
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

KAMBAAD: ENHANCING STATE SPACE MODELS WITH
KOLMOGOROV–ARNOLD FOR TIME SERIES ANOMALY
DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series anomaly detection is critical in numerous practical applications, yet
existing deep learning methods often fall short of real-world demands. These
models fail to swiftly filter out physically implausible anomalies, insufficiently
address distributional shifts, and lack a comprehensive approach that integrates
both global and local perspectives for anomaly detection. Moreover, most suc-
cessful models rely on channel-dependent methods that tend to treat all features
at the same timestamp as a single token and then focus on finding relationships
between these tokens. This approach overlooks the unique periodicities, trends,
and lagged relationships between different features, leading to suboptimal per-
formance. To address these limitations, we propose KambaAD, a model com-
prised of an Encoder and Reconstructor. The Encoder integrates the strengths of
the Kolmogorov-Arnold Network (KAN), attention mechanism, and the Selec-
tive Structured State Space Model (MAMBA). Specifically, KAN is employed to
swiftly enforce data consistency, enabling rapid detection of anomalies that violate
physical laws. Attention mechanism ensures balanced processing of global infor-
mation while enhancing the representation of key data characteristics. We lever-
age MAMBA’s capability as a sequence model to capture anomalies caused by
local variations. Additionally, its internal selection mechanism allows the model
to effectively handle distribution shifts, ensuring robustness and adaptability in
the presence of changing data distributions. Additionally, the framework incorpo-
rates a time-series-specific Reconstructor, which reduces computational complex-
ity through patch-based operations that exploit local consistency in time series
data. It also employs channel-independent linear reconstruction to prevent in-
terference between different features. Through extensive experiments on multiple
multivariate datasets, KambaAD consistently outperforms state-of-the-art models,
demonstrating its superior performance in anomaly detection.

1 INTRODUCTION

Time series anomaly detection aims to accurately identify points or subsequences that deviate from
regular patterns within continuous time series data. In the context of digital operations management,
this technology is essential for tracking key performance indicators (KPIs) such as CPU utilization,
memory usage, and network bandwidth, which generate large volumes of time series data (Zhu
et al., 2019). By detecting anomalies such as performance bottlenecks or system failures, operations
teams can swiftly mitigate issues, ensuring system resilience, scalability, and high availability while
reducing downtime and failure rates (Lindemann et al., 2021). Beyond digital infrastructure, time
series anomaly detection is also applied in fields such as economics, meteorology, and finance. For
instance, it helps detect abnormal market fluctuations, predict extreme weather events, and identify
fraudulent financial transactions (Ahmed et al., 2016; Lee et al., 2018; Hilal et al., 2022). Tradi-
tional anomaly detection methods rely on handcrafted features and statistical assumptions, offering
simplicity and interpretability but struggling with scalability and adaptability in diverse or high-
dimensional datasets (Teng, 2010; Munir et al., 2019).

In recent decades, deep learning (DL) methods have been widely adopted for time series anomaly
detection, excelling at capturing temporal dependencies and nonlinear relationships without manual

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

feature engineering (Choi et al., 2021). However, DL methods face several challenges: Firstly, they
often overlook the overall consistency of the data, making them prone to missing subtle or physically
implausible anomalies. If these anomalies are not identified promptly, the model may confuse nor-
mal and abnormal patterns, especially when anomalies densely occur within a specific window, as it
tries to minimize the overall error for that window. Second, DL methods struggle with distributional
shifts over time, where patterns of normality and anomaly evolve. Anomalies during training may
become normal later, while new anomalies emerge from previously normal patterns, complicating
model robustness in dynamic, non-stationary data (Zeng, 2020; Wen & Keyes, 2019). Third, DL
methods often fail to integrate both global and local perspectives—essential for detecting long-term
deviations and short-term fluctuations, respectively (Xia et al., 2023; Albu et al., 2020). Finally,
most successful models adopt channel-dependent strategies that treat features at the same times-
tamp as a single token, disregarding distinct periodicities, trends, and lagged relationships. This
limits their ability to capture complex interactions in multivariate time series, leading to suboptimal
reconstruction (Liu et al., 2022).

To address the multifaceted challenges in time series anomaly detection, we propose KambaAD, a
robust framework composed of an Encoder and a Reconstructor. The Encoder employs a two-stage
feature extraction process: Coarse-Grained Anomaly Filtering and Fine-Grained Pattern Recogni-
tion. In the Coarse-Grained Anomaly Filtering stage, KAN replaces traditional weight parameters
with learnable univariate functions, establishing more stable functional relationships between inputs
and outputs. This not only reduces the number of parameters but also leverages data consistency,
enabling faster preliminary anomaly screening. By processing features from all time steps within
the entire time window, KAN effectively captures latent cross-temporal correlations, avoiding issues
such as lag effects, periodicity, and feature misalignment that arise from analyzing individual data
points. Once KAN has addressed the more apparent anomalies, the process transitions seamlessly
to the Fine-Grained Pattern Recognition stage, where the focus shifts to detecting more nuanced
and infrequent anomalies. In this stage, we integrate attention mechanism and MAMBA within the
representation space. Attention mechanism excels at capturing global dependencies across distant
time steps, making it particularly useful for detecting long-range correlations in complex time series
(Matar et al., 2023). Meanwhile, MAMBA focuses on detecting local, context-specific anomalies.
As a sequential model, MAMBA iteratively updates its hidden states while leveraging positional
information to capture temporal dependencies. Its dynamic adjustment mechanism adapts the state
transition matrix to input changes, addressing distribution shifts. MAMBA’s gating mechanism fur-
ther modulates the influence of inputs on hidden states and outputs, reducing the impact of anoma-
lous points on the reconstruction process. Additionally, MAMBA employs 1D convolutional opera-
tions to efficiently capture local dependencies between adjacent time steps, enhancing its ability to
detect short-term anomalies and trend shifts. In the Reconstructor, we employ three complementary
techniques: patch-based data division, channel-independent (CI) processing, and linear reconstruc-
tion. First, patch-based division allows the model to leverage local similarities, focusing on critical
temporal features rather than processing the entire sequence at once, thereby reducing resource con-
sumption (Berral et al., 2021; Scherer et al., 2021; Sabater et al., 2022). Second, the CI strategy
ensures that each channel is processed independently during reconstruction, allowing the model to
refine individual features without losing the global context, as inter-channel relationships have al-
ready been captured in the Encoder. Finally, linear reconstruction further controls the number of
parameters, ensuring the model remains scalable and robust when handling high-dimensional data.

In summary, the integration of KAN, attention mechanism, and MAMBA in KambaAD enables ef-
fective coarse-grained anomaly filtering and fine-grained pattern recognition across temporal scales.
Extensive experiments on multiple datasets show a 5% improvement in F1 score, confirming its
effectiveness in time series anomaly detection.

2 PROBLEM DEFINITION

Consider a multivariate time series with k variables over t time steps. Each observation at time t is
represented by the vector xt = (xt1, xt2, . . . , xtk), where xtk denotes the value of the k-th variable
at time t. The goal of anomaly detection is to determine whether xt is normal or anomalous, based on
a sliding window of the past n observations, including the current time step t. This sliding window,
denoted by Xt, contains the vectors from time t − n + 1 to t. The anomaly detection function f

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Encoder

1

Encoder

Stage Two

Reshape

Linear

Dropout

RMSNorm

Stage One

ATTENTION

Add&Norm

Q K V

MHA

MAMBA

Linear

Selective SSM

Conv1d

Linear Linear

𝜎𝜎

×

Encoder

Rec DataR𝐚𝐰 𝐃𝐚𝐭𝐚 Anomaly Score

MSE

Renconstructor

Concate &
Transpose

Channel 
Independent

splitting into patches

Linear Linear Linear Linear Linear

𝐿x

Reshape

KAN

Figure 1: Architecture of KambaAD. Raw Data represents the input segmented into windows, while
Rec Data refers to the reconstructed output after model processing.

maps this sliding window Xt to a binary label yt:

yt = f(Xt) =

{
1 anomaly
0 normal.

(1)

3 METHODOLOGY

3.1 OVERVIEW

As shown in Figure 1, the model processes windowed data as input and outputs an anomaly score.
The architecture consists of two parts: feature extraction and reconstruction. In the feature extraction
phase, a hybrid encoder combining KAN, attention mechanisms, and MAMBA is used. In the
reconstruction phase, the data is divided into patches and fed into channel-independent linear models
for reconstruction. The reconstruction error is computed as the mean squared error (MSE) between
the input and the reconstructed output.

3.2 ENCODER

This section elucidates the mathematical underpinnings of the KambaAD encoder component. Let
the input data be denoted as X ∈ Rn×k, where n represents the number of data points and k signifies
the number of features. Our primary objective is to extract information-rich features capable of
reconstructing the original data with high fidelity.

3.2.1 STAGE ONE: COARSE-GRAINED ANOMALY FILTERING

In this study, we introduce the use of the KAN for preliminary anomaly detection in time series
data. To tackle challenges such as varying periodicities, trends, and lag effects across features, we
consider the entire window of features as input, allowing the model to capture relationships across
different time steps. The input data is represented as a matrix X ∈ Rn×k, where each data point
Xi = {x1, x2, . . . , xk} (for i = 1, 2, . . . , n). The operations in this phase are denoted by FKAN,
where X is first reshaped into a vector, processed, and then reshaped back into an n× d matrix. For

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

details on the KAN architecture, please refer to Appendix C. After processing through FKAN, we
apply post-processing steps such as dropout (Srivastava et al., 2014), linear residual combination,
and Root Mean Square Normalization (RMSNorm) (Zhang & Sennrich, 2019). This post-processing
is formalized as follows:

X1 = XWα + bα, (2)
where X1 ∈ Rn×d represents the linearly transformed residuals, adjusted to the universal dimension
d. This transformation prepares the residuals for combination with the main output of KAN. Here,
Wα ∈ Rk×d and bα ∈ Rn×d denote the weight matrix and bias vector, respectively. The final
output of the model, XKAN ∈ Rn×d, which captures anomalies in the data, is expressed as:

XKAN = RMSNorm(Dropout(FKAN(X)) +X1). (3)

3.2.2 STAGE TWO: FINE-GRAINED PATTERN RECOGNITION

In this phase, we refine anomaly detection by first applying a self-attention mechanism to provide a
global perspective, enhancing time series features and highlighting anomalies. Next, the MAMBA
model performs recursive updates to capture subtle temporal variations. This two-step process bal-
ances long-range dependency capture with local anomaly detection. By combining the global pattern
recognition of self-attention with MAMBA’s efficient modeling of local dynamics, our framework
effectively detects both prominent and subtle anomalies. We first apply a multi-head attention mech-
anism to the time series data, transforming the input, calculating attention scores, and aggregating
the results. For each attention head, the output is computed using the query (Q), key (K), and value
(V) matrices as follows:

headi = softmax
(
QiK

T
i√

dk

)
Vi, (4)

where the queries, keys, and values are obtained as:

Qi = XKANW
Q
i , Ki = XKANW

K
i , Vi = XKANW

V
i , (5)

with WQ
i , WK

i , and WV
i being learnable weight matrices, and dk representing the dimensionality

of the key vectors. The outputs from all attention heads are concatenated and linearly transformed
to form the final output O. This output is combined with the original input XKAN through a residual
connection, followed by dropout and layer normalization:

XAttn = RMSNorm(Dropout(O) +XKAN), (6)
where XAttn ∈ Rn×d represents the output from attention layer. Subsequently, the data is processed
through the MAMBA module, which is specifically designed to detect anomalies by identifying
subtle local variations in the input sequence. The input data, denoted as XAttn, undergoes a series
of transformations, including linear projection, 1D convolution, and the SiLU (Swish) activation
function. This process produces the intermediate representation X2 ∈ Rn×d, which serves as the
input to the structured state-space model (SSM) module. Mathematically, this transformation can be
expressed as:

X2 = SiLU (Conv1D (XAttnWβ , h)) , (7)
where Wβ is the learnable linear transformation matrix, h is the 1D convolutional kernel, and
SiLU(x) = x · σ(x) (with σ(x) being the sigmoid function) is the activation function. The re-
sulting matrix X2 encapsulates the processed data, ready for further temporal modeling. To capture
temporal dependencies, we introduce vector notations xt, yt, and ht, where t indexes the position in
the sequence. xt ∈ Rd×1 represents the transpose of the t-th row vector of X2, while ht ∈ Rd×1 and
yt ∈ R1×d denote the hidden state and output at time step t, respectively. The temporal dynamics
are captured through a recursive update of the hidden state, which is formulated as:

ht = Atht−1 + btxt, (8)
where At ∈ Rd×d and bt ∈ Rd×1 are matrices derived from linear transformations of the input xt.
These matrices govern how the hidden state ht evolves over time, incorporating both the previous
hidden state ht−1 and the current input xt. The output at each time step t, denoted yt, is computed
as:

yt = ctht, (9)
where ct ∈ Rd×1 is another transformation matrix applied to the hidden state ht. By stacking the
output vectors yt across the time dimension, a matrix representing the final output of the encoder,
denoted as Xenc, is constructed. This matrix serves as the final encoded representation of the input
sequence, encapsulating both local and temporal features for anomaly detection.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.3 RECONSTRUCTOR

In the reconstruction phase, we receive Xenc from the encoder and then perform two operations:
the first is patch partition, and the second is channel-independent linear reconstruction. These steps
culminate in the generation of X̂. The specific rationale behind this approach and the detailed
transformation process can be found in Appendix D.

3.4 DETECTION

The reconstructed X̂ is used differently in training and testing phases. During training, the ob-
jective is to minimize the reconstruction error, specifically the MSE between the input X and its
reconstruction X̂. The loss function L is defined as:

L(X, X̂) =
1

n

n∑
i=1

(
1

k

k∑
j=1

(xij − x̂ij)
2), (10)

where n is the number of windows, k is the number of features, and xij and x̂ij are the true and
reconstructed values, respectively. Minimizing this loss improves reconstruction fidelity and model
performance. In testing, the anomaly score for the last point within a window is computed using the
MSE for that point:

Anomaly Score =
1

k

k∑
j=1

(xnj − x̂nj)
2, (11)

where xnj and x̂nj are the true and reconstructed values for the n-th (last) point in the window.

4 EXPERIMENTS

4.1 BENCHMARK DATASETS

We conducted comprehensive experimental comparisons across various datasets, including SMAP,
MSL, SMD, PSM, and NIPS. For the NIPS dataset, we analyzed specific subsets: NIPS TS CCard,
NIPS TS Swan, NIPS TS Syn Mulvar, and NIPS TS GECCO, referred to as CCard, Swan, Mulvar,
and GECCO, respectively. Statistical indicators of the dataset are provided in Appendix E.

4.2 BASELINES AND EVALUATION CRITERIA

We conducted a comprehensive evaluation of our model against 15 state-of-the-art baselines :
TadGAN (Geiger et al., 2020) OmniAnomaly (Su et al., 2019), InterFusion (Li et al., 2021), THOC
(Shen et al., 2020), Imdiffusion (Chen et al., 2023b), DiffAD (Xiao et al., 2023), ModernTCN (Luo
& Wang, 2024), GDN (Deng & Hooi, 2021), TransAD (Tuli et al., 2022), MTAD-GAT (Zhao et al.,
2020), Crossformer (Zhang & Yan, 2023), PatchTST (Nie et al., 2022), AnomalyTrans (Xu et al.,
2021), DCdetector (Yang et al., 2023), itransformer(Liu et al., 2023) and TimeMixer++(Wang et al.,
2024). We ensured fair comparison using metrics like precision, accuracy, and F1 on datasets such
as SMD, MSL, SMAP, and PSM, and extended the evaluation with Affiliation metric (Huet et al.,
2022) and VUS (Paparrizos et al., 2022) for newer datasets. Detailed metric descriptions are in
Appendix F.

4.3 MAIN RESULTS

4.3.1 PERFORMANCE

Experimental setup and environment are detailed in Appendix G. We first compare our model with
classical and popular approaches across four standard benchmarks: SMD, MSL, SMAP, and PSM,
focusing on precision, recall, and F1 score. The results are systematically presented in Table 1.
Our model achieves the highest F1 scores on these datasets, consistently ranking among the top
in precision and recall, demonstrating robustness in anomaly detection. We also compared it with
AnomalyTransformer, DCdetector and DiffAD on NIPS datasets, as shown in Table 2. In Appendix
L, we provide detailed sources of the results from the baseline model. KambaAD demonstrates

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

superior performance in F1 scores, particularly on the complex NIPS datasets, and exhibits clear ad-
vantages across multiple metrics. In the GECCO dataset, the KambaAD outperforms the other three
models in accuracy and Aff-P but lags behind in Aff-R. This suggests KambaAD is conservative in
anomaly detection, as it struggles to distinguish certain anomalies from normal patterns, resulting in
similar anomaly scores for both. On the SWAN dataset, the other models show similar weaknesses,
indicating that in datasets with a high diversity of anomaly patterns, all models exhibit weaknesses
in detecting certain types of anomalies.
Table 1: Overall performance comparison of KambaAD and baseline models across four real-world
multivariate datasets: SMD, MSL, SMAP, and PSM. Models are ranked from lowest to highest
performance. Precision (P), Recall (R), and F1-score (F1) are reported in percentages (%). The best
performance in each metric is highlighted in bold, and the second-best is underlined. A dash (-)
indicates that the model’s result is missing for the specific dataset.

Dataset SMD MSL SMAP PSM
Metric P R F1 P R F1 P R F1 P R F1

TadGAN – – – 89.02 86.37 62.30 92.49 81.99 70.4 – – –

OmniAnomaly 83.68 86.82 85.22 89.02 86.37 87.67 92.49 81.99 86.92 88.39 74.46 80.83

InterFusion 87.02 85.43 86.22 81.28 92.70 86.62 89.77 88.52 89.14 83.61 83.45 83.52

THOC 79.76 90.95 84.99 88.45 90.97 89.69 92.06 89.34 90.68 88.14 90.99 89.54

ImDiffusion 95.20 95.09 94.88 89..30 96.38 87.79 87.71 96.18 91.75 98.11 97.53 97.81

DiffAD 90.01 95.67 92.75 92.97 95.44 94.19 96.52 97.38 96.95 97.00 98.92 97.95

ModernTCN 87.86 83.85 85.81 83.94 85.93 84.92 93.17 57.69 71.26 98.09 96.38 97.23

GDN 71.70 99.74 83.42 93.08 98.92 95.91 74.80 98.91 85.18 87.50 83.85 85.64

TranAD 92.62 99.74 96.05 90.38 99.99 94.94 80.43 99.99 89.15 95.06 89.51 92.20

MTAD-GAT 88.36 83.30 84.63 87.54 94.40 90.84 89.06 91.23 90.13 87.63 87.25 87.44

Crossformer 83.06 76.61 79.70 84.68 83.71 84.19 92.04 55.37 69.14 97.16 89.73 93.30

PatchTST 87.42 81.65 84.44 84.07 86.23 85.14 92.43 57.51 70.91 98.87 93.99 97.23

iTransformer 78.45 65.10 71.15 86.15 62.65 72.54 90.67 52.96 66.87 95.65 94.69 95.17

TimesMixer++ 88.59 84.50 86.50 89.73 82.23 85.82 93.47 60.02 73.10 98.33 96.90 97.60

AnomalyTrans 88.47 92.28 90.33 91.92 96.03 93.93 93.59 99.41 96.41 96.94 97.81 97.37

DCdetector 83.59 91.10 87.18 93.69 99.69 96.60 95.63 98.92 97.02 97.14 98.74 97.94

KambaAD 97.10 97.45 97.27 98.84 100.00 99.41 98.46 99.93 99.19 99.15 97.00 98.06

4.3.2 KAN FOR WINDOW INFORMATION CAPTURE

We compared window-based and single-point features in KAN across eight datasets (Table 4). Re-
sults consistently show window-based input outperforming, with higher precision, recall, and F1
scores. This approach enhances KAN’s capacity to capture temporal dependencies and inter-feature
relationships, improving multivariate time series predictions.

4.3.3 ABLATION EXPERIMENT

Our ablation study compares accuracy, precision, and F1 score across eight datasets. We first com-
pare KambaAD with its individual components (Encoder and Reconstructor). Table 4 shows Kam-
baAD consistently outperforms both, emphasizing the importance of their integration. The com-
parison results when increasing the number of encoder and reconstructor parameters to match the
total number of parameters under the full KambaAD can be found in the appendix J. We then an-
alyze specific components: KAN for initial anomaly detection, Attention for global features, and
MAMBA for local patterns. From Table 5, we can conclude that in the Mulva dataset, KambaAD’s
performance is inferior to using only the Encoder, while in the GECCO dataset, KambaAD’s perfor-
mance is lower than using only the Reconstructor. This suggests that certain specific characteristics

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 2: Multi-metric performance comparison of KambaAD, DCdetector, and AnomalyTrans-
former on the NIPS dataset. Aff-P and Aff-R denote the precision and recall for the affiliation
metric. R A R (Range AUC ROC) and R A P (Range AUC PR) represent scores based on label
transformation under the ROC and PR curves, respectively. V ROC and V RR correspond to the
volumes under the ROC and PR curve surfaces. All results are reported in percentages (%). The
best performance in each metric is highlighted in bold, and the second-best is underlined.

Dataset Method Acc P R F1 Aff-P Aff-R R A R R A P V ROC V PR

Ccard

Anomalylrans 99.84 13.33 0.90 1.68 64.84 4.77 52.53 11.56 52.47 11.87

Dcdetector 98.73 0.06 0.45 0.11 50.56 71.63 52.91 10.40 52.68 9.99

DiffAD 99.59 1.07 1.79 1.34 49.14 38.23 52.50 11.26 52.43 10.72

KambaAD 99.77 34.29 53.60 41.83 73.54 67.04 52.98 26.04 53.42 26.12

SWAN

Anomalylrans 84.57 90.71 47.43 62.29 58.45 9.49 86.42 93.26 84.81 92.00

Dcdetector 85.94 95.48 59.55 73.35 50.48 5.63 88.06 94.71 86.25 93.50

DiffAD 86.40 99.15 58.78 73.80 48.12 1.00 87.41 94.77 85.37 93.51

KambaAD 89.79 86.75 81.12 83.84 84.41 57.17 89.67 94.82 88.66 93.99

Mulvar

Anomalylrans 79.60 66.29 14.45 23.73 54.07 10.43 99.98 99.99 95.97 96.62

Dcdetector 75.92 41.61 23.88 30.34 52.55 21.40 100.00 100.00 95.96 95.99

DiffAD 80.31 69.31 18.58 29.30 58.07 16.61 99.98 99.99 96.02 96.76

KambaAD 87.33 73.60 65.90 69.54 78.25 48.47 99.98 99.99 96.86 97.50

GECCO

Anomalylrans 98.03 25.65 28.48 26.99 49.23 81.20 56.35 22.53 55.45 21.71

Dcdetector 98.56 38.25 59.73 46.63 50.05 88.55 62.95 34.17 62.41 33.67

DiffAD 98.83 45.12 49.45 47.19 64.17 62.35 54.88 29.51 55.75 30.48

KambaAD 99.31 99.61 35.21 52.02 99.95 13.46 51.73 52.70 51.88 52.86

Table 3: Performance comparison between KAN (point) and the proposed KambaAD model (KAN
window) across eight real-world multivariate datasets. Precision (P), Recall (R), and F1-score (F1)
are reported in percentages (%). The best results are highlighted in bold.

Dataset
KAN(point) KAN(window)

P R F1 P R F1
SMD 94.52 95.84 95.84 97.10 97.45 97.27
MSL 95.60 100.00 97.75 98.84 100.00 99.41

SMAP 96.44 99.93 98.16 98.46 99.93 99.19
PSM 97.48 95.16 96.31 99.15 97.00 98.06

CCARD 29.53 47.75 36.49 34.29 53.60 41.83
SWAN 97.84 65.27 78.30 86.75 81.12 83.84

MULVAR 77.06 65.79 70.98 73.60 65.90 69.54

GECCO 99.61 35.21 52.02 99.61 35.21 52.02

or anomaly patterns in the datasets become difficult to detect when processed through both the En-
coder and Reconstructor. This may be due to overfitting caused by the larger number of parameters
in the complete network structure. Overall, the complete model exhibits superior comprehensive
performance across all datasets compared to models with removed components, indicating that the
complete model possesses stronger generalization capabilities and stability.

4.3.4 ORDER OF COMPONENTS

The positioning of components within KambaAD is crucial, as it determines the order in which
various anomalies ar e detected. Therefore, we have conducted analysis and experiments on this
aspect, and more detailed information can be found in Appendix H.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 4: Performance comparison between the Encoder-only, Reconstruction-only, and KambaAD
across eight real-world multivariate datasets. Precision (P), Recall (R), and F1-score (F1) are re-
ported in percentages (%). The best results are highlighted in bold, and the second-best results are
underlined.

Dataset
Encoder Reconstructor KambaAD

P R F1 P R F1 P R F1
SMAP 95.89 99.78 97.80 93.26 99.87 96.45 98.46 99.93 99.19
MSL 85.45 99.55 91.96 93.12 100.00 96.44 98.84 100.00 99.41
SMD 95.93 95.90 95.91 95.99 96.61 96.30 97.10 97.45 97.27
PSM 97.33 94.01 95.64 98.06 94.22 96.14 99.15 97.00 98.06

Ccard 30.14 48.20 37.09 58.46 17.12 26.48 34.29 53.60 41.83
SWAN 82.96 79.49 81.19 92.17 63.79 75.40 86.75 81.12 83.84
Mulvar 70.76 73.81 72.25 78.14 65.03 68.55 73.60 65.90 69.54

GECCO 99.61 35.21 52.02 51.52 67.53 58.45 99.61 35.21 52.02

Table 5: Performance comparison between KambaAD and five ablation study models across eight
real-world multivariate datasets. Only the comparison results of the F1 score are presented. The best
results are highlighted in bold, and the second-best results are underlined.

Dataset KAN ATT Mamba
KAN
ATT

KAN
MAMBA

KAN
MAMBA
MAMBA

ATT
MAMBA

KambaAD

SMAP 97.55 98.13 97.80 98.25 97.83 97.99 97.88 99.19
MSL 97.32 96.89 96.74 96.90 98.27 96.68 94.14 99.41
SMD 96.25 95.05 95.56 94.27 95.10 96.04 89.92 97.27
PSM 97.29 97.05 97.22 96.78 96.58 90.78 78.88 98.06

Ccard 38.52 37.06 38.22 36.33 38.72 35.48 39.05 41.83
SWAN 76.20 75.53 78.10 78.72 78.97 78.70 78.30 83.84
Mulvar 78.31 75.73 83.37 70.86 63.05 64.39 56.75 69.54

GECCO 51.97 50.05 52.34 51.71 52.02 52.02 52.02 52.02

20 40 60 80 100 120
(a) window_size

80
85
90
95

100

F1
 S

co
re

(%
)

32 64 128 256 512 1024
(b) d_model

2 4 8 16 32 64
(c) n_heads

1 2 4 8 16 32
(d) patch_len

80
85
90
95

100

F1
 S

co
re

(%
)

32 64 96 128 160 192
(e) d_state

SMAP MSL PSM SMD

1 2 3 4 5 6
(f) e_layers

Figure 2: Parameter sensitivity studies of main hyper-parameters in KambaAD.

4.3.5 CHANNEL-INDEPENDENT (CI) OR CHANNEL-DEPENDENT (CD)

In this section, we compare the performance of CI and CD methods during reconstruction to support
our previous analysis. As shown in Table 6, across all eight datasets, the CI approach consistently

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

outperforms CD, demonstrating superior reconstruction performance. The necessity of employing
the CI reconstruction strategy lies in the observation that, during anomalies, some features are af-
fected while others remain unaffected. To ensure that the reconstructed data is as normal as possible,
different reconstruction strategies should be applied to these features. As shown in Figure 3, the be-
havior of feature 23 provides a clear example. In the encoder, we use the CD strategy, which causes
feature 23 to be influenced by drastically changing features, such as features 12 and 16, after step
2. This contradicts the goal of reconstructing normal data. However, the final CI reconstruction
successfully restores the data to a normal pattern.

Table 6: Performance comparison between channel-independent (CI) and channel-dependent (CD)
reconstruction methods across eight real-world multivariate datasets. Precision (P), Recall (R), and
F1-score (F1) are reported in percentages (%). The best results are highlighted in bold.

Dataset
CD CI(KambaAD)

P R F1 P R F1
SMAP 94.13 99.93 96.94 98.46 99.93 99.19
MSL 91.39 100.00 95.50 98.84 100.00 99.41
SMD 86.36 90.86 88.55 97.10 97.45 97.27
PSM 92.17 89.79 90.97 99.15 97.00 98.06

Ccard 29.97 46.85 36.56 34.29 53.60 41.83
SWAN 88.57 71.32 79.02 86.75 81.12 83.84
Mulvar 44.90 54.74 49.34 73.60 65.90 69.54
GECCO 99.61 35.21 52.02 99.61 35.21 52.02

4.3.6 PARAMETER SENSITIVITY

We conducted a sensitivity analysis on KambaAD, examining key parameters (window size,
patch size, d state, n head, d model, e layers) and their impact on F1 scores across four datasets. As
shown in Figure 2, KambaAD exhibits stability on the SMAP and MSL datasets, where parameter
variations have a limited effect on performance. However, on the PSM and MSL datasets, the model
is more sensitive to specific parameters. Notably, on the PSM dataset, setting n heads and e layers to
2 and 1 respectively leads to a significant performance drop, indicating that these parameter settings
constrain the model’s capabilities. For the SMD dataset, a window size of 60 results in a noticeable
decline in performance, suggesting that a larger context window is beneficial. Overall, KambaAD’s
performance remains stable, but further increasing hyperparameters such as d model, n heads, and
e layers does not enhance performance, likely due to overfitting.

4.3.7 VISUALIZATION

In the PSM dataset, we have approximately illustrated the data shapes after passing through the
components KAN, Attention+MAMBA, and Reconstructor. It is important to note that this does not
represent the data transformations within the complete KambaAD, as the data is projected into the
model dimensions in KambaAD, making direct comparisons challenging. We incrementally built
the model up to its full configuration and output the reconstructed data at each of these three struc-
tural stages, labeled as step 1, 2, and 3, to approximate the effects of each component. This analysis
displays the anomaly scores and classifications (anomaly or normal) of each data point at each step.
To enhance clarity, the PA strategy was omitted in this section. The chosen segment includes a
point anomaly at the 10th step and a contextual anomaly around the 20th point. We visualized key
features: feature 23, unrelated to anomalies; feature 4, related to anomalies near the 20th point; and
features 12 and 16, related to both anomaly types. The results in Figure 3 show that the recon-
structed data increasingly aligns with normalcy, detecting more anomalies. KAN’s reconstruction
shifts the original data to highlight obvious mutations, resulting in large errors for mutation points
due to significant value differences, but it misses other anomalies. The Attention+MAMBA module
incorporates contextual relationships, producing more coherent data and detecting more anomalies
near the 20th point. However, it may cause excessive associations, such as unintended fluctuations in

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

0.400

0.420

0.440

0.460

0.480

Fe
at

ur
e4

Step1 Step2 Step3

0.150

0.200

0.250

0.300

Fe
at

ur
e1

2

0.400

0.425

0.450

0.475

0.500

Fe
at

ur
e1

6

0.010

0.020

0.030

0.040

Fe
at

ur
e2

3

0 10 20 30 40

10.00

20.00

30.00

40.00

An
om

al
y 

Sc
or

e

0 10 20 30 40 0 10 20 30 40

Raw Data
Anomaly

Reconstruction
FN

TP
FP

Anomaly Score
Threshold

Figure 3: The presented figure illustrates the reconstruction of features 4, 12, 16, and 23 in a data
sample from PSM following the extraction of three crucial components in KambaAD, along with the
identification of anomalous points based on their reconstructed values using an optimal threshold.

feature 23 and deviations in normal data reconstruction. Finally, the Reconstructor normalizes fea-
tures 4, 16, and 23, while feature 12 still reflects anomaly effects but sufficiently indicates anomalies
through its divergence from the original data.

5 CONCLUSION

This paper introduced KambaAD, a novel encoder-reconstructor framework for time series anomaly
detection. By integrating KAN for initial screening and a combined attention-MAMBA approach
for refined detection, KambaAD effectively captures both global and local anomalies. Experimental
results demonstrate that KambaAD achieves state-of-the-art performance, surpassing existing meth-
ods. Ablation studies further validate the contribution of each component to KambaAD’s overall
effectiveness. Future work will explore extending KambaAD to multivariate time series.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Mohiuddin Ahmed, Abdun Naser Mahmood, and Md Rafiqul Islam. A survey of anomaly detection
techniques in financial domain. Future Generation Computer Systems, 55:278–288, 2016.

Lucian Liviu Albu, Radu Lupu, et al. Anomaly detection in stock market indices with neural net-
works. Journal of Financial Studies, 9(5):10–23, 2020.

Sriram Baireddy, Sundip R Desai, James L Mathieson, Richard H Foster, Moses W Chan, Mary L
Comer, and Edward J Delp. Spacecraft time-series anomaly detection using transfer learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1951–1960, 2021.

Josep Lluis Berral, David Buchaca, Claudia Herron, Chen Wang, and Alaa Youssef. Theta-scan:
leveraging behavior-driven forecasting for vertical auto-scaling in container cloud. In 2021 IEEE
14th International Conference on Cloud Computing (CLOUD), pp. 404–409. IEEE, 2021.

George EP Box and David A Pierce. Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models. Journal of the American statistical Association,
65(332):1509–1526, 1970.

Junqi Chen, Xu Tan, Sylwan Rahardja, Jiawei Yang, and Susanto Rahardja. Joint selective
state space model and detrending for robust time series anomaly detection. arXiv preprint
arXiv:2405.19823, 2024.

Ningjiang Chen, Huan Tu, Xiaoyan Duan, Liangqing Hu, and Chengxiang Guo. Semisupervised
anomaly detection of multivariate time series based on a variational autoencoder. Applied Intelli-
gence, 53(5):6074–6098, 2023a.

Yuhang Chen, Chaoyun Zhang, Minghua Ma, Yudong Liu, Ruomeng Ding, Bowen Li, Shilin He,
Saravan Rajmohan, Qingwei Lin, and Dongmei Zhang. Imdiffusion: Imputed diffusion models
for multivariate time series anomaly detection. arXiv preprint arXiv:2307.00754, 2023b.

Kukjin Choi, Jihun Yi, Changhwa Park, and Sungroh Yoon. Deep learning for anomaly detection in
time-series data: Review, analysis, and guidelines. IEEE access, 9:120043–120065, 2021.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time
series. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 4027–
4035, 2021.

Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-Infante, and Kalyan Veera-
machaneni. Tadgan: Time series anomaly detection using generative adversarial networks. In
2020 ieee international conference on big data (big data), pp. 33–43. IEEE, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Yongping He, Tijin Yan, Yufeng Zhan, Zihang Feng, and Yuanqing Xia. Sgfm: Conditional flow
matching for time series anomaly detection with state space models. IEEE Internet of Things
Journal, 2024.

Waleed Hilal, S Andrew Gadsden, and John Yawney. Financial fraud: a review of anomaly detection
techniques and recent advances. Expert systems With applications, 193:116429, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Alexis Huet, Jose Manuel Navarro, and Dario Rossi. Local evaluation of time series anomaly detec-
tion algorithms. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 635–645, 2022.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Min-Ki Lee, Seung-Hyun Moon, Yourim Yoon, Yong-Hyuk Kim, and Byung-Ro Moon. Detecting
anomalies in meteorological data using support vector regression. Advances in Meteorology, 2018
(1):5439256, 2018.

Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei. Multivariate time se-
ries anomaly detection and interpretation using hierarchical inter-metric and temporal embedding.
In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp.
3220–3230, 2021.

Benjamin Lindemann, Benjamin Maschler, Nada Sahlab, and Michael Weyrich. A survey on
anomaly detection for technical systems using lstm networks. Computers in Industry, 131:
103498, 2021.

Yi Liu, Yanni Han, and Wei An. Attvae: a novel anomaly detection framework for multivariate time
series. In International Conference on Science of Cyber Security, pp. 407–420. Springer, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time
series analysis. In The Twelfth International Conference on Learning Representations, 2024.

Mustafa Matar, Tian Xia, Kimberly Huguenard, Dryver Huston, and Safwan Wshah. Multi-head
attention based bi-lstm for anomaly detection in multivariate time-series of wsn. In 2023 IEEE
5th International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 1–5.
IEEE, 2023.

Mohsin Munir, Muhammad Ali Chattha, Andreas Dengel, and Sheraz Ahmed. A comparative anal-
ysis of traditional and deep learning-based anomaly detection methods for streaming data. In
2019 18th IEEE international conference on machine learning and applications (ICMLA), pp.
561–566. IEEE, 2019.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

John Paparrizos, Paul Boniol, Themis Palpanas, Ruey S Tsay, Aaron Elmore, and Michael J
Franklin. Volume under the surface: a new accuracy evaluation measure for time-series anomaly
detection. Proceedings of the VLDB Endowment, 15(11):2774–2787, 2022.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Alberto Sabater, Luis Montesano, and Ana C Murillo. Event transformer. a sparse-aware solution
for efficient event data processing. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2677–2686, 2022.

Moritz Scherer, Michele Magno, Jonas Erb, Philipp Mayer, Manuel Eggimann, and Luca Benini.
Tinyradarnn: Combining spatial and temporal convolutional neural networks for embedded ges-
ture recognition with short range radars. IEEE Internet of Things Journal, 8(13):10336–10346,
2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hierar-
chical one-class network. Advances in Neural Information Processing Systems, 33:13016–13026,
2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2828–2837,
2019.

Mingyan Teng. Anomaly detection on time series. In 2010 IEEE International Conference on
Progress in Informatics and Computing, volume 1, pp. 603–608. IEEE, 2010.

Markus Thill, Wolfgang Konen, Hao Wang, and Thomas Bäck. Temporal convolutional autoencoder
for unsupervised anomaly detection in time series. Applied Soft Computing, 112:107751, 2021.

Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. Tranad: Deep transformer networks for
anomaly detection in multivariate time series data. arXiv preprint arXiv:2201.07284, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan
Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
analysis. arXiv preprint arXiv:2410.16032, 2024.

Yuanyuan Wei, Julian Jang-Jaccard, Wen Xu, Fariza Sabrina, Seyit Camtepe, and Mikael Boulic.
Lstm-autoencoder-based anomaly detection for indoor air quality time-series data. IEEE Sensors
Journal, 23(4):3787–3800, 2023.

Tailai Wen and Roy Keyes. Time series anomaly detection using convolutional neural networks and
transfer learning. arXiv preprint arXiv:1905.13628, 2019.

Julia Wolleb, Florentin Bieder, Robin Sandkühler, and Philippe C Cattin. Diffusion models for med-
ical anomaly detection. In International Conference on Medical image computing and computer-
assisted intervention, pp. 35–45. Springer, 2022.

Feng Xia, Xin Chen, Shuo Yu, Mingliang Hou, Mujie Liu, and Linlin You. Coupled attention
networks for multivariate time series anomaly detection. IEEE Transactions on Emerging Topics
in Computing, 12(1):240–253, 2023.

Chunjing Xiao, Zehua Gou, Wenxin Tai, Kunpeng Zhang, and Fan Zhou. Imputation-based time-
series anomaly detection with conditional weight-incremental diffusion models. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2742–2751,
2023.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642, 2021.

Asrul H Yaacob, Ian KT Tan, Su Fong Chien, and Hon Khi Tan. Arima based network anomaly
detection. In 2010 Second International Conference on Communication Software and Networks,
pp. 205–209. IEEE, 2010.

Yiyuan Yang, Chaoli Zhang, Tian Zhou, Qingsong Wen, and Liang Sun. Dcdetector: Dual at-
tention contrastive representation learning for time series anomaly detection. arXiv preprint
arXiv:2306.10347, 2023.

Jinpo Zeng. Deep learning based anomaly detection in time-series data. 2020.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Biao Zhang and Rico Sennrich. Root mean square layer normalization. arXiv preprint
arXiv:1910.07467, 2019.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In The eleventh international conference on learning
representations, 2023.

Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao, Yunhai Tong, Bixiong Xu,
Jing Bai, Jie Tong, and Qi Zhang. Multivariate time-series anomaly detection via graph attention
network. In 2020 IEEE International Conference on Data Mining (ICDM), pp. 841–850. IEEE,
2020.

Zheng Zhu, Rongbin Gu, ChenLing Pan, Youwei Li, Bei Zhu, and Jing Li. Cpu and network
traffic anomaly detection method for cloud data center. In Proceedings of the 1st International
Conference on Advanced Information Science and System, pp. 1–7, 2019.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A ALGORITHM

Algorithm 1 KambaAD Model: Encoder and Reconstructor
Require: Raw windowed data x ∈ RB×W×F , where B is the batch size, W is the window size,

and F is the feature dimension.
Ensure: Reconstructed data xreconstructed

1: Initialize: Multiple Encoders and a Reconstructor
2: Encoder:
3: for each encoder layer do
4: xKAN ← (KAN+Dropout)(xinput) ▷ Preliminary anomaly detection
5: xproj ← Linear(xKAN) ▷ Projection of F → D
6: xnorm1 ← LayerNorm(xproj) ▷ Normalization
7: xattn ← (MHA+Dropout)(xnorm1) ▷ Multi-head Attention for Global anomaly detection
8: xres1 ← xattn + xnorm1 ▷ Residual connection
9: xnorm2 ← LayerNorm(xres1) ▷ Normalization

10: xMAMBA ← (Mamba+Dropout)(xnorm2) ▷ Local anomaly detection using Mamba
11: xres2 ← xMAMBA + xnorm2 ▷ Residual connection
12: xnorm3 ← LayerNorm(xres2) ▷ Normalization
13: xenc ← Linear(xnorm3) ▷ Projection of D → F
14: end for
15: Reconstructor:
16: xperm ← Permutation(0,2,1)(xenc) ▷ Preparation for patch unfolding
17: if pad = ’end’ then
18: xpad ← ReplicationPad1d(xperm) ▷ padding if necessary
19: else
20: xpad ← xperm ▷ No padding
21: end if
22: xpatch ← Unfold(dimension=-1,P,S)(xpad) ▷ Patch division
23: xpatch proj ← Linear(xpatch) ▷ Increase dimension to D
24: xreconstructed ← CI Linear(xpatch proj) ▷ Channel-independent reconstruction
25: xreconstructed ← Permutation(0,2,1)(xreconstructed) ▷ Final output permutation

return xreconstructed

B RELATED WORK: CLASSICAL, MODELS FOR ANOMALY DETECTION

Statistical methods, particularly effective for low-dimensional data, include moving averages, ex-
ponential smoothing, and the Autoregressive Integrated Moving Average (ARIMA) model (Box &
Pierce, 1970). Moving averages smooth out short-term fluctuations in data to identify trends, while
exponential smoothing gives more weight to recent observations. The ARIMA model combines
autoregression, differencing, and moving averages to capture temporal dependencies in time series
data. These models calculate residuals, where larger residuals may indicate anomalies (Yaacob et al.,
2010). If the anomaly score, derived from these residuals, exceeds a specified threshold, the data is
classified as anomalous.

Machine learning-based methods encompass a range of approaches, from classical algorithms to
advanced deep learning techniques. Classical algorithms include:

• One-Class Support Vector Machines (One-Class SVM): This method identifies a bound-
ary around normal data points, classifying points outside the boundary as anomalies.

• k-Nearest Neighbor (k-NN): It classifies data points based on their proximity to other
points, with outliers being far from their neighbors.

• Random Forests: An ensemble method that constructs multiple decision trees, with out-
liers being those that frequently end up in the less common branches.

• k-means clustering: This method groups data into clusters, where points far from any
cluster center are considered anomalies.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

• Gaussian Mixture Models: These models assume that data is generated from a mixture
of several Gaussian distributions, with anomalies being points that don’t fit well into any
distribution.

• Isolation Forest: It isolates anomalies by recursively partitioning the data, with anomalies
being the first to be isolated.

• Local Outlier Factor (LOF): This method identifies anomalies by comparing the local
density of each point to that of its neighbors.

Advanced deep learning techniques include:

• Recurrent Neural Networks (RNN): Designed for sequential data, RNNs capture tempo-
ral dependencies in time series (Hopfield, 1982).

• Long Short-Term Memory (LSTM): A special type of RNN, LSTMs are particularly
effective at learning long-term dependencies in sequences (Hochreiter & Schmidhuber,
1997).

• Autoencoders (AE): These neural networks learn to encode data into a lower-dimensional
space and then reconstruct it; anomalies are identified by high reconstruction errors
(Rumelhart et al., 1986).

• Variational Autoencoders (VAE): A probabilistic variant of autoencoders that models
data distributions and identifies anomalies through reconstruction errors or latent space
deviations (Kingma & Welling, 2013).

• Generative Adversarial Networks (GAN): These consist of two networks (a generator
and a discriminator) that learn to generate data; anomalies are identified by the discrimina-
tor’s failure to classify generated data correctly (Goodfellow et al., 2014).

• Transformers: Known for their attention mechanisms, Transformers are effective at pro-
cessing sequential data, especially in contexts where relationships between different parts
of the sequence matter (Vaswani et al., 2017).

• Graph Neural Networks (GNN): These networks are tailored for data with graph struc-
tures, identifying anomalies based on the relationships between nodes in the graph (Kipf &
Welling, 2016).

• Diffusion models: A newer approach that uses probabilistic methods to model complex
data distributions and identify anomalies based on how well data fits these distributions.

• Mamba: Mamba is an innovative state space model that has recently gained attention in
the field of machine learning and natural language processing. Developed as an alternative
to traditional transformer architectures, Mamba leverages the power of state space models
to process sequential data efficiently(Gu & Dao, 2023).

In anomaly detection, these methods generate a score for each data point, which is then compared
to a threshold to determine whether the point is normal or anomalous.

Advanced deep learning methods are increasingly employed for anomaly detection due to their
ability to capture complex patterns in high-dimensional data. Techniques such as Recurrent Neural
Networks (RNN) (Choi et al., 2021), Long Short-Term Memory (LSTM) (Wei et al., 2023), Autoen-
coders (AE) (Thill et al., 2021), Variational Autoencoders (VAE) (Chen et al., 2023a), Generative
Adversarial Networks (GAN) (Geiger et al., 2020), Transformers (Xu et al., 2021), Graph Neural
Networks (GNN) (Deng & Hooi, 2021), Diffusion models (Wolleb et al., 2022) and Mamba (Chen
et al., 2024; He et al., 2024) are prominent examples. These methods generate a score for each data
point, which is then compared to a threshold to assess whether the point is anomalous or within the
normal range.

C KAN ARCHITECTURE AND ITS IMPLEMENTATION

KAN, with its efficient parameterization and ability to approximate complex functions, effectively
identifies anomalies that violate physical laws. The theoretical basis of KAN is the Kolmogorov-
Arnold Representation Theorem, which states that any multivariate continuous function can be ex-
pressed as a composition of univariate functions and summation operations. Each univariate function

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

is modeled as a B-spline curve with learnable coefficients. In this section, we describe the custom
implementation of the Kernel Activation Network (KAN). Unlike the original KAN, our model sim-
plifies the input transformations, ensuring efficient information flow through the network. The steps
are as follows:

C.1 INPUT RESHAPING

Let the input tensor be X ∈ RB×T×F , where:

• B is the batch size,
• T is the sequence length (time steps),
• F is the feature dimension.

We first reshape X into a two-dimensional matrix:

X′ = Reshape(X, [B × T, F ]). (12)

This results in X′ ∈ R(B×T )×F , flattening the batch and time dimensions for further computation.

C.2 KAN TRANSFORMATION

In a K-layer KAN (Kernel Activation Network), the transformation through the network is con-
structed as a series of operations applied across multiple layers. This can be represented mathemat-
ically as:

KAN(Z) = (ΦK−1 ◦ ΦK−2 ◦ · · · ◦ Φ1 ◦ Φ0)Z. (13)

Here, Z ∈ Rnin is the input vector to the network, and Φi represents the operation performed by the
i-th layer. Each layer in the network receives an input of size nin and outputs a vector of size nout.

Every KAN layer Φi comprises a set of learnable activation functions denoted by ϕq,p, where
each function ϕq,p maps input dimension p to output dimension q, with p = 1, 2, . . . , nin and
q = 1, 2, . . . , nout. The entire transformation performed by each layer k can thus be described
as:

Zk+1 = ΦkZk. (14)

where Zk ∈ Rnk is the input to the k-th layer, and Zk+1 represents the output. The transformation
matrix Φk includes the learnable activation functions in the following form:

Φk =


ϕk,1,1(·) ϕk,1,2(·) . . . ϕk,1,nk

(·)
ϕk,2,1(·) ϕk,2,2(·) . . . ϕk,2,nk

(·)
...

...
. . .

...
ϕk,nk+1,1(·) ϕk,nk+1,2(·) . . . ϕk,nk+1,nk

(·)

 . (15)

Each element ϕk,q,p is a learnable activation function that governs the relationship between input
feature p and output feature q.

C.3 NESTED TRANSFORMATION IN KAN

The entire KAN network can be viewed as a recursive application of these layer transformations,
where each subsequent layer takes the output of the previous layer as input. Mathematically, this is
expressed as:

ZK = ΦK−1 ◦ ΦK−2 ◦ · · · ◦ Φ0 Z. (16)

At every layer, the transformation matrix Φk modifies the input vector Zk to generate the output
vector Zk+1, where each activation function is applied to the corresponding elements of the input.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

C.4 RESTORING THE ORIGINAL SHAPE

The transformed output K is reshaped back to its original three-dimensional form:

K′ = Reshape(K, [B, T,D]). (17)

This operation restores the batch and sequence dimensions, which results in K′ ∈ RB×T×D, and D
is the dimension of the new feature space.

C.5 RESIDUAL ADDITION AND DROPOUT

At this stage, we form a residual connection by combining the transformed output K′ with a linear
transformation of the original input. This process is formalized as:

Y = Dropout(K′) +WX. (18)

In the above formula, Dropout(K′) applies dropout regularization to the transformed output, en-
hancing the model’s robustness and preventing overfitting. The term WX represents a linear trans-
formation of the original input X ∈ RB×T×F , with W ∈ RF×D being a learnable weight matrix
that projects the input into the new feature space of dimension D. This residual connection facil-
itates the flow of information from earlier layers, mitigating the vanishing gradient problem and
enabling the network to learn both transformed and original features effectively.

C.6 LAYER NORMALIZATION

Finally, the result Y is normalized using layer normalization:

Z = LayerNorm(Y). (19)

This ensures that each feature in Y has a consistent scale, stabilizing training and improving con-
vergence.

D LINEAR RECONSTRUCTION

The primary objective of implementing patch segmentation lies in harnessing the inherent local sim-
ilarities within time series data to efficiently extract coherent features from adjacent data points. By
partitioning the data into smaller, manageable patches, we not only simplify the analysis process
but also significantly reduce the computational complexity of subsequent reconstruction tasks. This
approach essentially treats each patch as a self-contained entity, fostering a more streamlined pro-
cessing pipeline where each patch’s data is considered and manipulated as a unified whole. As a
result, the overall reconstruction effort becomes more efficient and manageable, as the complexity
of operations is distributed across smaller, more manageable segments. The reason we choose to
perform patch partition after feature extraction is that anomalies often appear continuously. If the
number of anomalous points within a patch exceeds that of normal points, it becomes difficult to
reconstruct them into normal data. However, our goal is to make the reconstructed data as normal as
possible, so that we can better distinguish points through errors.

Given an input data matrix Xenc processed by the encoder, where Xenc has dimensions n × k, with
n representing the length of the data sequence and k representing the feature dimension of each
data point. Subsequently, this data matrix undergoes a process called patching, resulting in a new
matrix Xpatch with dimensions ⌈ n

patch len⌉ × patch len× k, where patch len is the predefined number
of elements in each patch and ⌈·⌉ denotes the ceiling function.

During this transformation, the data sequence is uniformly divided into segments of length patch len.
If the length n of the original data sequence Xenc is not divisible by patch len, the last patch will
have a length less than patch len. In such cases, a zero-padding strategy is employed to ensure that
all patches have a uniform length of patch len, maintaining the regularity of the matrix Xpatch for
subsequent processing or analysis.

At last, we conduct linear reconstruction in an independent channel manner. In multivariate time
series, each feature exhibits distinct trends, periodicity, seasonality, and other characteristics, and
when anomalies occur, it does not necessarily mean that all features exhibit anomalies. Therefore,

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

to avoid mutual constraints and interference among features, we choose an independent channel ap-
proach. Given the data matrix Xpatch with dimensions

⌈
n

patch len

⌉
×patch len×k, where k represents

the number of features, and
⌈

n
patch len

⌉
is defined as patch num, the number of patches.Our objective

is to undertake a channel-independent linear reconstruction process, detailed as follows:

First, we execute a Channel-wise linear projection where, for each feature dimension i ∈
{1, 2, . . . , k}, a unique linear transformation Wi ∈ Rd model×patch len is applied to project the patches
Xpatch(·,·,i) of the i-th feature from patch len dimensions to d model dimensions. This projection is
mathematically expressed as:

Yi = Xpatch(·,·,i) ·W⊤
i , (20)

where Yi ∈ Rpatch num×d model represents the projected matrix with dimensions patch num ×
d model.

Subsequently, we perform a reshape operation by transforming each Yi into a column vector yi ∈
R(patch num·d model)×1 to facilitate further processing.

Next, we undertake a final dimensionality reduction step where, for each yi, a linear transformation
Vi ∈ Rn×(patch num·d model) is applied to reduce the dimensionality from (patch num · d model) to n,
yielding x̂i ∈ Rn×1:

x̂i = Viyi. (21)

Finally, we execute a concatenation process to form the reconstructed matrix X̂ ∈ Rn×k by con-
catenating all x̂i (for i = 1, 2, . . . , k) along the feature dimension. Each column of X̂ represents the
reconstructed values for a corresponding feature.

This process completes the transformation from the original patch representation to the reconstructed
time-series data, while preserving the independence of features.

E DATASET STATISTICS

The statistics of all datasets are illustrated in the Table 7.

Table 7: Dataset Statistics.

Benchmark Dimension #Training #Test (Labeled) AR (%)
MSL(Mars Science Laboratory dataset) 55 58, 317 73, 729 10.5

NIPS TS Ccard 28 142, 403 142, 404 0.2
NIPS TS Swan 38 60, 000 60, 000 32.6

NIPS TS Syn Mulvar 5 80, 000 80, 000 22
NIPS TS GECCO 9 69, 260 69, 261 1.1

PSM(Pooled Server Metrics) 25 132, 481 87, 841 27.8
SMAP(Soil Moisture Active Passive dataset) 25 138, 004 435, 826 12.8

SMD(Server Machine Dataset) 38 708, 405 708, 420 4.2

F METRICS

F.1 AFFILIATION METRIC: A METRIC FOR COMPREHENSIVE EVENT LOCALIZATION
ASSESSMENT

The Affiliation metric, introduced by Huet et al., represents a sophisticated metric that integrates
both precision and recall to evaluate the accuracy of event localization in a manner that is robust
to potential interferences. This metric innovatively utilizes the Hausdorff distance to measure the

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

disparity between the true and predicted events, thereby providing a comprehensive assessment of
the spatial alignment between the two. Furthermore, it incorporates individual probabilities within
the designated Affiliation region for normalization purposes, enhancing the metric’s sensitivity to
varying degrees of confidence in the predictions.

A notable strength of the Affiliation metric lies in its creative application of the Hausdorff distance,
which is known for its effectiveness in quantifying the maximum mismatch between two sets of
points. This characteristic enables the metric to capture fine-grained discrepancies in event localiza-
tion, offering a nuanced perspective on the performance of the system. Additionally, the integration
of probabilities within the Affiliation region ensures that the score reflects not only the spatial accu-
racy but also the level of certainty associated with each prediction.

However, it is crucial to acknowledge the limitations of the Affiliation metric as well. Firstly, the size
of the Affiliation region exerts a significant influence on the resulting score, potentially leading to
an overestimation of performance when minimal gains in precision are achieved. This highlights the
need for careful calibration of the region’s dimensions to ensure an unbiased evaluation. Secondly,
the metric exhibits a limitation in discriminating between false predictions within the Affiliation
region, potentially masking errors that would otherwise be revealed. Lastly, the Affiliation metric
exhibits a bias towards false positives over false negatives, which may skew the overall assessment
of the system’s performance, particularly in scenarios where a high degree of accuracy is paramount.

To mitigate these limitations, future research could explore the refinement of the Affiliation region’s
definition, as well as the development of additional metrics that complement the Affiliation metric
in capturing different aspects of event localization performance. By addressing these challenges,
the Affiliation metric can be further strengthened as a valuable tool for assessing and comparing the
accuracy of event localization systems in scientific research.

F.2 THE VOLUME UNDER THE SURFACE (VUS) METRIC: ENHANCING ANOMALY
DETECTION EVALUATION THROUGH DISTANCE-BASED INSIGHTS

The Volume Under the Surface (VUS) metric, introduced by Paparrizos et al., represents a ground-
breaking extension of AUC-based evaluation methodologies, specifically tailored to accommodate
distance-based anomalies. Its fundamental novelty stems from the innovative label transformation
technique employed, coupled with the meticulous computation of the volumetric aspect beneath the
ROC curves constructed across a spectrum of buffer lengths. This intricate approach transcends
traditional binary labeling, transforming it into a continuum of values that inherently biases towards
an overestimation of false positives compared to false negatives, thereby providing a more nuanced
and informative view of anomaly detection performance.

By seamlessly integrating this sophisticated label transformation mechanism with a meticulous vol-
umetric assessment beneath the ROC surface, the VUS metric presents a comprehensive and multi-
faceted evaluation framework for anomaly detection systems. This framework is particularly adept
at capturing nuances in performance that are often overlooked by conventional metrics, particularly
in scenarios where the proximity to the decision boundary is of paramount importance. By enabling
a deeper understanding of how anomaly detection algorithms behave across varying levels of confi-
dence and proximity to the threshold, the VUS metric empowers researchers and practitioners alike
to assess and benchmark the performance of diverse anomaly detection techniques with unprece-
dented precision and rigor.

Furthermore, the VUS metric underscores the importance of considering not just the absolute classi-
fication accuracy but also the confidence associated with each prediction, as well as the distribution
of predictions across the ROC space. This holistic approach enables a more complete and accurate
portrayal of anomaly detection performance, ultimately facilitating the development and refinement
of more effective and reliable anomaly detection systems. In summary, the VUS metric stands as a
valuable and indispensable tool in the ongoing pursuit of enhancing anomaly detection capabilities
within the scientific community.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

G EXPERIMENTAL SETUP AND ENVIRONMENT

Our experiments were conducted on 4 A800 GPUs. In the course of our experiments, the model
parameters exhibited variability in their configuration across diverse datasets. The same parameters
will be applied to different data sets for presentation in Table 8 , while different parameters will be
set for various data sets displayed in Table 9. Overall, for datasets with higher feature dimensions,
we require larger network architectures. For instance, MSL, SMD, and SWAN have the highest
feature dimensions among all datasets, with 55, 38, and 38 dimensions respectively. Therefore, their
hyperparameter settings are larger, with the d model set to 512 in these three datasets. Conversely,
for datasets with lower dimensions such as GECCO and Mulvar, which have 9 and 5 features re-
spectively, the d model only needs to be set to 64 and 128. Additionally, the stride and e layers can
almost always be set to 4 and 2, respectively, to achieve excellent results.

Table 8: The common hyperparameter settings used for training the model across all datasets.

hyper-parameter Value hyper-parameter Value
window size 100 expand 2
batch size 8 fc dropout 0.05
dropout 0.3 d conv 4
padding patch end epochs 2
individual 1 d state 64

Table 9: The dataset-specific hyperparameter settings used for training the model on different
datasets.

Dataset hyper-parameter
patch len n heads d model stride e layers

MSL 16 32 512 4 2
SMAP 1 2 512 8 1
SMD 8 4 512 4 2
PSM 8 4 64 4 2

Ccard 2 4 256 4 2
SWAN 2 8 512 4 2
Mulvar 1 32 128 4 2
GECCO 32 2 64 4 2

H ORDER OF COMPONENTS

In the KambaAD encoder, the sequence of the two components in the two-stage anomaly detection
process is a crucial aspect of our design. This configuration is intentional: we aim for the KAN
to capture evident physical anomalies, while the combination of attention and MAMBA is tasked
with analyzing more subtle, less apparent anomalies. Specifically, the KAN is designed to detect
anomalies that significantly deviate from expected physical properties, whereas attention+MAMBA
component is engineered to identify more nuanced irregularities that might elude conventional de-
tection methods. This hierarchical approach allows for a comprehensive anomaly detection process,
addressing both obvious physical inconsistencies and intricate patterns that require more sophisti-
cated analysis. Rigorous experiments compared KambaAD’s encoder with configurations swapping
these components. The results are shown in the Table 10 . Results show reversing the order reduced
stability and accuracy, confirming KambaAD’s design.

Our comprehensive experimental analysis provides strong evidence for the rationality and efficacy of
the sequential order in KambaAD’s two-stage anomaly detection process. The results consistently

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Table 10: Performance comparison of three models with different component orders: KAN-
MAMBA-attention, Attention-MAMBA-KAN, and KambaAD (KAN-attention-MAMBA) across
eight real-world multivariate datasets. Precision (P), Recall (R), and F1-score (F1) are reported in
percentages (%). The best results are highlighted in bold, and the second-best results are underlined.

Dataset
KAN-MAMBA-attention attention-MAMBA-KAN KambaAD

P R F1 P R F1 P R F1
SMAP 95.33 99.92 97.57 94.97 99.67 97.26 98.46 99.93 99.19
MSL 93.30 99.55 96.32 90.55 100.00 95.04 98.84 100.00 99.41
SMD 89.28 93.85 91.51 92.37 95.86 94.08 97.10 97.45 97.27
PSM 69.21 94.20 79.79 98.59 98.10 98.34 99.15 97.00 98.06

Ccard 31.27 45.50 37.06 59.68 16.67 26.06 34.29 53.60 41.83
SWAN 96.52 65.11 77.76 89.25 72.21 79.83 86.75 81.12 83.84
Mulvar 53.92 58.17 55.97 80.59 74.54 77.44 73.60 65.90 69.54

GECCO 99.61 35.21 52.02 99.23 35.21 51.97 99.61 35.21 52.02

show that this carefully designed sequence significantly enhances the overall performance of the
model across various datasets and anomaly types.

I COMPARISON OF VISUAL RESULTS

This section visually compares the anomaly scores produced by KambaAD, DCdetector, and Anom-
alyTransformer on a segment of the NIPS TS Syn Mulvar dataset with five distinct features. As
shown in Figure 4, the comparison highlights each model’s ability to detect anomalies in this com-
plex time series. KambaAD demonstrates greater sensitivity, identifying subtle anomalies that
DCdetector and AnomalyTransformer miss, particularly in regions where deviations are less ap-
parent. This underscores KambaAD’s effectiveness in capturing a wider range of anomaly patterns.

0.0
0.4
0.8
1.2

Fe
at

he
r1

0.0
0.4
0.8
1.2

Fe
at

he
r2

0.0
0.4
0.8
1.2

Fe
at

he
r3

0.0
0.4
0.8
1.2

Fe
at

he
r4

0 20 40 60 80 100
0.0
0.4
0.8
1.2

Fe
at

he
r5

0 20 40 60 80 100

0.1
0.2
0.3
0.4

An
om

al
yT

ra
ns threshold

0 20 40 60 80 100

0.1
0.2
0.3
0.4

D
Cd

et
ec

to
r threshold

0 20 40 60 80 100

0.1
0.2
0.3
0.4

Ka
m

ba
AD

threshold

Figure 4: Comparison of anomaly scores from KambaAD, DCdetector, and AnomalyTransformer
on the same data segment. The upper panel shows time series features with anomalies in red, while
the lower panel presents the models’ anomaly scores, also highlighting detected anomalies in red.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

J ABLATION STUDY

This section presents the comparative results of ablation experiments conducted by increasing the
number of Encoder and Reconstructor parameters to match those under the full KambaAD. We con-
trol that the number of parameters is almost equal across the data sets, and the results are shown
in the Table 11. The observation reveals that even when the number of model parameters is in-
creased to match KambaAD, employing only the Encoder or Reconstructor still yields inferior re-
sults compared to KambaAD. The performance remains largely unchanged from before increasing
the parameter count, which aligns with our findings in the parameter sensitivity study.

Table 11: Performance comparison between the Encoder-only, Reconstruction-only, and KambaAD
models across eight real-world multivariate datasets, with the model sizes kept approximately equiv-
alent. Precision (P), Recall (R), and F1-score (F1) are reported in percentages (%). The best results
are highlighted in bold, and the second-best results are underlined.

Dataset Encoder Reconstructor KambaAd
P R F1 P R F1 P R F1

MSL 89.64 100.00 94.54 91.74 100.00 95.69 98.84 100.00 99.41
SMAP 96.64 99.70 98.14 94.59 99.70 97.08 98.46 99.93 99.19
SMD 84.01 88.80 86.33 87.68 94.62 91.02 97.10 97.45 97.27
PSM 98.73 96.98 97.85 97.93 98.22 98.07 99.15 97.00 98.06

Ccard 30.14 48.20 37.09 49.35 17.12 25.42 34.29 53.60 41.83
SWAN 89.29 70.97 79.08 91.86 63.79 75.30 86.75 81.12 83.84
Mulvar 62.30 66.24 64.07 67.75 61.36 64.39 73.60 65.90 69.54
GECCO 82.37 35.21 49.33 95.90 35.21 51.50 99.61 35.21 52.02

K COMPUTATIONAL RESOURCE EFFICIENCY COMPARISON

This section presents an evaluation of the computational efficiency of our proposed model, Kam-
baAD, compared to two state-of-the-art baselines: AnomalyTransformer and DCdetector. Our as-
sessment includes several key metrics: Training Time (seconds), GPU Usage (MB), Memory Usage
(MB), Model Size (MB), and Parameter Count (millions). The GPU and memory usage metrics
are based on training a batch of size 256, while the training time reflects the duration required to
train the entire dataset. The evaluation was conducted using four benchmark datasets: MSL, SMAP,
SMD, and PSM.

For KambaAD, we set e layer to 1, d model to 128, and n heads to 4 in our comparison. While
these settings may not achieve the model’s optimal performance, they still ensure satisfactory results.
Table 12 provides a comprehensive comparison of the efficiency metrics of the three models across
four datasets. The experimental results demonstrate that KambaAD has a short training time, which
is advantageous. Due to the model design, the parameter count and model size are as expected,
being larger than the other two models, but still within an acceptable range—at most, up to ten
times larger than AnomalyTransformer. Additionally, the GPU usage during training remains low,
alleviating concerns that hyperparameter settings might become a performance bottleneck.

L THE SOURCES OF THE RESULTS FROM THE BASELINE MODEL

The experimental results for various baseline models were sourced from multiple publications to
ensure a comprehensive and fair comparison. The results of TadGAN are derived from TadGAN
and StackedPredictor (Baireddy et al., 2021). Results for ImDiffusion, DiffAD, DCdetector and
TimeMixer++ were obtained directly from their respective original publications. For OmniAnomaly,
InterFusion, THOC, and AnomalyTransformer, we extracted the results from the DCdetector pa-
per. For itransformer, we extracted the results from TimeMixer++ paper. In the case of GDN
and TranAD, we utilized a combination of sources. The results for SMD, MSL, and SMAP

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Table 12: Comprehensive Computational Efficiency Analysis of KambaAD, AnomalyTransformer,
and DCdetector: A Comparative Study across MSL, SMAP, SMD, and PSM Datasets. Metrics
include Training Time (seconds), GPU Expend (MB), Memory Expend (MB), Model Size (MB),
and Parameter Count (millions).

Dataset Model Name Train Time(s) GPU Expend(MB) Mem Expend(MB) Parameters

MSL
DCdetector 499.81 3836 1480.47 890,935
Anomaly 83.46 8626 3154.69 4,863,055
KambaAD 110.29 5428 1243.56 37,986,211

SMAP
DCdetector 580.62 9140 1523.19 883,225
Anomaly 134.38 8622 2928.94 4,801,585
KambaAD 54.12 4590 1189.79 18,529,821

SMD
DCdetector 1316.99 8998 4369.54 867,366
Anomaly 988.31 9052 4285.21 4,828,222
KambaAD 781.13 4166 2756.77 26,961,790

PSM
DCdetector 126.09 9930 1269.93 894,745
Anomaly 82.44 8176 2887.36 4,801,585
KambaAD 50.52 4590 1256.94 18,529,821

datasets were sourced from the TranAD paper, while the PSM dataset results were obtained from
the ImDiffusion paper. Similarly, for MTAD-GAT, the MSL and SMAP results were taken from
the original MTAD-GAT paper, whereas the SMD and PSM results were sourced from the ImD-
iffusion paper. For Crossformer, PatchTST, and ModernTCN, all results were extracted from
the ModernTCN paper, providing a consistent basis for comparison among these models. Re-
garding AnomalyTransformer and DCdetector, we adopted a dual approach. The results for the
NIPS TS Swan and NIPS TS GECCO datasets were sourced from the DCdetector paper. However,
for the NIPS TS CCard and NIPS TS Syn Mulvar datasets, we conducted our own experimental
evaluations to ensure completeness and verify the models’ performance under our specific experi-
mental conditions.

24


	Introduction
	Problem Definition
	Methodology
	Overview
	ENCODER
	STAGE ONE: Coarse-Grained Anomaly Filtering
	STAGE TWO: Fine-Grained Pattern Recognition

	Reconstructor
	 Detection

	Experiments
	Benchmark Datasets
	Baselines and Evaluation Criteria
	Main Results
	Performance
	KAN for Window Information Capture
	Ablation Experiment
	Order of Components
	 channel-independent (CI) or channel-dependent (CD)
	Parameter Sensitivity
	Visualization


	Conclusion
	ALGORITHM
	Related Work: Classical, Models for Anomaly Detection
	KAN architecture and its implementation
	Input Reshaping
	KAN Transformation
	Nested Transformation in KAN
	Restoring the Original Shape
	Residual Addition and Dropout
	Layer Normalization

	Linear Reconstruction
	Dataset Statistics
	Metrics
	Affiliation metric: A Metric for Comprehensive Event Localization Assessment
	The Volume Under the Surface (VUS) Metric: Enhancing Anomaly Detection Evaluation through Distance-Based Insights

	Experimental Setup and Environment
	Order of Components
	Comparison of visual results
	ABLATION STUDY
	Computational Resource Efficiency Comparison
	The sources of the results from the baseline model

