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Abstract
Personalized federated learning (PFL) offers a
flexible framework for aggregating information
across distributed clients with heterogeneous data.
This work considers a personalized federated
learning setting that simultaneously learns global
and local models. While purely local training
has no communication cost, collaborative learn-
ing among the clients can leverage shared knowl-
edge to improve statistical accuracy, presenting
an accuracy-communication trade-off in personal-
ized federated learning. However, the theoretical
analysis of how personalization quantitatively in-
fluences sample and algorithmic efficiency and
their inherent trade-off is largely unexplored. This
paper makes a contribution towards filling this
gap, by providing a quantitative characterization
of the personalization degree on the tradeoff. The
results further offers theoretical insights for choos-
ing the personalization degree. As a side contri-
bution, we establish the minimax optimality in
terms of statistical accuracy for a widely studied
PFL formulation. The theoretical result is vali-
dated on both synthetic and real-world datasets
and its generalizability is verified in a non-convex
setting.

1. Introduction
Federated Learning (FL) (McMahan et al., 2017) has
emerged as a promising learning framework for aggregating
information from distributed data, allowing clients to collab-
oratively train a shared global model in a communication-
efficient manner. However, a critical challenge arising in
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the presence of various data across clients is data hetero-
geneity. In such cases, a single global model may fail to
generalize well to all clients, motivating the need for model
personalization. PFL enhances FL by learning personalized
models tailored to individual clients, and has demonstrated
strong empirical performance in various applications, such
as driver monitoring (Yuan et al., 2023), and mobile com-
puting (Zhang et al., 2024).

An important question in PFL is determining the degree
of personalization, which controls the transition between
fully collaborative training and pure local training. A higher
degree of collaboration (less personalization) typically re-
quires more frequent information exchange, potentially im-
proving learning accuracy when client data distributions
are similar. Conversely, increasing personalization reduces
communication costs by prioritizing localized training, but
may lead to higher generalization errors due to the limited
size of client datasets (Paragliola, 2022). Understanding
this trade-off is essential for optimizing model performance
under communication constraints.

Most existing works focus purely on the algorithmic per-
spective of PFL (Lin et al., 2022; Li et al., 2024b; Wang
et al., 2022; 2024b). However, the statistical accuracy of
the solutions obtained in PFL remains largely unexplored.
As a result, the connections between statistical accuracy,
communication efficiency, and their trade-offs are not well
understood, leaving a theoretical gap in understanding how
to select the optimal personalization degree. In this paper,
we fill in this gap by providing a fine-grained theoretical
analysis of a widely adopted PFL problem formulation given
by (2) that trains simultaneously local and global models.
We quantitatively analyze the influence of personalization
on both statistical and optimization convergence rates for
each of the local models. Specifically, our contribution can
be summarized as follows:

• Statistical Accuracy with Optimal Guarantee. We
provide a non-asymptotic statistical convergence rate of
the solution of Problem (2), revealing how personaliza-
tion degree influences the statistical accuracy of each local
model. In particular, as the personalization degree increases,
the rate approaches to that of pure local training, O(1/n),
where n is the sample size per client. Conversely, decreas-
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ing the personalization degree allows the models to utilize
information across all clients, achieving a rate closer to
O(1/(mn) +R2), where mn is the total sample size of all
clients and R quantifies the statistical heterogeneity of the
local datasets. We further establish the minimax optimality
of the derived statistical rates, demonstrating the tightness
of our analysis. To the best of our knowledge, this is the
first work to achieve such an optimality.

• Communication Efficiency under Personalization. On
the optimization aspect, we treat Problem (2) as a bi-level
problem and propose (stochastic) algorithms with an explicit
characterization of computation and communication com-
plexity. We establish that the communication cost of finding
an ε-solution is O(κ λ+µ

λ+L log 1
ε ) and the computation cost

in terms of gradient evaluations is O(κ log 1
ε ), where λ is

a parameter determining the personalization degree. This
demonstrates that a smaller λ, corresponding to a higher de-
gree of personalization, reduces communication complexity
without incurring additional computational overhead.

• Accuracy-Communication Tradeoff with Empirical
Validation. Building on our theoretical results for statistical
and optimization convergence, we quantitatively character-
ize the trade-off between statistical accuracy and communi-
cation efficiency in PFL and discuss practical insights for
selecting the personalization degree. We then conduct nu-
merical studies on logistic regression with synthetic data
and real-world data under our assumptions. The results
corroborate our theoretical findings. We further test the
numerical performance with CNN models, showing that
the theoretical results, though established under convexity
assumptions, generalize to non-convex settings.

2. Related Works
In recent years, FL has become an attractive solution for
training models locally on distributed clients, rather than
transferring data to a single node for centralized processing
(Mammen, 2021; Wen et al., 2023; Beltrán et al., 2023). As
each client generates its local data, statistical heterogeneity
naturally arises with data being non-identically distributed
between clients (Li et al., 2020; Ye et al., 2023). Given the
variability of data in a network, model personalization is
an appealing strategy used to improve statistical accuracy
for each client. Formulations enabling model personaliza-
tion have been studied independently from multiple fields.
For example, meta-learning (Chen et al., 2018; Jiang et al.,
2019; Khodak et al., 2019; Fallah et al., 2020) assumes all
local models follow a common distribution. By minimizing
the average validation loss, these methods aim to learn a
meta-model that generalizes well to unseen new tasks. Rep-
resentation learning (Zhou et al., 2020; Wang et al., 2024a)
focuses on a setting where the local models can be repre-
sented as the composition of two parts, with one common

to all clients and the other specific to each client. Our work,
however, differs in that we focus on a personalized FL set-
ting with a mixture of global and local models. Closely
related are multi-task learning methods (Liang et al., 2020)
and transfer learning methods (Li et al., 2022; He et al.,
2024a;b), but the statistical rate is established for either the
average of all models or only the target model. Therefore,
it remains unclear how personalization influences the sta-
tistical accuracy of each individual local model in these
settings.

In the FL community, personalized FL methods can be
broadly divided into two main strands. Different from the
works mentioned previously, studies here primarily focus
on the properties of the iterates generated by the algorithms.
One line of work (Arivazhagan et al., 2019; Liang et al.,
2020; Singhal et al., 2021; Collins et al., 2021) is based
on the representation learning formulation. Another line
of work (Smith et al., 2017; Li et al., 2020; Hanzely &
Richtárik, 2020; Hanzely et al., 2020; Li & Richtárik, 2024)
achieves personalization by relaxing the requirement of
learning a common global model through regularization
techniques. In particular, algorithms and complexity lower
bounds specific to Problem (2) were studied in (Li et al.,
2020; Hanzely et al., 2020; T Dinh et al., 2020; Hanzely &
Richtárik, 2020; Li et al., 2021), see Table 1 for a detailed
comparison. These works study Problem (2) from a pure
optimization perspective and have not provided how person-
alization influences statistical accuracy and, consequently,
the trade-off between statistical accuracy and communica-
tion efficiency.

There are only a few recent works we are aware of that
study the statistical accuracy of regularization-based PFL.
Specifically, Cheng et al. (2023) investigates the asymptotic
behavior of the (personalized) federated learning under an
over-parameterized linear regression model; neither a finite-
sample rate nor algorithms are provided. Chen et al. (2023c)
studies Problem (2) and establishes a non-asymptotic sam-
ple complexity. However, even with some overly strong as-
sumptions, their analysis cannot match the statistical lower
bound in most cases. Furthermore, neither of these works
reveals the trade-off. While (Bietti et al., 2022) studies the
influence of personalization in PFL, their focus is on the
trade-off between privacy and optimization error, leaving
the accuracy-communication trade-off unexplored.

Notation. Denote [n] := {1, 2, · · · , n}. ∥ · ∥2 denotes
the ℓ2 norm for vectors and the Frobenius norm for matri-
ces. For two non-negative sequences {an}, {bn}, we denote
an ≲ bn if an ≤ Cbn for some constant C > 0 when n is
sufficiently large. We also use an = O (bn), whose mean-
ing is the same as an ≲ bn. Õ(·) hides logarithmic factors.
For two real numbers a, b, we let a ∧ b = min{a, b} and
a ∨ b = max{a, b}.
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3. Preliminaries
We consider an FL setting with m clients. Each client i has a
collection of data Si = {zij}j∈[ni], where ni is the sample
size of client i, with elements i.i.d. drawn from distribution
Di. The data distributions among the clients are possibly
heterogeneous. For each client i, the ultimate goal is to find
a model that minimizes its local risk at the population level,
defined as:

w
(i)
⋆ ∈ argmin

w
Ez∼Di

ℓ(w, z), (1)

where ℓ(w, z) is a loss function measuring the fitness of
w to data point z. We call w(i)

⋆ ∈ Rd the ground truth
model for client i. To understand the influence of model
personalization, we study the following widely adopted PFL
problem (Hanzely & Richtárik, 2020; Mishchenko et al.,
2023; Li et al., 2020):

min
w(g)

{w(i)}m
i=1

∑
i∈[m]

pi

(
Li(w

(i), Si) +
λ

2
∥w(g) −w(i)∥2

)
,

(2)
where w(g) and w(i) are respectively the global and i-th lo-
cal model to be learned, Li(w, Si) :=

∑ni

j=1 ℓ(w, zij)/ni

is the empirical risk of client i on its local data Si, and
the last term is a regularization term with parameter λ con-
trolling the personalization degree. The set {pi}i∈[m] is a
collection of nonnegative weights with

∑m
i=1 pi = 1.

In Problem (2), each client i learns a personalized model
w(i) by fitting to its local data Si, while collaboration is
achieved by shrinking the local models w(i) towards a com-
mon global model w(g). As λ → 0, the influence of the
global model diminishes, and Problem (2) increasingly be-
haves like the LocalTrain problem:

LocalTrain: min
w(i)

Li(w
(i), Si), ∀i ∈ [m], (3)

where each client independently trains its model using only
local data. In this case, Problem (2) is fully decoupled
into m separate problems, achieving the maximum degree
of personalization. On the other hand, as λ → ∞, the
regularization term shrinks all local models w(i) towards
the global model w(g). This corresponds to reducing the
personalization degree and eventually pushes Problem (2)
to another extreme given by:

GlobalTrain: min
w(i)=w(g),

∀i∈[m]

m∑
i=1

piLi(w
(i), Si), (4)

where the knowledge from all clients is pooled to train a
single global model. Adjusting λ, therefore, controls the
degree of personalization among clients and thus affects the
statistical accuracy of the resulting solution. Noticeably,

the choice of λ also potentially affects solving Problem (2)
algorithmically in the FL setting. Intuitively, for large λ,
we anticipate more frequent communications among the
clients to facilitate collaboration as the local models are
more tightly coupled to the global model. In contrast, a
smaller λ encourages more independent updates and reduces
the need for communication, with LocalTrain (cf.(3)) being
an edge case where all clients train independently without
any communication.

We quantify both the statistical and optimization error of
a PFL algorithm applied to Problem (2) by evaluating the
Euclidean distance between the algorithm’s output after t
communication rounds, w(i)

t , and the ground truth local
model w(i)

⋆ for each client i ∈ [m]. Let w̃(i) denote the
solution of i-th local model in Problem (2). We have the
following decomposition:

∥w(i)
t −w

(i)
⋆ ∥2 ≤ 2 ∥w(i)

t − w̃(i)∥2︸ ︷︷ ︸
optimization error

+2 ∥w̃(i) −w
(i)
⋆ ∥2︸ ︷︷ ︸

statistical error

.

In the rest of the paper, we first establish the statistical and
optimization convergence rates independently. We then inte-
grate these results to formally provide the trade-off between
statistical accuracy and communication efficiency under
different levels of personalization.

4. Convergence Rate Analysis
4.1. Effect of Personalization on Statistical Accuracy

In this section, we analyze how the choice of λ influences the
statistical accuracy of the solution to Problem (2). Recall the
ground truth local model w(i)

⋆ ∈ Rd defined in (1). Next, we
introduce the measure of statistical heterogeneity and define
the parameter space for the statistical estimation problem.
Specifically, we consider estimating w

(i)
⋆ from the following

parameter space:

P(R) =

{
{w(i)

⋆ }mi=1 :

∥∥∥∥∥w(i)
⋆ −

m∑
i=1

piw
(i)
⋆

∥∥∥∥∥
2

≤ R2, ∀i ∈ [m]

}
.

(5)

In (5), the statistical heterogeneity is measured as the Eu-
clidean distance between the ground truth local models and
their weighted average. A larger R indicates a larger dif-
ference among the clients’ local models, hence stronger
statistical heterogeneity. Such a measure is commonly im-
posed in the existing literature (Li et al., 2023; Chen et al.,
2023b;c; Duan & Wang, 2023). More discussion about the
parameter space P(R) can be found in Appendix A.1. We
assume the model dimension d is finite.

Under such a parameter space, we aim to investigate the
statistical accuracy of the solution to Problem (2) measured
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by E∥w̃(i) − w
(i)
⋆ ∥2, where the expectation is taken with

respect to the joint distribution.
Remark 1. Note that some existing literature adopts alter-
native metrics, such as individual excess risk (Chen et al.,
2023c) to measure the statistical error. These two metrics
are equivalent under the strong convexity and smoothness
conditions on the loss functions.

We study Problem (2) under the following regularity condi-
tions.
Assumption 1 (Smoothness). The loss function ℓ(·, z) is
L-smooth, i.e. for any x, y ∈ Rd:

∥∇ℓ(x, z)−∇ℓ(y, z)∥ ≤ L∥x− y∥, ∀z. (6)

Assumption 2 (Strong Convexity). The empirical loss
Li(·, Si) is µ-strongly convex, i.e., for any x, y ∈ Rd and
i ∈ [m]:

Li(x, Si) ≥ Li(y, Si) + ⟨∇Li(y, Si), x− y⟩+ µ

2
∥x− y∥2.

(7)

Assumption 3 (Bound Gradient Variance at Opti-
mum). There exists a nonnegative constant ρ such that
Ez∼Di

∥∇ℓ(w(i)
⋆ , z)∥2 ≤ ρ2 for all i ∈ [m].

The strong convexity and smoothness assumptions are used
to establish the estimation error and are widely adopted in
the theoretical analysis of regularization-based PFL (T Dinh
et al., 2020; Deng et al., 2020; Hanzely & Richtárik, 2020;
Hanzely et al., 2020) and FL (Chen et al., 2023c; Cheng
et al., 2023). Assumption 3 is used to quantify the obser-
vation noise, and is also standard in the literature (Duan &
Wang, 2023; Chen et al., 2023c).

For simplicity, we assume pi = 1/m and ni = n for all
i ∈ [m]. The following theorem provides an upperbound of
the estimation error E∥w̃(i) −w

(i)
⋆ ∥2 as a function of λ.

Theorem 1. Suppose Assumption 1, 2 and 3 hold and con-
sider the parameter space P(R) given by (5). The local
models {w̃(i)}mi=1 obtained by solving Problem (2) satisfy

E
∥∥∥w̃(i) −w

(i)
⋆

∥∥∥2
≤ min

{
48ρ2

µ2

1

N
+

(
48L2

µ2
+ 3

)
R2 +

1

q1(λ)
,

4ρ2

µ2

1

n
+

[(
4ρ2

µ3

1

n
+

4

µ
R2

)
λ+

8

µ2
R2λ2

]}
,

(8)

where N = mn and q1(λ), defined in (70), is a monotoni-
cally increasing function of λ with limλ→∞ q1(λ) =∞.

See Appendix A.3 for the proof. The bound given by (8)
consists of two terms. The first term decreases as λ in-
creases. When λ → ∞, the term [q1(λ)]

−1 → 0 and the

first term approaches O(1/N + R2). Here, O(1/N) cor-
responds to the sample complexity one could obtain if the
data distributions of the m clients are homogeneous, re-
flecting the benefit of collaborative training. Term O(R2)
reflects the negative impact due to the bias introduced by
statistical heterogeneity. In contrast, the second term in
(8) increases with λ, showing that a smaller λ leads to a
rate closer to O(1/n) corresponding to that of pure local
training. This rate is independent of R, making it robust to
high data heterogeneity but at the expense of reduced sam-
ple efficiency. Together, these results provide a continuous
and quantitative characterization of how the personalization
degree, governed by λ, determines the statistical accuracy
of the solution w̃(i).

Minimax-optimal Statistical Accuracy. To demonstrate
the tightness of our analysis, we now show that as a direct
implication of Theorem 1, the local models w̃(i) are rate-
optimal. Denoting κ = L/µ as the conditional number, we
have the following corollary.

Corollary 1. Suppose Assumption 1, 2 and 3 hold and
consider the parameter space P(R) given by (5). If setting

λ ≥ max
{
64κ2L, (2κ ∨ 5)µ 2L2R2+ρ2/n

L2R2+ρ2/N

}
−µ when R ≤

1√
n

, and λ ≤ ρ2

nµR2 when R > 1√
n

, then for all i ∈ [m], the

local model w̃(i) obtained by solving Problem (2) satisfy

E
∥∥∥w̃(i) −w

(i)
⋆

∥∥∥2 ≤ C3
1

N
+ C4

(
R2 ∧ 1

n

)
, (9)

where constants C3 and C4 are defined in (91).

See Appendix A.3 for the proof. In addition, Theorem 8 in
Chen et al. (2023c) states for all i ∈ [m] and any estimator
ŵ(i) that is a measurable function of data {Si}mi=1, we have

inf
ŵ(i)

sup
{w(i)

⋆ }m
i=1∈P(R)

E
∥∥∥ŵ(i) −w

(i)
⋆

∥∥∥2 ≳
1

N
+R2 ∧ 1

n
.

Therefore, Corollary 1 shows that with an appropriate choice
of λ, the established rate achieves the minimax lower bound.
A detailed comparison with prior results can be found in
Appendix A.5, along with a discussion of several novel
techniques developed to derive our result. While this re-
sult focuses on statistical accuracy and is not directly tied
to the accuracy-communication trade-off, it highlights the
tightness of our analysis. Furthermore, the techniques intro-
duced to obtain the results are of independent interest. To
the best of our knowledge, this is the first work to establish
minimax-optimality for the solutions of Problem (2).

Remark 2 (Technical Novelty of The Analysis). Unlike
previous results (Chen et al., 2023c) which are algorithm-
dependent, our analysis does not rely on any algorithm but
directly tackles the objective function, establishing rates us-
ing purely the properties of the loss. Specifically, using the
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strong convexity of the loss function, we first proved the esti-
mation error is bounded by the gradient norm and an extra
statistical heterogeneity term controlled by λ, as detailed in
Equation (33). This allows us to show for large R, a small
λ can be chosen to yield rate O(1/n) and match one of the
worst cases in the lower bound. For the complementary
case R ≤ 1/

√
n, we leveraged the GlobalTrain solution

w̃GT as a bridge and proved the solutions of Problem (2) to
w̃GT are bounded by a term inversely proportional to λ (cf.
Lemma 4), implying that they can be made arbitrarily close
to w̃GT by setting λ small. This, together with the rate of
w̃GT , yields a rate of O(1/N + R2). Combining the two
cases, we proved minimax optimality. Not only each piece of
the above results are new, but more importantly, identifying
they are the key ingredients to show the solution of (2) is
minimax optimal, are the technical novelties of this proof.

Notice that Theorem 1 and Corollary 1 focus on establishing
the statistical rate for the solution in Problem (2), w̃(i). To
fully quantify the error of the output of PFL algorithms, we
need to establish the optimization error from the algorithm
as well, as detailed in the next section.

4.2. Effect of Personalization on Communication
Efficiency

In this section, we provide an FL algorithm for solving
Problem (2) along with its convergence analysis, showing
the impact of the personalization degree on communication
and computation complexity. Notice that if we define the
local objective of each client i as

hi(w
(i),w(g)) := Li(w

(i), Si) +
λ

2
∥w(g) −w(i)∥2,

then Problem (2) can be rewritten in the following bilevel
(iterated minimization) form:

min
w(g)

F (w(g)) :=
1

m

m∑
i=1

Fi(w
(g)),

where Fi(w
(g)) := min

w(i)
hi(w

(i),w(g)).

(10)

The reformulation (10) has a finite-sum minimization struc-
ture, with each component Fi being the Moreau enve-
lope (Moreau, 1965; Yosida, 1964) of Li. Let w(i)

⋆ (w(g))
be the minimizer of hi( · ,w(g)), i.e.,

w
(i)
⋆ (w(g)) = proxLi/λ(w

(g))

:= argmin
w(i)

hi(w
(i),w(g)).

(11)

The following lemmas provide properties of Fi, hi and w
(i)
⋆ ,

instrumental to the algorithm design and rate analysis. The
proof can be found in Appendix B.2.

Lemma 1. Under Assumption 1 and 2, Fi is µg-strongly
convex and Lg-smooth, with µg = λµ

λ+µ and Lg = λL
λ+L ,

each hi is µℓ-strongly convex and Lℓ-smooth, with µℓ =

µ+ λ and Lℓ = L+ λ, and the mapping w
(i)
⋆ : Rd → Rd

is Lw-Lipschitz with Lw = λ
λ+µ .

Lemma 2 (Lemaréchal & Sagastizábal (1997)). Under
Assumption 2, each Fi : Rd → R is continuously dif-
ferentiable, and the gradient is given by ∇Fi(w

(g)) =

λ(w(g) −w
(i)
⋆ (w(g))).

Lemma 1 and Lemma 2 suggest applying a simple gradient
algorithm to optimize w(g):

w
(g)
t+1 = w

(g)
t − γ · ∇F (w

(g)
t )

= w
(g)
t − γλ · 1

m

m∑
i=1

(
w

(g)
t −w

(i)
⋆ (w

(g)
t )
)
,

(12)

where w
(g)
t is the update at the communication round t,

γ > 0 is a step size to be properly set (cf. Theorem 2). To
implement (12), in each communication round t the server
broadcasts w(g)

t to all clients, then each client i updates its
local model w(i)

⋆ (w
(g)
t ) and uploads to the server.

Note that executing the update (12) requires each client i
computing the minimizer w(i)

⋆ (w
(g)
t ). In general, the sub-

problem (11) does not have a closed-form solution. There-
fore, computing the exact gradient ∇F will incur a high
computation cost as well as high latency for the learning
process. Leveraging recent advancements in bilevel opti-
mization algorithm design (Ji et al., 2022), we address this
issue by approximating w

(i)
⋆ (w

(g)
t ) with a finite number of

K gradient steps. Specifically, we let each client i maintain
a local model w(i)

t,k. Per communication round t, w(i)
t,k is ini-

tialized to be w
(i)
t,0 = w

(i)
t−1,K as a warm start, and updated

according to

w
(i)
t,k+1 = w

(i)
t,k − η∇hi(w

(i)
t,k,w

(g)
t ), (13)

for k = 0, . . . ,K − 1, where∇hi(w
(i)
t,k,w

(g)
t ), for notation

simplicity, denotes the partial gradient of hi with respect to
w(i). The overall procedure is summarized in Alg. 1, see
Appendix B.1.

Theorem 2. Suppose Assumptions 1 and 2 hold. Let
{w(g)

t }t≥0 and {w(i)
t,K}t≥0 be the sequence generated by

Algorithm 1 with γ < 1/Lg, η ≤ 1/Lℓ, and the inner loop
iteration number satisfying(

2 + 64L2
w(1/µg)

2λ2
)
(1− ηµℓ)

K ≤ (1− γLg)
4, (14)

then w
(g)
t converges to w̃(g) linearly at rate 1− (γµg)/2−

(γµg)
2/2, and w

(i)
t,0 converges to w̃(i) linearly at the same

rate for any i ∈ [m].
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The proof of Theorem 2 can be found in Appendix B.3
and B.3.2. Theorem 2 shows that with sufficiently small
step sizes, both the local and global models converge lin-
early. The personalization degree, controlled by λ, plays a
critical role in influencing the algorithm’s communication
efficiency. A small λ (indicating higher personalization)
yields a small Lg, and thus permits a larger choice of the
step size γ. By the expression of the convergence rate
1− (γµg)/2− (γµg)

2/2, we can see less communication
round would be required to reach an ε-optimal solution.
However, increasing γ will also decrease the right hand
side of (14), implying that a larger number of local gradient
steps K should be taken to fulfill the condition. To pro-
vide a more concrete characterization of these dynamics, we
present Corollary 2, which quantifies the communication
and computation complexities under specific choices of tun-
ing parameters. The proof of Corollary 2 can be found in
Appendix B.4.

Corollary 2. In the setting of Theorem 2, if we further
choose the step size η = (λ + L)−1, γ = (λ + L)/(2λL),
and the inner loop iteration number K = Õ((λ+ L)/(λ+

µ)), then w
(g)
t converges to w̃(g) linearly at rate 1− (λ+

L)/(4κ(λ+ µ)), and w
(i)
t,0 converges to w̃(i) linearly at the

same rate for any i ∈ [m]. Thus the communication and
computation complexity for Algorithm 1 to find an ε-solution
(i.e., ∥w(g)

T − w̃(g)∥2 ≤ ε and ∥w(i)
T,0 − w̃(i)∥2 ≤ ε) are as

follows (κ := L/µ):

(i) # communication rounds = O
(
κ · λ+ µ

λ+ L
· log 1

ε

)
,

(ii) # gradient evaluations = Õ
(
κ · log 1

ε

)
.

Corollary 2 clearly shows the influence of the personaliza-
tion degree λ on the communication cost. Specifically, as
λ increases from 0 to ∞, the communication complexity
increases from O(log(1/ϵ)) to O(κ log(1/ϵ)). This fact
corroborates our intuition that a higher degree of collabora-
tion requires more communication resources. Moreover, the
result given by Corollary 2 also indicates that the total com-
putation cost is independent of λ. As such, we can see that
model personalization can provably reduce the communica-
tion cost without any extra computation overhead. Notice
that although personalization indeed enhances communi-
cation efficiency, doing so may deteriorate the statistical
accuracy of the local models. In the next section, we will
discuss in detail the trade-off between communication and
statistical accuracy.

We also provide an extension of Alg. 1 to the stochastic set-
ting using mini-batch stochastic gradients for the local up-
dates. The proposed algorithm, termed FedCLUP, is given
in Appendix B.5. Following similar argument to Theorem
2, Theorem 3 in Appendix B.5 establishes the convergence

rate of FedCLUP, showing that it takes O
(
κ λ+µ
λ+L · log

1
ε

)
rounds of communication to obtain an output w(g)

t within
an error ball of size

(
O(ε) + σ2

µ2Bm

)
around w̃(g). Here

σ2 is the variance of the stochastic gradient defined in As-
sumption 4 in Appendix B.5 and B is the mini-batch size.
Therefore, the influence of λ on communication complexity
is consistent with the noiseless setting presented in Corollary
2. Additionally, one may note that in the stochastic setting,
the error due to the stochastic noise scales inversely with
the number of participating clients, showing the advantage
of client collaboration in reducing the variance of w(g)

t .

5. Communication-Accuracy Trade-off
Building on the results established in Section 4.1 and 4.2,
we cast insights on the trade-off between communication ef-
ficiency and statistical accuracy, and discuss its implications
on real-world practice.
Corollary 3. Under the conditions of Theorem 1 and Corol-
lary 2, w(i)

T,K generated by Algorithm 1 satisfies

E
∥∥∥w(i)

T,K −w(i)
⋆

∥∥∥2

≤ 2

(
1− 1

4κ
− L− µ

4κ(λ+ µ)

)T

E
∥∥∥w(i)

0,0 − w̃(i)
∥∥∥2

+O
[(

1

N
+R2 +

1

q1(λ)

)
∧
(
1

n
+ q2(λ)

)] (15)

for any i ∈ [m], where q1(λ) and q2(λ), defined in (70) and
(67), respectively, are monotonically increasing functions of
λ with limλ→∞ q1(λ) =∞ and limλ→0 q2(λ) = 0.

See Appendix C for the proof. When collaborative learning
is beneficial, i.e., when R2 ≲ 1/n, in this case, Corollary
1 establishes that the minimax-optimal statistical rate is
O(1/N + R2). As λ increases, [q1(λ)]−1 monotonically
decreases to zero, leading to improved statistical accuracy,
approaching the optimal accuracy. However, since the opti-
mization error in (15) is monotonically increasing with λ,
a higher degree of collaboration will also results in slower
convergence over communication rounds. Consequently,
Corollary 3 implies that when the data heterogeneity is
relatively low, increasing personalization will improve com-
munication efficiency but at the expense of lower statistical
accuracy, and vice versa. Such an opposite effect of the
personalization degree on the statistical accuracy and com-
munication efficiency leads to an accuracy-communication
trade-off.

As the optimization error vanishes when T →∞, the statis-
tical error dominates the total error in Corollary 3. However,
the associated communication cost becomes prohibitively
large to achieve such an error. Therefore, balancing the
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Table 1. Comparison of the existing works analyzing Problem (2) (cvx denotes convexity and s-cvx denotes strong convexity).
Methods Convexity Bounded Domain Computation Cost per Round Communication Cost Statistical Error

FedProx (Li et al., 2020) cvx ✘ –(1) O(∆/(ρε)) ✘

pFedMe (T Dinh et al., 2020) s-cvx ✘ –(2) O(1/(mRε)) ✘

L2GD (Hanzely & Richtárik, 2020) s-cvx ✘ O(1 + L
λ
) O( 2λκ

λ+L
log( 1

ε
)) ✘

AL2SGD (Hanzely et al., 2020) s-cvx ✘ O
(

(m+
√

m(L+λ)/µ)√
min{L,λ}/µ

)
O(

√
min{L, λ}/µ log 1

ε
) ✘

Algorithm 3 (Chen et al., 2023c) s-cvx ✔ O(λ/ε) O((λ ∨ 1)/ε) ✔

FedCLUP s-cvx ✘ O(λ+L
λ+µ

) O(κ λ+µ
λ+L

log 1
ε
) ✔

(1) Controlled by the precision of inexact solution. ρ > 0 measures the subproblem solution accuracy.
(2) Related to the subiteration number R and the precision v.

optimization and statistical errors is crucial for achieving a
target total error with efficient resource usage. Under the
influence of the personalization degree, a practical guide-
line emerges: when collaborative learning is beneficial (i.e.,
R2 ≤ 1/

√
n), to achieve a target magnitude of total error,

we control the optimization errors at the same magnitude as
the statistical error. Specifically, we increase λ to reduce the
statistical error to the same magnitude of the total error, and
then gradually increase the communication rounds T until
the optimization error reaches the same magnitude as well.
Since the communication efficiency will decrease will an
increasing λ, the above strategy can achieve a given target
total error at the highest possible communication efficiency.
Later, we will also show that, with the optimal choice of
personalization degree, FedCLUP improves communica-
tion efficiency significantly compared with GlobalTrain and
achieve a total error smaller than LocalTrain in Section 6.

Comparison with Existing Literature. As reported in
Table 1, our work is the first to quantitatively characterize
how changing the personalization degree leads to the trade-
off between communication cost and statistical accuracy. In
contrast, most prior studies either do not explicitly analyze
statistical convergence or fail to provide a tight convergence
guarantee for optimization and statistical error. For example,
Chen et al. (2023c) attempted to establish both optimization
and statistical rates simultaneously; however, when λ →
∞, Problem (2) reduces to GlobalTrain, yet their results
incorrectly imply that the communication and computation
costs diverge to infinity.

6. Empirical Study
In this section, we provide empirical validation for our the-
oretical results, evaluating Problem (2) on both synthetic
and real datasets with convex and non-convex loss func-
tions. We first present the experimental setup, and then
analyze the impact of personalization on statistical accuracy
and communication efficiency, and conclude by analyzing
the trade-off between the two. Details about the experi-
mental setup are available in Section 6.1 and Appendix
D, and the complete anonymized codebase is accessible at
https://github.com/ZLHe0/fedclup.

6.1. Experimental Details

Synthetic Dataset. We generate two cases of synthetic
dataset: (1)As our theoretical analysis is established un-
der strong convexity, first, we consider an overdetermined
linear regression task, where the choice of hyparamter is
strictly followed Corollary 3. (2) We follow a similar
procedure to prior works (Li et al., 2020) but with some
modifications to align with the setup in this paper. Specifi-
cally, for each client we generate samples (Xk,yk), where
the labels yk are produced by a logistic regression model
yk = argmax(σ(w⊤

k Xk)), with σ being the sigmoid func-
tion. The feature vectors Xk are drawn from a multivari-
ate normal distribution N (vk,Σ), where vk ∼ N (0, 1)
and the covariance matrix Σ follows a diagonal structure
Σj,j = j−1.2. The heterogeneity is introduced by sampling
the model weights wk for each client from a normal dis-
tribution N (0, R), where R ∈ [0, 3] controls the statistical
heterogeneity across clients’ data.

Real Dataset. We use the MNIST, EMNIST, CIFAR10,
Sent140 an CelebA datasets for real data analysis. For
MNIST, EMNIST and CIFAR10, they aren’t naturally par-
titioned datasets. Therefore, following Li et al. (2020),
to impose statistical heterogeneity, we distribute the data
across clients in a way that each client only has access to
a fixed number of classes. The fewer classes each client
has access to, the higher the statistical heterogeneity. De-
tails on data preprocessing and heterogeneity settings for
each dataset are provided in Appendix D. For Sent140 and
CelebA datasets, as they are naturally partitioned, we don’t
need to create the data heterogeneity and directly apply our
algorithm to these datasets with advanced models, like CNN
and LSTM model (Sak et al., 2014). We strictly follow the
previous work (Li et al., 2021) and (Duan et al., 2021) to
pre-process the Sent140 and CelebA dataset, respectively.

Implementation and Evaluation. For each setup, we eval-
uate FedCLUP with three different degree of personaliza-
tion: low, medium, and high, with specific personalization
degree varying based on the dataset (details provided in
Appendix D). For the synthetic dataset, in alignment with
theorem 2, we implement FedCLUP using a global step
size γ = (λ+L)/(λL) and a local step size η = (L+λ)−1.
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Dataset LocalTrain FedCLUP pFedMe GlobalTrain

High Medium Low High Medium Low

MNIST Logit 0.7828 0.8123 0.8213 0.8312 0.8001 0.8239 0.8291 0.8391

MNIST CNN2 0.8194 0.8753 0.8893 0.9032 0.8756 0.8771 0.8749 0.9098

MNIST CNN5 0.7633 0.9091 0.9102 0.9421 0.9340 0.9385 0.9440 0.9433

EMNIST CNN5 0.6111 0.6278 0.6415 0.6672 0.6345 0.6532 0.6717 0.6611

CIFAR10 CNN3 0.6238 0.6102 0.6712 0.7302 0.6744 0.7443 0.7732 0.8041

Table 2. Test accuracy of algorithms across datasets under varying personalization degrees. “Logit” refers to logistic regression, while
“CNN-k” denotes a convolutional neural network with k convolutional layers. “Low,” “Medium,” and “High” indicate low, moderate, and
high personalization levels, respectively. As the personalization degree decreases, the statistical accuracy of FedCLUP and pFedMe
transitions from resembling LocalTrain to GlobalTrain.

For the real dataset, since L is unknown, we implement the
same algorithm with a global step size γ set to 1/λ, while
the local step size is determined via grid search. In terms of
evaluation, for the synthetic dataset, we evaluate by tracking
the ground truth models and measuring error as the distance
from these ground true models. For the real datasets, we
report training loss and testing accuracy. Additional details,
including hyperparameter settings and evaluation metric
definition, can be found in Appendix D.

6.2. Results

Effect of Personalization on Statistical Accuracy. We
compare FedCLUP, under different personalization degrees,
with GlobalTrain, LocalTrain and pFedMe (T Dinh et al.,
2020), an alternative algorithm for solving Problem (2).
Implementation details are provided in Appendix D. All
methods are run until stable convergence, and their test ac-
curacy is reported in Table 2 in the low heterogeneity setting.
Table 2 shows that as the personalization degree decreases
and collaborative learning increases, the solution of Problem
(2) becomes closer to GlobalTrain, leading to improved sta-
tistical accuracy due to increased information sharing across
clients. A similar trend is observed for both FedCLUP and
pFedMe across different datasets and models, showing that
under low heterogeneity, increased collaboration improves
statistical accuracy.

Effect of Personalization on Communication Efficiency.
Figure 2 investigates how personalization impacts commu-
nication efficiency in FedCLUP by analyzing the benefit of
increasing local updates under different personalization lev-
els. In the low-personalization setting (left column), more
local updates significantly accelerate convergence, reduc-
ing the reliance on frequent communication. However, in
the high-personalization setting (right column), increasing
local updates has a limited effect on convergence, indicat-
ing that frequent communication is essential for effective
learning. This demonstrates that higher personalization re-
quires more communication rounds to achieve comparable
performance, aligning with our theoretical findings, show-

Figure 1. Total error and training loss of FedCLUP with varying
personalization degrees. Total error (y-axis in (a)) quantifies the
distance between the model at each communication round and the
ground truth model, i.e. ∥w(i)

T,K − w
(i)
⋆ ∥2. (a) compares total

error under low (R = 0.5) and high (R = 2.0) heterogeneity. (b)
presents training loss across different datasets and models under
low heterogeneity. Synthetic-Logit and MNIST-Logit represent
logistic regression on synthetic and MNIST data, respectively,
while MNIST-CNN, CIFAR10-CNN, and EMNIST-CNN repre-
sent CNN models trained on MNIST, CIFAR-10, and EMNIST
datasets. In a low-heterogeneity setting, higher personalization
(high per) accelerates convergence, while lower personalization
(low per) improves final error. In a high-heterogeneity setting,
higher personalization achieves both smaller error and faster con-
vergence.
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Figure 2. Effect of personalization on communication efficiency in FedCLUP for Synthetic-Logit (left) and MNIST-Logit (right). Each
subfigure compares the impact of varying the number of local updates per communication round under different personalization levels.

ing that increased personalization improves communication
efficiency.

The Trade-off under Personalization. The above
two observations imply that there shall be a accuracy-
communication trade-off in choosing the personalization
degree to achieve the smallest total error under given com-
munication budget (See Figure 1). To further demonstrate
this point, in the left part of Figure 3, we compare the total
error over iterations among LocalTrain, GlobalTrain, and
FedCLUP under varying levels of personalization. Once the
algorithms converge, for any given total error, there exists a
specific degree of personalization in FedCLUP that incurs
the least communication cost among all considered meth-
ods. This observation supports the conclusion in Corollary 3
that a unique personalization degree exists in FedCLUP to
achieve communication efficiency for a fixed total error.
Furthermore, we observe that no fixed personalization de-
gree consistently outperforms others across all error levels.
This implies that adaptively adjusting the personalization
degree is essential for FedCLUP to maintain communication
efficiency across different total error regimes. To further
validate this finding, we conduct the same experiment on
real-world datasets. Results on the CelebA and Sent140
datasets are presented in Figures 9 and 10, respectively. Ad-
ditionally, we observe a similar phenomenon in pFedMe,
another method solving Problem 2, when we vary its per-
sonalization degree. Witnessing the insightful results, it
motivates us to adaptively change the personalization de-
gree in FedCLUP for achieving communication efficiency
over different total errors.

Potential Solution in Practice. After understanding the
trade-off under personalization, we propose a dynamic tun-
ing strategy for the optimal λ with communication effi-
ciency(See Figure 3 Right ). Beginning with a small λ for
efficiency, as soon as the validation performance plateaus or
the statistical error stops improving significantly, we grad-
ually increase λ. This allows the model to benefit from
enhanced generalization through increased collaboration at

the expense of slightly higher communication costs. By
progressively adjusting in this way, one can finally identify
the optimal personalization degree that balances the trade-
off and minimizes the total communication cost required to
meet a desired performance threshold.

Figure 3. Total error versus communication rounds. Left: Compar-
ison among LocalTrain, GlobalTrain, and FedCLUP with varying
levels of personalization. For a given target total error, an optimal
λ exists that has the minimum communication rounds. Right: A
dynamic λ strategy: we begin with local training (highest personal-
ization degree), and once the decrease of the validation error slows
down, we gradually decrease the personalization degree. Com-
paring the right figure with the left one shows that the dynamic
strategy approximates the optimal personalization level needed
to meet a desired error threshold with minimal communication
rounds, demonstrating the practical effectiveness of tuning person-
alization dynamically according to the accuracy-communication
trade-off.

7. Conclusion
In this paper, we provide a precise theoretical characteri-
zation of the statistical and optimization convergence of a
widely used personalized federated learning problem. Our
analysis reveals that when collaborative learning is bene-
ficial, increasing personalization reduces communication
complexity but comes at the cost of statistical accuracy due
to limited information sharing across clients. We then vali-
date our theoretical findings across convex and non-convex
settings, multiple datasets, and different model architectures.
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A. Proof of statistical converngence
To facilitate our analysis, we denote

∆̃
(g)
stat = w

(g)
⋆ − w̃(g), (16)

∆̃
(i)
stat = w

(i)
⋆ − w̃(i) ∀i ∈ [m], (17)

where w
(g)
⋆ :=

∑
i∈[m] piw

(i)
⋆ , ∆̃(g)

stat is the difference between the true global model and the optimal solution of the global

model in Problem (2) and ∆̃
(i)
stat is the difference between the true local model and the optimal solution of the local model in

(2) for any i ∈ [m]. The statistical error bound is established as E∥∆̃(g)
stat∥2 and E∥∆̃(i)

stat∥2, where the expectation is taken
over all the data. Notably, we should stress that the definition of w(g)

⋆ is just to serve as a bridge to establish the convergence
rate of local models, and it is not our focus in the theoretical analysis.

We also denote

δ
(i)
⋆ := w

(g)
⋆ −w

(i)
⋆ , δ̃(i) := w̃(g) − w̃(i), (18)

where δ
(i)
⋆ measures the difference between the true global model w(g)

⋆ and the true local model w(i)
⋆ , and δ̃(i) is the

estimator of such a difference.

A.1. Discussion on the Parameter Space

When assuming the statistical heterogeneity of each client is different (R is related to the client index i), it would provide
a more delicate description of statistical heterogeneity, and it also requires different personalization degree per client.
Therefore, let’s consider the following problem with different heterogeneity in personalized federated learning

min
w(g),{w(i)}i∈[m]

m∑
i=1

pi

(
Li(w

(i), Si) +
λi

2
∥w(g) −w(i)∥2

)
, (19)

where the i-th client will be shrunk to the global with strength λi. Therefore, solving (19) will consider different personal-
ization degree for different clients. Establish the minimax statistical error bound for Problem (19) would be open for future
work.

Under Assumptions 1 and 2 as we assume, statistical heterogeneity in parameter space (5) would be equivalent to many
other similar assumptions for statistical heterogeneity, like B-dissimilarity (Li et al., 2020), parameter difference (Chen
et al., 2023c) and gradient diversity (T Dinh et al., 2020; Deng et al., 2020).

A.2. Useful Lemmas

To facilitate our analysis, we first present two important lemmas and provide their proof.

Lemma 3. Under Assumption 2, for the optimal solution w̃(g) and w̃(i)’s in Problem (2), we have

∥w̃(g) − w̃(i)∥2 ≤
2∥∇Li(w̃

(g), Si)∥2
µ+ λ

.

Proof. By the µ-strongly convexity of ∇Li, we have that for any w ∈ Rd,

Li(w, Si) +
λ

2
∥w − w̃(g)∥2 ≥ Li(w̃

(g), Si) +
〈
∇Li(w̃

(g), Si),w − w̃(g)
〉
+

µ+ λ

2
∥w − w̃(g)∥2

≥ Li(w̃
(g), Si) + ∥w − w̃(g)∥

(
µ+ λ

2
∥w − w̃(g)∥ − ∥∇Li(w̃

(g), Si)∥
)
, (20)

where in the last step, we used the Cauchy inequality.
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In addition, notice that w̃(i) is the optimal solution for the local model w(i) in Problem (2), thus we have

w̃(i) = argmin
w

{
Li(w, Si) +

λ

2
∥w − w̃(g)∥2

}
.

This result together with (20) implies that

Li(w̃
(g), Si) = Li(w̃

(g), Si) +
λ

2
∥w̃(g) − w̃(g)∥2 ≥ Li(w̃

(i), Si) +
λ

2
∥w̃(i) − w̃(g)∥2

≥ Li(w̃
(g), Si) + ∥w̃(i) − w̃(g)∥

(
µ+ λ

2
∥w̃(i) − w̃(g)∥ − ∥∇Li(w̃

(g), Si)∥
)
.

Therefore, since µ+ λ > 0 and ∥w̃(i) − w̃(g)∥ ≥ 0, rearranging the terms leads to

∥w̃(g) − w̃(i)∥ ≤ 2∥∇Li(w̃
(g), Si)∥

µ+ λ
, (21)

as claimed.

Remark: Lemma 3 is crucial to bridge the solution of the global model with the local model in Problem 2. Note that the
difference is bounded by the gradient norm of local loss functions evaluated at the optimal solution of the global model,
which would be decomposed further and controlled by the global model’s statistical accuracy, as we will show later.

Lemma 4. Under Assumption 1, 2, 3, for w̃GT, the solution of the GlobalTrain problem in (4), we have

E∥w̃GT −w
(g)
⋆ ∥ ≤

ρ
√∑

i∈[m]
p2
i

ni
+ LR

µ/2
.

Proof. By the optimality condition of the GlobalTrain problem in (4) and the strong convexity of Li’s, we have

0 ≥
∑
i∈[m]

pi

(
Li(w̃GT, Si)− Li(w

(g)
⋆ , Si)

)
≥
∑
i∈[m]

pi

〈
∇Li(w

(g)
⋆ , Si), w̃GT −w

(g)
⋆

〉
+

µ

2
∥w̃GT −w

(g)
⋆ ∥2

≥ −
∥∥∥ ∑

i∈[m]

pi∇Li(w
(g)
⋆ , Si)

∥∥∥∥∥∥w̃GT −w
(g)
⋆

∥∥∥+ µ

2
∥w̃GT −w

(g)
⋆ ∥2.

Therefore, we have

∥w̃GT −w
(g)
⋆ ∥ ≤

∥∥∥∑i∈[m] pi∇Li(w
(g)
⋆ , Si)

∥∥∥
µ/2

≤

∥∥∥∑i∈[m] pi∇Li(w
(i)
⋆ , Si)

∥∥∥+∑i∈[m] pi

∥∥∥∇Li(w
(g)
⋆ , Si)−∇Li(w

(i)
⋆ , Si)

∥∥∥
µ/2

. (22)

By the L-smoothness property of Li’s in Assumption 1 and the bounded gradient property listed in Assumption 3, we have∑
i∈[m]

pi

∥∥∥∇Li(w
(g)
⋆ , Si)−∇Li(w

(i)
⋆ , Si)

∥∥∥ ≤ ∑
i∈[m]

piL∥w(g)
⋆ −w

(i)
⋆ ∥ ≤ LR,

E
∥∥∥ ∑

i∈[m]

pi∇Li(w
(i)
⋆ , Si)

∥∥∥ = E
∥∥∥ ∑

i∈[m]

∑
j∈[ni]

pi
ni
∇ℓ(w(i)

⋆ , zij)
∥∥∥ ≤ ρ

√√√√∑
i∈[m]

p2i
ni

.
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These results together with (22) implies

E∥w̃GT −w
(g)
⋆ ∥ ≤

ρ
√∑

i∈[m]
p2
i

ni
+ LR

µ/2

as claimed.

Remark: Lemma 4 implies that if we solve the GlobalTrain problem exactly, the solution will be close to the ground truth
of the global model with a certain error, which is independent of λ. After presenting the two useful lemmas in Appendix
A.2, we will start to prove the theoretical results in Section 4.1. In Section A.3, we will prove Theorem 1 first, then we will
prove the statistical error bound in Problem 2 as demonstrated in Corollary 1.

A.3. Proof of Statistical Convergence in Theorem 1

In the discuss below, we always assume w
(i)
⋆ discussed below comes from the parameter space (5). As the local model is

shrunk towards the global model under the influence of personalization degree, how fast the global model w̃(g) convergence
to w

(g)
⋆ can also influence the convergence rate of the local model. In Appendix A.3.1, we will establish the statistical error

bound of the global model first. Then in Appendix A.3.2, we will provide the local model error bound, where we explicitly
show that the statistical accuracy of the local model depends on the statistical accuracy of the global model. Finally, in
Appendix A.3.3, we combine the results of local models and the global model to establish the one-line rate for the local
model explicitly stated in Theorem 1.

A.3.1. GLOBAL STATISTICAL ERROR BOUND

To analyze the statistical error bound, we consider two separate cases: R >
√∑

i
pi

ni
and R ≤

√∑
i
pi

ni
. The motivation

for this distinction lies in whether collaboration among different clients is beneficial.

Case 1: We first consider the case when R >
√∑

i
pi

ni
.

Recall that w̃(g) and {w̃(i)}i∈[m] are the minimizers of Problem (2). According to the first-order condition, we have

∇w(i)Li

(
w(i), Si

) ∣∣
w(i)=w̃(i) = λ

(
w̃(g) − w̃(i)

)
, (23)

w̃(g) =
∑
i

piw̃
(i). (24)

We start with the optimality condition of w̃(i) and w̃(g), which yields

0 ≥
∑
i∈[m]

pi

[
Li(w̃

(i), Si) +
λ

2
∥w̃(g) − w̃(i)∥2

]
−
∑
i∈[m]

pi

[
Li(w

(i)
⋆ , Si) +

λ

2
∥w(g)

⋆ −w
(i)
⋆ ∥2

]
. (25)

Reorganizing the terms, we obtain

0 ≥
∑
i∈[m]

∑
j∈[ni]

pi
ni

(
ℓ(w̃(i), zij)− ℓ(w

(i)
⋆ , zij)

)
+
∑
i∈[m]

pi
λ

2
∥w̃(g) − w̃(i)∥2 −

∑
i∈[m]

pi
λ

2
∥w(g)

⋆ −w
(i)
⋆ ∥2. (26)

For the first term on the R.H.S. in (26), apply the µ-strongly convexity of the loss function ℓ (cf. Assumption 2), we then
have

∑
i∈[m]

∑
j∈[ni]

pi
ni

(
ℓ(w̃(i), zij)− ℓ(w

(i)
⋆ , zij)

)
≥ −

∑
i∈[m]

∑
j∈[ni]

pi
ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
+

µ

2

∑
i∈[m]

∑
j∈[ni]

pi
ni

∥∥∥∆̃(i)
stat

∥∥∥2 , (27)
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where we use the definition of ∆̃(i)
stat in (17).

Plugging (27) back into (26), it yields

0 ≥ −
∑
i

∑
j

pi
ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
+

µ

2

∑
i

∑
j

pi
ni

∥∥∥∆̃(i)
stat

∥∥∥2
+
∑
i∈[m]

pi
λ

2
∥w̃(g) − w̃(i)∥2 −

∑
i∈[m]

pi
λ

2
∥w(g)

⋆ −w
(i)
⋆ ∥2.

(28)

Recall the definition in (18) and the assumption about statistical heterogeneity in (5)

0 ≥ −
∑
i

∑
j

pi
ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
+

µ

2

∑
i

∑
j

pi
ni

∥∥∥∆̃(i)
stat

∥∥∥2 + λ

2

∑
i

pi

∥∥∥δ̃(i)∥∥∥2 − λ

2
R2. (29)

Applying Cauchy inequality on the first term of (29), it yields

∑
i

∑
j

pi
ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
=
∑
i

pi

〈∑
j

1

ni
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉

≤
∑
i

pi

∥∥∥∥∥∥
∑
j

1

ni
∇ℓ(w(i)

⋆ , zij)

∥∥∥∥∥∥
2

∥∥∥∆̃(i)
stat

∥∥∥
2
.

(30)

Consider the Assumption 3 and zij are i.i.d dataE

∥∥∥∥∥∥
∑
j

1

ni
∇ℓ(w(i)

⋆ , zij)

∥∥∥∥∥∥
2

2

≤ E

∥∥∥∥∥∥
∑
j

1

ni
∇ℓ(w(i)

⋆ , zij)

∥∥∥∥∥∥
2

≤ ρ2

ni
. (31)

Combining (30) and (31), it yields

∑
i

∑
j

pi
ni

E
〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
≤
∑
i

ρ
pi√
ni

E∥∆̃(i)
stat∥2. (32)

Plugging (32) back to (29) yields

0 ≥ −ρ
∑
i

pi√
ni

E
∥∥∥∆̃(i)

stat

∥∥∥
2
+

µ

2

∑
i

piE
∥∥∥∆̃(i)

stat

∥∥∥2 + λ

2

∑
i

piE
∥∥∥δ̃(i)∥∥∥2 − λ

2
R2. (33)

After dropping the third term and applying Cauchy inequality, we obtain

0 ≥ −ρ

( ∑
i∈[m]

pi
ni

)(∑
i

piE
∥∥∥∆̃(i)

stat

∥∥∥2 )
 1

2

+
µ

2

∑
i

piE
∥∥∥∆̃(i)

stat

∥∥∥2 − λ

2
R2. (34)

If we assume pi =
1
m and ni = nj∀i ̸= j (assumptions used in Theorem 1), we have

E
∥∥∥∆̃(g)

stat

∥∥∥2 ≤ 1

u2

(
4ρ2

n
+ 2µλR2

)
. (35)
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Case 2: Then we consider R ≤
√∑

i
pi

ni
. Recall the definition of the global minimizer of GlobalTraining w̃GT =

argminw
∑

i piLi(w;Si), based on the optimality condition of w̃i, w̃g , i ∈ [m], we obtain

∑
i

pi

(
Li(w̃

(i), Si) +
λ

2
∥w̃(i) − w̃(g)∥2

)
≤
∑
i

pi

(
Li(w̃GT, Si) +

λ

2
∥ w̃GT − w̃GT∥2

)
=
∑
i

piLi(w̃GT, Si).
(36)

Therefore, we obtain ∑
i

piLi(w̃GT, Si) ≥
∑
i

piLi(w̃
(i), Si). (37)

In addition, applying the smoothness assumption in Assumption 1 yields

∣∣∣Li(w̃
(i), Si)− Li(w̃

(g), Si)−∇Li(w̃
(g), Si)

T (w̃(i) − w̃(g))
∣∣∣ ≤ L

2
∥w̃(i) − w̃(g)∥2. (38)

Combining (37) and (38), we have

∑
i

piLi(w̃GT, Si) ≥
∑
i

piLi(w̃
(i), Si) (39)

≥
∑
i

piLi(w̃
(g), Si) +

∑
i

pi∇Li(w̃
(g), Si)

⊤(w̃(i) − w̃(g))−
∑
i

pi
L

2
∥w̃(i) − w̃(g)|2. (40)

Using Cauchy inequality on the second term of the R.H.S.,

∑
i

piLi(w̃GT, Si) ≥
∑
i

piLi(w̃
(g), Si)−

∑
i

pi∥∇Li(w̃
(g), Si)∥2∥w̃(i) − w̃(g)∥2

−
∑
i

pi
L

2
∥w̃(i) − w̃(g)∥2. (41)

On the other hand, note that the optimality condition of w̃GT is

∑
i

pi∇Li(w̃GT, Si) = 0. (42)

Using the strong-convexity assumption in Assumption 2, we can show that∑
i

pi

{
Li(w̃

(g), Si)− Li(w̃GT, Si)−∇Li(w̃GT, Si)
T (w̃(g) − w̃GT)

}
=
∑
i

pi

{
Li(w̃

(g), Si)− Li(w̃GT, Si)
}

≥
∑
i

pi
µ

2
∥w̃(g) − w̃GT∥2

=
µ

2
∥w̃(g) − w̃GT∥2. (43)
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Combining the results (41) and (43), it yields

∑
i

piLi(w̃GT, Si) ≥
∑
i

piLi(w̃GT, Si) +
µ

2
∥w̃(g) − w̃GT∥2

−
∑
i

pi∥∇Li(w̃
(g), Si)∥2∥w̃(i) − w̃(g)∥2 −

∑
i

pi
L

2
∥w̃(i) − w̃(g)∥2. (44)

Reorganizing these terms yields

µ

2
∥w̃(g) − w̃GT∥2 ≤

∑
i

pi

{
∥∇Li(w̃

(g), Si)∥2∥w̃(i) − w̃(g)∥2 +
L

2
∥w̃(i) − w̃(g)∥2

}
. (45)

Using Lemma 3 to bound the term ∥w̃(i) − w̃(g)∥2, we have

∥w̃(g) − w̃GT∥2 ≤
2

µ

∑
i

pi

[
2

µ+ λ
+

2L

(µ+ λ)2

]
∥∇Li(w̃

(g), Si)∥2

=
4

µ

(
1

µ+ λ
+

L

(µ+ λ)2

)∑
i

pi∥∇Li(w̃
(g), Si)∥2. (46)

Note that by the smoothness Assumption and triangle inequality,

∥∇Li(w̃
(g), Si)∥22 ≤ 2∥∇Li(w̃

(g), Si)−∇Li(w
(i)
⋆ , Si)∥2 + 2∥∇Li(w

(i)
⋆ , Si)∥2

≤ 2L2∥w̃(g) −w
(i)
⋆ ∥2 + 2∥∇Li(w

(i)
⋆ , Si)∥2. (47)

Take expectation w.r.t all data and use Assumption 3 in the parameter space (5), then we have

E[∥∇Li(w̃
(g), Si)∥2] ≤ 2L2E[∥w̃(g) −w

(i)
⋆ ∥2] + 2E


∥∥∥∥∥∥ 1

ni

ni∑
j=1

∇L(w(i)
⋆ , zij)

∥∥∥∥∥∥
2


≤ 4L2E[∥w̃(g) −w
(g)
⋆ ∥2] + 4L2R2 + 2

ρ2

n
, (48)

where the last term comes from (31).

Plugging (48) back into (46), it yields

E[∥w̃(g) − w̃GT∥2] ≤
4

µ

(
1

µ+ λ
+

L

(µ+ λ)2

){
4L2E[∥w̃(g) −w

(g)
⋆ ∥2] + 4L2R2 + 2

ρ2

n

}
. (49)

Next, we are ready to establish the global error bound. Using the result (49) and Lemma 4, we obtain

E[∥w̃(g) −w
(g)
⋆ ∥2] ≤

4

µ

(
1

µ+ λ
+

L

(µ+ λ)2

){
4L2E[∥w̃(g) −w

(g)
⋆ ∥2] + 4L2R2 + 2

ρ2

n

}
+

8ρ2

µ2

1

N
+

8L2

µ2
R2. (50)
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Let’s define g(λ) = 4
µ

(
1

µ+λ + L
(µ+λ)2

)
and reorganize (50), which yields

E[∥w̃(g) −w
(g)
⋆ ∥2] ≤

g(λ)
(
4L2R2 + 2ρ2

n

)
+ 8ρ2

µ2
1
N + 8L2

µ2 R2

1− 4L2g(λ)
. (51)

If we assume pi =
1
m , ni = nj ∀i ̸= j (assumptions used in Theorem 1) and g(λ) ≤ 1/(8L)2, we have

E[∥∆̃(g)
stat∥2] ≤

g(λ)

1− 4L2g(λ)

(
4L2R2 + 2

ρ2

n

)
+

16ρ2

µ2

1

N
+

16L2

µ2
R2. (52)

A.3.2. LOCAL STATISTICAL ERROR BOUND

Analogous to the analysis of the global model, we examine the statistical accuracy of the local model in a similar manner.
For simplicity, in the following arguments, we denote the upper bound of E∥∆̃(g)

stat∥2 as U0. The expliciate expression would
be found in results (35) for R >

√∑
i
pi

ni
and (52) for R ≤

√∑
i
pi

ni
.

Case 1: first we consider the case when R >
√∑

i
pi

ni
.

To prove the local statistical error bound, we start with the optimality condition of w̃(i) and w̃(g) for a single client, which
yields that for i ∈ [m],

0 ≥ Li

(
w̃(i), Si

)
+

λ

2

∥∥∥w̃(g) − w̃(i)
∥∥∥2 − Li

(
w

(i)
⋆ , Si

)
− λ

2

∥∥∥w̃(g) −w
(i)
⋆

∥∥∥2 . (53)

Reorganized the terms, we obtain

0 ≥
∑

j∈[ni]

1

ni

(
ℓ
(
w̃(i), zij

)
− ℓ

(
w

(i)
⋆ , zij

))
+

λ

2

∥∥∥w̃(g) − w̃(i)
∥∥∥2 − λ

2

∥∥∥w̃(g) −w
(i)
⋆

∥∥∥2 . (54)

For the first term on the R.H.S., applying the µ-strongly convex of the loss function ℓ (cf. Assumption 2) yields

∑
j∈[ni]

1

ni

(
ℓ(w̃(i), zij)− ℓ(w

(i)
⋆ , zij)

)
≥ −

∑
j∈[ni]

1

ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
+

µ

2

∑
j∈[ni]

1

ni

∥∥∥∆̃(i)
stat

∥∥∥2 , (55)

where we use the definition of ∆̃(i)
stat in (17).

Plugging (55) back into (54), it yields

0 ≥ −
∑
j

1

ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
+

µ

2

∑
j

1

ni

∥∥∥∆̃(i)
stat

∥∥∥2 + λ

2
∥w̃(g) − w̃(i)∥2 − λ

2
∥w̃(g) −w

(i)
⋆ ∥2. (56)

Apply Cauchy inequality on the first term of (56)

∑
j

1

ni

〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
=

〈∑
j

1

ni
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉

≤

∥∥∥∥∥∥
∑
j

1

ni
∇ℓ(w(i)

⋆ , zij)

∥∥∥∥∥∥
2

∥∥∥∆̃(i)
stat

∥∥∥
2
.

(57)
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Consider the Assumption 3 and zij are i.i.d dataE

∥∥∥∥∥∥
∑
j

1

ni
∇ℓ(w(i)

⋆ , zij)

∥∥∥∥∥∥
2

2

≤ E

∥∥∥∥∥∥
∑
j

1

ni
∇ℓ(w(i)

⋆ , zij)

∥∥∥∥∥∥
2

≤ ρ2

ni
. (58)

Combining (57) and (58), it yields

∑
j

1

ni
E
〈
∇ℓ(w(i)

⋆ , zij), ∆̃
(i)
stat

〉
≤ ρ

1
√
ni

E∥∆̃(i)
stat∥2. (59)

Plugging (59) back to (56) yields

0 ≥ −ρ 1
√
ni

E
∥∥∥∆̃(i)

stat

∥∥∥
2
+

µ

2
E
∥∥∥∆̃(i)

stat

∥∥∥2 + λ

2
E∥w̃(g) − w̃(i)∥2 − λ

2
E∥w̃(g) −w

(i)
⋆ ∥2. (60)

Note that

−∥w̃(g) −w
(i)
⋆ ∥2 = −

∥∥∥w̃(g) −w
(g)
⋆ +w

(g)
⋆ −w

(i)
⋆

∥∥∥2
≥ −∥∆̃(g)

stat∥2 − ∥w
(g)
⋆ −w

(i)
⋆ ∥2 − 2∥w(g)

⋆ −w
(i)
⋆ ∥2

∥∥∥∆̃(g)
stat

∥∥∥
2

≥ −∥∆̃(g)
stat∥2 −R2 − 2R

∥∥∥∆̃(g)
stat

∥∥∥
2
.

(61)

Plug (61) into (60)

0 ≥− ρ
√
ni

E
∥∥∥∆̃(i)

stat

∥∥∥
2
+

µ

2
E
∥∥∥∆̃(i)

stat

∥∥∥2 + λ

2
E
∥∥∥δ̃(i)∥∥∥2 − λ

2
E
∥∥∥w̃(g) −w

(g)
⋆ +w

(g)
⋆ −w

(i)
⋆

∥∥∥2
≥− ρ

√
ni

E
∥∥∥∆̃(i)

stat

∥∥∥
2
+

µ

2
E
∥∥∥∆̃(i)

stat

∥∥∥2 + λ

2
E
∥∥∥δ̃(i)∥∥∥2 − λ

2
E
∥∥∥∆̃(g)

stat

∥∥∥2 − λ

2
R2 − λRE

∥∥∥∆̃(g)
stat

∥∥∥
2
.

(62)

Once we denote the upper bound of E
∥∥∥∆̃(g)

stat

∥∥∥2 as U0, it yields

0 ≥− ρ
√
ni

E
∥∥∥∆̃(i)

stat

∥∥∥
2
+

µ

2
E
∥∥∥∆̃(i)

stat

∥∥∥2 + λ

2
E
∥∥∥δ̃(i)∥∥∥2 − λ

2
U2
0 −

λ

2
R2 − λR U0

≥µ

2
E
∥∥∥∆̃(i)

stat

∥∥∥2 − ρ
√
ni

E
∥∥∥∆̃(i)

stat

∥∥∥
2
− λ

2
(U0 +R)

2
.

(63)

If we assume pi =
1
m , ni = nj ∀i ̸= j (assumptions used in Theorem 1), we can obtain

E
∥∥∥∆̃(i)

stat

∥∥∥2 ≤ 1

u2

(
4ρ2

n
+ 4uλ

(
U2
0 +R2

))
. (64)

Case 2: we then consider the case when R ≤
√∑

i
pi

ni
.

If we assume pi =
1
m , ni = nj ∀i ̸= j (assumptions used in Theorem 1), we can obtain
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E[∥w̃(i) −w
(i)
⋆ ∥2]

≤ 3E[∥w̃(i) − w̃(g)∥2] + 3E[∥w̃(g) −w
(g)
⋆ ∥2] + 3E[∥w(g)

⋆ −w
(i)
⋆ ∥2]

(a)

≤ 12

(µ+ λ)2
E[∥∇Li(w̃

(g))∥2] + 3E[∥w̃(g) −w
(g)
⋆ ∥2] + 3R2

(b)

≤ 12

(µ+ λ)2

[
4L2E[∥w̃(g) −w

(g)
⋆ ∥2] + 4L2R2 + 2

ρ2

n

]
+ 3E[∥w̃(g) −w

(g)
⋆ ∥2] + 3R2, (65)

where step (a) comes from the assumption of parameter space in (5) and Lemma 3 and step (b) comes from result (48).

A.3.3. PROOF THE STATISTICAL ERROR BOUND IN THEOREM 1

For R >
√∑

i
pi

ni
, putting the statistical error of global model (35) into the statistical error of local models (64), we have

E
∥∥∥∆̃(i)

stat

∥∥∥2 ≤ (4ρ2

u2
+

4ρ2

u3
λ

)
1

n
+

8

u2
λ2R2 +

4

u
λR2, (66)

therefore the second part of (8) in Theorem 1 is established. For clarity, we can define

q2(λ) =
8

u2
λ2R2 +

4

u
λR2. (67)

For R >
√∑

i
pi

ni
, plugging the result (52) of the global model into the local model’s error bound (65) and reorganizing the

terms yields

E
[
∥∆̃(i)

stat∥2
]
≤ 12

(µ+ λ)2

[
4L2R2 + 2

ρ2

n

]
+

[
48L2

(µ+ λ)2
+ 3

]
U2
0 + 3R2 (68)

≤48ρ2

µ2

1

N
+

[
48L2

µ2
+ 3

]
R2 +

1

q1(λ)
, (69)

where

[q1(λ)]
−1 =

12

(µ+ λ)2

[
4L2R2 + 2

ρ2

n

]
+

48L2

(µ+ λ)2

[
g(λ)

1− 4L2g(λ)

(
4L2R2 + 2

ρ2

n2

)
+2

(
8ρ2

µ2

1

N
+

8L2

µ2
R2

)]
+

3g(λ)

1− 4L2g(λ)

(
4L2R2 + 2

ρ2

n2

)
.

(70)

This combining with the definition of g(λ) implies that q1(λ) is a monotonically increasing function of λ and
limλ→∞ q1(λ) =∞, as claimed.

A.4. The Proof of Corollary 1

Analogous to the proof of Theorem 1, we will discuss the two cases of R2 separately as well. For clarity of our analysis, we
will assume pi =

1
m and ni = nj ∀i ̸= j.

A.4.1. THE STATISTICAL CONVERGENCE OF THE GLOBAL MODEL WITH A CHOICE OF λ

Case 1: For R > 1√
n

, we have derived the global model error bound in (34) as

0 ≥ −ρ

( ∑
i∈[m]

pi
ni

)(∑
i

piE
∥∥∥∆̃(i)

stat

∥∥∥2 )
 1

2

+
µ

2

∑
i

piE
∥∥∥∆̃(i)

stat

∥∥∥2 − λ

2
R2. (71)
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If we set the λ as

λ ≤ ρ2

µnR2
, (72)

then solving the inequality in (35) w.r.t
∑

i piE
∥∥∥∆̃(i)

stat

∥∥∥2 cound yield

E
∥∥∥∆̃(g)

stat

∥∥∥ ≤ (∑
i

piE
∥∥∥∆̃(i)

stat

∥∥∥2) 1
2

≤ (1 +
√
3)ρ

µ
√
n

. (73)

Case 2: For R ≤ 1√
n

, we have obtain the results in (52) as

E[∥∆̃(g)
stat∥2] ≤

g(λ)

1− 4L2g(λ)

(
4L2R2 + 2

ρ2

n

)
+

16ρ2

µ2

1

N
+

16L2

µ2
R2. (74)

If we assume

g(λ) ≤ 1

8L2
∧
((

4ρ2

µ2N
+

4L2R2

µ2

)/(
2L2R2 +

ρ2

n

))
, (75)

we have

E∥w̃(g) −w
(g)
⋆ ∥2 ≤ 32

(
ρ2

µ2

1

N
+

L2

µ2
R2

)
. (76)

Furthermore, we can get a simplified condition for λ as

λ ≥ 8κ

µ

{
8L2 ∨

((
2L2R2 +

ρ2

n

)/( 4ρ2

µ2N
+

4L2R2

µ2

))}
− µ, (77)

where κ = L
µ ≥ 1 and the condition that λ is non-negative holds trivially as κL2

µ = κ2L ≥ µ.

Combine two-case arguments, we have

E∥w̃(g) −w
(g)
⋆ ∥2 ≤


(

(1+
√
3)ρ

µ
√
n

)2
R ≤ 1√

n

32
(

ρ2

µ2
1
N + L2

µ2 R
2
)

R ≤ 1√
n
.

(78)

Thus it yields a one-line rate

E∥w̃(g) −w
(g)
⋆ ∥2 ≤ C1

1

N
+ C2(

1

n
∧R2), (79)

where

C1 = 32
ρ2

µ2
,

C2 =

(
(1 +

√
3)ρ

µ

)2

∨ 32L2

µ2
.

(80)
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A.4.2. THE STATISTICAL CONVERGENCE OF THE LOCAL MODEL WITH A CHOICE OF λ

Case 1: For R > 1√
n

, we have derived the result in (64) as

E
∥∥∥∆̃(i)

stat

∥∥∥2 ≤ 1

u2

(
4ρ2

n
+ 4uλ

(
U2
0 +R2

))
. (81)

In addition, recall that, when R > 1√
n

, we set λ ≤ ρ2

µnR2 in the statistical convergence analysis of the global model.
Therefore, putting the global model’s error bound (See result in (78)) into (64), which yields

E∥∆̃(i)
stat∥2 ≤

1

µ

[
ρ√
n
+

(
ρ2

n
+

2ρ2

nR2
(U0 +R)

2

) 1
2

]
.

=
1√
n

1

µ

(
ρ+

(
ρ2 +

2ρ2

R2
(U0 +R)2

) 1
2

)

≤ 1√
n

ρ+ (ρ2 + 4ρ2(C2 + 1))
1
2

µ

=
1√
n

ρ(1 + (1 + 4(C2 + 1))
1
2 )

µ
,

(82)

where C2 has been defined in (80).

Case 2: For R ≤ 1√
n

, from the result (65), we know

E[∥w̃(i) −w
(i)
⋆ ∥2] ≤

12

(µ+ λ)2

[
4L2U2

0 + 4L2R2 + 2
ρ2

n

]
+ 3U2

0 + 3R2. (83)

Then putting the global model’s results (78) into (65), it yields

E[∥w̃(i) −w
(i)
⋆ ∥2] (84)

≤ 12

(µ+ λ)2

[
128L2

(
ρ2

µ2

1

N
+

L2

µ2
R2

)
+ 4L2R2 + 2

ρ2

n

]
+ 96

(
ρ2

µ2

1

N
+

L2

µ2
R2

)
+ 3R2

=
12

(µ+ λ)2

[
128L2ρ2

µ2

1

N
+ (128L4/µ2 + 4L2)R2 + 2

ρ2

n

]
+

96ρ2

µ2

1

N
+ (96

L2

µ2
+ 3)R2. (85)

If we assume λ satisfies the following condition

12

(µ+ λ)2
≤ 96ρ2/(µ2N) + 99κ2R2

128ρ2/N + 132L2R2 + 2ρ2/n
, (86)

then we will have

E[∥w̃(i) −w
(i)
⋆ ∥2] ≤

192ρ2

µ2

1

N
+ 198κ2R2. (87)

Furthermore, we can get a simplified condition for λ as

λ ≥

√
8(64ρ2/N + 66L2R2 + ρ2/n)

32ρ2/(µ2N) + 33κ2R2
− µ. (88)
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Combining two-case arguments, we have

⇒ E
∥∥∥∆̃(i)

stat

∥∥∥2 ≤


1
n

(
ρ(1+(1+4(C2+1))

1
2 )

µ

)2

R >
√

m
N

192ρ2

µ2
1
N + 198κ2R2 R ≤

√
m
N

. (89)

And it yields a one-line rate

E
∥∥∥∆̃(i)

stat

∥∥∥2 ≤ C3
1

N
+ C4(R

2 ∧ 1

n
), (90)

where

C3 =
192ρ2

µ2
,

C4 =

(
ρ(1 + (4C2 + 5)

1
2 )

µ

)2

∨ 198κ2,

(91)

and C2 are specified in (80).

Therefore, combining results from Section A.3.1 and A.3.2 we can obtain the upper bound in (9).

To make the global statistical error bound and local statistical error bound hold simultaneously, we should be aware about
the condition of the adaptive strategy of λ specified in our proof. It could be summarized as{

λ ≥ max(a1, a2) R <
√

m
N

λ ≤ ρ2

nµR2 R ≥
√

m
N

, (92)

where

a1 =
8κ

µ

{
8L2 ∨

(
2L2R2 + ρ2/n

4ρ2/(µ2N) + 4κ2R2

)}
− µ,

and

a2 =

√
8(64ρ2/N + 66L2R2 + ρ2/n)

32ρ2/(µ2N) + 33κ2R2
− µ.

We can induce a sufficient condition of λ for R < 1√
n

as

λ ≥ max
{
64κ2L, (2κ ∨ 5)µ

2L2R2 + ρ2/n

L2R2 + ρ2/N

}
− µ. (93)

To sum up, we give the one-line rate in (90) for Corollary 1 and provide the potential solution of λ with a closed-form
solution in (92).

A.5. Discussion on the Statistical Convergence Rate and Comparison with Existing Results

Combining the results in A.3.1 and A.3.2, we leave a remark below to further interpret the effect of personalization in
Problem (2) and discuss how to incorporate the conditions of λ when establishing the global and local statistical accuracy.

To better understand how such an interpolation is achieved through an adaptive personalization degree, we examine the role
of λ in navigating between the two extreme cases: GlobalTrain and LocalTrain. As the statistical heterogeneity R→∞,
we have λ → 0, leading to a high degree of personalization. The statistical error bound becomes O(n−1), matching the
rate of LocalTrain; as the statistical heterogeneity R → 0, λ increases, leading to a low degree of personalization. The
statistical error bound eventually converges to O(N−1), matching the rate of GlobalTrain under a homogeneous setting.
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As R ∈ (0,∞), λ transits between the two extremes, making PFL Problem (2) perform no worse than LocalTrain while
benefiting from global training when clients share similarities.

Our contribution can be summarized into three aspects :

• Our results are derived under more realistic assumptions. Chen et al. (2023c) imposes additional stringent conditions
including a bounded parameter space D and a uniform bound on the loss function ℓ(·, z). Such conditions are difficult to
satisfy in practice. For example, even a simple linear regression model with sub-Gaussian covariates would violate these
assumptions.

• Our result is established for both global and local models with the same choice of λ. In contrast, Chen et al. (2023c)
proposes a two-stage process where the global model is first estimated, followed by an additional local training phase with a
different choice of λ. This two-step approach is likely the artifact of their analysis, as existing work on Problem (2) also
shows that a single-stage optimization with a chosen λ suffices to achieve the desired performance (T Dinh et al., 2020).

•We establish a state-of-the-art minimax statistical rate. As shown in Table 3, the established upper bound matches the
lower bound established in (Chen et al., 2023c). In a heterogeneous case when R ≥ n−1/2, Chen et al. (2023c) establishes a
rate that is at least of the order O

(
n−1R2

)
as D ≥ R. This bound becomes increasingly loose with larger R. In contrast,

our bound is O
(
n−1

)
, which shows that properly-tuned Problem 2 is always no worse than LocalTrain, independent of R.

In a homogeneous case when R ≤ m−1n−1/2, they can only establish a rate slower than O (1/(
√
mn)), while our result

achieves a rate of O (1/(mn)), leveraging all mn samples and matching the rate of GlobalTrain on the IID data. As the
client number could be extremely large (105 devices in (Chen et al., 2023a)), order of m is non-trivial. During the transition
period when m−1n−1/2 < R < n−1/2, we achieve a rate of O(R2), again matching the lower bound, and is strictly faster
than the rate O(n−1/2R) established in Chen et al. (2023c).

Table 3. Results Comparison. D := supw,w′∈D ∥w − w′∥ is the diameter of the parameter space (D ≥ R) and ∥ℓ∥∞ = inf{M ∈
R : ℓ(·, z) ≤ M, for any z} is a uniform upper bound on the loss function. Statistical rate refers to E∥w(i)

⋆ − w̃(i)∥2, with constants
neglected.

Source Assumption Paradigm Statistical Rate

R > 1√
n

1
m

√
n
< R ≤ 1√

n
R ≤ 1

m
√
n

(Chen et al., 2023c) A1,2,3, D ∨ ∥ℓ∥∞ ≤ C Two-stage D2+∥ℓ∥∞
n

∥ℓ∥∞√
n
R ∥ℓ∥∞√

mn

Ours A1,2,3 One-stage 1
n R2 ∧ 1

mn
1

mn

Lower Bound - - 1
n R2 ∧ 1

mn
1

mn

Next, we discuss our theoretical contributions. Prior work (Chen et al., 2023c) established the rate through algorithmic
stability, and to obtain bounded stability, the boundedness of the loss function is needed. This assumption (or bounded
gradients) is, in fact, commonly imposed for analysis based on the tool of algorithmic stability. To relax this assumption and
obtain a bound independent of the diameter of the domain/gradient norm/loss function norm, we need to jump out of the
stability analysis framework and develop new techniques.

Our analysis does not rely on any algorithm but directly tackles the objective function, establishing rates using purely the
properties of the loss. Specifically, using the strong convexity of the loss function, we first proved the estimation error is
bounded by the gradient variance and an extra statistical heterogeneity term controlled by λ, as detailed in Lemma 1. This
allows us to show for large R, a small λ can be chosen to yield rate O(1/n) and match one of the worst cases in the lower
bound. For the complementary case R ≤ 1/

√
n, we leveraged the GlobalTrain solution w̃GT as a bridge and proved the

solutions of Problem (2) to w̃GT are bounded by a term inversely proportional to λ (cf. Lemma 4), implying that they can
be made arbitrarily close to w̃GT by setting λ small. This, together with the rate of w̃GT as proved in Lemma 5, yields a
rate of O(1/N +R2). Combining the two cases, we proved minimax optimality.

25



Understanding the Statistical Accuracy-Communication Trade-off in Personalized Federated Learning with Minimax Guarantees

B. Algorithmic Convergence Rate
In this section, we will start to prove the algorithmic convergence rate rigorously. First, we present our Algorithm 1 in
Appendix 1. In Appendix B.2, we provide some useful lemmas to facilitate our analysis, including the proof of Lemma 1
presented in the main paper and the inner loop and outer loop error contractions in Algorithm 1. Next, in Appendix B.3, we
are ready to prove Theorem 2 with the local and global model convergence. In Appendix B.4, to show the communication
cost and computation cost of our method, the proof of Corollary 2 is established. Finally, in Appendix B.5, as stochastic
gradient descent would reduce the computation cost over the full sample, we present Algorithm 2 for the noise setting and
provably show the benefit of collaboration to reduce the noise.

B.1. Algorithm

Algorithm 1 Federated Gradient Descent with K-Step Local Optimization

Input: Initial global model w(g)
1 , initial local models {w(i)

0,K}i∈[m], global rounds T , global step sizes γ, local rounds K,
local step sizes η

Output: Local models {w(i)
T,K}i∈[m] and global model w(g)

T

for t = 1, . . . , T do
The server sends w(g)

t to client i, ∀i ∈ [m]

Set w(i)
t,0 = w

(i)
t−1,K for k = 0, . . . ,K − 1 do

w
(i)
t,k+1 = w

(i)
t,k −

η
ni

∑
j∈[ni]

{
∇ℓ(w(i)

t,k, zi,j) + λ
(
w

(i)
t,k −w

(g)
t

)}
Push ∇̂Fi(w

(g)
t ) = λ(w

(g)
t −w

(i)
t,K) to the server

w
(g)
t+1 ← w

(g)
t − γ

m

∑
i∈[m] ∇̂Fi(w

(g)
t )

B.2. Proof of lemmas

B.2.1. PROOF OF LEMMA 1

To facilitate our analysis, we state a claim first.

Claim: If f is µ-strongly-convex, then the proximal operator

proxf/λ(x) = argmin
v

(
f(v) +

λ

2
∥x− v∥2

)
, (94)

is Lw- Lipschitz continuous with Lw = λ
λ+µ .

Proof. Based on the definition of proxf/λ(x), it will satisfy the first order condition

∇f(prox 1
λ f (x))− λ(x− prox 1

λ f (x)) = 0. (95)

Then we have

∇f(x1)− λ(v1 − x1) = 0 where x1 = prox 1
λ f (v), (96)

∇f(x2)− λ(v2 − x2) = 0 where x2 = prox 1
λ f (v2). (97)

Based on the µ-strongly convexity of f , we have

⟨∇f(x1)−∇f(x2), x1 − x2⟩ ≥ µ∥x1 − x2∥2 (98)

⇒ ∥prox 1
λ f (x1)− prox 1

λ f (x2)∥ ≤
1

1 + µ
λ

∥x1 − x2∥. (99)
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Now, we are ready to prove Lemma 1.

First, from (Mishchenko et al., 2023), we can directly obtain the analytic properties of Fi. Next, the analytic properties of hi

are direct results from Assumption 2 and 1. Finally, to analyze the property of the mapping w
(i)
⋆ , we just need to use the

result from the above claim as we know the definition of w(i)
⋆ (·) in (11).

B.2.2. INNER LOOP CONVERGENCE

Lemma 5 ((Ji et al., 2022), Inner Loop Error Contraction). Suppose Assumption 2 and 1 hold, then if η ≤ 1/Lℓ, for all
t ≥ 0 and ϵ > 0, the inner loop error bound of all clients can be formulated as:

e
(i)
t+1 := ∥w(i)

t+1,K −w
(i)
t+1,⋆∥2 ≤ (1 + ϵ)(1− ηµℓ)

Ke
(i)
t +

(
1 +

1

ϵ

)
(1− ηµℓ)

K∥w(i)
t,⋆ −w

(i)
t−1,⋆∥2. (100)

Proof. The proof can be found in Lemma 2 (Ji et al., 2022).

B.2.3. OUTER LOOP CONVERGENCE

Lemma 6 (Outer Loop Error Contraction). Suppose Assumption 2 and 1 hold, then if γ ≤ Lg, we have for all t > 0 and
ϵg > 0:

∥w(g)
t+1 − w̃(g)∥2 ≤ (1− γµg + γϵg)∥w(g)

t − w̃(g)∥2 − γ2∥∇F (w
(g)
t )∥2

+ (γ3Lg)∥∇̂F (w
(g)
t )∥2 +

(
γ

ϵg
+ γ2

)
∥∇F (w

(g)
t )− ∇̂F (w

(g)
t )∥2.

(101)

Proof. Note

∇̂Fi(w
(g)
t ) = λ(w

(g)
t −w

(i)
t,K). (102)

We define

∇̂F (w
(g)
t ) :=

1

m

∑
i∈[m]

∇̂Fi(w
(g)
t ) =

1

m

∑
i∈[m]

λ(w
(g)
t −w

(i)
t,K). (103)

Thus the global update rule can be written as w(g)
t+1 = w

(g)
t − γ∇̂F (w

(g)
t ). For the outer loop,

∥w(g)
t+1 − w̃(g)∥2

=∥w(g)
t − w̃(g) − γ∇̂F (w

(g)
t )∥2

=∥w(g)
t − w̃(g)∥2 − 2γ⟨w(g)

t − w̃(g), ∇̂F (w
(g)
t )⟩+ γ2∥∇̂F (w

(g)
t )∥2

≤(1 + ϵgγ)∥w(g)
t − w̃(g)∥2 − 2γ⟨w(g)

t − w̃(g),∇F (w
(g)
t )⟩+ γ2∥∇̂F (w

(g)
t )∥2

+

(
γ

ϵg

)
∥∇̂F (w

(g)
t )−∇F (w

(g)
t )∥2,

(104)

where we apply the Young’s inequality with ϵg > 0 in the last line.

Next, we bound the inner product term in the last line using the µg-strong convexity of F :

−γ⟨w(g)
t − w̃(g),∇F (w

(g)
t )⟩ ≤ −γ

(
F (w

(g)
t )− F̂ +

µg

2
∥w(g)

t − w̃(g)∥2
)

= −γ(F (w
(g)
t+1)− F̂ )− γµg

2
∥w(g)

t − w̃(g)∥2 + γ
(
F (w

(g)
t+1)− F (w

(g)
t )
)
.

(105)
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where F̂ := F (w̃(g)) and the last term F (w
(g)
t+1)− F (w

(g)
t ) can be upper bounded using the Lg-smoothness of F :

F (w
(g)
t+1) ≤F (w

(g)
t )− γ⟨∇F (w

(g)
t ), ∇̂F (w

(g)
t )⟩+ Lgγ

2

2
∥∇̂F (w

(g)
t )∥2

(a)
=F (w

(g)
t ) +

γ

2

(
∥∇F (w

(g)
t )− ∇̂F (w

(g)
t )∥2 − ∥∇F (w

(g)
t )∥2 − ∥∇̂F (w

(g)
t )∥2

)
+

Lgγ
2

2
∥∇̂F (w

(g)
t )∥2

=F (w
(g)
t )− γ

2
∥∇F (w

(g)
t )∥2 −

(
γ

2
− Lgγ

2

2

)
∥∇̂F (w

(g)
t )∥2 + γ

2
∥∇F (w

(g)
t )− ∇̂F (w

(g)
t )∥2,

(106)

where the step (a) uses the fact −⟨a, b⟩ = 1
2∥a− b∥2 − 1

2∥a∥
2 − 1

2∥b∥
2.

Substituting (105) and (106) into (104) leads to

∥w(g)
t+1 − w̃(g)∥2

≤(1 + ϵgγ)∥w(g)
t − w̃(g)∥2 + γ2∥∇̂F (w

(g)
t )∥2 +

(
γ

ϵg

)
∥∇̂F (w

(g)
t )−∇F (w

(g)
t )∥2

− 2γ(F (w
(g)
t+1)− F̂ )− γµg∥w(g)

t − w̃(g)∥2

− γ2∥∇F (w
(g)
t )∥2 − γ

(
γ − Lgγ

2
)
∥∇̂F (w

(g)
t )∥2 + γ2∥∇F (w

(g)
t )− ∇̂F (w

(g)
t )∥2

≤(1− γµg + γϵg)∥w(g)
t − w̃(g)∥2 − γ2∥∇F (w

(g)
t )∥2 + (γ3Lg)∥∇̂F (w

(g)
t )∥2

+

(
γ

ϵg
+ γ2

)
∥∇F (w

(g)
t )− ∇̂F (w

(g)
t )∥2.

(107)

B.3. Proof of Theorem 2

B.3.1. PROOF OF THE GLOBAL MODEL CONVERGENCE RATE IN THEOREM 2

Recall the definition of e(i)t in Lemma 5, we define

et =
1

m

∑
i∈[m]

e
(i)
t . (108)

Recall the definition∇F (w
(g)
t ), ∇̂F (w

(g)
t ) in Lemma 2 and eq (103), the gradient approximation error is

∥∇F (w
(g)
t )− ∇̂F (w

(g)
t )∥2 = λ2

∥∥∥ 1

m

m∑
i=1

(
w

(i)
t,K −w

(i)
t,⋆

)∥∥∥2 ≤ λ2et. (109)

Therefore, the recursion of optimization error given by Lemma 6 can be further bounded as:

∥w(g)
t+1 − w̃(g)∥2

(a)

≤ (1− γµg + γϵg)∥w(g)
t − w̃(g)∥2 −

(
γ2 − γ3Lg(1 + ζ)

)
∥∇F (w

(g)
t )∥2

+

(
γ

ϵg
+ γ2 + Lgγ

3(1 + ζ−1)

)
∥∇F (w

(g)
t )− ∇̂F (w

(g)
t )∥2

(b)

≤(1− γµg + γϵg)∥w(g)
t − w̃(g)∥2 − γ2

(
1− γLg(1 + ζ)

)
∥∇F (w

(g)
t )∥2

+

(
γ

ϵg
+ γ2(2 + ζ−1)

)
λ2et,

(110)
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where the step (a) comes from the Young’s inequality with ζ > 0 to be chosen and the step (b) follows from the step size
condition γ ≤ 1/Lg .

Invoking Lemma 1 and Lemma 5, the inner loop optimization error is updated as

et+1 ≤ (1 + ϵ)(1− ηµℓ)
Ket +

(
1 +

1

ϵ

)
(1− ηµℓ)

K 1

m

m∑
i=1

∥w(i)
t+1,⋆ −w

(i)
t,⋆∥2

(a)

≤ (1 + ϵ)(1− ηµℓ)
Ket +

(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
w∥w

(g)
t −wg

t+1∥2

(b)

≤ (1 + ϵ)(1− ηµℓ)
Ket +

(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
wγ

2∥∇̂F (w
(g)
t )∥2

(c)

≤ (1 + ϵ)(1− ηµℓ)
Ket +

(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
wγ

2
(
2∥∇F (w

(g)
t )∥2 + 2λ2et

)
=
(
1 + ϵ+ 2(1 + ϵ−1)L2

wγ
2λ2
)
(1− ηµℓ)

K︸ ︷︷ ︸
:=q

et + 2

(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
wγ

2∥∇F (w
(g)
t )∥2,

(111)

where step (a) is due to Lemma 1, step (b) uses the global update: w(g)
t+1 −w

(g)
t = −γ∇̂F (w

(g)
t ) and in step (c), we just

apply Cauchy inequality instead of Young’s inequality.

Under η ≤ 1/Lℓ, we have 1− ηµℓ < 1. Therefore, by choosing a large K we can always drive q arbitrarily small. Let K
be such that

q ≤ 1− γµg ≤ 1− γµg + γϵg. (112)

Then, we can rewrite (111) as:

et+1 ≤
1− γµg + γϵg + q

2
et −

1− γµg + γϵg − q

2
et

+ 2

(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
wγ

2∥∇F (w
(g)
t )∥2.

(113)

Letting c1 = 2
1−γµg+γϵg−q ·

(
γ
ϵg

+ γ2(2 + ζ−1)
)
λ2, we can combine (113) with (110) and obtain

∥w(g)
t+1 − w̃(g)∥2 + c1 · et+1

≤(1− γµg + γϵg)
(
∥w(g)

t − w̃(g)∥2 + c1 · et
)
− γ2

(
1− γLg(1 + ζ)

)
∥∇F (w

(g)
t )∥2

+

(
2

1− γµg + γϵg − q
·
(

γ

ϵg
+ γ2(2 + ζ−1)

)
λ2

)
· 2
(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
wγ

2∥∇F (w
(g)
t )∥2.

(114)

Therefore, if the condition (112) and

4λ2γ

1− γµg + γϵg − q

(
1

ϵg
+ γ(2 + ζ−1)

)(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
w ≤ 1− γLg(1 + ζ) (115)

hold then (114) implies both ∥w(g)
t − w̃(g)∥2 and et converge to zero at rate 1− γµg + γϵg .

It remains to specify the free parameters (ϵg, ϵ, ζ) in (112), (115) and others listed in Lemma 6 and Lemma 5.

• Convergence Rate. For the connection term in (114), if we set

ϵg =
µg

2
· (1− γµg) > 0, (116)
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which, substituting into 1− γµg + γϵg , gives the convergence rate

r := 1− γµg

2
− (γµg)

2

2
. (117)

Under condition γ ≤ 1/Lg , one can verify that r ∈ (0, 1).

• Step size conditions. Under the requirement (112), we have

1− γµg + γϵg − q ≥ γϵg, (118)

which gives the following sufficient condition for (115):

2

ϵg
·
(

1

ϵg
+ γ(2 + ζ−1)

)
λ2 · 2

(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
w ≤ 1− γLg(1 + ζ). (119)

Further restricting γ such that

γ(2 + ζ−1)
µg

2
≤ 1 =⇒ γ(2 + ζ−1) ≤ 1

ϵg
, (120)

it suffices to require the following for (119) to hold:(
2

ϵg

)2

λ2 · 2
(
1 +

1

ϵ

)
(1− ηµℓ)

KL2
w ≤ 1− γLg(1 + ζ). (121)

Letting ϵ = 1 and ζ = 1− γLg > 0, we collect all the conditions (116), (121) and (112) on γ respectively as follows:

1− γLg > 0, 1− γµg > 0, (122)

(1− γµg)
2
(1− γLg)

2 ≥ 4λ2 · 4(1− ηµℓ)
KL2

w ·
(

2

µg

)2

, (123)

1− γµg ≥
(
2 + 4L2

wγ
2λ2
)
(1− ηµℓ)

K . (124)

Using the fact that µg ≤ Lg , the above conditions simply to

γ < 1/Lg,
(
2 + 64L2

w(1/µg)
2λ2
)
(1− ηµℓ)

K ≤ (1− γLg)
4. (125)

B.3.2. PROOF OF THE LOCAL MODEL CONVERGENCE RATE IN THEOREM 2

Proof. Note that

∥w(i)
t,K − w̃(i)∥2 ≤ 2∥w(i)

t,K −w
(i)
t,⋆∥2 + 2∥w(i)

t,⋆ − w̃(i)∥2. (126)

For the first part on the right-hand side, recalling the definition of e(i)t in Lemma 5

2∥w(i)
t,K −w

(i)
t,⋆∥2 = 2∥e(i)t ∥2. (127)

For the second term on the right-hand side, first, note the property in (11)

w
(i)
t,⋆ = proxLi/λ(w

(g)
t ). (128)

Based on the first order condition of (2)

w̃(i) = proxLi/λ(w̃
(g)). (129)
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Next, plugging (128) and (129) into (126), it yields

∥w(i)
t,K − w̃(i)∥2 ≤ 2∥e(i)t ∥2 + 2∥ proxLi/λ(w

(g)
t )− proxLi/λ(w̃

(g))∥2

≤ 2∥e(i)t ∥2 + 2L2
w∥w

(i)
t,⋆ − w̃(i)∥2,

(130)

where the last we use Lemma 1.

In the proof of Theorem 2, we have established that both ∥w(g)
t − w̃(g)∥2 and et converges to zero linearly at rate

1− γµg/2− (γµg)
2/2, combining with (130), the proof is finished.

B.4. Proof of Corollary 2

With η = 1/Lℓ = (λ + L)−1, γ = 1/(2Lg) =
λ+L
2λL , and using the fact that Lw = λ

λ+µ and µg = λµ
λ+µ (cf. Lemma 1),

condition (125) for K becomes (
2 + 64L2

w(1/µg)
2λ2
)
(1− ηµℓ)

K

=

(
2 + 64

λ2

(λ+ µ)2
(λ+ µ)2

(λµ)2
λ2

)(
1− λ+ µ

λ+ L

)K

=

(
2 + 64

λ2

µ2

)(
L− µ

λ+ L

)K

≤ 1

16
.

(131)

If L = µ, then the above condition trivially holds. Otherwise, a sufficient condition for it is

66κ2

(
L− µ

λ+ L

)K−2

≤ 1

16
, (132)

where we have used the fact that

λ2

µ2

(
L− µ

λ+ L

)K

=

(
λ

λ+ L

)2

·
(
L− µ

µ

)2(
L− µ

λ+ L

)K−2

≤ κ2

(
L− µ

λ+ L

)K−2

(133)

and κ := L/µ ≥ 1. Finally, using the inequality log(1/x) ≥ 1− x for 0 < x ≤ 1 we obtain

K ≥ 2 +
λ+ L

λ+ µ
· log(1056κ2). (134)

B.5. Global Convergence Rate with Stochastic Noise

Similar to the noiseless case, we propose FedCLUP below which uses stochastic gradient descent to solve Problem (2).

Algorithm 2 FedCLUP: Federated Learning with Constant Local Update Personalization

Input: Initial global model w(g)
1 , initial local models {w(i)

0,K}i∈[m], global rounds T , global step sizes γ, local rounds K,
local step sizes η, stochastic batch size B

Output: Local models {w(i)
T,K}i∈[m] and global model w(g)

T

for t = 1, . . . , T do
The server sends w(g)

t to client i, ∀i ∈ [m];
Each client randomly draw B data without replacement;
Set w(i)

t,0 = w
(i)
t−1,K for k = 0, . . . ,K − 1 do

w
(i)
t,k+1 = w

(i)
t,k −

η
B

∑
j∈[B]

{
∇ℓ(w(i)

t,k, zi,j) + λ
(
w

(i)
t,k −w

(g)
t

)}
Push ∇̂Fi(w

(g)
t ) = λ(w

(g)
t −w

(i)
t,K) to the server

w
(g)
t+1 ← w

(g)
t − γ

m

∑
i∈[m] ∇̂Fi(w

(g)
t )
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We use the following assumption to characterize the stochastic noise when sampling new data in each iteration over all
clients without replacement.

Assumption 4 (Stochastic noise). For any i ∈ [m], j ∈ [ni], k ∈ [K], t > 0, we assume

E
[∥∥∥∇wi

ĥi(w
(i)
t,k,w

(i)
t , sij)−∇wi

hi(w
(i)
t,⋆,w

(i)
t )
∥∥∥2] ≤ σ2 (135)

Let we define Ft,k to be the sigma algebra generated by the randomness by Algorithm 2 up to w
(i)
t,k.

Lemma 7 (Inner Loop Error Contraction with stochastic). Suppose Assumption 1 and 2 hold, then if η ≤ 1/Lℓ, for all
t ≥ 0 and ϵ > 0, the inner loop error bound of all clients can be formulated as:

gt+1 = E


∥∥∥∥∥∥ 1

m

∑
i∈[m]

w
(i)
t+1,k −w

(i)
t+1,∗

∥∥∥∥∥∥
2 ∣∣∣Ft+1,k


≤
[
1 + ϵ+ 2

(
1 +

1

ϵ

)
L2
wγ

2λ2

]
(1− ηtµℓ)

k
gt

+ 2

(
1 +

1

ϵ

)
(1− µℓηt)

k
L2
wγ

2∥∇F (w
(g)
t )∥2

+
2ηt
µℓ

σ2

Bm
.

(136)

Proof.

gt+1 = E


∥∥∥∥∥∥ 1

m

∑
i∈[m]

w
(i)
t+1,k −w

(i)
t+1,∗

∥∥∥∥∥∥
2 ∣∣∣Ft+1,k


= E


∥∥∥∥∥∥ 1

m

∑
i∈[m]

w(i)
t+1,k−1 −

ηt
B

∑
j

∇wi
ĥi(w

(i)
t+1,k−1,w

(i)
t+1, sij)−w

(i)
t+1,∗

∥∥∥∥∥∥
2 ∣∣∣Ft+1,k


= E

∥∥∥∥∥ 1

m

∑
i

w
(i)
t+1,k−1 −w

(i)
t+1,∗

∥∥∥∥∥
2 ∣∣∣Ft+1,k


+ η2tE


∥∥∥∥∥∥ 1

mB

∑
i

∑
j

∇wi ĥi(w
(i)
t+1,k−1,w

(i)
t+1, sij)

∥∥∥∥∥∥
2 ∣∣∣Ft+1,k


− 2ηtE

〈 1

m

∑
i

w
(i)
t+1,k−1 −w

(i)
t+1,∗,

1

Bm

∑
j

∇wi
ĥi(w

(i)
t+1,k−1,w

(i)
t+1, sij)

〉∣∣∣Ft+1,k

 .

(137)
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To simplify the result, we shall note

E


∥∥∥∥∥∥ 1

mB

∑
i

∑
j

∇wi
ĥi(w

(i)
t+1,k−1,w

(i)
t+1, sij)

∥∥∥∥∥∥
2 ∣∣∣Ft+1,k


= E


∥∥∥∥∥∥ 1

mB

∑
i

∑
j

∇wi
ĥi(w

(i)
t+1,k−1,w

(i)
t+1, sij)−∇wi

hi(w
(i)
t+1,k−1,w

(i)
t+1)

∥∥∥∥∥∥
2 ∣∣∣Ft+1,k


+

∥∥∥∥∥ 1

m

∑
i

∇wi
hi(w

(i)
t+1,k−1,w

(i)
t+1)

∥∥∥∥∥
2

(a)

≤ σ2

mB
+

∥∥∥∥∥ 1

m

∑
i

(
∇wi

hi(w
(i)
t+1,k−1,w

(i)
t+1)−∇wi

hi(w
(i)
t+1,∗,w

(i)
t+1)

)∥∥∥∥∥
2

(b)

≤ σ2

mB
+ 2Lℓ

1

m

∑
i

(
hi(w

(i)
t+1,k−1,w

(i)
t+1)− hi(w

(i)
t+1,∗,w

(i)
t+1)

)
. (138)

where step (a) stands due to Assumption 4 and the optimality of w(i)
t+1,⋆, step (b) uses the Lemma 2.29 in (Garrigos &

Gower, 2023). Moreover, for the third term in (137), it yields

E

〈 1

m

∑
i

w
(i)
t+1,k−1 −w

(i)
t+1,∗,

1

Bm

∑
i,j

∇wi
ĥi(w

(i)
t+1,k−1,w

(i)
t+1, sj)

〉∣∣∣Ft+1,k


=

〈
1

m

∑
i

w
(i)
t+1,k−1 −w

(i)
t+1,∗,

1

m

∑
i

∇wi
hi(w

(i)
t+1,k−1,w

(i)
t+1)

〉

≥ 1

m

∑
i

(
hi(w

(i)
t+1,k−1,w

(i)
t+1)− hi(w

(i)
t+1,∗,w

(i)
t+1)

)
+

µℓ

2

∥∥∥∥∥ 1

m

∑
i

w
(i)
t+1,k−1 −w

(i)
t+1,∗

∥∥∥∥∥
2

,

(139)

where the last line comes from the strong convexity of hi in Assumption 2.

Plugging the results (138) and (139) into (137), we obtain

E

∥∥∥∥∥ 1

m

∑
i

w
(i)
t+1,k −w

(i)
t+1,∗

∥∥∥∥∥
2 ∣∣∣Ft+1,k
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(140)

If we assume ηt ≤ 1
Lℓ

we can simplify (140) as
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Reorganizing all the terms in (141), we get
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Theorem 3. Suppose Assumptions 1, 2 and 4 hold. Let {w(g)
t }t≥0 and {w(i)

t,K}t≥0 be the sequence generated by Algorithm
2 with γ < 1/Lg , η ≤ 1/Lℓ, and the inner loop iteration number satisfying(

2 + 64L2
w(1/µg)

2λ2
)
(1− ηµℓ)

K ≤ (1− γLg)
4, (143)

then w
(g)
t converges to w̃(g) linearly at rate 1− (γµg)/2− (γµg)
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8
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1

µ2
g
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.

Proof. Analogy to the proof of Theorem 2, we define
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(
1 + ϵ+ 2

(
1 +

1

ϵ

)
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k
. (144)

If we assume

q ≤ 1− γµg ≤ 1− γµg + γϵg, (145)

and define

c1 =
1

1− γµg + γϵg − q

(
γ

ϵg
+ γ2(2 + ζ−1)

)
λ2, (146)

combining Lemma 7 and Lemma 6, it yields
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For
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If we set ϵg =
µg

2 , it yields the convergence rate
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2
. (148)

And the condition (147) can be reformulated as
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Restrict γ
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. (150)

Then condition (149) yields
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Then if we assume ϵ = 1 and ζ = 1 − γLg, the conditions (145), (150) and (151) can be satisfied with the following
sufficient conditions
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And we can get a more straightforward sufficient condition
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Under such a sufficient condition, the contraction of the combination of inner loop and the outer loop would be rewritten as

E
[∥∥∥w(g)

t+1 − w̃(g)
∥∥∥2 ∣∣∣Ft+1,k

]
+ c1gt+1

≤ (1− γµg + γϵg)

(∥∥∥w(g)
t − w̃(g)

∥∥∥2 + c1gt

)
+

t∑
l=0

(
1− 1

2
γµg

)t−l
2

ϵ2g
λ2

k−1∑
l=0

(1− µℓη)
k−l

η2
σ2

Bm

≤ (1− 1

2
γµg)

t+1

(∥∥∥w(g)
0 − w̃(g)

∥∥∥2 + c1g0

)
+

t∑
l=0

(
1− 1

2
γµg

)t−l
2

ϵ2g
λ2

k−1∑
l=0

(1− µℓη)
k−l

η2
σ2

Bm

≤ (1− 1

2
γµg)

t+1

(∥∥∥w(g)
0 − w̃(g)

∥∥∥2 + c1g0

)
+

tk−1∑
l=0

2

(
max(1− 1

2
γµg, 1− µℓη)

)l
1

ϵ2g
λ2η2

σ2

Bm

≤ (1− 1

2
γµg)

t+1

(∥∥∥w(g)
0 − w̃(g)

∥∥∥2 + c1g0

)
+

8

min{ 12γµg, µℓη}
1

µ2
g

λ2η2
σ2

Bm
.

(156)

With η = min{ µ(λ+L)
4L(λ+µ)2 ,

1
λ+L}, γ = 1/(2Lg) = λ+L

2λL , we can get the solution within an error ball(
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As stated in Theorem 4.2 of (Hanzely & Richtárik, 2020), when p⋆ = λ
λ+L , the stochastic noise term is independent of the

number of clients. Consequently, it does not theoretically demonstrate the expected benefit of collaboration in reducing
noise. In contrast, our analysis reveals that even when adjusting λ, the noise remains of the same order, specificallyO

(
1

Bm

)
.

C. Proof in Section 5
Corollary 4. Under the assumptions of Theorem 1 and Corollary 2, w(i)

T,K generated by Algorithm 1 satisfies
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for any i ∈ [m], where q1(λ) and q2(λ) are monotone increasing functions of λ with limλ→+∞ q1(λ) = +∞ and
limλ→0 q2(λ) = 0.

Proof. The corollary is a direct result of Theorem 1 and Theorem 2, where q1(λ) and q2(λ) are defined in (70) and (67).

36



Understanding the Statistical Accuracy-Communication Trade-off in Personalized Federated Learning with Minimax Guarantees

D. Additional Experiment Details and Results
D.1. More Experiment Details

Federated Learning (FL) has emerged as a widely adopted approach with numerous real-world applications, like Large
Language Model (LLM) (Bai et al., 2024; Wu et al., 2024; Zhao et al., 2023), Reinforcement Learning (Zheng et al., 2024;
2025; Zhang et al., 2025), Diffusion Model (Li et al., 2024a). In this section, we provide more details on the implementation
of the methods used in the empirical analysis.

Real Dataset. The MNIST dataset consists of 70,000 grayscale images of handwritten digits, each 28x28 pixels, classified
into 10 classes (digits 0-9). The EMNIST dataset extends MNIST, including handwritten letters and digits. The Balanced
split contains 131,600 28x28 grayscale images across 47 balanced classes (digits and uppercase/lowercase letters). The
CIFAR-10 dataset contains 60,000 color images (32x32 pixels, 3 RGB channels), categorized into 10 classes representing
real-world objects (e.g., airplane, car, and dog).

Algorithms. To fully investigate the effect of personalization in Problem (2) with the Algorithm B.1, we compare the two
extreme algorithms (GlobalTraining and LocalTraining). Furthermore, since there exist other methods solving Problem (2)
to do personalized federated learning, we also try to investigate the effect of personalization in other methods, like pFedMe
(T Dinh et al., 2020). The algorithm pFedMe has a similar design with a double loop to solve the subproblem in each
communication round.

Selection of λ. For the logistic regression on the synthetic dataset, we selected three values for λ: small λ = 0.02, medium
λ = 0.1, and large λ = 0.5. For logistic regression on the MNIST dataset, we used small λ = 0.5, medium λ = 1.5, and
large λ = 2.5. For CNN on the MNIST dataset, we used small λ = 0.2, medium λ = 0.5, and large λ = 2.5. Such a
choice is to make sure that each line in the figure is clearly separable. Additionally, we implemented an adaptive choice of λ
following the formula outlined in Corrollary 1, with ρ set to 2. The value of ρ was determined through grid search over
the range [1, 10] to ensure optimal performance. For other real datasets, the regularization term λ is set as small λ = 0.1,
medium λ = 0.5, and large λ = 1.

Selection of Step Size. For the synthetic dataset, aligned with Theorem 2, we set the global step size γ = (λ+L)/(λL) and
the local step size η = 1/(L+λ). The smoothness constant L is computed as the upper bound of the L-smoothness constant
for logistic regression, specifically 4−1Λmax, where Λmax denotes the largest eigenvalue of the Gram matrix X⊤X . The
local step size for the synthetic dataset was further tuned through grid search in {0.001, 0.01, 0.1}. For the real dataset, the
global learning rate was set to 1/λ, while the local learning rate was set to 0.01, chosen via grid search. For both GlobalTrain
and LocalTrain training baselines, the learning rate was also chosen via grid search within the range {0.001, 0.01, 0.1}.
LocalTrain is implemented using a local (S)GD, and GlobalTrain is implemented using FedAvg (McMahan et al., 2017).

Selection of Hyperparameters and Convolutional Neural Network Model. For the MNIST dataset, we implemented
logistic regression using the SGD solver with 5 epochs, a batch size of 32, and 20 total runs, and the same hyperparameter
setup was used, except the batch size was reduced to 16 to ensure stable convergence in CNN with two convolution layers.
To make our experiment more comprehensive, we also utilized a five-layer CNN to train the MNIST dataset with 10 epochs,
a batch size of 16, and 50 total runs. For the EMNIST dataset, we used the same five-layer CNN with the same settings.
And for CIFAR10, we implemented a three-layer CNN with 10 epochs, a batch size of 16, and 50 total runs. To study
the data heterogeneity, we set the number of classes for each client in the MNIST, EMNIST, and CIFAR10 datasets as
{2, 6, 10}, {30, 40, 47}, and {2, 6, 10}, respectively.

Optimizer. For the synthetic dataset, following the analysis in the paper, the loss function is optimized using gradient
descent (GD). For the MNIST dataset, all models are implemented in PyTorch, and optimization is performed using the
stochastic gradient descent (SGD) solver.

Evaluation Criterion. In terms of evaluation, for the synthetic dataset, we track the ground truth local model w(i)
⋆ . We

compute the local statistical error as ∥w̃(i) − w
(i)
⋆ ∥2. To capture the total error at the t-th iteration, we report the local

total error ∥w(i)
t,0 −w

(i)
⋆ ∥2, which combine both optimization and statistical errors. For the MNIST dataset, we report test

accuracy on the MNIST testing set as a measure of the statistical error, and training loss for each client’s training set as total
error at the t-th iteration.
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D.2. Additional Experiment Results

The Effect of Personalization on Accuracy over different data heterogeneity To further validate our conclusions about the
effect of personalization on solving Problem 2, we conduct additional experiments on real datasets, including EMNIST and
CIFAR-10. For each dataset, we explore three levels of statistical heterogeneity, controlled by varying the number of classes
each client has access to, which follows a widely used setup in federated learning literature. The models are trained using
different convolutional neural network (CNN) architectures, denoted as CNN2 and CNN5, where the numbers indicate the
number of convolutional layers in the network. As the ground truth underlying model is not accessible for these real datasets,
we evaluate model performance based on classification accuracy on the test set, as shown in Tables 4. We also conduct
experiments another regularization-based personalization method focusing on Problem (2), pFedMe (T Dinh et al., 2020),
to demonstrate that our results could be generalized to other regularization-based personalized federated learning methods
as well. For the columns corresponding to FedCLUP and pFedMe, we conduct experiments with varying regularization
parameter λ, investigating the role of personalization in the algorithms. Specifically, we experiment with small, medium, and
large λ values (see Appendix D.1 for detailed parameter settings). In Table 4, we can see that consistently across datasets, as

Dataset Client Class
FedCLUP GlobalTrain LocalTrain pFedMe

high median low high median low

MNIST Logit
2 0.5001 0.6011 0.6109 0.7001 0.3214 0.5534 0.6312 0.6712
6 0.6813 0.7001 0.7241 0.7718 0.6000 0.6312 0.7123 0.7681

10 0.8123 0.8213 0.8312 0.8391 0.7828 0.8001 0.8239 0.8291

MNIST CNN2
2 0.3567 0.4721 0.6019 0.6123 0.3019 0.3973 0.5828 0.6172
6 0.7001 0.7833 0.7843 0.8092 0.6231 0.7918 0.8093 0.8312

10 0.8753 0.8893 0.9032 0.9098 0.8194 0.8756 0.8771 0.8749

MNIST CNN5
2 0.8891 0.9000 0.9333 0.9377 0.6536 0.9000 0.9003 0.9380
6 0.8451 0.8941 0.9392 0.9446 0.7333 0.9288 0.9186 0.9306

10 0.9091 0.9102 0.9421 0.9433 0.7633 0.9340 0.9385 0.9440

EMNIST CNN5
30 0.6084 0.6089 0.6011 0.6102 0.5583 0.6133 0.6129 0.6122
40 0.6097 0.6123 0.6357 0.6423 0.5644 0.6012 0.6102 0.6134
47 0.6278 0.6415 0.6672 0.6611 0.6111 0.6345 0.6532 0.6717

CIFAR10 CNN3
2 0.6101 0.6292 0.6340 0.6444 0.5801 0.6056 0.6012 0.6033
6 0.6211 0.6311 0.6712 0.6949 0.5623 0.6163 0.6163 0.6439

10 0.6102 0.6712 0.7302 0.8041 0.6238 0.6744 0.7443 0.7732

Table 4. Evaluation accuracy of algorithms (FedCLUP, GlobalTrain, LocalTrain, and pFedMe) across datasets and client classes. (CNNk
means the CNN has k convolutional layers, low, medium, and high indicate different degree of personalization, and Client Class indicates
the number of classes on each client).

personalization degree increase, the accuracy approaches that of LocalTrain, which trains separate models for each client.
Conversely, as personalization degree decreases, the accuracy approaches that of GlobalTrain, which represents purely
global training. This interpolation behavior between LocalTrain and GlobalTrain, enabled by Problem (2), aligns well with
our theoretical results in Theorem 1.

Moreover, as dataset homogeneity increases (i.e., clients share more similar data distributions), we observe a general
improvement in accuracy across all methods, regardless of the level of personalization. This result demonstrates that
while personalization offers significant benefits in highly heterogeneous settings, its necessity diminishes as heterogeneity
decreases. Additionally, experiments with different CNN architectures confirm the robustness of these findings across
model designs. Although we did not provide a theoretical analysis for pFedMe in this paper, our results suggest that the
empirical behavior of pFedMe is consistent with the theoretical insights derived for FedCLUP. In particular, we observe
that pFedMe also exhibits interpolation between local and global learning under varying levels of data heterogeneity. We
observe in Table 4 that LocalTrain consistently underperforms across all levels of statistical heterogeneity. This is because,
while statistical heterogeneity is introduced by restricting each client’s exposure to only a subset of classes in the training
process, evaluation is conducted on the entire dataset, including classes not seen during training. As a result, LocalTrain’s
performance remains lower than that of other methods.

The Effect of Personalization on Statistical Error over different data heterogeneity Figure 4 demonstrates the effect
of personalization on statistical error across varying levels of statistical heterogeneity R. As demonstrated in the theory,
increasing personalization (moving from FedCLUP (low per) to FedCLUP (high per)) shifts the solution closer to LocalTrain,
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while decreasing personalization makes the model behave more like GlobalTrain. For low heterogeneity, methods with
lower personalization (i.e., greater collaboration) achieve lower statistical error, as information can be effectively shared
across clients to improve learning. GlobalTrain achieves the lowest error in this regime, while FedCLUP with less
personalization also performs well. However, as statistical heterogeneity increases, collaborative learning becomes less
effective. In this setting, LocalTrain outperforms other methods. Highly personalized FedCLUP also performs better than
less personalized variants, aligning with the theory we established in Theorem 1. In Figure 5, we track testing loss as a

Figure 4. Impact of personalization on statistical error of FedCLUP solution across different levels of heterogeneity (high per means
training FedCLUP with high personalization degree).

function of communication rounds. Across all sub-figures, FedCLUP with smaller λ (higher personalization) demonstrates
faster convergence, especially in the early stages of training. Thus, it shows that the trade-off between statistical accuracy
and computation cost under the influence of personalization widely exists over statistical heterogeneity. Different Number

Figure 5. Logistic Regression training loss versus communication rounds for the FedCLUP methods on MNIST dataset (high per refers to
training FedCLUP with high personalization degree).

of Clients In Figure 6, the top row shows results for 100 clients, and the bottom row shows results for 1,000 clients, and in
both results we adopt a client sampling of 10% in each communication round. This tests the scalability and generalizability
of the our results under typical federated learning setups. Consistent with the findings from Figure 1, FedCLUP with
smaller λ (higher personalization) consistently achieves faster convergence at the early stages of training, while FedCLUP
with larger λ (lower personalization) takes more communication rounds to converge. As statistical heterogeneity increases
(measured by R), FedCLUP with smaller λ gradually outperforms models with larger λ, showcasing the adaptability of
solving Problem 2 to different levels of heterogeneity. These results further validate the theoretical insights from Theorem 1
and Theorem 2, highlighting the influence of personalization on statistical and optimization performance in federated setups
with larger numbers of clients.

The Effect of Personalization on Communication Cost Figure 2 investigates how personalization impacts communication
efficiency in FedCLUP by analyzing the benefit of increasing local updates under different personalization levels. In the
low-personalization setting (left column), more local updates significantly accelerate convergence, reducing the reliance
on frequent communication. However, in the high-personalization setting (right column), increasing local updates has a
limited effect on convergence, indicating that frequent communication is essential for effective learning. This demonstrates
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Figure 6. Performance of FedCLUP on the Synthetic dataset with 100 clients (top row) and 1,000 clients (bottom row) with 10% client
sampling under different levels of statistical heterogeneity (R).

that higher personalization requires more communication rounds to achieve comparable performance, aligning with our
theoretical findings.

D.3. Additional Experiment for Rebuttal

D.3.1. STRONGLY CONVEX SETTING WITH SYNTHETIC DATA

As the theoretical results is established under strongly-convex settings, hence some expiremnts under strongly convex setting
is expected with discussion related to the conditional number κ. We conduct an experiment on strongly convex problem: an
overdeterminded linear regression task. We strictly follow the choice of local step size, local computation rounds, and global
step size as specified in Corollary 2. As shown in Table 7 and 8, for a fixed personalization parameter λ, we observe that
longer value of κ result in slower convergence rates with respect tot he number of communication rounds. This expirical
trend is consistent with our theoretical prediction in Corollary 2, where the number of communication rounds required
to achieve a given target error ϵ scales with O(κλ+L

λ+µ log(1/ε)). Moreover, we observe that the impact of increasing κ
becomes stronger as λ increases. This phenomenon aligns with our theoretical analysis, which shows that the sensitivity
of communication complexity to κ is amplified for larger values of λ. Similarly, we observe that increasing the condition
number κ also leads to a higher total number of gradient evaluations required to reach a target error. This observation is in
agreement with our theoretical results where the total number of local gradient evaluations scales as O(κ log(1/ε)).
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Figure 7. Optimization error versus communication rounds under varying condition numbers κ. The left, middle, and right panels
correspond to FedCLUP with small, medium, and large values of λ, respectively. Across all settings, we observe that larger κ leads to
slower convergence, with the effect becoming more pronounced as λ increases.

Figure 8. Optimization error versus total number of local gradient evaluations per client under varying condition numbers κ. As κ
increases, the number of gradient evaluations required to achieve a given optimization error also increases.

D.3.2. DATASETS WITH NATURAL PARTITIONS

(a) The loss of FedCLUP with CelebA (b) The loss of pFedMe with CelebA

Figure 9. Loss of FedCLUP (a) and pFedMe (b) with different personalization degrees on the CelebA dataset. Low, median, and high
personalization correspond to regularization terms 0.5, 0.1, and 0.001, respectively. For FedCLUP, the test accuracy is highest with low
personalization (0.919), followed by median (0.915) and high (0.888). For pFedMe, the test accuracy is highest for low personalization
(0.910), followed by median (0.901) and high (0.890). The test accuracy for GlobalTrain and LocalTrain is 0.911 and 0.561, respectively.
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(a) The loss of FedCLUP with Sent140 (b) The loss of pFedMe with Sent140

Figure 10. Loss of FedCLUP (a) and pFedMe (b) with different personalization degrees on the Sent140 dataset. Low, median, and high
personalization correspond to regularization terms 0.1, 0.005, and 0.001, respectively. For FedCLUP, the test accuracy is highest for low
personalization (0.734), followed by median (0.702) and high (0.696). For pFedMe, the test accuracy is highest for low personalization
(0.727), followed by median (0.703) and high (0.701). The test accuracy for GlobalTrain and LocalTrain is 0.730 and 0.353, respectively.
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