
Under review as a conference paper at ICLR 2023

ITERATIVE RELAXING GRADIENT PROJECTION FOR
CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

A critical capability for intelligent systems is to continually learn given a sequence
of tasks. An ideal continual learner should be able to avoid catastrophic forget-
ting and effectively leverage past learned experiences to master new knowledge.
Among different continual learning algorithms, gradient projection approaches
impose hard constraints on the optimization space for new tasks to minimize task
interference, yet hinder forward knowledge transfer at the same time. Recent
methods use expansion-based techniques to relax the constraints, but a growing
network can be computationally expensive. Therefore, it remains a challenge
whether we can improve forward knowledge transfer for gradient projection ap-
proaches using a fixed network architecture. In this work, we propose the Iterative
Relaxing Gradient Projection (IRGP) framework. The basic idea is to iteratively
search for the parameter subspaces most related to the current task and relax these
parameters, then reuse the frozen spaces to facilitate forward knowledge transfer
while consolidating previous knowledge. Our framework requires neither memory
buffers nor extra parameters. Extensive experiments have demonstrated the supe-
riority of our framework over several strong baselines. We also provide theoretical
guarantees for our iterative relaxing strategies.

1 INTRODUCTION

A critical capability for intelligence systems is to continually learn given a sequence of tasks (Thrun
& Mitchell, 1995; McCloskey & Cohen, 1989). Unlike human beings, vanilla neural networks
straightforwardly update parameters regarding current data distribution when learning new tasks,
suffering from catastrophic forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990; Kirkpatrick et al.,
2017). As a result, continual learning is gaining increasing attention in recent years (Kurle et al.,
2019; Ehret et al., 2020; Ramesh & Chaudhari, 2021; Liu & Liu, 2022; Teng et al., 2022). An ideal
continual learner is expected to not only avoid catastrophic forgetting but also facilitating forward
knowledge transfer (Lopez-Paz & Ranzato, 2017), which is to leverage past learning experiences to
master new knowledge efficiently and effectively (Parisi et al., 2019; Finn et al., 2019).

Several types of methods have been proposed for continual learning. Replay-based methods (Lopez-
Paz & Ranzato, 2017; Shin et al., 2017) alleviate catastrophic forgetting by storing some old samples
in the memory as they are inaccessible when new tasks come, while expansion-based methods (Rusu
et al., 2016; Yoon et al., 2017; 2019) expand the model structure to accommodate incoming knowl-
edge. However, these methods require either extra memory buffers (Parisi et al., 2019) or a growing
network architecture as new tasks continually arrive (Kong et al., 2022), which always results in
expensive computation costs (De Lange et al., 2021). In order to maintain a fixed network capac-
ity, regularization-based methods (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al., 2018)
penalize the transformation of parameters regarding the corresponding plasticity via regularization
terms. While these regularization terms are applied to individual neurons, recent gradient projection
methods (Zeng et al., 2019; Saha et al., 2021; Wang et al., 2021) modify the gradients in the feature
space by constraining the directions of gradient update, which achieves outstanding performance.

However, although gradient projection methods effectively mitigate forgetting within a fixed net-
work capacity (Zeng et al., 2019), the capability of learning new tasks is hindered by the limited opti-
mization space, resulting in insufficient forward knowledge transfer. In other words, constraining the
directions of gradient update fails on the plasticity in the stability-plasticity dilemma (French, 1997).

1

Under review as a conference paper at ICLR 2023

Figure 1: Illustration of our proposed IRGP method and two baselines: GPM and TRGP. Blocks
painted in different colors denote the parameters optimized after different tasks. We denote the
relaxing subspace within the frozen space as the painted stripes in our IRGP pipeline.

GPM

After training on Task 1

After training on Task 2

After training on Task 3

…

TRGP

After training on Task 1

After training on Task 2

Task 1

Task 2

…

IRGP

After training on Task 1

After training on Task 2

After training on Task 3

…

Trust Region Gradient Projection (Lin et al., 2022) tackles this problem by expanding the selected
subspace of old tasks as trust regions with scaled weight projection, similar to other expansion-based
methods (Yoon et al., 2019). In spite of substantial improvement, these methods are computationally
expensive as a result of growing network architecture (Wang et al., 2021). Therefore, insufficient
forward knowledge transfer remains a key challenge for gradient projection methods.

To address this challenge, we propose the Iterative Relaxing Gradient Projection (IRGP) framework
to facilitate forward knowledge transfer within a fixed network capacity. We design a simple yet
effective strategy to find the critical subspace within the frozen space. During the training phase, we
iteratively reuse the parameters within the selected subspace. Instead of strictly freezing those pa-
rameters, our method explores a larger optimization space, which allows better forward knowledge
transfer and thus achieves better performance on new tasks. The procedure of our approach is il-
lustrated in Figure 1. Extensive experiments on various continual learning benchmarks demonstrate
that our IRGP framework promotes forward knowledge transfer and achieves better classification
performance compared with related state-of-the-art approaches. Moreover, our framework performs
can also be extended as an expansion-based methods by storing the parameters of the selected relax-
ing subspace, universally surpassing TRGP (Lin et al., 2022) and other expansion-based approaches.
We also provide theoretical proof to guarantee the efficiency of our relaxing strategy.

2 RELATED WORK

In this section, we review the representative approaches for continual learning and briefly analyze
their differences from our method. Conceptually, these approaches can be roughly divided into the
following four categories.

Replay-based methods: These methods maintain a complementary memory for old samples, which
are replayed during learning novel tasks. GEM (Lopez-Paz & Ranzato, 2017) constrains gradients
concerning previous samples and Chaudhry et al. (2018) further propose to estimate with random
samples to accelerate. While past samples are commonly not accessible in the real world, auxiliary
deep generative models are thus deployed to synthesize pseudo data (Chenshen et al., 2018; Cong
et al., 2020). Recent approaches (PourKeshavarzi et al., 2021; Choi et al., 2021) leverage a single
model for both classification and pseudo data generation. However, including extra data into the
current task introduces excessive training time (De Lange et al., 2021), especially on long task
sequence. Our approach requires no previous data, in other words, is a replay-free method.

Expansion-based methods: Expansion-based methods dynamically allocate new parameters or
modules to learn new tasks. Rusu et al. (2016) propose to incrementally introduce additional sub-
networks with a fixed capacity. DEN (Yoon et al., 2017) selectively retrains the frozen model and
expands only with necessary neurons. Moreover, Li et al. (2019) perform an explicit network archi-
tecture search to decide where to expand. APD (Yoon et al., 2019) further decomposes the network
and utilizes sparse task-specific parameters. However, these methods face capacity explosion in-
evitably after learning a long sequence of tasks. In contrast, our approach maintains a fixed network
architecture to avoid expensive model growth.

2

Under review as a conference paper at ICLR 2023

Regularization-based methods: Methods in this category introduce extra regularization terms to
the objective function to penalize the modification of parameters. EWC (Kirkpatrick et al., 2017)
first proposes to constrain the change based on the importance weight approximated by Fisher In-
formation Matrix. MAS (Aljundi et al., 2018) measures the importance of the sensitivity of model
outputs under an unsupervised setting. Other methods, also called parameter-isolation methods,
defy catastrophic forgetting via freezing the gradient updates of particular parameters (De Lange
et al., 2021). PackNet (Mallya & Lazebnik, 2018) iteratively prunes and allocates parameters subset
to corresponding tasks, whereas HAT (Serra et al., 2018) learns task-based hard attention to identify
important parameters. Instead of restricting individual parameters with estimated importance, the
main idea of our approach is constraining the direction of gradients.

Gradient projection methods: Gradient projection methods directly constrain the gradients to over-
come catastrophic forgetting, and our approach belongs to this category. Mehta et al. (2021) implic-
itly expands the model with respect to the frozen space and GEM (Lopez-Paz & Ranzato, 2017)
utilizes complementary memory to restrict the update. While our approach requires neither storing
old samples nor expanding the network. OWM (Zeng et al., 2019) first proposed to modify the gra-
dients upon projector matrices. OGD (Farajtabar et al., 2020) keeps the gradients orthogonal to the
space spanned by previous gradients, whereas GPM (Saha et al., 2021) computes the frozen space
based on old data. NCL (Kao et al., 2021) combines the idea of gradient projection and Bayesian
weight regularization to mitigate catastrophic forgetting. In spite of minimizing backward inter-
ference, these approaches suffer poor forward knowledge transfer and lack plasticity (Kong et al.,
2022). TRGP (Lin et al., 2022) expands the model with trust regions based on task relationship to
achieve better performance on new tasks. In contrast, we focus on facilitating forward knowledge
transfer within a fixed capacity network by iteratively relaxing frozen regions with constraints.

3 ITERATIVE RELAXING GRADIENT PROJECTION

3.1 PRELIMINARIES

In a continual learning setting, we consider T tasks arriving as a sequence. The datasets are denoted
as D(t) = {x(t)

i , y
(t)
i }

Nt
i=1, where Nt is the number of samples. When learning the current task, the

datasets of old tasks are inaccessible. We use an L-layer neural network with fixed capacity, and
parameters defined asW = {W l}Ll=1, where W l denotes the parameters in the l-th layer. The model
is optimized by minimizing the objective function (1) and Lt is the loss function for task t.

L(W,D(t)) =
1

Nt

Nt∑
i=1

Lt(f(x
(t)
i ;W), y

(t)
i) (1)

Gradient projection methods mitigate catastrophic forgetting by only updating the model in the
orthogonal direction to frozen spaces. Saha et al. (2021) proposed to compute the frozen spaces
based on the inputs of each layer. For task t, the frozen gradient spaces for the first t − 1 tasks are
denoted as Ut−1 = {U l

t−1}Ll=1, where U l
t is the frozen space of layer l for task t. During the training

phase, for each layer l, gradients glt are constrained to be orthogonal to U l
t−1. Particularly, assuming

Bl
t = [ul

t−1,1, ..., u
l
t−1,N] as the total N basis for U l

t−1, gradients gt are modified as:

glt = glt − ProjU l
t−1

(glt) = glt − gltB
l
t−1(B

l
t−1)

T (2)

After getting the learned model Wt = {W l
t}Ll=1, for each layer l, we record the intermediate

representation hl
t,j of the j-th input and stack them to obtain the representation matrix Hl

t =

[hl
t,1, ..., h

l
t,Nt

]. Then compress the representation matrices by performing Singular Value Decom-
position SVD(Hl

t) = Ul
H,tΣ

l
t(V

l
t)

T . Given the threshold ϵlth, select the first k vectors in Ul
H,t

based on the following criteria:
∥Σl

t[0 : k]∥2F ≥ ϵlth∥Σl
t∥2F (3)

to construct the significant representation space Rl
t = span{Ul

H,t[0 : k]}, where || · ||2F denotes
Frobenius norm here. The significant representation spaces, considered as the frozen spaces for
current task t, are then merged into the whole frozen gradient spaces for the first t tasks:

Ut = {U l
t}Ll=1 = {U l

t−1 ∪Rl
t}Ll=1 (4)

3

Under review as a conference paper at ICLR 2023

Although freezing gradients update significantly mitigates catastrophic forgetting, limited optimiza-
tion space hinders the forward knowledge transfer, compromising the performance of new tasks.
TRGP (Lin et al., 2022) tackles this problem by selecting old tasks relevant to the current task and
expanding the corresponding frozen spaces as the trust regions. The scaled weight projection is fur-
ther designed for memory-efficient updating and storing the parameters within the trust regions by
scaling the basis, instead of directly changing the parameters. Considering that task i is selected as
the trust region, the scaled weight projection is shown as:

Proj
Sl
i

U l
i

(glt) = gltB
l
iS

l
i(B

l
i)

T
(5)

where Sl
i denotes the scale matrix. The parameters in the trust regions are retrained with the scaled

weight projection and the learnt scale matrices are stored in the memory for the inference phase.
Particularly, during the forward transfer, the parameters are modified with the scale matrices as:

W l
t = Proj(U l

i)
⊥(W l

t) + Proj
Sl
i

U l
i

(W l
t)

= W l
t − ProjU l

i
(W l

t) + Proj
Sl
i

U l
i

(W l
t)

(6)

where (·)⊥ denotes the orthogonal complemented subspace. However, as tasks come, increasing
extra parameters are introduced by storing the scaling matrices. Our experiments demonstrate that
TRGP requires around 5000% amount of the parameters regarding the network architecture after
learning 20 tasks on MiniImageNet, see Figure 3-(c). Therefore, we propose our Iterative Relaxing
Gradient Projection framework to facilitate forward knowledge transfer while maintaining a fixed
network capacity by wisely reusing parameters within the frozen space.

3.2 RELAXING SUBSPACE SEARCHING

We first design a searching strategy to determine which part of the frozen space to relax based on the
estimated importance characterized by the angle from the representation space spanned by current
gradients glt. The angle between a given space and a vector is defined in definition 3.1.
Definition 3.1. (Angle between vector and space) We denote the angle between two inputs as Θ(·)
and the inner product between two vectors as ⟨·⟩. The angle between a vector v ∈ Rn and a space
Un×c ⊂ Rn is defined as the minimum angle between the given vector v and any unit vector u ∈ U :

Θ(v, U) = arccosmax
u∈U

⟨v, u⟩
∥v∥

(7)

Moreover, given the threshold γl
t, we define that a vector d is relaxable when:

Θ(d,Rl
g,t) ≤ γl

t (8)

where Rl
g,t is constructed by compressing glt with Equation (3). For task t, we aim to find the relax-

ing subspace V l
t ⊆ U l

t−1 spanned all by relaxable vectors from U l
t−1. Particularly, we implement

with the modulus of the projection, namely:
min
v∈V l

t

∥ProjRl
g,t
(v)∥F ≥ ζlt∥v∥F

max
u∈U l,c

t−1

∥ProjRl
g,t
(u)∥F < ζlt∥u∥F

(9)

where ζlt = cos γl
t is the threshold and U l,c

t−1 = U l
t−1\V l

t denotes the complemented subspace of V l
t

with respect to U l
t−1. Above criterion guarantees max

u∈V l
t

Θ(u,Rl
g,t) ≤ γl

t and min
v∈U l,c

t−1

Θ(v,Rl
g,t) > γl

t.

However, it is hard to construct V l
t directly from U l

t−1. Therefore, we propose a simple yet efficient
strategy to find the relaxing subspaces. With V l

t initiated as ∅, we select the closest vector to Rl
g,t

within U l,c
t−1 by argmin

d∈U l,c
t−1

Θ(d,Rl
g,t). The selected vector d is then appended into V l

t as basis if it

satisfies criterion (8). We repeat this procedure until no relaxable vector left to get the target V l
t .

The pseudo-code of our searching strategy is provided in Algorithm 1.

Considering the scope of our procedure, we further provide theoretical analysis on the upper bound
of the dimension of the selected subspace V l

t , which is also the number of iterations. Here we
introduce Lemma 3.2 and Theorem 3.3, which guarantee that the dimension of V l

T is no more than
of the representation matrix. Detailed proof is provided in Appendix A.1 and A.2.

4

Under review as a conference paper at ICLR 2023

Algorithm 1 Relaxing Subspace Searching

Input: gradient {glt}Ll=1, frozen subspace {U l
t−1}Ll=1 and thresholds {ϵlth, γl

t}Ll=1

Output: relaxing subspace {V l
t }Ll=1

1: for l ∈ 1, ..., L do
2: Construct the significant representation space Rl

g,t from gradients glt by Equation (3).
3: V l

t ← ∅
4: repeat
5: d← argmin

d∈U l,c
t−1

Θ(d,Rl
g,t)

6: if Θ(d,Rl
g,t) ≤ γl

t then
7: V l

t ← V l
t ∪ d

8: U l,c
t−1 ← U l

t−1\V l
t

9: end if
10: until Θ(d,Rl

g,t) > γl
t

11: end for

Lemma 3.2. Denote the relaxed subspace as V = span{v1, v2, ..., vN}, where vN is the last base
included in V . Given representation subspace U , ∀v ∈ V , we have Θ(v, U) ≤ Θ(vt, U).
Theorem 3.3. Denote kp as the dimension of the representation subspace and kl as the dimension
of the relaxed subspace, the upper bound of kl is kp, regardless of the frozen subspace.

Moreover, according to Theorem 3.4, we figure that our strategy guarantees to find the maximum
space within the whole solution set satisfying criterion (9), which further substantiates the efficiency
of our searching strategy. We also include the corresponding proof in Appendix A.3.
Theorem 3.4. The relaxed subspace obtained by Algorithm 1 takes up the maximum subspace of
the whole solution set.

To further validate our searching strategy, we propose IRGP-Exp, a modified version of our pro-
posed IRGP, directly storing the parameters in the relaxed subspaces. For task t, we retrieve the cor-
responding relaxed subspaces {V l

t }Ll=1 and the scale matrices {Sl
t}Ll=1 during the inference phase

similar to TRGP. The modified parameters W l
t,I used for inference on task t is:

W l
t,I = W l − ProjV l

t
(W l) + Proj

Sl
t

V l
t
(W l) (10)

where W l denotes the parameters of layer l of current network. Replacing the parameters in the
relaxed subspaces with the parameters optimized in task t, the model achieves better performance.

3.3 ITERATIVE MODIFYING THE SCALE MATRIX WITH CONSTRAINTS

After getting the relaxed subspaces, we want to retrain inside parameters while consolidating previ-
ous knowledge, to facilitate forward knowledge transfer within a fixed network capacity. One direct
way is to fine-tune the parameters with regularization such as EWC (Kirkpatrick et al., 2017). How-
ever, regularization terms are designed for explicit parameters, which are not applicable for implicit
subspace in our framework. Therefore, we introduce the scaled weight projection (Lin et al., 2022)
to modify explicit parameters instead. With scaled weight projection, we fine-tune the parameters
within V l

t by adding regularization term on scaling matrices St = {Sl
t}Ll=1 instead of direct on target

parameters. Specifically, the objective function of task t is:
Lt = L(Wt,D(t)) + ΣL

l=1βl∥Sl
t − 1(Sl

t)∥22 (11)
where 1(·) denotes the identity matrix with the size of the rank of the input matrix and βl is the
weight of the regularization term for layer l. During back propagation, gradients within frozen
space U l

t−1 are eliminated and parameters within V l
t are modified by Sl

t. Generally, in our Iterative
Relaxing Gradient Projection framework, we adopt our searching strategy to determine the relaxed
subspaces and modify those parameters with constraints on the scaling matrices.

However, during the training phase, the direction of gradients shifts sharply and frequently due to
the steep learning scope of deep neural networks. Diverse subspaces would be selected in different
training phases. Therefore, we iteratively execute Algorithm 1 during training until no extra sub-
space is required. Particularly, for each task, our model is optimized for limited epochs first. Then

5

Under review as a conference paper at ICLR 2023

we search for the target relaxing subspace and examine whether there exists a new subspace within
the remaining frozen space. If extra frozen subspace is released, the scale of the scaling matrix re-
quires to be modified, while TRGP maintains a fixed-size scaling matrix throughout training. Thus,
to accommodate the increasing relaxing subspace, we propose to expand the scaling matrix with the
identity matrix of the corresponding size as:

Sl,new
t =

(
Sl,old
t 0

0 1(V l,new
t)

)
(12)

where V l,new
t denotes the newly included relaxing subspace. If there is no extra relaxing subspace,

we optimize our model thoroughly on current task. After training, the parameters within V l
t are fur-

ther consolidated by Equation (6) and the scaling matrices are emptied to be identical matrices. The
pseudo-code of our Iterative Relaxing Gradient Projection framework is provided in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: We evaluate our framework on five datasets. Following Saha et al. (2021), we conduct ex-
periments on CIFAR-100 Split (Krizhevsky & Hinton, 2009), MiniImageNet (Vinyals et al., 2016),
Permuted MNIST (MNIST) (Kirkpatrick et al., 2017) and CIFAR-100 Sup (Yoon et al., 2019).
Moreover, Serra et al. (2018) first propose Mixture, consists of CIFAR-10 (Krizhevsky & Hinton,
2009), MNIST (LeCun et al., 1998), CIFAR-100 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al.,
2011), FashionMNIST (Xiao et al., 2017), TrafficSigns (Stallkamp et al., 2011), FaceScrub (Ng &
Winkler, 2014) and NotMNIST (Bulatov, 2011). Here we evaluate our framework on Mixture with
seven tasks as a sequence except TrafficSigns1. Details and statistics of the datasets can be found in
Appendix B.1. Moreover, we include the details of network architectures in Appendix B.2.

Baselines: We compare our approach with competitive and well-established approaches maintain-
ing a fixed network capacity following Saha et al. (2021). We adopt ER Res (Chaudhry et al., 2019)
and A-GEM (Chaudhry et al., 2018) as representative replay-based methods: the memory buffer size
for PMNIST, CIFAR-100 Split, MiniImageNet, and Mixture are 1000, 2000, 500 and 3000, respec-
tively. For gradient projection approaches, we consider OWM (Zeng et al., 2019) and GPM (Saha
et al., 2021). For regularization approaches, we compare against EWC (Kirkpatrick et al., 2017) and
state-of-the-art HAT (Serra et al., 2018). We also include the “multitask” baseline jointly training all
tasks in a single network, which is always considered as an upper bound for continual learning. Other
implementation details are listed in Appendix B.3.We exclude expansion-based methods in the main
experiments as they use continually growing architecture, which is out of the scope of our work.

Metrics: We first employ two standard evaluation metrics: Average Accuracy (ACC) (Mirzadeh
et al., 2020) and Backward Transfer (BWT) (Lopez-Paz & Ranzato, 2017). Denote Ai,j as the test
accuracy of task j after learning task i. ACC is the average test accuracy evaluated after learning
all tasks, defined as ACC = 1

T Σ
T
i=1AT,i. BWT is the average accuracy decrease after learning fol-

lowing tasks, defined as BWT = 1
T−1Σ

T−1
i=1 (AT,i −Ai,i). To evaluate forward knowledge transfer,

we further introduce Forward Transfer (FWT) (Lopez-Paz & Ranzato, 2017) and Ωnew (Kemker
et al., 2018). FWT reflects the influence of the observed tasks on new tasks in a zero-shot manner,
while Ωnew indicates the capability of acquiring new tasks. The detailed definitions are provided in
Appendix B.4. In this paper, we mainly focus on Ωnew among the three metrics and results on FWT
are provided as well. Generally, the larger ACC, the better the approach. Forward and backward
knowledge transfer evaluate the capability of learning and memorizing respectively.

4.2 MAIN RESULTS

We show the comparative results on four benchmarks in Table 1. The experiments on Mixture are
implemented by us, while other results are reported from (Saha et al., 2021). We run each experiment
five times and report the mean results. We include implementation details in Appendix B.3 and
detailed results including forward transfer can be found in Appendix C.2. As shown in Table 1, our
approach obtain the best accuracy with comparable forgetting across all datasets.

1We fail to access the TrafficSigns datasets as the links provided in (Stallkamp et al., 2011; Serra et al.,
2018; Saha et al., 2021) are all expired

6

Under review as a conference paper at ICLR 2023

Table 1: Comparison of average accuracy and forgetting tested after learning all tasks. Multitask is
under non-incremental setting. All results reported are averaged over 5 runs.

Method CIFAR-100 Split MiniImageNet PMNIST Mixture
ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Multitask* 79.58 ± 0.54 - 69.46 ± 0.62 - 96.70 ± 0.02 - 81.29 ± 0.23 -

OWM 50.94 ± 0.60 -30 ± 1 - - 90.71 ± 0.11 -1 ± 0 OOM -
EWC 68.80 ± 0.88 -2 ± 1 52.01 ± 2.53 -12 ± 3 89.97 ± 0.57 -4 ± 1 69.62 ± 2.69 -6 ± 4
HAT 72.06 ± 0.50 0 ± 0 59.78 ± 0.57 -3 ± 0 - - 77.54 ± 0.18 -1 ± 0
A-GEM 63.98 ± 1.22 -15 ± 2 57.24 ± 0.72 -12 ± 1 83.56 ± 0.16 -14 ± 1 59.86 ± 1.01 -29 ± 1
ER Res 71.73 ± 0.63 -6 ± 1 58.94 ± 0.85 -7 ± 1 87.24 ± 0.53 -11 ± 1 75.07 ± 0.55 -12 ± 1
GPM 72.48 ± 0.40 -1 ± 0 60.41 ± 0.61 -1 ± 0 93.91 ± 0.16 -3 ± 0 77.49 ± 0.68 -5 ± 0

Ours (IRGP) 73.52 ± 0.45 -1 ± 0 61.26 ± 1.68 -2 ± 1 94.20 ± 0.11 -2 ± 0 77.91 ± 0.45 -4 ± 0

Figure 2: Results on CIFAR-100 Split setting: (a) averaged accuracy after learning each task; (b)
accuracy evolution of a randomly selected task; (c) accuracy tested on task i after learning task i.

2 3 4 5 6 7 8 9

72.0

72.5

73.0

73.5

74.0

74.5

75.0 IRGP
GPM

1 2 3 4 5 6 7 8 9
71.0

71.5

72.0

72.5

73.0

73.5

74.0
IRGP
GPM

1 2 3 4 5 6 7 8 9

68

70

72

74

76

78
IRGP
GPM

(a) (b) (c)

Te
st

 A
cc

ur
ac

y
(%

)

Task ID

Te
st

 A
cc

ur
ac

y
(%

)

Task ID Task ID

Te
st

 A
cc

ur
ac

y
(%

)

Compared with replay-based methods A-GEM and ER Res, IRGP achieves at least around 2%
higher ACC with less forgetting. For regularization-based methods, IRGP significantly dominates
EWC across all benchmarks and outperforms HAT on MiniImageNet and PMNIST. Although HAT
obtains less forgetting on the other two datasets, IRGP gains 1% better ACC on average. For gradient
projection methods, we observe that IRGP achieves around 1% higher ACC on CIFAR-100 Split and
MiniImageNet than GPM with comparable forgetting. On PMNIST and Mixture, IRGP improves
the accuracy with less forgetting, reducing 1% BWT than GPM. The averaged accuracy after learn-
ing each task on CIFAR-100 Split exhibited in Figure 2-(a) further validates that IRGP universally
outperforms GPM. We include the detailed results on other benchmarks in Appendix C.1.

Moreover, we compare the accuracy evolution of specific tasks during sequential tasks with GPM,
which achieves the highest accuracy among selected baselines according to Table 1. Here we show
the results of the second task on CIFAR-100 Split in Figure 2-(b). We further present the results of
three randomly selected tasks on all benchmarks in Appendix C.3. We notice that IRGP achieves
better accuracy right after learning a new task, in other words, gains better Ωnew, which is also the
purpose of our relaxing strategy. Without forward knowledge transfer, approaches may have limited
performance even with less forgetting (Lopez-Paz & Ranzato, 2017).

Thus, we observe the accuracy tested after learning each task. As shown in Figure 2-(c), our ap-
proach achieves 2.7% better average accuracy on CIFAR-100 Split setting than GPM. Results on
other benchmarks provided in Appendix C.2 further substantiate this phenomenon. As tasks keep
coming, accumulated frozen spaces lead to decreasing optimization spaces for GPM. In the contrast,
IRGP explores larger optimization spaces by relaxing previous frozen spaces. Thus, IRGP achieves
better forward knowledge transfer by implicitly reusing the weights within the relaxed subspaces.

In brief, our approach universally outperforms selected baselines on all datasets in a fixed capacity.
With comparable forgetting, IRGP achieves better forward knowledge transfer with larger optimiza-
tion spaces against GPM. To validate the efficiency of our relaxing strategy, we further compare
IRGP-Exp with well-established and competitive expansion-based methods in the next section.

4.3 COMPARED WITH EXPANSION-BASED METHODS

The above experiments exhibit the outstanding performance of our approach maintaining a fixed
network capacity. By allocating new neurons or modules, expansion-based methods significantly
mitigate backward interference with increasing capacity. Thus, to further validate our strategy, we
compare IRGP and IRGP-Exp with relative expansion-based methods in this section.

7

Under review as a conference paper at ICLR 2023

Table 2: Results of ACC (%) and Capacity on CIFAR-100 Sup setting. STL is under non-incremental
setting. All baselines are expansion-based methods except GPM.

Metric Methods

STL* PNN DEN RCL APD GPM IRGP

ACC (%) 61.00 50.76 51.10 51.99 56.81 57.72 58.12
Capacity 20.00 2.71 1.91 1.84 1.30 1.00 1.00

Table 3: L: compare IRGP-Exp with TRGP under an expansion setting. R: compare IRGP with
TRGP within a fixed network capacity. We reports the results as (ACC / Ωnew) for each experimental
setting. Detailed results are provided in Tabel 16 and 17.

Methods
Expansion Non-Expansion

IRGP-Exp TRGP TRGP-Reg IRGP50% 80% T% w = 1 w = 5 w = 50

CIFAR 75.15/74.76 75.38/75.02 75.06/74.91 74.46/75.01 71.85/72.87 72.08/73.12 72.46/72.91 73.52/74.78
PMNIST 96.68/97.18 96.99/97.29 97.03/97.26 96.34/97.23 73.69/95.20 71.51/95.60 72.43/95.80 94.20/96.19
MiniImageNet 60.81/62.35 62.03/62.44 60.84/62.17 61.78/63.29 55.81/60.28 58.81/62.77 22.69/20.12 61.26/62.80
Mixture 82.45/84.12 83.22/84.60 83.62/83.97 83.54/84.88 73.31/84.05 74.71/83.48 17.36/7.22 77.91/82.21

Following Saha et al. (2021), we perform experiments on CIFAR-100 Sup (Yoon et al., 2019). ACC
results shown in Table 2 are averaged over 5 different sequence orders proposed by Yoon et al.
(2017). We refer to the results of baselines from Saha et al. (2021). Capacity denotes the model
capacity normalized with respect to the network used in GPM. Here we use the same model as GPM.
According to Table 2, IRGP outperforms all baselines including GPM with the smallest capactiy.

Lin et al. (2022) proposed TRGP to expand the limited optimization spaces by retraining parameters
within the selected trust regions, achieving superior performance. During the inference phase, TRGP
reuses the parameters in corresponding trust regions memorized after learning this task. In contrast,
GPM and our IRGP only store the representation of the frozen space. Therefore, although indeed a
stable network capacity is allocated for each task, the entire memory size of TRGP grows continu-
ally. As shown in Figure 3-(c), after learning the last task on MiniImageNet setting, TRGP requires
around 5000% extra parameters with respect to the network capacity. Results on other benchmarks
provided in Appendix C.5 further substantiate that TRGP introduces a significant number of extra
parameters. Thus, we categorize TRGP as an expansion-based method here.

As mentioned in Section 3.2, we propose IRGP-Exp to further validate our searching strategy. In
this setting, the main difference between IRGP-Exp and TRGP is the strategy of deciding which part
of the frozen space to reuse. We conduct experiments on all four benchmarks against TRGP. The
results of ACC are provided in the left of Table 3. The percentages indicate the ratios of the rank of
relaxing subspaces with respect to the corresponding frozen space. We evaluate three constant ratios
and further use the ratios in TRGP, denoted as T%. According to the left of Table 3, IRGP-Exp
already outperforms TRGP with relaxing only 50% of the frozen spaces on CIFAR100-Split and
PMNIST. As TRGP selects the top 2 tasks as the trust regions, T% is larger than 80% most times.
Moreover, our approach gains better ACC on all benchmarks with a comparable size of relaxing
subspaces, which substantiate the efficiency of our subspace searching strategy.

We further modify TRGP as TRGP-Reg with similar regularization terms on the scale matrices
as our IRGP to compare the relaxing strategies. We report the results on four benchmarks with
three representative regularization weights w on TRGP-Reg in the right of Table 3. As shown in
Table 3, IRGP significantly outperforms TRGP-Reg, especially on PMNIST, gaining over 20% ACC
improvement. Generally, IRGP achieves better or comparable Ωnew than TRGP under or without
the constraint of a fixed network capacity. Detailed results are included in Appendix C.7.

5 ANALYSIS AND DISCUSSION

To gain a deeper insight into IRGP, we investigate the trend of scales of the subspaces relaxed
by our strategy. With the theoretical upper bound of the rank of the relaxed subspace provided in
Theorem 3.3, we further inspect the ratios of the relaxed subspaces concerning corresponding frozen
spaces in practical. Results of the last layer on three different settings are provided in Figure 3-(a).
As shown in Figure 3-(a), relaxing ratios maintain a stable trend, fluctuating smoothly in a similar

8

Under review as a conference paper at ICLR 2023

Figure 3: (a) Relaxing ratios of the last layer on CIFAR-100 Split, MiniImageNet, and PMNIST. (b)
Test accuracy of GPM and IRGP of different ϵ on CIFAR-100 Split. The optimum value of GPM is
annotated by a red circle. (c) Ratios of the amount of extra parameters concerning the amount of the
parameters of the network architecture on MiniImageNet.

1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000
TRGP
IRGP

0.96 0.965 0.97 0.975 0.98
71.0

71.5

72.0

72.5

73.0

73.5

74.0

IRGP
GPM

1 2 3 4 5 6 7 8 9

0.04

0.08

0.12

0.16 PMNIST
MiniImageNet
CIFAR100

(a) (b) (c)

Te
st

 A
cc

ur
ac

y
(%

)

Task ID Task ID

R
at

io
 (%

)

The value of �

R
at

io
 (%

)

range over sequential tasks, on both benchmarks. As different tasks explore different optimization
directions, ideal relaxing subspaces vary across tasks, in accord with the fluctuation of our results.

The dimension of the frozen spaces keeps growing as the tasks come, leading to expanding range
for searching relaxing subspaces. Therefore, the computation complexity and time consumption are
supposed to increase gradually. To investigate the practical efficiency of our approach, we further
reported the time consumption of IRGP on CIFAR-100 Split and MiniImageNet against other base-
lines in Appendix C.4. According to Table 14, our approach takes around 60% more time than GPM
on both settings. In general, the practical efficiency of our approach is accecptable.

To understand our relaxing strategy better, we further conduct experiments on different thresholds ϵ
mentioned in Equation (3), which regulate the criterion of the frozen spaces. Saha et al. (2021) argue
that ϵ controls the scale of the frozen space to mediate the stability-plasticity dilemma, and thus is
critical for GPM. However, IRGP enables the frozen space to be dynamically regulated regarding the
current task. Therefore, ϵ plays a much less important role in IRGP. We present the performance of
different ϵ on CIFAR-100 Split in Figure 3-(b). As shown in Figure 3-(b), the performance of GPM
drops significantly when ϵ ≥ 0.97, the optimal value reported in GPM, while IRGP consistently
performs well even with ϵ = 0.98. Generally, IRGP is more robust on the threshold ϵ.

Table 4: Ablation study of ζ = cos γ and β
on CIFAR100-Split, where γ is the thresh-
old for the relaxing strategy and β is the
weight of the regularization terms.

ζconv ζfc β ACC (%) BWT (%)

0.20 0.20 1.0 71.97 -3.0
0.50 0.50 1.0 72.58 -2.3
0.80 0.80 1.0 73.34 -2.2
0.90 0.90 1.0 73.28 -1.2
0.95 0.90 0.0 73.15 -2.0
0.95 0.90 0.1 73.32 -1.3
0.95 0.90 1.0 73.52 -0.9
0.95 0.90 5.0 73.14 -0.7
0.95 0.90 10.0 72.81 -0.6
0.95 0.95 1.0 73.08 -0.6

In the contrast, IRGP mediates the stability-plasticity
dilemma by controlling the dimension and flexibility
of the relaxing space by ζ in Equation (9) and β in
Equation (11) respectively. We present the results on
CIFAR-100 Split in Table 4, where ζconv denotes the
hyper-parameter for convolutional layers and ζfc de-
notes the hyper-parameter for fully connected layers.
As shown in Table 4, a larger ζ guarantees less forget-
ting, as a result of smaller relaxing subspaces. Detailed
results are provided in Appendix C.6. Similarly, we
observe less forgetting on larger β, which constrains
the update of parameters within the relaxing subspace
more strictly. However, strict constraints also lead to
limited performance on new tasks as discussed in Sec-
tion 4. Generally, ζ and β work together to overcome
catastrophic forgetting with better forward transfer.

6 CONCLUSION

In this paper, we propose a novel continual learning approach that facilitates the forward knowl-
edge transfer in gradient projection methods with a fixed network capacity by iteratively searching
and relaxing subspaces within the frozen space to expand the optimization space. Extensive ex-
periments demonstrate that our IRGP framework surpasses related state-of-the-art approaches on
diverse benchmarks. Moreover, we propose a modified version expanding the architecture with
relaxing subspaces, achieving better average accuracy than other expansion-based methods. We
further provide solid proof and analysis validating the efficiency of our algorithm.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pp. 139–154, 2018.

Y Bulatov. Notmnist dataset. http://yaroslavvb.com/upload/notMNIST/, 2011.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and M Ranzato. Continual learning with tiny episodic memories. CoRR,
abs/1902.10486, 2019.

WU Chenshen, L HERRANZ, LIU Xialei, et al. Memory replay gans: Learning to generate images
from new categories without forgetting [c]. In The 32nd International Conference on Neural
Information Processing Systems, Montréal, Canada, pp. 5966–5976, 2018.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Dual-teacher class-incremental learning with
data-free generative replay. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3543–3552, 2021.

Yulai Cong, Miaoyun Zhao, Jianqiao Li, Sijia Wang, and Lawrence Carin. Gan memory with no
forgetting. Advances in Neural Information Processing Systems, 33:16481–16494, 2020.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7):3366–3385, 2021.

Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach. Adver-
sarial continual learning. In European Conference on Computer Vision, pp. 386–402. Springer,
2020.

Benjamin Ehret, Christian Henning, Maria R Cervera, Alexander Meulemans, Johannes Von Os-
wald, and Benjamin F Grewe. Continual learning in recurrent neural networks. arXiv preprint
arXiv:2006.12109, 2020.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for contin-
ual learning. In International Conference on Artificial Intelligence and Statistics, pp. 3762–3773.
PMLR, 2020.

Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning. In
International Conference on Machine Learning, pp. 1920–1930. PMLR, 2019.

Robert M French. Pseudo-recurrent connectionist networks: An approach to the’sensitivity-
stability’dilemma. Connection Science, 9(4):353–380, 1997.

Ta-Chu Kao, Kristopher Jensen, Gido van de Ven, Alberto Bernacchia, and Guillaume Hennequin.
Natural continual learning: success is a journey, not (just) a destination. Advances in Neural
Information Processing Systems, 34:28067–28079, 2021.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring
catastrophic forgetting in neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Yajing Kong, Liu Liu, Zhen Wang, and Dacheng Tao. Balancing stability and plasticity through
advanced null space in continual learning. arXiv preprint arXiv:2207.12061, 2022.

10

http://yaroslavvb.com/upload/notMNIST/

Under review as a conference paper at ICLR 2023

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, Citeseer, 2009.

Richard Kurle, Botond Cseke, Alexej Klushyn, Patrick Van Der Smagt, and Stephan Günnemann.
Continual learning with bayesian neural networks for non-stationary data. In International Con-
ference on Learning Representations, 2019.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. In International Conference
on Machine Learning, pp. 3925–3934. PMLR, 2019.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for
continual learning. arXiv preprint arXiv:2202.02931, 2022.

Hao Liu and Huaping Liu. Continual learning with recursive gradient optimization. arXiv preprint
arXiv:2201.12522, 2022.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Nikhil Mehta, Kevin Liang, Vinay Kumar Verma, and Lawrence Carin. Continual learning using
a bayesian nonparametric dictionary of weight factors. In International Conference on Artificial
Intelligence and Statistics, pp. 100–108. PMLR, 2021.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Under-
standing the role of training regimes in continual learning. Advances in Neural Information Pro-
cessing Systems, 33:7308–7320, 2020.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Hong-Wei Ng and Stefan Winkler. A data-driven approach to cleaning large face datasets. In 2014
IEEE international conference on image processing (ICIP), pp. 343–347. IEEE, 2014.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

Mozhgan PourKeshavarzi, Guoying Zhao, and Mohammad Sabokrou. Looking back on learned
experiences for class/task incremental learning. In International Conference on Learning Repre-
sentations, 2021.

Rahul Ramesh and Pratik Chaudhari. Model zoo: A growing brain that learns continually. In
International Conference on Learning Representations, 2021.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762, 2021.

11

Under review as a conference paper at ICLR 2023

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning, pp.
4548–4557. PMLR, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
recognition benchmark: a multi-class classification competition. In The 2011 international joint
conference on neural networks, pp. 1453–1460. IEEE, 2011.

Yunfei Teng, Anna Choromanska, Murray Campbell, Songtao Lu, Parikshit Ram, and Lior Horesh.
Overcoming catastrophic forgetting via direction-constrained optimization. In European Confer-
ence on Machine Learning and Principles and Practice of Knowledge Discovery in Databases,
2022.

Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. Robotics and autonomous systems,
15(1-2):25–46, 1995.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space of feature
covariance for continual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 184–193, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Scalable and order-robust continual
learning with additive parameter decomposition. arXiv preprint arXiv:1902.09432, 2019.

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual learning of context-dependent pro-
cessing in neural networks. Nature Machine Intelligence, 1(8):364–372, 2019.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pp. 3987–3995. PMLR, 2017.

A PROOF

A.1 PROOF OF LEMMA 3.2

For simplification, all vectors here are assumed to be unit vectors, namely ∥v∥ = 1. Depicting the
angle by projection form, Lemma 3.2 can be expressed as:

∀v ∈ V, ∥ProjU (v)∥ ≥ ∥ProjU (vt)∥ (13)

Denote B = [u1, ..., um] as the representation matrix of the representation subspace U =
span{u1, ..., um}, where ui is the i-th normalized base of U . Lemma 3.2 can be expressed as:

∀v ∈ V, vTBBT v ≥ vTt BBT vt (14)

As vis are the basis iteratively appended by Algorithm 1, for any i ≤ j, we have:

vTi BBT vi ≥ vTj BBT vj (15)

Therefore, to prove Lemma 3.2, it suffices to prove the following lemma.

12

Under review as a conference paper at ICLR 2023

If there exists a vector v = Σt+1
i=1wivi satisfying the condition vTBBT v < vTt BBT vt, then we

can find another vector v′ = Σt+1
i=kw

′
ivi such that v′TBBT v′ > vTk BBT vk, which contradicts

Algorithm 1 where Θ(vk, U) ≤ Θ(v, U) for ∀v ∈ span{vk, ..., vt+1}.
First, we consider a special case where the current relaxed subspace has only one base, denoted by
V = span{v1}. Assume there exists v = w1v1 + w2v2 that vTBBT v < vT2 BBT v2, we have:

w2
1v

T
2 BBT v2 > w2

1v
T
1 BBT v1 + 2w1w2v

T
1 BBT v2 (16)

Construct v′ = w2v1 − w1v2, we have:

v′TBBT v′ = w2
2v

T
1 BBT v1 + w2

1v
T
2 BBT v2 − 2w1w2v

T
1 BBT v2

> w2
2v

T
1 BBT v1 + w2

1v
T
2 BBT v2 + w2

1v
T
1 BBT v1 − w2

1v
T
2 BBT v2

= vT1 BBT v1

(17)

which contradicts Θ(v1, U) ≤ Θ(v, U) for ∀v ∈ span{v1, v2}.
Then we consider the general case V = span{v1, ..., vt}. For ∀v ∈ V , we have Θ(v, U) ≤
Θ(vt, U). After vt is included, we assume that there exists v ∈ V that Θ(v, U) > Θ(vt+1, U). Then
we can find the minimum s satisfying that there exists v = Σs

i=1wivi + wt+1vt+1 that Θ(v, U) >
Θ(vt+1, U) and for ∀v′ = Σs−1

i=1wivi + wt+1vt+1, we have Θ(v′, U) ≤ Θ(vt+1, U). When s = 1,
it is similar to the special case, so the proof is omitted. Thus, we consider the case where s ≥ 2. For
simplification, we express v as v = c0v0 + c1vs + c2vt+1 with v0 = Σs−1

i=1aivi, where cis and ais
are coefficients. We have:

(c0v0 + c1vs + c2vt+1)
TBBT (c0v0 + c1vs + c2vt+1) < vTt+1BBT vt+1 (18)

As Θ(w1v0 + w2vs, U) ≤ Θ(vs, U) ≤ Θ(vt+1, U), we have:

(w1v0 + w2vs)
TBBT (w1v0 + w2vs) ≥ vTs BBT vs (19)

which is:

w2
1v

T
0 BBT v0 + 2w1w2v

T
0 BBT vs ≥ w2

1v
T
s BBT vs ≥ w2

1v
T
t BBT vt (20)

Similarly we have:

w2
1v

T
0 BBT v0 + 2w1w2v

T
0 BBT vt ≥ w2

1v
T
t BBT vt (21)

Then we can express Equation (18) as:

vTt+1BBT vt+1 > (c20 + c22)v
T
t BBT vt + c21v

T
s BBT vs + 2c1c2v

T
s BBT vt (22)

As ∥v∥ = ∥vi∥ = 1, c20 + c21 + c22 = 1. Then we have:

− 2c1c2v
T
s BBT vt > c21v

T
s BBT vs − c21v

T
t+1BBT vt+1 (23)

Construct v′ = c2vs−c1vt+1√
c21+c22

, we have:

v′TBBT v′ =
1

c21 + c22
(c22v

T
s BBT vs + c21v

T
t+1BBT vt+1 − 2c1c2v

T
s BBT vt)

>
1

c21 + c22
(c22v

T
s BBT vs + c21v

T
t+1BBT vt+1 + c21v

T
s BBT vs − c21v

T
t+1BBT vt+1)

= vTs BBT vs
(24)

13

Under review as a conference paper at ICLR 2023

which contradicts Θ(vs, U) ≤ Θ(v, U) for ∀v ∈ span{vs, vs+1, ..., vt, vt+1}.
Thus, for ∀v ∈ V = span{v1, ..., vt}, we have Θ(v, U) ≤ Θ(vt, U).

A.2 PROOF OF THEOREM 3.3

Denote the relaxed subspace and the representation subspace as V and U = span{u1, ..., ukp
}

respectively. With Lemma 3.2, we have ∀v ∈ V , Θ(v, U) ≤ Θ(vt, U) < π
2 . In other words,

∀v ∈ V, v ̸⊥ U (25)

For the sake of contradiction, assume the dimension of V is larger than kp, namely dim(V) >
dim(U) = kp. denote U c as the complemented subspace of U with respect to the whole space R.
Obviously, dim(U c) = n− kp, where n is the dimension of R. Then we have:

dim(V ∩ U c) = dim(V) + dim(U c)− dim(V + U c)

> kp + (n− kp)− n = 0
(26)

Thus, there exists v′ ∈ V such that v′ ∈ U c too. As U c is the complemented subspace, ∀u ∈ U c,
u ⊥ U . Then we have v′ ⊥ U , which contradicts Equation (25). Therefore, the assumption is
aborted. The upper bound of the dimension of V is kp, namely the dimension of the representation
subspace U .

A.3 PROOF OF THEOREM 3.4

Denote the whole solution set as S = {u|Θ(u, U) ≤ γ and u ∈ Uf} where U is the representation
subspace, Uf is the frozen space and γ is the threshold. Theorem 3.4 can be expressed as that
all subspace V ′ ⊆ S satisfies dim(V ′) ≤ dim(V), where V is the relaxed subspace obtained by
Algorithm 1. Similar to Theorem 3.3, we assume there exists V ′ ⊆ S that dim(V ′) > dim(V).
denote V c

f as the complemented subspace of V with respect to the frozen space Uf . According to
Algorithm 1, for ∀v ∈ V c

f , we have Θ(v, U) > γ. We also have:

dim(V ′ ∩ V c
f) = dim(V ′) + dim(V c

f)− dim(V ′ + V c
f) > 0 (27)

Thus, there exists v′ ∈ V ′ that v′ ∈ U c
f , namely there exists v′ ∈ S that Θ(v′, U) > γ, which

is contradict. Therefore, the relaxed subspace obtained by Algorithm 1 takes up the maximum
subspace of the whole solution set.

B EXPERIMENTAL SETUP

B.1 DATASETS

Here we introduce the datasets we use for evaluation. 1) CIFAR-100 Split Saha et al. (2021)
constructed CIFAR-100 Split, by splitting CIFAR100 (Krizhevsky & Hinton, 2009) into 10 tasks
where each task has 10 classes. 2) MiniImageNet Following Saha et al. (2021), we split MiniIm-
ageNet (Vinyals et al., 2016) into 20 sequential tasks with 5 classes each. 3) Permuted MNIST
(PMNIST) PMNIST (Kirkpatrick et al., 2017) is a variant of MNIST (LeCun et al., 1998) where
each task has a different permutation of inputting images, consists of 10 sequential tasks with 10
classes each. 4) CIFAR-100 Sup Following Yoon et al. (2019), we adopt CIFAR-100 Sup con-
sisting of 20 superclasses as sequential tasks. 5) Mixture Serra et al. (2018) first proposed Mix-
ture consisting of 8 datasets, including CIFAR-10 (Krizhevsky & Hinton, 2009), MNIST (LeCun
et al., 1998), CIFAR-100 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al., 2011), FashionM-
NIST (Xiao et al., 2017), TrafficSigns (Stallkamp et al., 2011), FaceScrub (Ng & Winkler, 2014),
and NotMNIST (Bulatov, 2011), from which Ebrahimi et al. (2020) further constructed 5-Datasets.
Here we follow the original harder benchmark. Particularly, we consider all tasks as a sequence ex-
cept TrafficSigns (Stallkamp et al., 2011), which we failed to access. Among all evaluated datasets,

14

Under review as a conference paper at ICLR 2023

PMNIST is a benchmark under the domain-incremental scenario, while other four datasets are under
the task-incremental scenario.

Moreover, we provide the statistics of selected datasets in Table 5 and Table 6. For the Mixture
benchmark, the images of MNIST, FashionMNIST, and notMNIST are replicated across all RGB
channels following Serra et al. (2018).

Table 5: Statistics of CIFAR-100 Split, MiniImageNet, and PMNIST.

CIFAR-100 Split CIFAR-100 Sup MiniImageNet PMNIST

Image Size 32× 32 32× 32 84× 84 28× 28
Channels 3 3 3 1
Classes 100 100 100 10
Tasks 10 20 20 10
Classes/task 10 5 5 10
Training Samples/task 4,750 2,375 2,375 54,000
Validation Samples/task 250 125 125 6,000
Testing Samples/task 1,000 500 500 10,000

Table 6: Statistics of Mixture benchmark.

Dataset Classes # Taining # Validation # Testing

CIFAR-10 (Krizhevsky & Hinton, 2009) 10 47,500 2,500 10,000
MNIST (LeCun et al., 1998) 10 57,000 3,000 10,000
CIFAR-100 (Krizhevsky & Hinton, 2009) 100 47,500 2,500 10,000
SVHN (Netzer et al., 2011) 10 69,595 3,662 26,032
FashionMNIST (Xiao et al., 2017) 10 57,000 3,000 10,000
FaceScrub (Ng & Winkler, 2014) 100 19,570 1,030 2,289
NotMNIST (Bulatov, 2011) 10 16,011 842 1,873

B.2 MODEL DETAILS

MLP architecture: We adopt a 3-layer model including two hidden layers with 100 neurons each
for the PMNIST setting, the same as Lopez-Paz & Ranzato (2017). ReLU is used as the activate
function here and for all other architectures. Also, we use softmax with cross entropy loss on all
settings.

AlexNet architecture: For CIFAR-100 Split setting, we adopt the same network as Serra et al.
(2018) with batch normalization, including two fully connected layers and three convolutional lay-
ers. The convolutional layers have 4× 4, 3× 3, and 2× 2 kernel sizes with 64, 128, and 256 filters
respectively. After each convolutional layer, we add batch normalization and 2 × 2 max-pooling.
Each fully connected layer has 2048 units. For the first two layers, we use the dropout of 0.2, and
for the rest layers, we use the dropout of 0.5.

Modified LeNet-5 architecture: For the CIFAR-100 Sup setting, a modified LeNet-5 architecture
consisting of two convolutional layers and two fully connected layers is adopted, similar to Saha
et al. (2021). Max-pooling of 3× 2 is used after each convolutional layer. The last two layers have
800 and 500 units respectively.

Reduced ResNet-18 architecture: We adopt the same reduced ResNet-18 architecture as Saha et al.
(2021) for the MiniImageNet and Mixture settings, using 2× 2 average-pooling before the classifier
layer instead of the 4 × 4 average-pooling used by Lopez-Paz & Ranzato (2017). Moreover, we
present the dimension of the representation space of each layer of our architectures in Table 7.

B.3 IMPLEMENTATION DETAILS

We use the official implementation of GPM (Saha et al., 2021), OWM (Zeng et al., 2019), HAT Serra
et al. (2018), and TRGP (Lin et al., 2022). Moreover, we implement A-GEM and ER Res with the

15

Under review as a conference paper at ICLR 2023

Table 7: Dimension of the representation space of each layer.

Network Depth Dimension of the representation space

MLP 3 layers 784; 100; 100
AlexNet 5 layers 48; 576; 512; 1,024; 2,048
LeNet-5 4 layers 75; 500; 3,200; 800
ResNet-18 17 layers and 3 short-

cut connections
27; 180; 180; 180; 180; 180; 360; 20; 360; 360; 360; 720;
40; 720; 720; 720; 1,440; 80; 1,440; 1,440

official implementation by Chaudhry et al. (2018) and implement EWC with the implementation by
Serra et al. (2018). Following Saha et al. (2021) and Lin et al. (2022), we run all experiments five
times on an established seed without fixing the cuda settings for a fair comparison. Particularly, we
use five random seeds on PMNIST where there is no diversity on a single seed. For CIFAR-100 Sup,
we use five different orders provided by Yoon et al. (2019). Following Saha et al. (2021), we report
the experimental results of replay-base methods A-GEM and ER Res on the Mixture dataset with
the same buffer size as GPM and our IRGP, which is 8.98M in term of the number of parameters for
the Resnet18 architecture.

On CIFAR-100 Split, MiniImageNet, and PMNIST, we follow the hyper-parameters utilized by
Saha et al. (2021) and Lin et al. (2022), including learning rate, batch size, and the threshold ϵ. On
Mixture, as we adopt the same network architecture Saha et al. (2021) use on their 5-Dataset setting,
we follow the provided learning rate and batch size as well. Moreover, for the threshold ϵ in GPM,
we conduct experiments with ϵ in the range of 0.95 to 1 provided in (Saha et al., 2021) and report
the best results whose ϵ is 0.955. We further use ϵ = 0.96 for all layers in our IRGP.

As discussed in Section 5, the threshold ζ = cos γ controls the criterion of the relaxing subspace.
For CIFAR100-Split and PMNIST, we use ζ = 0.95 for convolutional layers and ζ = 0.9 for fully
connected layers. For MiniImageNet and Mixture, we use the same ζ for all layers, 0.95 and 0.9
respectively. Furthermore, we set the regularization weight as 5 for the ResNet18 architecture and 1
for others. Particularly, we run all the experiments on a single NVIDIA GeForce RTX 2080 Ti GPU.

B.4 METRICS

Here we present the detailed definitions of the metrics evaluating the forward knowledge transfer.
Ωnew (Kemker et al., 2018). Denote bi as the test accuracy of task i at random initialization, FWT,
first proposed by Lopez-Paz & Ranzato (2017), is defined as FWT = 1

T−1Σ
T
i=2(Ai−1,i − bi),

evaluating the zero-shot performance of the initialization with respect to the observed tasks. While
Ωnew, first proposed by Kemker et al. (2018), is defined as Ωnew = 1

T−1Σ
T
i=2(Ai,i − bi), reflecting

the test accuracy on new tasks based on the learnt knowledge. As bi stays still across different
approaches, we consider Ωnew = 1

T−1Σ
T
i=2Ai,i for simplicity. For this simplified Ωnew, we have:

Ωnew = T
T−1ACC −BWT − 1

T−1A1,1, with the ACC and BWT defined in Section 4.1.

C EXPERIMENTAL RESULTS

C.1 FINAL ACCURACY

We provide the test accuracy after learning each task on other benchmarks here. As discussed in
Section 4, our IRGP universally outperforms GPM over the task sequence on all benchmarks.

C.2 FORWARD KNOWLEDGE TRANSFER

We provide the detailed forward knowledge transfer performance on all four benchmarks here. First,
we present the results of Ωnew and the detailed accuracy of each task after learning it in Table 8 to 11.
According to Table 10 and Table 11, IRGP achieves a similar forward knowledge transfer compared
with GPM. For other benchmarks, IRGP improves Ωnew by 2.7% and 1.8% on CIFAR-100 Split and
MiniImageNet respectively, as shown in Table 8 and Table 9. Moreover, we provided the detailed
results including the standard deviation and other baselines in Table 12. According to Table 12, our
IRGP consistently achieves the best or second best forward knowledge transfer compared with all

16

Under review as a conference paper at ICLR 2023

Figure 4: Average accuracy after learning each task on (a) MiniImageNet, (b) PMNIST, and (c)
Mixture.

1 3 5 7 9 11 13 15 17 19
58

59

60

61

62

63

64
IRGP
GPM

1 2 3 4 5 6 7 8 9
93

94

95

96

97
IRGP
GPM

1 2 3 4 5 6

75

80

85

90
GPM
IRGP

(a) (b) (c)
Te

st
 A

cc
ur

ac
y

(%
)

Task ID

Te
st

 A
cc

ur
ac

y
(%

)

Task ID Task ID

Te
st

 A
cc

ur
ac

y
(%

)

baselines without extra memory buffer. For CIFAR100-Split, IRGP even gains 2.7% better Ωnew

than HAT, which is the second best baseline in this setting.

Table 8: The accuracy tested on task i after learning task i and Ωnew on CIFAR-100 Split.

Method 1 2 3 4 5 6 7 8 9 Avg (Ωnew)

GPM 67.7 72.5 70.1 73.6 71.8 70.3 71.0 71.8 73.7 71.4
IRGP 68.7 73.6 72.0 76.3 74.2 73.7 74.1 74.9 79.0 74.1

Table 9: The accuracy tested on task i after learning task i and Ωnew on MiniImageNet.
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Avg (Ωnew)

GPM 59.0 57.1 65.6 59.6 76.2 57.2 66.5 72.8 81.5 42.0 59.6 62.1 62.3 58.9 57.2 59.0 50.7 65.7 57.3 61.6
IRGP 57.6 60.1 66.0 62.2 77.0 62.5 65.7 73.6 82.3 44.4 64.0 59.2 64.5 60.0 59.6 60.5 50.0 68.3 55.6 62.8

Table 10: The accuracy tested on task i after learning task i and Ωnew on PMNIST.

Method 1 2 3 4 5 6 7 8 9 Avg (Ωnew)

GPM 97.5 97.4 97.0 96.8 96.5 96.2 96.2 95.8 95.1 96.5
IRGP 97.4 97.2 97.0 96.5 96.3 96.1 95.7 94.9 94.8 96.2

Table 11: The accuracy tested on task i after learning task i and Ωnew on Mixture.

Method 1 2 3 4 5 6 Avg (Ωnew)

GPM 99.0 43.7 87.3 99.1 69.9 93.4 82.1
IRGP 99.1 42.9 87.6 99.1 70.6 93.5 82.2

As mentioned in Section 4.1, final accuracy (ACC), forgetting (BWT) and forward knowledge trans-
fer (Ωnew) are jointly considered to evaluate a continual learner. Despite our relaxing strategy focus-
ing on facilitating the forward knowledge transfer, IRGP gains better final accuracy with comparable
forgetting over all benchmarks, according to Table 1. Generally speaking, IRGP achieves superior
performance than previous baselines with a fixed network capacity.

Table 12: Comparison of forward knowledge transfer on four benchmarks, evaluated by Ωnew.

Datasets A-GEM ER Res EWC HAT GPM IRGP

PMNIST 97.4 ± 0.0 97.4 ± 0.5 93.1 ± 0.7 - 96.6 ± 0.0 96.5 ± 0.1
CIFAR100-Split 77.5 ± 0.4 77.1 ± 0.2 69.9 ± 1.1 71.5 ± 0.6 71.5 ± 0.5 74.1 ± 0.2
MiniImageNet 67.6 ± 1.2 69.5 ± 0.4 63.5 ± 2.8 62.6 ± 0.6 61.6 ± 0.6 62.8 ± 0.8
Mixture 85.9 ± 0.4 86.4 ± 0.2 74.4 ± 1.0 79.3 ± 0.2 82.1 ± 0.4 82.2 ± 0.4

17

Under review as a conference paper at ICLR 2023

Moreover, we provide the result of FWT (using the definition in (Lopez-Paz & Ranzato, 2017)) on
all benchmarks in Table 13. According to Table 13, although our method facilitates the forward
knowledge transfer reflected by Ωnew, IRGP achieves better FWT than GPM on all three task-
incremental benchmarks.

Table 13: Comparison of forward knowledge transfer between GPM and IRGP, evaluated by FWT.

Methods CIFAR-100 Split MiniImageNet PMNIST Mixture
FWT (%) STD (%) FWT (%) STD (%) FWT (%) STD (%) FWT (%) STD (%)

GPM -0.65 0.18 -0.26 0.88 +0.66 1.17 -0.52 1.49
Ours (IRGP) +0.20 0.36 +0.52 0.35 -0.63 0.97 +0.13 0.77

C.3 ACCURACY EVOLUTION

Here we present the accuracy tested on three randomly selected tasks after learning them on four
benchmarks. We select the 2nd, 4th, and 6th tasks for CIFAR-100 Split, MiniImageNet, and PM-
NIST. As there are only 7 tasks in Mixture, we select the 1st, 3rd, and 5th tasks. Generally, IRGP
outperforms GPM on selected tasks over the sequence. We further notice that the improvement is
more significant on later tasks as a result of larger relaxing subspaces, as discussed in Section 5.

Figure 5: Accuracy evolution of the (a) 2nd, (b) 4th, and (c) 6th task on CIFAR-100 Split.

6 7 8 9

70

71

72

73

74

GPM
IRGP

2 3 4 5 6 7 8 9

72

73

74

75 GPM
IRGP

4 5 6 7 8 9
73

74

75

76

77
GPM
IRGP

(a) (b) (c)

Te
st

 A
cc

ur
ac

y
(%

)

Task ID

Te
st

 A
cc

ur
ac

y
(%

)

Task ID Task ID

Te
st

 A
cc

ur
ac

y
(%

)

Figure 6: Accuracy evolution of the (a) 2nd, (b) 4th, and (c) 6th task on MiniImageNet.

6 8 10 12 14 16 18
52

54

56

58

60

62

64
GPM
IRGP

4 6 8 10 12 14 16 18
56

57

58

59

60

61

62 GPM
IRGP

2 4 6 8 10 12 14 16 18
50

52

54

56

58

60

62
GPM
IRGP

(a) (b) (c)

Te
st

 A
cc

ur
ac

y
(%

)

Task ID

Te
st

 A
cc

ur
ac

y
(%

)

Task ID Task ID

Te
st

 A
cc

ur
ac

y
(%

)

Figure 7: Accuracy evolution of the (a) 2nd, (b) 4th, and (c) 6th task on PMNIST.

6 7 8 9
93.0

93.5

94.0

94.5

95.0

95.5

96.0
GPM
IRGP

2 3 4 5 6 7 8 9
92

93

94

95

96

97

98
GPM
IRGP

4 5 6 7 8 9
92

93

94

95

96

97
GPM
IRGP

(a) (b) (c)

Te
st

 A
cc

ur
ac

y
(%

)

Task ID

Te
st

 A
cc

ur
ac

y
(%

)

Task ID Task ID

Te
st

 A
cc

ur
ac

y
(%

)

18

Under review as a conference paper at ICLR 2023

Figure 8: Accuracy evolution of the (a) 1st, (b) 3rd, and (c) 5th task on Mixture.

5 5.2 5.4 5.6 5.8 6
68.5

69.0

69.5

70.0

70.5

71.0
GPM
IRGP

1 2 3 4 5 6
98.2

98.4

98.6

98.8

99.0

99.2
GPM
IRGP

3 4 5 6
82

83

84

85

86

87

88
GPM
IRGP

(a) (b) (c)
Te

st
 A

cc
ur

ac
y

(%
)

Task ID

Te
st

 A
cc

ur
ac

y
(%

)

Task ID Task ID

Te
st

 A
cc

ur
ac

y
(%

)

C.4 TIME CONSUMPTION

We report the time consumption of IRGP on two benchmarks compared with relative baselines.
TRGP and IRGP are both evaluated on a single NVIDIA GeForce RTX 2080 Ti GPU and we report
the results according to (Lin et al., 2022). As discussed in Section 5, IRGP takes acceptable extra
time compared with GPM on both datasets. For CIFAR-100 Split, IRGP tasks similar time as TRGP,
which is similar to ER Res and HAT and much less than A-GEM and OWM. For MiniImageNet,
IRGP tasks around 30% time than TRGP, and is similar to A-GEM.

Table 14: Time comparison evaluated on two benchmarks. We use the results reported in (Lin et al.,
2022) and the time is normalized with respect to GPM.

Datasets Methods

OWM EWC HAT A-GEM ER Res GPM TRGP IRGP

CIFAR-100 2.41 1.76 1.62 3.48 1.49 1.00 1.65 1.62
MiniImageNet - 1.22 0.91 1.79 0.82 1.00 1.34 1.69

C.5 MEMORY USAGE

We provide a comparison between TRGP and IRGP on the ratio of the amount of extra parameters
concerning the amount of the parameters of the initial network architecture. According to Figure 9,
TRGP requires at least 200% of the number of extra parameters after learning all tasks on the other
three benchmarks, while IRGP only stores the representation of the frozen space, which can further
be released in the inference phase.

Figure 9: Ratio of the amount of extra parameters concerning the amount of the parameters of the
initial network architecture on (a) CIFAR100-Split, (b) PMNIST, and (c) Mixture.

1 2 3 4 5 6
0

1000

2000

3000

4000

5000
TRGP
IRGP

1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000
TRGP
IRGP

1 2 3 4 5 6 7 8 9
0

50

100

150

200

250
TRGP
IRGP

(a) (b) (c)

R
at

io
 (%

)

Task ID

R
at

io
 (%

)

Task ID Task ID

R
at

io
 (%

)

C.6 RELAXING RATIO

We provide the results on CIFAR100-Split between the hyper-parameter ζ and the relaxing ratio of
all five layers of the AlexNet architecture in Table 15. And β is set to be 1.0 for all experiments
here. According to Table 15, generally, larger ζ guarantees smaller relaxing ratios. As discussed in
Section 5, forgetting is mitigated by constraining the percentage of the relaxing weights, as a result
of increasing ζ.

19

Under review as a conference paper at ICLR 2023

Table 15: The relationship between ζ and the relaxing ratio of different layers on CIFAR-100 Split.

ζcong ζfc Conv1 (%) Conv2 (%) Conv3 (%) Fc1 (%) Fc2 (%) ACC BWT

0.20 0.20 72.32 61.56 69.11 38.92 29.75 71.97% -3.0%
0.50 0.50 50.96 45.18 56.07 27.43 19.06 72.58% -2.3%
0.80 0.80 50.99 31.09 35.74 10.56 5.41 73.34% -2.2%
0.90 0.90 44.91 23.05 21.90 4.82 2.00 73.28% -1.2%
0.95 0.90 42.07 17.82 16.87 4.84 2.20 73.52% -0.9%
0.95 0.95 42.77 17.49 16.59 2.30 0.76 73.08% -0.6%
0.99 0.99 33.68 7.08 8.07 0.16 0.00 73.19% -0.6%

C.7 OTHER RESULTS

We provide the test accuracy over the task sequence in Figure 10. As shown in Figure 10-(a) and
Figure 10-(b), our IRGP-Exp dominates TRGP on both benchmarks relaxing either 80% or T% of
the frozen spaces under an expansion setting. We further compare IRGP with TRGP modified with
the same regularization terms. As shown in Figure 10-(c) and Figure 10-(d), the performance of
TRGP drops significantly constrained in a fixed network capacity on both benchmarks. Detailed
results between IRGP and TRGP are provided in Table 16 and 17.

Figure 10: Test accuracy after learning each task under an expansion setting on (a) CIFAR-100 Split
and (b) PMNIST, and within a fixed network capacity on (c) CIFAR-100 Split and (d) PMNIST.

1 2 3 4 5 6 7 8 9
70

75

80

85

90

95

100

IRGP
TRGP w=1
TRGP w=5

1 2 3 4 5 6 7 8 9

71.0

71.5

72.0

72.5

73.0

73.5 IRGP
TRGP w=1
TRGP w=5

1 2 3 4 5 6 7 8 9
96.6

96.8

97.0

97.2

97.4 IRGP-Exp T%
IRGP-Exp 80%
TRGP

1 2 3 4 5 6 7 8 9

72.5

73.0

73.5

74.0

74.5

75.0
IRGP-Exp T%
IRGP-Exp 80%
TRGP

(a) (b) (c)

Te
st

 A
cc

ur
ac

y
(%

)

Task ID

Te
st

 A
cc

ur
ac

y
(%

)

Task ID Task ID
Te

st
 A

cc
ur

ac
y

(%
)

Te
st

 A
cc

ur
ac

y
(%

)

Task ID

(d)

Table 16: Compare IRGP-Exp with TRGP on four benchmarks under an expansion setting. All
results reported are average over 5 runs.

Methods TRGP IRGP-Exp 50% IRGP-Exp 80% IRGP-Exp T%

ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

CIFAR 74.46 0.07 75.15 0.20 75.38 0.29 75.06 0.04
PMNIST 96.34 -0.80 96.68 -0.61 96.99 -0.38 97.03 -0.28
MiniImageNet 61.78 -0.50 60.81 -0.21 62.03 0.48 60.84 0.55
Mixture 83.54 -0.80 82.45 -0.74 83.22 -0.48 83.62 -0.33

Table 17: Compare IRGP with TRGP-Reg on four benchmarks within a fixed network capacity. All
results reported are average over 5 runs.

Methods IRGP TRGP-Reg w = 1 TRGP-Reg w = 5 TRGP-Reg w = 50

ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

CIFAR 73.52 -0.94 71.85 -1.48 72.08 -1.51 72.46 -0.96
PMNIST 94.20 -2.44 73.69 -24.14 71.51 -26.97 72.43 -26.14
MiniImageNet 61.26 -1.72 55.81 -3.69 58.81 -2.84 22.69 0.01
Mixture 77.91 -4.45 73.31 -11.05 74.71 -9.33 17.36 -0.01

C.8 FORWARD KNOWLEDGE TRANSFER: NEWLY-ADDED RESULTS FOR TABLE 2

20

Under review as a conference paper at ICLR 2023

Table 18: Comparison of forward knowledge transfer on CIFAR100-Sup, evaluated by Ωnew.

Methods PGN EWC GPM IRGP

Ωnew 51.1 ± 0.4 57.5 ± 3.1 58.7 ± 0.3 58.9 ± 0.4

21

Under review as a conference paper at ICLR 2023

D ALGORITHM

We present the pseudo-code of our Iterative Relaxing Gradient Projection here.

Algorithm 2 Iterative Relaxing Gradient Projection

1: Initiate frozen subspaces U0 = {U l
0}Ll=1 as ∅s and optimizeW1 for task 1

2: Compute frozen subspace U1 with Equation (4)
3: for t ∈ 2, ..., T do
4: Initiate relaxing subspace {V l

t }Ll=1 as ∅s
5: Initiate scaling matrices {Sl

t}Ll=1 as identity matrix 1s
6: repeat
7: Fine-tune for pre-defined et epochs with objective function 11
8: Search additional relaxing subspace {V l,new

t }Ll=1 by Algorithm 1 with current gradients
{glt}Ll=1, remaining frozen subspace {U l,rest

t = U l
t\V l

t }Ll=1 and thresholds {ϵlth, γl
t}Ll=1

9: V l
t ← V l

t ∪ V l,new
t

10: Expand Sl
t with Equation (12)

11: until V l,new
t is ∅

12: OptimizeWt,St with objective function 11
13: Update W l

t ←W l
t − ProjV l

t
(W l

t) + ProjSt

V l
t
(W l

t)

14: Update frozen subspace Ut with Equation (4)
15: end for

22

	Introduction
	Related Work
	Iterative Relaxing Gradient Projection
	Preliminaries
	Relaxing Subspace Searching
	Iterative Modifying the Scale Matrix with Constraints

	Experiments
	Experimental Setup
	Main Results
	Compared with Expansion-based Methods

	Analysis and Discussion
	Conclusion
	Proof
	Proof of Lemma 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4

	Experimental Setup
	Datasets
	Model Details
	Implementation Details
	Metrics

	Experimental Results
	Final Accuracy
	Forward Knowledge Transfer
	Accuracy Evolution
	Time Consumption
	Memory Usage
	Relaxing Ratio
	Other Results
	Forward Knowledge Transfer: Newly-added Results for Table 2

	Algorithm

