Liuhui Wang, Yali Wang, Peng Gao, Hongsheng Li, and Jianbo Shi. Parameter is not all you
need: Starting from non-parametric networks for 3d point cloud analysis. 2023. 5

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H.S. Torr, and Vladlen Koltun. Point transformer. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), 2021. 2, 8

12

Under review as a conference paper at ICLR 2024

A NETWORK ARCHITECTURE

In this section, we describe the main components of the proposed neural network architecture used in
our experiments, see Fig. 5 for an overview.

A.1 ENCODER

The encoder takes as input the point cloud

and computes five down-scaled versions of M Architecture H
the point cloud using the Cell Average (CA) e O Encoder [Decoder 5
method (,). The first down-

scaling is performed based on a hyper-parameter
of the network that defines the size of the voxel
cells used in the CA algorithm, d. For the four
remaining downscale operations, the cell size
is computed by doubling the cell size from the
previous level. Then, the initial features are com-
puted using a simple linear layer. After, a set of
Metaformer blocks (s) are used to
transform the initial features before transferring
them to the next down-scaled point cloud using a
convolution operation. This process is repeated
until we reach the last down-scaled point cloud.
For a classification task, the average of the point
features is computed and passed through a lin-
ear layer to perform the final prediction. For a
segmentation task, the resulting features of each
level are used as input by the decoder.

Figure 5: Architecture of the model used in our ex-
periments. The encoder processes the input point
cloud using a set of Metaformer blocks (s
). The process is repeated for different resolu-
tions. For classification, the output of the encoder
is processed by a linear layer. For segmentation, a
decoder up-scales the features of the encoder.

Metaformer Blocks. Recent work (R) has shown that architectural blocks are the
driving force behind the success of vision transformer architectures and not the attention modules.
Therefore, we adopt this block design in our architecture and substitute the attention module of
transformers with our point convolution. Each block is composed of two residual blocks. The first
residual block computes feature updates using a point convolution operation. The second residual
block computes feature updates using a point-wise MLP with two layers in which the first layer
doubles the number of features and the second one reduces it to the desired number of outputs.

Patch Encoder. For the task of semantic segmentation, small cell size usually increases the
performance of the model since increases the number of points used by the model. However, these
also increase the computational burden of the model. Therefore, in order to take advantage of small
cell sizes keeping a small computational cost, we use a patch encoder before the main encoder
network, similar to the patch encoder used in vision transformer architectures (s

). This patch encoder extracts features with four convolutional layers from two additional point
levels computed using smaller cell sizes.

A.2 DECODER

The decoder takes as input the feature maps for each of the down-scaled point clouds from the
encoder and up-samples the features to the output point cloud for which it performs a final prediction.
Our decoder follows a similar architecture as the one proposed by (). First,
we perform a progressive up-sampling using our point convolutions from the lowest level until the
first down-scaled point cloud. Moreover, we use skip connections by summing features from the
encoder and decoder to improve information and gradient flow. This results in a feature map for each
down-scaled point cloud. Then, we up-sample each feature map to the first down-scaled point cloud
using a single up-sampling operation. The five resulting feature maps are then summed together to
create the final feature map. A final convolution up-samples these features to the final positions for
which we want to perform a prediction and are processed by a single-layer MLP.

13

Under review as a conference paper at ICLR 2024

B ADDITIONAL EXPERIMENTS

B.1 OBIJECT DETECTION ON SCANNET

We, additionally, evaluate all PNE on the task of object detection on the ScanNetV2 dataset. The
dataset contains instances of objects from 18 different types of objects. The task consists of predicting
the bounding box and object class for each instance. Performance is measured on Average Precision
(AP) with two different IoU thresholds, 0.25 and 0.5.

Results. In this task, we can see similar results Table 4: Comparison of PNE on the task of
as the one reported for the tasks of classification gbject detection on ScanNetV2.

and semantic segmentation. KP embeddings pro-
vide an increased performance when compared to
MLP-based embeddings. Moreover, the continuous Neigh. Emb. Type Obj Det. ScanNetV2
correlation function Gauss performs better in all AP@25 AP@50
cases compared to Trian for KP embeddings. For

the MLP embeddings, contrary to other tasks, ReLU KP %(;zn 2(1)? 13?
activation function performs almost equally well as Gauss 62.7 2.2
GELU activation function and Sin under-performs BQ
in this task. Lastly, when we compare neighborhood ReLU 58.1 37.0
selection, BQ still provides slightly better results MLP GELU 8.3 38.0
than kNN as experienced in other tasks. Sin 36:3 339

None 56.5 344
B.2 SOFTMAX ACTIVATION FUNCTION Box 61.3 40.2

KP Trian 62.0 40.0
Other convolution operations have proposed to use Gauss 62.2 o)
a score function as point neighborhood embed- KNN ReLU 562 337
ding (Xu et al., 2021). This score function is com- MLP GELU 55:9 33:6
posed of an MLP followed by a Softmax function. Sin 553 332
In this experiment, we evaluate the viability of Soft-

None 52.5 28.3

max as a possible activation for the MLP-based
embeddings.

Results. Tbl. 5 presents the results of this experiment. We can see that an MLP-based embedding
with a Softmax activation function does not provide an improvement over all the other activation
functions tested. However, in the future, further analysis of other design decisions of the PAConv
operation, such as the aggregation method (MAX instead of SUM) or the addition of global coordi-
nates as input to the embedding function might result in a better performance when combined with
Softmax.

C EXPERIMENTAL SETUP

In our experiments, we used different experimental setups for each dataset. However, for both
datasets, we use AdamW (LLoshchilov & Hutter, 2019) optimizer and a OneCycleLR learning rate
scheduler (Smith & Topin, 2017) with a maximum learning rate of 0.005, an initial division factor of
10, and a final factor of 1000. We use a weight decay value of 1~* and clip the gradient’s norm to
100. Moreover, we drop residual paths based on the depth of the layer (Larsson et al., 2017) with
a maximum drop rate of 0.5. The final results of a run in our main experiments are computed by
accumulating the predictions of the last five saved models. The reported results are the average and
stddev of the performance over three different runs.

Classificaiton on ScanObjNN. For the ScanObjNN data set, we use the encoder described in
SubSec. A.1 with a number of features for each level equal to [32, 64, 128, 256, 512], a number of
blocks per level equal to [2, 3,4, 6, 4], and an initial grid resolution of d = 0.05. During training,
we use a batch size equal to 16 and use several data augmentation techniques to transform our input
point cloud: random rotation, mirror, random scale, elastic distortion (Nekrasov et al., 2021), jitter
coordinates, random adjustments of brightness and contrast of the point’s colors, and RGB shift.
During the evaluation, we perform a voting strategy with 30 test steps where logits are accumulated

14

Under review as a conference paper at ICLR 2024

Table 5: Results for the Softmax activation function when compared to other MLP designs.

Neigh. Task Metric MLP
Softmax RelLU GELU Sin
Class Acc 89.8 91.1 928 919
: mAcc 88.9 89.6 914 90.6
BQ Se mloU 70.8 71.4 719 724
& mAcc 78.6 79.4 80.0 80.1
Det AP@25 52.5 58.1 583 565
: AP@50 29.4 37.0 380 339
Class Acc 90.1 89.9 91.0 922
: mAcc 88.9 88.0 89.8 90.6
KNN Se mloU 7.6 71.0 710 721
g mAcc 79.6 78.9 79.1 79.8
Det AP@25 51.6 56.2 559 553
: AP@50 297 337 33.6 332

over different rotations over the up vector. All models were trained for 400 epochs on a machine with
a single Nvidia A6000.

Semantic segmentation on ScanNetV2. For the task of semantic segmentation on ScanNetV2
data set, we use an encoder-decoder architecture as described in Sec. A with a number of features for
each level equal to [64, 128,192, 256, 320], a number of blocks per level equal to [2, 3,4, 6, 4], and
an initial grid resolution of d = 0.1 m. We use the same number of features in the decoder as in the
encoder, and 128 features for the last upsample from all point cloud resolutions. During training, we
select rooms until we fill the batch budget of 500 K points, which usually results in 4 — 6 rooms per
batch. Moreover, we use several data augmentation techniques to transform our input point cloud:
random rotation, mirror, elastic distortion (s), random scale, translation, jitter
coordinates, random crop, random adjustments of brightness and contrast of the point’s colors, RGB
shift, and RGB jitter. Moreover, we mix 2 scenes inside the batch (R) with a
probability of 0.5. During the evaluation, as in the classification tasks, we use a voting strategy over
different rotations over the up vector. All models were trained for 600 epochs with 300 steps each on
a machine with a single Nvidia A6000.

For comparison to state-of-the-art methods, we increase the cell size of the initial subsample of
the encoder to d = 0.04 m. Moreover, we add a patch embedding module before the encoder that
processes two additional grid subsamples with resolutions of d = 0.02 m and d = 0.03 m with four
convolution layers to compute the initial features for the d = 0.04 m grid. For the final predictions on
the test set, we use an over-segmentation method as in ().

Object detection on ScanNetV2. For the task of object detection on ScanNetV2 data set, we use
as our backbone the same architecture as for semantic segmentation but reduce the number of blocks
per level to 2. Our detector is a single-stage detector following the designs of ()
but with an initial grid resolution of d = 0.1 m instead of the d = 0.01 m used in the paper. This
allows for faster training and inference at the cost of reduced AP. We implemented our detector using
the MMDetection3D (,) framework and used the standard hyperparameters for a
FCAF3D detector: We train for 12 epochs with a batch equal to 8 and an initial learning rate of 0.001
scaled by 0.1 after 8 and 11 epochs.

15

	Introduction
	State of the Art
	Background: Convolution Operation
	Point Neighborhood Embeddings
	Kernel Point Embeddings
	Correlation Function
	Kernel Point Positions

	Multi-layer Perceptron Embeddings

	Embedding Evaluation
	Network Architecture
	PNE
	Datasets
	Results
	Best Practices
	Comparison to State-of-the-Art
	Improving Other Architectures

	Limitations
	Conclusions
	Network architecture
	Encoder
	Decoder

	Additional Experiments
	Object Detection on ScanNet
	Softmax Activation Function

	Experimental setup

