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ABSTRACT

A significant portion of disease-relevant proteins remain undruggable due to shal-
low, flexible, or otherwise ill-defined binding pockets that hinder conventional
molecule screening. Fragment-based drug discovery (FBDD) offers a promising
alternative, as small, low-complexity fragments can flexibly engage shallow, tran-
sient, or cryptic binding pockets that are often inaccessible to conventional drug-
like molecules. However, fragment screening remains difficult due to weak bind-
ing signals, limited experimental throughput, and a lack of computational tools tai-
lored for this setting. In this work, we introduce FragBench, the first benchmark
for fragment-level virtual screening on undruggable targets. We construct a high-
quality dataset through multi-agent LLM–human collaboration and interaction-
based fragment labeling. To address the core modeling challenge, we propose a
novel tri-modal contrastive learning framework FragCLIP that jointly encodes
fragments, full molecules, and protein pockets. Our method significantly outper-
forms baselines like docking software and other ML based methods. Moreover,
we demonstrate that retrieved fragments can be effectively expanded or linked
into larger compounds with improved predicted binding affinity, supporting their
utility as viable starting points for drug design.

1 INTRODUCTION

A substantial fraction of disease-associated proteins are considered undruggable targets, such as
transcription factors (Bushweller, 2019) and protein–protein interaction (PPI) hubs (Arkin & Wells,
2004). These proteins are closely linked to severe diseases, including cancer and neurodegenerative
disorders (Bushweller, 2019; Ross & Poirier, 2004). If therapeutic strategies could be developed
for them, the clinical and societal impact would be transformative. However, the lack of well-
defined, stable binding pockets makes conventional approaches—small-molecule drug design and
high-throughput screening—largely ineffective, thus severely limiting progress in drug discovery
for these targets.

Fragment-based drug discovery (FBDD) offers a unique path forward for undruggable targets. Com-
pared to drug-like molecules, fragments are smaller and more flexible in their binding modes, which
enables them to access shallow or transient binding pockets on protein surfaces (Erlanson et al.,
2016) and to reveal weak but crucial interactions often invisible to conventional screening. Al-
though individual fragments bind weakly, they can serve as anchors that can be expanded or linked
to yield high-affinity, selective molecules (Murray & Rees, 2009). This principle has been validated
in classical undruggable targets, highlighting the promise of FBDD in this space (Scott et al., 2016).

Over 85% of the human proteome remains “undruggable” due to the absence of well-defined pock-
ets suitable for conventional small-molecule targeting (Spradlin et al., 2021). Fragment-based
drug discovery (FBDD) offers a promising alternative, exemplified by pipelines like Enamine’s V-
SYNTHES, which dock fragment-like synthons and expand them through iterative synthesis (Sady-
bekov et al., 2022). Figure 1(a) illustrates BCL-xL, a classical undruggable target, as an example of
developing a full-molecule ligand through FBDD. However, the initial fragment identification step
remains a bottleneck. Experimental techniques such as NMR and crystallography reliably detect
weak binders but are slow, costly, and limited by factors like solubility or crystal quality (Erlanson
et al., 2016; Jhoti et al., 2007). Computational docking, originally designed for full-sized ligands, of-
ten underestimates small fragments, leading to high false positive and negative rates (Brenke et al.,
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Figure 1: (a) Fragment-based drug discovery on BCL-XL, a shallow-pocket undruggable target
where conventional screening fails. Weakly binding fragments identified by NMR were linked to
yield compound 13-44 with markedly improved affinity. (b) Glide (Halgren et al., 2004) shows poor
enrichment on such targets (EF1 = 1.8), barely above random. (c) Pocket property distributions of
FragBench (green) versus DUD-E (purple), with significance tested by Mann–Whitney U and effect
sizes reported as Cliff’s δ.

2009; Chen & Pohlhaus, 2010). As shown in Figure 1(b), our experiments confirm these limita-
tions—docking achieves only marginally better fragment ranking than random. These challenges
highlight the need for fragment-aware computational models tailored to FBDD and undruggable
targets.

Despite the rapid advances of machine learning in drug discovery, AI-driven approaches for frag-
ment screening remain largely unexplored. Two major gaps currently hinder progress in this area.
First, there is a lack of systematic benchmarks specifically designed for fragment screening on un-
druggable protein pockets. This absence limits standardized evaluation and meaningful comparison
between methods. Second, existing modeling frameworks fail to capture the tripartite relationship
among fragments, drug-like molecules, and protein pockets. Without explicitly modeling both fine-
grained fragment–pocket interactions and global molecule–pocket binding principles, it is difficult
to achieve generalizable fragment retrieval across diverse targets.

To bridge the current gaps in fragment-based drug discovery, we introduce FragBench, the first
large-scale benchmark specifically curated for fragment screening on undruggable targets. It features
high-confidence positive and negative fragment–pocket pairs derived from structurally challenging
protein complexes. Building upon this, we propose FragCLIP, a tri-modal contrastive learning
framework that jointly encodes fragments, molecules, and protein pockets, aligning their represen-
tations through a dedicated fusion module. This design captures both fine-grained fragment–pocket
interactions and scaffold-level molecular context. Our experiments show that FRAGCLIP signif-
icantly outperforms classical docking tools and recent learning-based models—especially in the
challenging cross-target setting—highlighting its potential to advance AI-driven fragment discovery
for undruggable proteins.

2 RELATED WORK

Recent advances in deep learning have markedly improved structure-based virtual screening (VS).
Models such as EquiBind and DiffDock (Stärk et al., 2022; Corso et al., 2022) enable fast and
accurate prediction of protein–ligand binding conformations, while multimodal frameworks like
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DrugCLIP (Gao et al., 2023) employ contrastive learning to align protein and ligand representa-
tions for efficient screening. Meanwhile, standardized benchmarks such as DUD-E, LIT-PCBA, and
CrossDocked2020 (Mysinger et al., 2012; Tran-Nguyen et al., 2020; Francoeur et al., 2020) have
facilitated robust evaluation of virtual screening models. However, these efforts overwhelmingly fo-
cus on drug-like molecules and well-structured binding pockets, overlooking the unique challenges
of fragment-based screening—where small, low-affinity fragments interact with shallow or transient
sites that are typical of undruggable targets.

Fragment-based drug discovery (FBDD) offers a compelling strategy, as fragments can access cryp-
tic sites and seed ligand development. However, efficient screening remains challenging: experimen-
tal methods like NMR and crystallography are accurate but low-throughput, while computational
tools such as hotspot mapping and fragment docking often misrank fragments due to scoring biases.
Despite progress in virtual screening (VS), no existing benchmark or framework systematically
addresses fragment screening on undruggable targets or captures the interplay among fragments,
molecules, and pockets.

3 METHOD

Fragment-based drug discovery (FBDD) holds promise for targeting undruggable proteins with shal-
low or cryptic pockets, where traditional small-molecule screening fails. However, the core task of
fragment-level virtual screening remains underdefined and challenging: fragment–pocket binding
signals are weak, supervision is scarce, and existing scoring or retrieval methods—typically opti-
mized for drug-like ligands—fail to generalize to low-mass fragments.

To address this, we formalize the task of fragment retrieval in undruggable pockets, and introduce a
tri-modal modeling approach that leverages information from protein pockets, full drug molecules,
and their constituent fragments. Our solution includes (i) FragBench, a new benchmark built with
LLM-guided literature mining and interaction-based fragment labeling; and (ii) FragCLIP, a con-
trastive framework that aligns fragment, molecule, and pocket embeddings via multi-level supervi-
sion.

3.1 FRAGBENCH: FRAGMENT-BASED BENCHMARK FOR UNDRUGGABLE TARGETS

3.1.1 TASK DEFINITION

We study fragment-level virtual screening on challenging protein targets. Given a protein pocket
p ∈ P—typically from an undruggable protein—and a fragment library F = {f1, f2, . . . , fN}, the
goal is to identify a subset F+ ⊆ F of fragments that can form favorable non-covalent interactions
with p. Each fragment fi is a chemically valid substructure derived from a drug-like molecule
via synthetically accessible disconnections (e.g., BRICS rules). Compared to conventional ligands,
fragments have lower molecular weight, surface area, and fewer functional groups, resulting in
weak and localized binding. Yet this simplicity allows them to access shallow, flexible, or cryptic
sites—precisely those found in undruggable pockets.

This setting presents unique challenges: binding signals are subtle, and standard screening methods
optimized for full ligands often fail to prioritize fragments. Effective fragment retrieval therefore
demands both dedicated benchmarks and tailored models.

We construct a benchmark comprising undruggable targets, where each pocket p is paired with
a fragment set F = F+ ∪ F−, containing known binders F+ from experimental protein–ligand
complexes and presumed non-binders F−. Given a scoring model s : F → R that ranks fragments
for a fixed pocket p, we evaluate its ability to prioritize true binders using early recognition metrics:
the Enrichment Factor (EF@k) and BEDROC (Truchon & Bayly, 2007).

EF@k measures fold enrichment over random selection:

EF@k =
# positives in top-k

k
|F | · |F+|

.
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Figure 2: Overview of the data curation pipeline for FragBench. Starting from ligand–pocket
pairs in the Protein Data Bank (PDB), we apply rule-based filters (e.g., site score, ligand efficiency)
followed by a collaborative agent–human curation process to select high-quality protein–ligand com-
plexes. For challenging targets from ChEMBL, docking and PLIP-based interaction analysis are
used to annotate fragment-level contacts. Valid fragments are extracted based on interaction pat-
terns (e.g., hydrogen bonding, hydrophobic contacts). To identify undruggable targets, we further
use a literature-grounded reasoning pipeline that retrieves UniProt entries, mines PubMed/DrugBank
evidence via LLM agents, and synthesizes task-specific knowledge. Human experts verify final de-
cisions.

BEDROC emphasizes early retrieval in the full ranking:

BEDROCα =
1− e−α

1− e−αR

|F+|∑
i=1

e−α· riR ,

where R = |F | is the total number of fragments and ri is the rank of the i-th positive.

3.1.2 RULE-BASED PRE-CURATION

Although an estimated 85% of the human proteome is considered undruggable, structural data in the
Protein Data Bank (PDB) (Berman et al., 2000) is heavily skewed toward druggable proteins with
well-formed pockets. Moreover, no existing database systematically catalogs undruggable targets.
To bridge this gap, we developed a rule-based pipeline to extract challenging pocket–ligand pairs
from PDB by combining structural heuristics with ligand efficiency filters.

We began with all protein–ligand complexes in PDB and excluded trivial cases involving covalent
ligands, nucleic acid proximity (within 6Å), or small pockets (fewer than 10 residues), yielding
87,425 pairs. We then assessed each pocket using SiteMap (Halgren, 2009), retaining those with
a site score below 0.8—indicative of small or poorly enclosed binding sites.

In parallel, we computed ligand efficiency (LE) as docking score per heavy atom:

LE(l) =
S(l)

HA(l)
,

where S(l) is the Glide docking score and HA(l) is the heavy atom count. Pairs with LE(l) > −0.15
were prioritized, reflecting weak binding normalized by size.

The final candidate set is:

C = {(p, l) ∈ DPDB | SiteScore(p) < 0.8 ∧ LE(l) > −0.15},

resulting in 1,387 structurally challenging pocket–ligand pairs for expert review.
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3.1.3 MULTI-AGENT FRAMEWORK FOR TARGET CURATION

To construct an evidence-grounded benchmark of undruggable targets, we introduce a modular
multi-agent framework composed of retrieval, extraction, synthesis, and expert validation compo-
nents. Formally, given a protein target t ∈ T (where T is the set of UniProt-annotated human
proteins), the system retrieves a corpus Dt of relevant documents by querying DrugBank (Knox
et al., 2024) and PubMed (White, 2020). This retrieval is modeled as a mapping R : t 7→ Dt,
where Dt = {d1, d2, . . . , dn} includes abstracts and metadata related to t’s druggability, clinical
development, and structural properties. Each document di ∈ Dt is then processed by an LLM-based
extraction agent E with task-specific prompting, producing structured tuples (ei, ci) where ei is an
evidence type (e.g., “shallow pocket”, “fragment hit”, “undruggable domain” and ci is a citation.
The agent enforces output consistency via schema-constrained decoding and validation heuristics.
A synthesis agent S aggregates extracted tuples {(ei, ci)}ni=1 and metadata features mt from Drug-
Bank to compute a provisional classification ŷt ∈ {druggable, undruggable,FBDD-reported} with
supporting citations. Conflicts or ambiguous cases (e.g., conflicting evidence of druggability and
FBDD) are resolved via deterministic resolution rules or flagged for human audit. Finally, a domain
expert validation step V : ŷt 7→ yt confirms or corrects each label ŷt, producing the final ground-
truth annotation yt used in our benchmark. This human-in-the-loop step is essential for resolving
nuanced biological edge cases, such as disordered proteins with low-confidence fragment data.

Overall, this framework achieves high-throughput and structured curation of undruggable targets,
with an average of 218, 34, and 25 relevant PubMed documents per target for druggability, undrug-
gability, and FBDD evidence respectively. The resulting benchmark provides structured evidence
provenance and supports downstream model evaluation under realistic biological constraints.

3.1.4 FRAGMENT CONSTRUCTION

To support fragment-level learning, we constructed a dataset of fragment–pocket interactions for
curated undruggable targets. Active ligands were retrieved from ChEMBL (Gaulton et al., 2012)
with strict assay-based filtering described in G , and each molecule m ∈ M was decomposed into
synthetically accessible fragments using the BRICS algorithm (Degen et al., 2008):

F(m) = {f1, f2, . . . , fk}.

Fragments with 8 ≤ HA(fi) ≤ 24 were retained to match common fragment library constraints
(e.g., Enamine REAL (Shivanyuk et al., 2007)). Redundancy was reduced via fingerprint-based
clustering, details are in H.

Positive fragment labels were generated by redocking each ligand into its native pocket using Glide,
followed by non-covalent interaction detection with PLIP (Salentin et al., 2015). To obtain high-
confidence positive examples, we adopted a conservative consensus strategy: a fragment was labeled
as positive only if it (i) formed at least two distinct non-covalent interactions with the pocket in
a given docking pose, and (ii) this multi-interaction pattern was reproducibly observed across 3
independent docking replicates. Formally, let A(f) denote the set of atoms belonging to fragment
f , and I(a, p) be the number of non-covalent interactions formed by atom a with pocket p. A
fragment is considered positive if

∣∣{ a ∈ A(f) | I(a, p) > 0 }
∣∣ ≥ 2 and this condition holds

consistently across three docking replicates.

We quantitatively assessed the accuracy of this labeling strategy and examined how the number
of docking replicates and interaction thresholds affect label reliability; details are provided in Ap-
pendix B.

Negatives were sampled randomly at a 1:90 positive-to-negative ratio from a fragment pool. The
resulting FragBench dataset spans 54 targets, each associated with an average of 84.37 positive and
7593.33 negative fragments, providing the first standardized benchmark for fragment-level screen-
ing against challenging protein pockets. Comprehensive information on 54 targets, including their
protein name, Uniprot ID and associated disease indications is presented in Appendix I.

In Figure 1(c), we report a statistical characterization of FragBench pockets, which display reduced
size and fewer residues relative to DUD-E targets, indicative of their shallow and flattened topol-
ogy. Dscores further underscore the intrinsic challenges these targets pose for rational drug design,
highlighting the fundamental differences between FragBench and traditional benchmarks.
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3.2 FRAGCLIP: A CONTRASTIVE LEARNING FRAMEWORK FOR FRAGMENT RETRIEVAL

3.2.1 MULTI-GRANULAR CONTRASTIVE ALIGNMENT

The core task of this work is fragment retrieval: given a protein pocket, the model must identify
fragments likely to bind. Directly learning from fragment–pocket pairs is challenging due to the
small size, weak binding affinity, and context-dependence of fragments. Such training would provide
sparse and noisy supervision.

To address this, we design a multi-encoder framework that jointly models protein pockets, frag-
ments, and their parent molecules. The protein encoder fp maps 3D pocket structures into a la-
tent space. The fragment encoder ff captures fine-grained chemical substructures relevant to bind-
ing. The molecule encoder fm provides scaffold-level context, serving as a structural and chemical
bridge to regularize fragment representations and stabilize training.

To align representations across these three molecular granularities, we employ a set of con-
trastive objectives: (i) pocket–molecule alignment (Lp-m) preserves scaffold-level semantics, (ii)
pocket–fragment alignment (Lp-f) provides direct supervision for fragment–pocket compatibility,
and (iii) molecule–fragment alignment (Lm-f) enforces internal consistency between fragments and
their source molecules.

Each loss takes the following form:

La−b = − 1

N

N∑
i=1

log
exp(sim(fa(ai), fb(bi))/τ)∑N
j=1 exp(sim(fa(ai), fb(bj))/τ)

, (1)

where (a, b) ∈ {(p,m), (p, f), (m, f)} and sim(·, ·) denotes cosine similarity. The total loss is:

Lalign = Lp-m + λ1Lp-f + λ2Lm-f. (2)

For implementation, we adopt the UniMol architecture (Zhou et al., 2023), a 3D molecular repre-
sentation model with SE(3)-equivariant attention. We use UniMol’s pocket encoder for fp, and its
molecular encoder for both fm and ff , enabling unified geometric representations across all modal-
ities.

3.2.2 FUSION MECHANISM FOR FRAGMENT IMPORTANCE MODELING

A fundamental challenge in fragment retrieval is that fragment-level signals are inherently
noisy (Bon et al., 2022). Many fragments within a molecule contribute little to binding, while others
may form spurious or context-dependent interactions. Relying on all fragments equally can there-
fore dilute the discriminative cues needed for accurate retrieval, making it difficult for the model to
identify which substructures truly drive binding.

To address this, we introduce a fusion mechanism that performs joint selection and filtering of
fragment information. Given a molecule embedding fm(m) and its associated fragment embeddings
{ff (fi)}ki=1, a cross-attention module highlights fragments most relevant to binding while down-
weighting less informative ones. The attention output is concatenated with the molecule embedding
and passed through a multilayer perceptron (MLP) to yield a fused representation:

zfusion = MLP
(
fm(m) ∥Attn(fm(m), {ff (fi)}ki=1)

)
. (3)

This fused embedding is trained to align with the pocket representation via contrastive loss:

Lfusion = − 1

N

N∑
i=1

log
exp(sim(fp(pi), zfusion,i)/τ)∑N
j=1 exp(sim(fp(pi), zfusion,j)/τ)

. (4)

By emphasizing informative fragments and suppressing noise, the fusion module refines fragment
embeddings into more discriminative signals for retrieval, highlighting binding-relevant substruc-
tures and strengthening fragment-level representation learning.
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Figure 3: Overview of the FRAGCLIP framework. (a) Contrastive Alignment Across Granular-
ities: three encoders model pockets, fragments, and molecules, aligned via multi-view contrastive
losses to capture both fine-grained fragment–pocket interactions and scaffold-level semantics. (b)
Information Fusion Learning: molecule and fragment embeddings are fused via cross-attention,
enhancing fragment representation with contextual molecular information and enabling contrastive
alignment with pockets. (c) Fragment and Molecule Screening: during inference, pockets are used
to retrieve both top-scoring molecules and fragments via cosine similarity in the shared embedding
space.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Tasks and Datasets

Our primary task is fragment retrieval on FragBench, a benchmark of curated undruggable targets
with shallow or cryptic pockets. In addition to FragBench, we also construct fragment-level re-
trieval benchmarks for several classical virtual-screening datasets, including DUD-E, LIT-PCBA,
and DEKOIS 2.0. For each dataset, we repeat docking using Glide and label fragment–pocket
interactions with PLIP, designating fragments that form at least two non-covalent interactions con-
sistently as positives. Detailed dataset statistics and construction procedures are provided in Ap-
pendix X.

For model training we use PDBbind. To prevent information leakage from test targets, we remove
from the training pool all protein–ligand complexes whose sequence identity to any target in Frag-
Bench, DUD-E, LIT-PCBA, or DEKOIS 2.0 exceeds 90%. After filtering, the training and validation
sets contain 14,223 and 744 protein–ligand pairs respectively. We further analyze the impact of dif-
ferent levels of sequence-homology filtering on fragment retrieval performance, and the complete
results are provided in the Appendix.

Evaluation Metrics We report standard virtual screening metrics, focusing on early recognition
performance. Specifically, we evaluate models using AUC, Enrichment Factor at top-k (EF@k),
and BEDROC. All results are averaged across targets.

Baselines. We compare FragCLIP with both classical docking/scoring methods and recent
learning-based rescoring models. Glide-SP (Yang et al., 2021) and AutoDock Vina (Eberhardt et al.,
2021) serve as standard docking baselines. We also include the widely-used machine learning scor-
ing function RF-Score (Ballester & Mitchell, 2010), and two high-performing structure-based scor-
ing methods that explicitly model 3D geometry and residue–atom interactions, RTMScore (Shen
et al., 2022) and EquiScore (Cao et al., 2023). Among learning-based baselines, DrugCLIP (Gao
et al., 2023) and LigUnity (Feng et al., 2025) align pocket–ligand pairs via contrastive representation
learning for retrieval and screening.
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4.2 RESULTS ON FRAGBENCH (UNDRUGGABLE TARGETS)

We evaluate our method on the FragBench dataset, comparing against classical docking tools (Vina,
Glide), machine learning models, and a recent contrastive learning baseline. As shown in Table 1,
classical docking-based approaches completely fail in the fragment-level virtual screening setting,
with Vina producing no meaningful ranking results and Glide achieving only marginal enrichment
(EF@0.5% of 1.86 and BEDROC of 0.03). DrugCLIP improves performance slightly (EF@0.5%
= 4.11). Our proposed method, FragCLIP, achieves the highest performance across all metrics,
with an BEDROC of 0.12, and EF@0.5% of 6.85. These results underscore the importance of our
framework: by explicitly modeling the fragment–pocket interaction in a contrastive and fragment-
centric manner, FragCLIP substantially outperforms both docking and prior learning-based methods.
This demonstrates the effectiveness of our design for fragment-level recognition in structure-based
drug discovery.

Table 1: Performance comparison on FragBench. Results are averaged over all targets.
Method AUROC BEDROC EF@0.5% EF@1% EF@2% EF@5%

Vina 0.476 0.025 1.665 1.419 1.208 1.113
Glide 0.5970.009 0.0340.007 1.8620.543 1.8250.768 1.8210.422 1.7120.285

RFscore 0.457 0.025 1.665 1.419 1.469 1.113
RTM Score† 0.571 0.094 1.896 1.997 1.940 1.824
EquiScore† 0.581 0.105 4.039 3.331 2.638 2.049
LigUnity† 0.505 0.089 4.262 3.562 2.933 2.087

DrugCLIP (90%) 0.5970.027 0.0800.003 4.1100.056 3.2030.121 2.6600.072 2.0670.051

FragCLIP (90%) 0.5930.018 0.1150.003 6.8530.582 5.7970.258 4.5100.163 3.0000.161

*Subscripts denote standard deviations across three independent runs.
†Evaluated using the original checkpoint without homology filtering on the test set.

4.3 PERFORMANCE ON OTHER FRAGMENT BENCHMARKS

To rigorously evaluate FragCLIP across varying levels of difficulty, we conducted experiments on
three fragment-version benchmarks: DUD-E, Dekois, and LIT-PCBA. For the construction of these
datasets and detailed statistics, please refer to Appendix E. While DUD-E and Dekois represent
standard benchmarks with well-characterized targets, LIT-PCBA poses a significantly challenging
dataset.

Remarkably, FragCLIP consistently achieves the best Enrichment Factor (EF) scores across all three
datasets, demonstrating its superior capability in early recognition regardless of the benchmark dif-
ficulty. On the standard DUD-E and Dekois datasets, FragCLIP dominates with EF@0.5% scores
of 20.317 and 17.963, respectively, substantially outperforming baselines like LigUnity and Drug-
CLIP. Even on the challenging LIT-PCBA dataset, FragCLIP still secures the highest enrichment
performance across all thresholds (e.g., 3.437 EF@0.5% vs. 2.939 for RTMScore). This consis-
tent superiority in metrics highlights FragCLIP’s robustness and practical value in prioritizing active
fragments for virtual screening tasks.

4.4 FRAGMENT-AIDED MOLECULE RETRIEVAL VIA FUSION

We explored whether informative fragment-level signals could enhance molecule-level retrieval,
results shown in Tabel 3. Our findings suggest that incorporating fragment supervision during train-
ing improves the quality of molecular representations. Specifically, by introducing fragment-level
contrastive learning but performing retrieval solely using the molecule encoder, we observed an
improvement at EF1% from 31.87 to 33.56.

Building on this, we further investigated how fragment information could be integrated at inference
time. As shown in Figure X, we combined fragment-level scores with molecule-level scores through
both fusion and ensembling strategies to obtain a more fine-grained assessment. In particular, we
implemented a multi-granularity ensemble where the final score is computed as:

Score = MolScore + α · FragScore + β · FusionScore

8
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Table 2: Performance comparison on DUD-E, Dekois, and LIT-PCBA benchmarks (fragment ver-
sion). Results are averaged over all targets.

Method AUROC BEDROC EF@0.5% EF@1% EF@2% EF@5%

DUD-E (fragment version)
Vina 0.521 0.062 4.805 3.897 3.155 2.323
Glide 0.6210.009 0.0870.010 7.5351.458 5.7951.014 4.1530.577 2.8070.322

RTMScore† 0.454 0.007 1.818 1.607 1.448 1.353
EquiScore† 0.658 0.137 4.442 3.569 3.217 2.726
LigUnity† 0.6160.129 0.1940.136 19.493 14.049 9.078 4.891

DrugCLIP (90%) 0.6420.019 0.1360.003 12.0130.326 9.3330.220 6.8430.137 4.3200.140

FragCLIP (90%) 0.7610.015 0.2270.007 20.3171.020 16.0120.702 11.3070.293 6.8830.136

Dekois (fragment version)
Vina 0.546 0.053 3.619 3.022 2.770 2.330
Glide 0.6300.010 0.0650.012 4.6941.964 4.0981.151 3.2970.736 2.5970.369

RFscore 0.530 0.038 2.790 2.276 1.952 1.544
RTMScore† 0.506 0.069 2.153 1.819 1.569 1.274
EquiScore† 0.658 0.138 3.904 3.718 3.376 2.706

DrugCLIP (90%) 0.6400.019 0.1130.002 8.6070.170 7.5230.145 5.9370.080 4.0270.175

FragCLIP (90%) 0.7500.013 0.2130.004 17.9630.764 14.7100.447 10.9070.157 6.7730.163

LIT-PCBA (fragment version)
Vina 0.492 0.025 1.483 1.250 1.261 1.324
Glide 0.546 0.018 0.528 0.939 1.038 0.927
RFscore 0.456 0.020 1.366 1.269 0.876 0.865
RTMScore† 0.567 0.095 2.939 2.818 2.111 1.698
EquiScore† 0.597 0.086 2.446 1.981 1.643 1.470

DrugCLIP (90%) 0.5600.023 0.0320.003 1.8230.344 1.5500.164 1.8170.219 1.6730.225

FragCLIP (90%) 0.5750.029 0.0500.004 3.4370.125 2.8570.304 2.5170.324 2.2800.226

*Subscripts denote standard deviations across three independent runs.
†Evaluated using the original checkpoint/settings without homology filtering on the test set where applica-
ble.

with hyperparameters α = β = 0.8. This approach yielded a substantial gain in performance,
achieving an EF1% of 37.23—demonstrating the utility of learned fragment representations in com-
plementing molecular signals. Figure 4 highlights a representative case where a molecule initially
ranked poorly by the molecule encoder was significantly re-ranked due to strong fragment-level
evidence.

Figure 4: Case of fragment-level interactions boost molecule ranking. Two informative fragments
with strong pocket interactions (FragScores: 0.2680, 0.4931) were identified from an active AKT1
ligand initially poorly scored by the molecule encoder (MolScore: –0.0659, Rank
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Table 3: Molecule-level virtual screening performance on the DUD-E dataset.

Method AUC ↑ BEDROC ↑ EF ↑
0.5% 1% 5%

Glide-SP 76.70 40.70 19.39 16.18 7.23
Vina 71.60 – 9.13 7.32 4.44

NN-score 68.30 12.20 4.16 4.02 3.12
RFscore 65.21 12.41 4.90 4.52 2.98
Pafnucy 63.11 16.50 4.24 3.86 3.76
OnionNet 59.71 8.62 2.84 2.84 2.20
Planet 71.60 – 10.23 8.83 5.40
DrugCLIP 80.93 50.52 38.07 31.89 10.66

FragCLIP
(w/o Fusion) 84.76 53.61 40.64 33.56 11.39

FragCLIP 85.44 59.32 42.93 37.23 12.45

4.5 FRAGMENT LINKING ON BCL-2

Fragments from virtual screening typically require growing or linking to form drug-like molecules.
To demonstrate practical utility, we have performed fragment linking on the undruggable target
BCL-2. FragCLIP retrieved 30 candidate fragments, which were docked with Glide to identify
anchor conformations. Using DiffLinker, we generated complete molecules by linking fragment
pairs. As shown in Fig. 5, two high-scoring fragments occupied distinct subpockets and served as
effective anchors, yielding a linked molecule with a Glide score of -11.96. This case highlights the
potential of combining FragCLIP with generative models for designing novel compounds against
challenging targets.

Figure 5: Fragment linking for BCL-2 using FragCLIP and DiffLinker. Left: The undruggable
binding pocket of BCL-2, characterized by a smooth and shallow surface. Middle: Two high-scoring
fragments retrieved by FragCLIP, each occupying distinct subpockets and serving as anchors. Right:
A linked molecule generated by DiffLinker, maintaining favorable interactions across the pocket and
achieving a strong predicted binding affinity.

5 CONCLUSION

In this paper, we present FRAGBENCH, the first large-scale benchmark for evaluating fragment-level
retrieval on challenging, often undruggable, protein targets. Our findings reveal a core limitation:
docking-based methods, though effective for full molecules, perform only marginally better than
random in fragment ranking—especially for shallow or cryptic pockets found in transcription fac-
tors and PPI hubs. To address this, we introduce FRAGCLIP, a cross-modal framework that learns
aligned representations of fragments, molecules, and pockets via multi-view contrastive pretraining.
By integrating global context and local interactions, FRAGCLIP achieves strong, generalizable per-
formance on FRAGBENCH, outperforming classical and neural baselines across all early enrichment
metrics. Together, FRAGBENCH and FRAGCLIP lay the groundwork for learning-based, fragment-
centric modeling in FBDD, advancing drug discovery for targets beyond the reach of conventional
methods.
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A LLM USAGE STATEMENT:

GPT-4o was used exclusively for language polishing, including grammar correction and clarity en-
hancement. All scientific content and analyses were conducted independently of LLMs.

B EVALUATION OF FRAGMENT–POCKET LABEL QUALITY AND THRESHOLD
SELECTION

To quantify the reliability of docking-based fragment interaction labelling and to determine appro-
priate interaction and consensus thresholds for defining positive fragments, we conducted a evalua-
tion on 500 PDBbind complexes. For each complex, fragment labels derived from the experimental
co-crystal pose using PLIP were treated as the reference, while labels generated from three indepen-
dent random seeds Glide docking replicates served as predictions.

Experimental design. Two factors were varied to study their impact on label accuracy:

• Interaction threshold: a fragment is considered positive in a given docking run if it forms
at least k ∈ {1, 2, 3} distinct non-covalent interactions with the pocket.

• Replicate consensus: a fragment is considered positive overall if it is predicted positive in
at least m ∈ {1, 2, 3} of the docking runs.

This yields nine labeling configurations (k,m), covering both lenient (low k or m) and conser-
vative (high k and m) regimes. Precision, recall, and F1 score were computed by comparing
docking-derived labels against the reference crystal-derived labels on a fragment-by-fragment basis.
Heatmaps and trend plots summarizing the results are shown in Fig. 6.

Quantitative results. Table 4 summarizes the performance across all configurations. Overall, the
results exhibit a clear and monotonic precision–recall trade-off. Increasing the replicate-consensus
requirement consistently improves precision, while higher interaction thresholds further tighten the
definition of a positive fragment. As expected, stricter criteria reduce recall, but they substan-
tially suppress false positives. In the context of constructing positive labels for downstream learn-
ing—where precision is the primary concern—configurations enforcing both multiple interactions
and cross-replicate consistency provide the most reliable supervision.

Interpretation. These analyses highlight that:

1. Docking-derived fragment labels align closely with crystal-structure interaction patterns
across all threshold settings, demonstrating that docking provides a robust and trustworthy
source of weak supervision in this context.

2. Multi-replicate agreement effectively filters out seed-dependent fluctuations and stabilizes
interaction assignments.

3. Requiring multiple interactions preferentially selects structurally meaningful and well-
supported contact motifs, improving label reliability even at the cost of lower recall.

Based on these observations, we adopt the setting k=2 and m=3 for constructing the benchmark.
Under this configuration, the labeled positive fragments achieve a precision of 89.4%, which, in
the absence of large-scale experimental fragment–binding datasets, provides sufficiently reliable
supervision for building a high-quality benchmark.
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Figure 6: Precision and recall of fragment labels under different interaction and voting thresholds.

Table 4: Label accuracy across interaction and replicate-consensus thresholds, comparing docking-
derived labels to crystal-based labels.

Setting Precision Recall F1

k=1,m=3 0.934 0.692 0.795
k=1,m=2 0.895 0.847 0.870
k=1,m=1 0.865 0.940 0.901
k=2,m=3 0.894 0.573 0.698
k=2,m=2 0.847 0.726 0.782
k=2,m=1 0.784 0.861 0.821
k=3,m=3 0.883 0.499 0.638
k=3,m=2 0.811 0.644 0.718
k=3,m=1 0.724 0.800 0.760

C ABLATION STUDIES

To assess the contribution of each architectural component in FragCLIP, we perform ablations shown
in Table 5 . We evaluate two major variants:

No Fusion Module. In this setting, we retain all three encoders—pocket, fragment, and
molecule—but remove the fusion module responsible for cross-modal interaction between the frag-
ment and molecule representations. This modification isolates the effect of the fusion mechanism.
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No Molecule Modality. Here we disable the molecule encoder entirely and perform contrastive
learning only between pocket and fragment representations. Architecturally, this reduces FragCLIP
to a two-encoder framework analogous to DrugCLIP, but trained specifically on fragment-level
data. Performance decreases notably compared to the full model, indicating that molecular con-
text provides valuable structural and chemical cues that improve fragment discrimination beyond
pocket–fragment geometry alone.

Overall, the ablation results clearly show that both the fusion module and the molecule modality
play essential and complementary roles. The fusion module enables richer cross-modal reasoning,
while the molecule encoder provides contextual constraints that guide fragment-level preferences.
Removing either component consistently degrades performance, confirming that the full tri-modal
design of FragCLIP is proper for fragment retrieval.

Table 5: Ablation study on model architecture.
Setting AUROC BEDROC EF@0.5% EF@1% EF@2%

FragCLIP 0.5930.018 0.1150.003 6.8530.582 5.7970.258 4.5100.163

No Fusion Module 0.5850.006 0.1050.007 6.4280.241 5.0720.394 4.1740.271

No Molecule Modality 0.5840.002 0.1060.006 6.1700.429 5.2960.217 4.0490.274

*Subscripts denote standard deviations across three independent runs.

D IMPACT OF SEQUENCE-HOMOLOGY FILTERING ON FRAGMENT
RETRIEVAL

To evaluate how sequence similarity between training and test proteins affects fragment retrieval
performance, we construct three increasingly stringent de-homogenized training sets by filtering
PDBbind according to protein sequence identity with respect to all test targets in test dateset. We
consider three levels of sequence-homology filtering when constructing the training set:

PDB-ID–deduplicated setting (Default). Only protein–ligand complexes with the exact same PDB
ID as any test target are removed. This corresponds to the 100% identity setting and serves as our
full training set.

90% / 60% / 30% sequence-identity–filtered setting. All training proteins whose sequence iden-
tity to any test protein exceeds 90% / 60% / 30% are removed.

Table 6 reports the resulting training and validation sizes under each setting.

Table 6: Training/validation set sizes under different sequence-identity thresholds.
Identity Setting Train Pairs Val Pairs Change w.r.t. Full Set

100% (Full) 17,315 919 baseline
90% Filtered 14,223 744 −3,267 (17.92%)
60% Filtered 12,487 657 −5,090 (27.91%)
30% Filtered 10,376 556 −7,302 (40.05%)

Overall, stricter sequence-homology filtering leads to a clear decline in fragment retrieval perfor-
mance (Table 7). The largest drop occurs when moving from the full PDB-ID–deduplicated setting
(100%) to the 90% identity threshold, indicating that removing highly homologous proteins has the
strongest impact. Further tightening the threshold from 90% to 60% produces a smaller relative de-
crease. Notably, when the threshold is further restricted to 30%, the magnitude of the performance
drop becomes even more marginal, confirming that the sensitivity to homology reduction diminishes
at stricter levels.

Taken together, these results show that FragCLIP is sensitive to homology filtering—as expected.
The 90% sequence-identity setting provides a practical balance between avoiding information
leakage and maintaining sufficient training diversity, and is therefore adopted as our primary de-
homogenized evaluation condition in the main paper.
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Table 7: Fragment retrieval performance of FragCLIP under different sequence-homology filtering
thresholds on FragBench.

Setting AUROC BEDROC EF@0.5% EF@1% EF@2% EF@5%

FragCLIP (100%) 0.6370.007 0.1470.006 10.7410.324 8.1550.292 5.7370.137 3.7670.077

FragCLIP (90%) 0.5930.018 0.1150.003 6.8530.582 5.7970.258 4.5100.163 3.0000.161

FragCLIP (60%) 0.5930.022 0.0910.010 4.8430.372 4.2830.750 3.5690.449 2.6600.301

FragCLIP (30%) 0.5540.008 0.0790.006 4.3370.186 3.9770.221 3.2130.255 2.2700.053

*Subscripts denote standard deviations across three independent runs.

E CONSTRUCTION OF FRAGMENT-LEVEL BENCHMARKS FOR DUD-E,
DEKOIS 2.0, AND LIT-PCBA

In addition to FragBench, we construct fragment-level retrieval benchmarks for three widely used
structure-based virtual screening datasets: DUD-E, DEKOIS 2.0, and LIT-PCBA. Our goal is to
provide fragment-based counterparts to these classical molecule-level benchmarks, enabling consis-
tent evaluation of fragment retrieval methods across diverse protein families and pocket types.

Fragment generation and interaction labeling. For each dataset, we begin from the original
active and decoy molecules associated with each target. Each molecule is decomposed into syn-
thetically accessible fragments using the BRICS algorithm. For every target, the protein pocket is
extracted from its reference binding structure, and each fragment is docked into the pocket using
Glide. Fragment–pocket interactions are then quantified using PLIP. A fragment is labeled as pos-
itive if it forms at least two distinct non-covalent interactions with the pocket in a docking pose
and this interaction pattern is consistently reproduced across three independent docking replicates.
In all three datasets, we applied the same fingerprint-based fragment clustering procedure used in
FragBench to reduce redundancy and ensure diversity among the fragment candidates. To maintain
consistency with the imbalance characteristics of the original molecule-level datasets (e.g., DUD-
E’s heavy active–decoy skew), we sample negatives at a fixed ratio of 1:90 relative to positives for
each target.

Dataset statistics. Table 8 reports the number of targets, positive fragments, negative fragments,
and dataset-level averages for all three fragment benchmarks.

Table 8: Fragment-level dataset statistics for DUD-E, DEKOIS 2.0, and LIT-PCBA.
Dataset Targets Positives Negatives Avg Pos/Target Avg Neg/Target

DUD-E 96 8,740 786,600 91.0 8,193.8
DEKOIS 2.0 81 6,398 575,820 79.0 7,108.9
LIT-PCBA 15 1,256 113,040 83.7 7,536.0

Total 246 20,950 1,885,500 85.2 7,664.6

These fragment-level benchmarks complement FragBench and enable comprehensive evaluation of
fragment retrieval performance across both druggable and challenging targets.

F IMPLEMENTATION DETAILS

All models were trained on 4 NVIDIA A100 GPUs (80GB) using a batch size of 20. We employed
a linear learning rate warm-up schedule for the first 5% of training steps, followed by cosine de-
cay. The protein and molecular encoders are implemented as SE(3)-equivariant 3D convolutional
neural networks following the Uni-Mol architecture (Zhou et al., 2023). All contrastive losses use a
temperature parameter τ = 1, and we optimize using the AdamW optimizer with weight decay of
1× 10−3. Models are trained for 100 epochs.
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G CHEMBL DATA FILTERING PROTOCOL

To ensure the reliability and consistency of bioactivity data used in our benchmark, we applied a
set of rigorous filtering criteria to extract high-confidence ligand–target interactions from ChEMBL.
The selection process involved both assay-level and activity-level filters, focusing on well-annotated
functional assays with validated outcomes. Specifically, the following conditions were enforced:

• Assay Confidence and Type: Only entries with assays.confidence score = 9,
indicating direct target assignment, and assays.assay type being either ‘B’ (bind-
ing) or ‘F’ (functional) were retained.

• Activity Validity: We retained entries where activities.data validity comment
was either NULL or ‘Manually validated’, ensuring manual curation.

• Quantitative Bioactivity Measurements: We included entries with either a valid combi-
nation of standard relation, standard value, and standard units—where
standard units ∈ {pM, nM, µM} and standard value ∈ [0.001, 1,000,000]—or
a textual activity comment indicative of biological activity. The accepted
comments include: ‘active’, ‘weak activity’, ‘slightly active’,
‘slight inhibition’, ‘potent inhibitor’, ‘partially active’,
‘partial antagonist’, ‘partial agonist’, ‘non-competitive
antagonist’, ‘no significant effect’, ‘no significant
activity’, ‘no effect’, ‘no activity’, ‘no action’, ‘inverse
agonist’, ‘irreversible antagonist’, ‘inhibition not detected’,
‘inactive’, ‘dose-dependent effect’, ‘antagonist’, ‘agonist’,
‘activator’, as well as comments beginning with ‘not active’ or ‘no
inhibit’.

• Standard Types: Only the following potency-related measurement types were included:

Standard Type ∈ {IC50,XC50,EC50,AC50,Ki,Kd,ED50}

• Relation Operators: To ensure comparability, we kept entries where:

Standard Relation ∈ {=, <, >, ≤, ≥, ≪, ≫}

H FRAGMENT CLUSTERING PROTOCOL

To ensure chemical diversity and reduce redundancy in the fragment pool, we performed cluster-
ing based on molecular similarity. Fragments were first filtered to ensure chemical validity—only
molecules with valid SMILES, successful sanitization, and an atom count between 6 and 24 were
retained.

For each valid fragment, we computed feature-based circular fingerprints (FCFP6) using RDKit
with a radius of 3 and 4096 bits. Pairwise Tanimoto similarities were used to construct a distance
matrix, followed by hierarchical agglomerative clustering with Ward linkage. A distance thresh-
old of 0.9 was applied to define cluster membership.

From each resulting cluster, representative fragments were sampled to maintain diversity across
the dataset. This clustering process was applied in parallel across all fragment sets using Python’s
multiprocessing utilities for scalability.

I FRAGBENCH TARGETS DETAILS

Table 9 presents the detailed information for the targets included in the FragBench dataset. For each
entry, we provide the UniProt ID, protein name, functional classification, and the reference PDB
structure. Structural properties include the SiteScore and AA Num, which denotes the number of
amino acid residues located within the 6Å binding pocket. Additionally, the table lists associated
diseases to highlight the clinical relevance of each target.
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Table 9: Targets and associated diseases formatted in dual-row style

Uniprot Protein Name Class SiteScore AA Num PDB
P00749 Urokinase-type

plasminogen activa-
tor

Enzyme 0.799 23 1gi8

Diseases: breast cancer, colorectal cancer, lung cancer, pancreatic cancer, rheumatoid arthritis, pulmonary
fibrosis, neurodegenerative diseases

P62993 Growth factor
receptor-bound
protein 2

Signaling / regulatory 0.557 15 1x0n

Diseases: cervical cancer, colorectal cancer, chronic myeloid leukemia, hepatocellular carcinoma, prostate
cancer (anti-androgen resistance)

P00441 Superoxide dismu-
tase [Cu-Zn]

Enzyme 0.372 10 2wz6

Diseases: amyotrophic lateral sclerosis (ALS), Parkinson’s disease, cardiovascular diseases, COVID-19,
ischemic stroke

P17931 Galectin-3 Other 0.463 21 4bm8
Diseases: NASH-related hepatic fibrosis, idiopathic pulmonary fibrosis, pancreatic ductal adenocarcinoma,
IgA nephropathy, insulin resistance

P14735 Insulin-degrading
enzyme

Enzyme 0.783 19 4gs8

Diseases: Type 2 diabetes mellitus, Alzheimers disease, Cancer (various types), Neurodegenerative disor-
ders involving amyloid-β aggregation, Nonalcoholic fatty liver disease

P19491 Glutamate receptor
2

Receptor 0.428 18 4u23

Diseases: Nicotine addiction, Alcohol use disorder, Schizophrenia and related psychoses, Alzheimers dis-
ease, Amyotrophic lateral sclerosis

Q13822 Autotaxin Enzyme 0.790 14 4zg9
Diseases: idiopathic pulmonary fibrosis (IPF), systemic sclerosis (SSc), cancer (e.g., breast cancer, lung
adenocarcinoma), cholestatic pruritus, cardiovascular and metabolic diseases

P47929 Galectin-7 Other 0.557 15 5h9q
Diseases: cancer (multiple types), SJS/TEN, preeclampsia, psoriasis, asthma

Q9UIF8 Bromodomain ad-
jacent to zinc finger
domain protein 2B

Transcription / epigenetic 0.787 16 5or9

Diseases: orthodontic-related gingival overgrowth

P22734 Catechol O-
methyltransferase

Enzyme 0.659 11 5pa0

Diseases: breast cancer, systemic lupus erythematosus (SLE), autoimmune diseases involving Tfh dysreg-
ulation, allergic rhinitis, narcolepsy type 1

Q14145 Kelch-like ECH-
associated protein
1

Signaling / regulatory 0.762 12 5wiy

Diseases: non-small cell lung cancer, KRAS-driven lung adenocarcinoma, neurodegenerative diseases, non-
alcoholic fatty liver disease, sepsis-associated ferroptosis

P41182 B-cell lymphoma 6
protein

Transcription / epigenetic 0.547 12 6c3l

Diseases: breast cancer, autoimmune diseases, systemic lupus erythematosus, narcolepsy type 1, allergic
rhinitis

Q9NUW8 Tyrosyl-DNA phos-
phodiesterase 1

Enzyme 0.792 20 6w4r

Continued on next page...
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Uniprot Protein Name Class SiteScore AA Num PDB
Diseases: non-small cell lung cancer, colorectal cancer, pancreatic ductal adenocarcinoma, lung adenocar-
cinoma, low-grade epilepsy-associated developmental tumors

P01116 GTPase KRas Signaling / regulatory 0.758 20 7acf
Diseases: Non-small cell lung cancer, colorectal cancer, pancreatic ductal adenocarcinoma, lung adenocar-
cinoma, adenomatoid odontogenic tumor

O15151 Protein Mdm4 Signaling / regulatory 0.726 20 7c3y
Diseases: hepatocellular carcinoma, renal cell carcinoma, colon cancer, breast cancer (including metas-
tases), pulmonary fibrosis

Q92793 CREB-binding pro-
tein

Transcription / epigenetic 0.351 16 8fup

Diseases: colorectal cancer, pancreatic ductal adenocarcinoma, chronic myeloid leukemia, neurodegenera-
tive disorders, inflammatory diseases

P16581 E-selectin Receptor 0.481 20 8r5m
Diseases: acute myeloid leukemia, prostate cancer, pancreatic cancer, atherosclerosis, venous thrombosis

P02879 Ricin Other 0.750 13 8t9v
Diseases: ricin intoxication/poisoning

P02769 Albumin Transport / carrier 0.455 13 8wdd
Diseases: pancreatic carcinoma, gastric cancer with peritoneal metastasis, liver failure with systemic in-
flammation, inflammatory bowel disease, acute ischemic stroke

P02766 Transthyretin Transport / carrier 0.497 14 1eta
Diseases: Transthyretin amyloid cardiomyopathy , Hereditary transthyretin amyloidosis with polyneuropa-
thy, Hereditary/mixed-phenotype ATTR amyloidosis, Wild-type (senile systemic) transthyretin amyloidosis

P60568 Interleukin-2 Other 0.684 17 1py2
Diseases: multiple sclerosis, transplant rejection, high-risk neuroblastoma, metastatic melanoma, autoim-
mune hepatitis, autoimmune diseases (general), lymphoma, advanced/metastatic renal cell carcinoma

P08254 Stromelysin-1 Enzyme 0.752 16 1usn
Diseases: cancer (general, including mammary tumor models), metastatic melanoma, lung cancer, gastric
cancer and gastric carcinogenesis associated with Helicobacter pylori infection

Q92731 Estrogen receptor
beta

Receptor 0.789 14 2fsz

Diseases: breast cancer, triple-negative breast cancer, prostate cancer, lung cancer, glioblastoma, colorectal
cancer

P56524 Histone deacetylase
4

Enzyme 0.799 17 2vqv

Diseases: pulmonary arterial hypertension, myocardial infarction, cardiac fibrosis and cardiovascular dis-
ease, ischemic stroke, diabetic nephropathy

P10275 Androgen receptor Receptor 0.657 16 2ylo
Diseases: prostate cancer, metastatic castration-resistant prostate cancer, triple-negative breast cancer, an-
drogenetic alopecia, hirsutism

P42574 Caspase-3 Enzyme 0.629 13 3dek
Diseases: Spinal cord injury, Mechanical-ventilation–induced diaphragm atrophy, Cancer (various types),
Ischemia/reperfusion injury, Age-related macular degeneration

Q00987 E3 ubiquitin-
protein ligase
Mdm2

Enzyme 0.789 25 3lbk

Diseases: osteosarcoma, chronic myeloid leukemia, glioblastoma, melanoma, breast cancer

P08235 Mineralocorticoid
receptor

Receptor 0.690 15 3vhv

Diseases: hypertension (including resistant hypertension), heart failure, diabetic kidney disease, chronic
kidney disease, primary aldosteronism

Continued on next page...
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Uniprot Protein Name Class SiteScore AA Num PDB

P00747 Plasminogen Coagulation factor 0.628 13 4cik
Diseases: fibrotic renal disease, thrombotic/fibrinolytic disorders (VTE, pulmonary embolism, myocardial
infarction, ischemic stroke), cancers, Alzheimers disease, submacular hemorrhage

P14740 Dipeptidyl pepti-
dase 4

Enzyme 0.786 26 4ffw

Diseases: type 2 diabetes mellitus, obesity, autoimmune diabetes, bullous pemphigoid, colorectal cancer

P06802 Ectonucleotide py-
rophosphatase/PDE
1

Enzyme 0.794 25 4gtz

Diseases: calcium pyrophosphate deposition disease (CPPD), chondrocalcinosis, breast cancer stem cell
generation

P45452 Collagenase 3 Enzyme 0.662 10 4l19
Diseases: osteoarthritis, cancer (including breast and esophageal cancer), intestinal fibrosis in Crohns dis-
ease, pulmonary fibrosis, keratoconus

Q8NB16 Mixed lineage ki-
nase domain-like
protein

Signaling / regulatory 0.726 14 4mwi

Diseases: dementia in Alzheimers disease, non alcoholic fatty liver disease, amy-
otrophic lateral sclerosis, liver fibrosis, diabetic kidney disease

P03951 Coagulation factor
XI

Coagulation factor 0.763 29 4na8

Diseases: deep vein thrombosis, ischemic stroke, myocardial infarction, venous thromboembolism, car-
dioembolic stroke

Q9BY41 Histone deacetylase
8

Enzyme 0.748 16 4rn2

Diseases: breast cancer, glioma, endometriosis, peritoneal fibrosis, Schistosoma mansoni infection (schis-
tosomiasis)

P08684 Cytochrome P450
3A4

Enzyme 0.555 11 5a1p

Diseases: Affecting drug metabolism and drug interactions

P08246 Neutrophil elastase Enzyme 0.774 21 5abw
Diseases: breast and lung cancer metastasis, cystic fibrosis airway inflammation, COVID-19–associated
lung injury, atherosclerosis, Alzheimers disease with inflammatory exacerbation

O14965 Aurora kinase A Enzyme 0.773 16 5dn3
Diseases: neuroendocrine prostate cancer, breast cancer, pancreatic cancer, non-small-cell lung cancer,
acute myeloid leukemia

P21836 Acetylcholinesterase Enzyme 0.760 14 5eih
Diseases: Alzheimer’s disease, Myasthenia gravis, Vascular dementia, Parkinson’s disease (symptom-
related), Autism spectrum disorders

P39748 Flap endonuclease
1

Enzyme 0.785 18 5fv7

Diseases: oral squamous cell carcinoma, breast cancer (including paclitaxel-resistant subtype), hepatocel-
lular carcinoma, glioma, hepatitis B virus infection (cccDNA formation)

P09958 Furin Enzyme 0.362 13 5mim
Diseases: SARS-CoV-2 infection, atherosclerosis, epilepsy, cancer/metastasis, MERS-CoV infection

P09382 Galectin-1 Other 0.643 23 5mwt
Diseases: cancer (multiple types), HIV infection, fibrotic diseases, neurodegenerative diseases, retinal dis-
eases (nAMD, DME, RVO)

P06276 Cholinesterase Enzyme 0.476 12 5nn0
Continued on next page...
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Uniprot Protein Name Class SiteScore AA Num PDB
Diseases: Alzheimer’s disease, Myasthenia gravis (neonatal AChR-MG), Neonatal MuSK-MG, Parkinson’s
disease gait impairment, Dementia (including dementia with Lewy bodies)

O75164 Lysine-specific
demethylase 4A

Enzyme 0.591 10 5var

Diseases: non-small cell lung cancer, prostate cancer, glioma, hepatocellular carcinoma, neuropathic pain

Q95PM0 Cysteine protease
(Fragment)

Enzyme 0.792 23 6ex8

Diseases: acute myeloid leukemia (AML), MLL-fusion leukemia, Wilms tumor, breast cancer (via
XPO6–profilin-1–ENL axis)

Q03111 Protein ENL Transcription / epigenetic 0.606 12 6hpx
Diseases: acute myeloid leukemia (AML), MLL-fusion leukemia, Wilms tumor, breast cancer, kidney de-
velopmental defects associated with ENL mutations

P07550 Beta-2 adrenergic
receptor

Receptor 0.798 17 6n48

Diseases: asthma, chronic obstructive pulmonary disease (COPD), melanoma, kidney diseases, smoking-
related emphysema

P10415 Apoptosis regulator
Bcl-2

Signaling / regulatory 0.721 27 6o0l

Diseases: dilated cardiomyopathy, triple-negative breast cancer, retinal neurodegeneration, osteosarcoma,
lumbar disc degeneration

P07339 Cathepsin D Enzyme 0.624 19 6qbg
Diseases: breast cancer, ovarian cancer, Alzheimer’s disease, triple-negative breast cancer, non-alcoholic
steatohepatitis (NASH)

Q8N884 Cyclic GMP-AMP
synthase

Enzyme 0.705 13 7ftm

Diseases: non-small cell lung cancer, esophageal cancer / esophageal squamous cell carcinoma, hepatocel-
lular carcinoma, glioma, ovarian cancer

Q9Y657 Spindlin-1 Transcription / epigenetic 0.784 15 7ocb
Diseases: non-small cell lung cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma,
glioma, ovarian cancer

A5H660 histone deacetylase Enzyme 0.756 16 7p2v
Diseases: peripheral T-cell lymphoma, cutaneous T-cell lymphoma, multiple myeloma, colorectal cancer
(MSS/pMMR), Hodgkin lymphoma

P0C6X7 Replicase polypro-
tein 1ab

Other 0.594 15 8c0g

Diseases: SARS-CoV-2 infection (COVID-19), Human coronavirus infection

P61964 WD repeat-
containing protein
5

Transcription / epigenetic 0.748 15 8g3e

Diseases: multidrug-resistant cancer, MLL fusion leukemia, measles virus infection, nonalcoholic steato-
hepatitis, pulmonary hypertension

21


	introduction
	Related Work
	Method
	FragBench: Fragment-Based Benchmark for Undruggable Targets
	Task Definition
	Rule-based Pre-curation
	Multi-Agent Framework for Target Curation
	Fragment Construction

	FragCLIP: A Contrastive Learning Framework for Fragment Retrieval
	Multi-Granular Contrastive Alignment
	Fusion Mechanism for Fragment Importance Modeling


	Experiments
	Experiment Settings
	Results on FragBench (Undruggable Targets)
	Performance on Other Fragment Benchmarks
	Fragment-Aided Molecule Retrieval via Fusion
	Fragment Linking on BCL-2

	Conclusion
	LLM usage statement:
	Evaluation of Fragment–Pocket Label Quality and Threshold Selection
	Ablation Studies
	Impact of Sequence-Homology Filtering on Fragment Retrieval
	Construction of Fragment-Level Benchmarks for DUD-E, DEKOIS 2.0, and LIT-PCBA
	Implementation Details
	ChEMBL Data Filtering Protocol
	Fragment Clustering Protocol
	FragBench Targets Details

