

000 DRUGGING THE UNDRUGGABLE: BENCHMARKING 001 002 AND MODELING FRAGMENT-BASED SCREENING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 A significant portion of disease-relevant proteins remain undruggable due to shal-
012 low, flexible, or otherwise ill-defined binding pockets that hinder conventional
013 molecule screening. Fragment-based drug discovery (FBDD) offers a promising
014 alternative, as small, low-complexity fragments can flexibly engage shallow, tran-
015 sient, or cryptic binding pockets that are often inaccessible to conventional drug-
016 like molecules. However, fragment screening remains difficult due to weak bind-
017 ing signals, limited experimental throughput, and a lack of computational tools tai-
018 lored for this setting. In this work, we introduce **FragBench**, the first benchmark
019 for fragment-level virtual screening on undruggable targets. We construct a high-
020 quality dataset through multi-agent LLM–human collaboration and interaction-
021 based fragment labeling. To address the core modeling challenge, we propose a
022 novel tri-modal contrastive learning framework **FragCLIP** that jointly encodes
023 fragments, full molecules, and protein pockets. Our method significantly outper-
024 forms baselines like docking software and other ML based methods. Moreover,
025 we demonstrate that retrieved fragments can be effectively expanded or linked
026 into larger compounds with improved predicted binding affinity, supporting their
027 utility as viable starting points for drug design.

028 1 INTRODUCTION

029
030 A substantial fraction of disease-associated proteins are considered undruggable targets, such as
031 transcription factors (Bushweller, 2019) and protein–protein interaction (PPI) hubs (Arkin & Wells,
032 2004). These proteins are closely linked to severe diseases, including cancer and neurodegenerative
033 disorders (Bushweller, 2019; Ross & Poirier, 2004). If therapeutic strategies could be developed
034 for them, the clinical and societal impact would be transformative. However, the lack of well-
035 defined, stable binding pockets makes conventional approaches—small-molecule drug design and
036 high-throughput screening—largely ineffective, thus severely limiting progress in drug discovery
037 for these targets.

038 Fragment-based drug discovery (FBDD) offers a unique path forward for undruggable targets. Com-
039 pared to drug-like molecules, fragments are smaller and more flexible in their binding modes, which
040 enables them to access shallow or transient binding pockets on protein surfaces (Erlanson et al.,
041 2016) and to reveal weak but crucial interactions often invisible to conventional screening. Al-
042 though individual fragments bind weakly, they can serve as anchors that can be expanded or linked
043 to yield high-affinity, selective molecules (Murray & Rees, 2009). This principle has been validated
044 in classical undruggable targets, highlighting the promise of FBDD in this space (Scott et al., 2016).

045 Over 85% of the human proteome remains “undruggable” due to the absence of well-defined pock-
046 ets suitable for conventional small-molecule targeting (Spradlin et al., 2021). Fragment-based
047 drug discovery (FBDD) offers a promising alternative, exemplified by pipelines like Enamine’s V-
048 SYNTHES, which dock fragment-like synthons and expand them through iterative synthesis (Sady-
049 bekov et al., 2022). Figure 1(a) illustrates BCL-xL, a classical undruggable target, as an example of
050 developing a full-molecule ligand through FBDD. However, the initial fragment identification step
051 remains a bottleneck. Experimental techniques such as NMR and crystallography reliably detect
052 weak binders but are slow, costly, and limited by factors like solubility or crystal quality (Erlanson
053 et al., 2016; Jhoti et al., 2007). Computational docking, originally designed for full-sized ligands, of-
ten underestimates small fragments, leading to high false positive and negative rates (Brenke et al.,

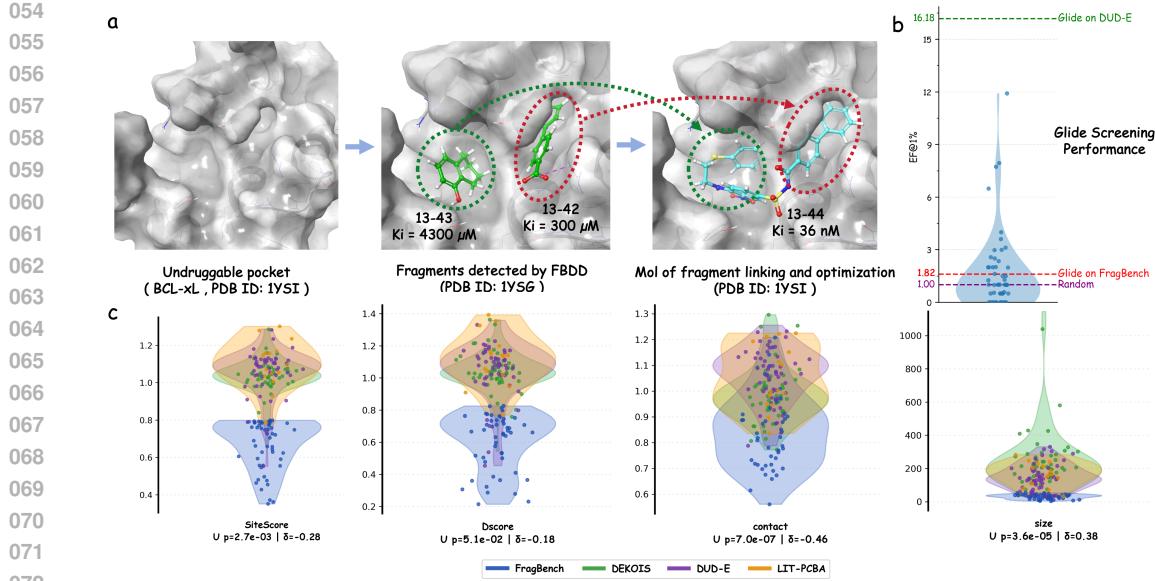


Figure 1: (a) Fragment-based drug discovery on BCL-XL, a shallow-pocket undruggable target where conventional screening fails. Weakly binding fragments identified by NMR were linked to yield compound 13-44 with markedly improved affinity. (b) Glide (Halgren et al., 2004) shows poor enrichment on such targets ($EF_1 = 1.8$), barely above random. (c) Pocket property distributions of FragBench (green) versus DUD-E (purple), with significance tested by Mann–Whitney U and effect sizes reported as Cliff’s δ .

2009; Chen & Pohlhaus, 2010). As shown in Figure 1(b), our experiments confirm these limitations—docking achieves only marginally better fragment ranking than random. These challenges highlight the need for fragment-aware computational models tailored to FBDD and undruggable targets.

Despite the rapid advances of machine learning in drug discovery, AI-driven approaches for fragment screening remain largely unexplored. Two major gaps currently hinder progress in this area. First, there is a lack of systematic benchmarks specifically designed for fragment screening on undruggable protein pockets. This absence limits standardized evaluation and meaningful comparison between methods. Second, existing modeling frameworks fail to capture the tripartite relationship among fragments, drug-like molecules, and protein pockets. Without explicitly modeling both fine-grained fragment–pocket interactions and global molecule–pocket binding principles, it is difficult to achieve generalizable fragment retrieval across diverse targets.

To bridge the current gaps in fragment-based drug discovery, we introduce **FragBench**, the first large-scale benchmark specifically curated for fragment screening on undruggable targets. It features high-confidence positive and negative fragment–pocket pairs derived from structurally challenging protein complexes. Building upon this, we propose **FragCLIP**, a tri-modal contrastive learning framework that jointly encodes fragments, molecules, and protein pockets, aligning their representations through a dedicated fusion module. This design captures both fine-grained fragment–pocket interactions and scaffold-level molecular context. Our experiments show that FRAGCLIP significantly outperforms classical docking tools and recent learning-based models—especially in the challenging cross-target setting—highlighting its potential to advance AI-driven fragment discovery for undruggable proteins.

2 RELATED WORK

Recent advances in deep learning have markedly improved structure-based virtual screening (VS). Models such as EquiBind and DiffDock (Stärk et al., 2022; Corso et al., 2022) enable fast and accurate prediction of protein–ligand binding conformations, while multimodal frameworks like

108 DrugCLIP (Gao et al., 2023) employ contrastive learning to align protein and ligand representations
 109 for efficient screening. Meanwhile, standardized benchmarks such as DUD-E, LIT-PCBA, and
 110 CrossDocked2020 (Mysinger et al., 2012; Tran-Nguyen et al., 2020; Francoeur et al., 2020) have
 111 facilitated robust evaluation of virtual screening models. However, these efforts overwhelmingly
 112 focus on *drug-like molecules* and well-structured binding pockets, overlooking the unique challenges
 113 of *fragment-based screening*—where small, low-affinity fragments interact with shallow or transient
 114 sites that are typical of *undruggable* targets.

115 Fragment-based drug discovery (FBDD) offers a compelling strategy, as fragments can access cryp-
 116 tic sites and seed ligand development. However, efficient screening remains challenging: experimen-
 117 tal methods like NMR and crystallography are accurate but low-throughput, while computational
 118 tools such as hotspot mapping and fragment docking often misrank fragments due to scoring biases.
 119 Despite progress in virtual screening (VS), no existing benchmark or framework systematically
 120 addresses fragment screening on undruggable targets or captures the interplay among fragments,
 121 molecules, and pockets.

123 3 METHOD

126 Fragment-based drug discovery (FBDD) holds promise for targeting undruggable proteins with shal-
 127 low or cryptic pockets, where traditional small-molecule screening fails. However, the core task of
 128 fragment-level virtual screening remains underdefined and challenging: fragment–pocket binding
 129 signals are weak, supervision is scarce, and existing scoring or retrieval methods—typically opti-
 130 mized for drug-like ligands—fail to generalize to low-mass fragments.

131 To address this, we formalize the task of fragment retrieval in undruggable pockets, and introduce a
 132 tri-modal modeling approach that leverages information from protein pockets, full drug molecules,
 133 and their constituent fragments. Our solution includes (i) **FragBench**, a new benchmark built with
 134 LLM-guided literature mining and interaction-based fragment labeling; and (ii) **FragCLIP**, a con-
 135 trastive framework that aligns fragment, molecule, and pocket embeddings via multi-level supervi-
 136 sion.

138 3.1 FRAGBENCH: FRAGMENT-BASED BENCHMARK FOR UNDRUGGABLE TARGETS

140 3.1.1 TASK DEFINITION

142 We study fragment-level virtual screening on challenging protein targets. Given a protein pocket
 143 $p \in \mathcal{P}$ —typically from an *undruggable* protein—and a fragment library $F = \{f_1, f_2, \dots, f_N\}$, the
 144 goal is to identify a subset $F^+ \subseteq F$ of fragments that can form favorable non-covalent interactions
 145 with p . Each fragment f_i is a chemically valid substructure derived from a drug-like molecule
 146 via synthetically accessible disconnections (e.g., BRICS rules). Compared to conventional ligands,
 147 fragments have lower molecular weight, surface area, and fewer functional groups, resulting in
 148 weak and localized binding. Yet this simplicity allows them to access shallow, flexible, or cryptic
 149 sites—precisely those found in undruggable pockets.

150 This setting presents unique challenges: binding signals are subtle, and standard screening methods
 151 optimized for full ligands often fail to prioritize fragments. Effective fragment retrieval therefore
 152 demands both dedicated benchmarks and tailored models.

153 We construct a benchmark comprising undruggable targets, where each pocket p is paired with
 154 a fragment set $F = F^+ \cup F^-$, containing known *binders* F^+ from experimental protein–ligand
 155 complexes and presumed *non-binders* F^- . Given a scoring model $s : F \rightarrow \mathbb{R}$ that ranks fragments
 156 for a fixed pocket p , we evaluate its ability to prioritize true binders using early recognition metrics:
 157 the **Enrichment Factor** (EF@ k) and **BEDROC** (Truchon & Bayly, 2007).

158 EF@ k measures fold enrichment over random selection:

$$160 \quad \text{EF}@k = \frac{\# \text{ positives in top-}k}{\frac{k}{|F|} \cdot |F^+|}.$$

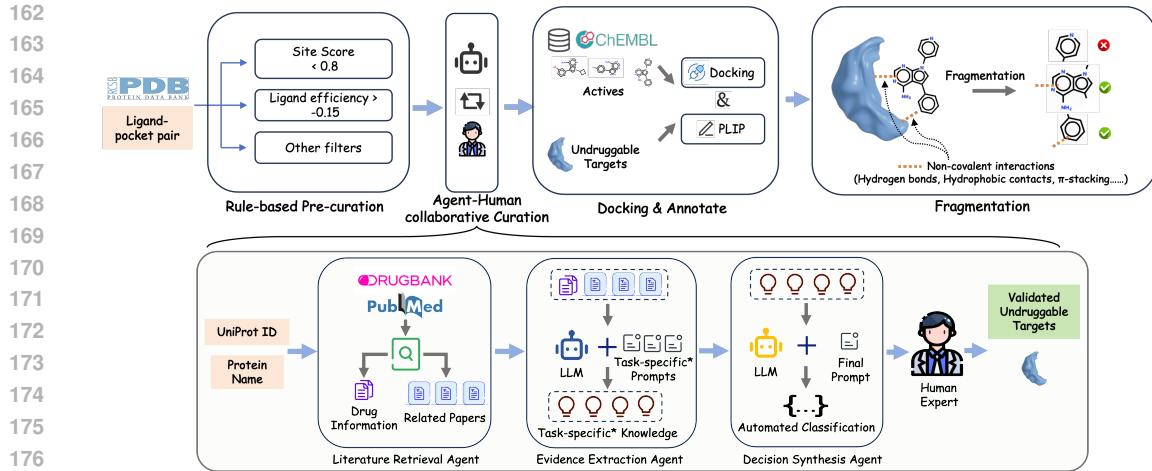


Figure 2: **Overview of the data curation pipeline for FragBench.** Starting from ligand–pocket pairs in the Protein Data Bank (PDB), we apply rule-based filters (e.g., site score, ligand efficiency) followed by a collaborative agent–human curation process to select high-quality protein–ligand complexes. For challenging targets from ChEMBL, docking and PLIP-based interaction analysis are used to annotate fragment-level contacts. Valid fragments are extracted based on interaction patterns (e.g., hydrogen bonding, hydrophobic contacts). To identify undruggable targets, we further use a literature-grounded reasoning pipeline that retrieves UniProt entries, mines PubMed/DrugBank evidence via LLM agents, and synthesizes task-specific knowledge. Human experts verify final decisions.

BEDROC emphasizes early retrieval in the full ranking:

$$\text{BEDROC}_\alpha = \frac{1 - e^{-\alpha}}{1 - e^{-\alpha R}} \sum_{i=1}^{|F^+|} e^{-\alpha \cdot \frac{r_i}{R}},$$

where $R = |F|$ is the total number of fragments and r_i is the rank of the i -th positive.

3.1.2 RULE-BASED PRE-CURATION

Although an estimated 85% of the human proteome is considered *undruggable*, structural data in the Protein Data Bank (PDB) (Berman et al., 2000) is heavily skewed toward druggable proteins with well-formed pockets. Moreover, no existing database systematically catalogs undruggable targets. To bridge this gap, we developed a rule-based pipeline to extract challenging pocket–ligand pairs from PDB by combining structural heuristics with ligand efficiency filters.

We began with all protein–ligand complexes in PDB and excluded trivial cases involving covalent ligands, nucleic acid proximity (within 6Å), or small pockets (fewer than 10 residues), yielding 87,425 pairs. We then assessed each pocket using SiteMap (Halgren, 2009), retaining those with a site score below 0.8—indicative of small or poorly enclosed binding sites.

In parallel, we computed ligand efficiency (LE) as docking score per heavy atom:

$$\text{LE}(l) = \frac{S(l)}{\text{HA}(l)},$$

where $S(l)$ is the Glide docking score and $\text{HA}(l)$ is the heavy atom count. Pairs with $\text{LE}(l) > -0.15$ were prioritized, reflecting weak binding normalized by size.

The final candidate set is:

$$\mathcal{C} = \{(p, l) \in \mathcal{D}_{\text{PDB}} \mid \text{SiteScore}(p) < 0.8 \wedge \text{LE}(l) > -0.15\},$$

resulting in 1,387 structurally challenging pocket–ligand pairs for expert review.

216 3.1.3 MULTI-AGENT FRAMEWORK FOR TARGET CURATION
217

218 To construct an evidence-grounded benchmark of undruggable targets, we introduce a modular
219 multi-agent framework composed of retrieval, extraction, synthesis, and expert validation compo-
220 nents. Formally, given a protein target $t \in \mathcal{T}$ (where \mathcal{T} is the set of UniProt-annotated human
221 proteins), the system retrieves a corpus \mathcal{D}_t of relevant documents by querying DrugBank (Knox
222 et al., 2024) and PubMed (White, 2020). This retrieval is modeled as a mapping $\mathcal{R} : t \mapsto \mathcal{D}_t$,
223 where $\mathcal{D}_t = \{d_1, d_2, \dots, d_n\}$ includes abstracts and metadata related to t 's druggability, clinical
224 development, and structural properties. Each document $d_i \in \mathcal{D}_t$ is then processed by an LLM-based
225 extraction agent \mathcal{E} with task-specific prompting, producing structured tuples (e_i, c_i) where e_i is an
226 evidence type (e.g., “shallow pocket”, “fragment hit”, “undruggable domain” and c_i is a citation.
227 The agent enforces output consistency via schema-constrained decoding and validation heuristics.
228 A synthesis agent \mathcal{S} aggregates extracted tuples $\{(e_i, c_i)\}_{i=1}^n$ and metadata features m_t from Drug-
229 Bank to compute a provisional classification $\hat{y}_t \in \{\text{druggable, undruggable, FBDD-reported}\}$ with
230 supporting citations. Conflicts or ambiguous cases (e.g., conflicting evidence of druggability and
231 FBDD) are resolved via deterministic resolution rules or flagged for human audit. Finally, a domain
232 expert validation step $\mathcal{V} : \hat{y}_t \mapsto y_t$ confirms or corrects each label \hat{y}_t , producing the final ground-
233 truth annotation y_t used in our benchmark. This human-in-the-loop step is essential for resolving
234 nuanced biological edge cases, such as disordered proteins with low-confidence fragment data.

235 Overall, this framework achieves high-throughput and structured curation of undruggable targets,
236 with an average of 218, 34, and 25 relevant PubMed documents per target for druggability, undrug-
237 gability, and FBDD evidence respectively. The resulting benchmark provides structured evidence
238 provenance and supports downstream model evaluation under realistic biological constraints.

239 3.1.4 FRAGMENT CONSTRUCTION
240

241 To support fragment-level learning, we constructed a dataset of fragment–pocket interactions for
242 curated undruggable targets. Active ligands were retrieved from ChEMBL (Gaulton et al., 2012)
243 with strict assay-based filtering described in G, and each molecule $m \in \mathcal{M}$ was decomposed into
244 synthetically accessible fragments using the BRICS algorithm (Degen et al., 2008):

$$245 \quad \mathcal{F}(m) = \{f_1, f_2, \dots, f_k\}.$$

246 Fragments with $8 \leq \text{HA}(f_i) \leq 24$ were retained to match common fragment library constraints
247 (e.g., Enamine REAL (Shivanyuk et al., 2007)). Redundancy was reduced via fingerprint-based
248 clustering, details are in H.

249 Positive fragment labels were generated by redocking each ligand into its native pocket using Glide,
250 followed by non-covalent interaction detection with PLIP (Salentin et al., 2015). To obtain *high-
251 confidence* positive examples, we adopted a conservative consensus strategy: a fragment was labeled
252 as positive only if it (i) formed at least two distinct non-covalent interactions with the pocket in
253 a given docking pose, and (ii) this multi-interaction pattern was reproducibly observed across 3
254 independent docking replicates. Formally, let $\mathcal{A}(f)$ denote the set of atoms belonging to fragment
255 f , and $\mathcal{I}(a, p)$ be the number of non-covalent interactions formed by atom a with pocket p . A
256 fragment is considered positive if $|\{a \in \mathcal{A}(f) \mid \mathcal{I}(a, p) > 0\}| \geq 2$ and this condition holds
257 consistently across three docking replicates.

258 We quantitatively assessed the accuracy of this labeling strategy and examined how the number
259 of docking replicates and interaction thresholds affect label reliability; details are provided in Ap-
260 pendix B.

261 Negatives were sampled randomly at a 1:90 positive-to-negative ratio from a fragment pool. The
262 resulting **FragBench** dataset spans 54 targets, each associated with an average of 84.37 positive and
263 7593.33 negative fragments, providing the first standardized benchmark for fragment-level screen-
264 ing against challenging protein pockets. Comprehensive information on 54 targets, including their
265 protein name, Uniprot ID and associated disease indications is presented in Appendix I.

266 In Figure 1(c), we report a statistical characterization of FragBench pockets, which display reduced
267 size and fewer residues relative to DUD-E targets, indicative of their shallow and flattened topol-
268 ogy. Dscores further underscore the intrinsic challenges these targets pose for rational drug design,
269 highlighting the fundamental differences between FragBench and traditional benchmarks.

270 3.2 FRAGCLIP: A CONTRASTIVE LEARNING FRAMEWORK FOR FRAGMENT RETRIEVAL
271272 3.2.1 MULTI-GRANULAR CONTRASTIVE ALIGNMENT
273274 The core task of this work is *fragment retrieval*: given a protein pocket, the model must identify
275 fragments likely to bind. Directly learning from fragment–pocket pairs is challenging due to the
276 small size, weak binding affinity, and context-dependence of fragments. Such training would provide
277 sparse and noisy supervision.278 To address this, we design a multi-encoder framework that jointly models protein pockets, frag-
279 ments, and their parent molecules. The protein encoder f_p maps 3D pocket structures into a la-
280 tent space. The fragment encoder f_f captures fine-grained chemical substructures relevant to bind-
281 ing. The molecule encoder f_m provides scaffold-level context, serving as a structural and chemical
282 bridge to regularize fragment representations and stabilize training.283 To align representations across these three molecular granularities, we employ a set of con-
284 trastive objectives: (i) pocket–molecule alignment ($\mathcal{L}_{p\text{-}m}$) preserves scaffold-level semantics, (ii)
285 pocket–fragment alignment ($\mathcal{L}_{p\text{-}f}$) provides direct supervision for fragment–pocket compatibility,
286 and (iii) molecule–fragment alignment ($\mathcal{L}_{m\text{-}f}$) enforces internal consistency between fragments and
287 their source molecules.288 Each loss takes the following form:
289

290
$$\mathcal{L}_{a-b} = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(\text{sim}(f_a(a_i), f_b(b_i))/\tau)}{\sum_{j=1}^N \exp(\text{sim}(f_a(a_i), f_b(b_j))/\tau)}, \quad (1)$$

291

293 where $(a, b) \in \{(p, m), (p, f), (m, f)\}$ and $\text{sim}(\cdot, \cdot)$ denotes cosine similarity. The total loss is:
294

295
$$\mathcal{L}_{\text{align}} = \mathcal{L}_{p\text{-}m} + \lambda_1 \mathcal{L}_{p\text{-}f} + \lambda_2 \mathcal{L}_{m\text{-}f}. \quad (2)$$

296

297 For implementation, we adopt the UniMol architecture (Zhou et al., 2023), a 3D molecular repre-
298 sentation model with $SE(3)$ -equivariant attention. We use UniMol’s pocket encoder for f_p , and its
299 molecular encoder for both f_m and f_f , enabling unified geometric representations across all modal-
300 ities.301 3.2.2 FUSION MECHANISM FOR FRAGMENT IMPORTANCE MODELING
302303 A fundamental challenge in fragment retrieval is that fragment-level signals are inherently
304 noisy (Bon et al., 2022). Many fragments within a molecule contribute little to binding, while others
305 may form spurious or context-dependent interactions. Relying on all fragments equally can there-
306 fore dilute the discriminative cues needed for accurate retrieval, making it difficult for the model to
307 identify which substructures truly drive binding.308 To address this, we introduce a fusion mechanism that performs joint selection and filtering of
309 fragment information. Given a molecule embedding $f_m(m)$ and its associated fragment embeddings
310 $\{f_f(f_i)\}_{i=1}^k$, a cross-attention module highlights fragments most relevant to binding while down-
311 weighting less informative ones. The attention output is concatenated with the molecule embedding
312 and passed through a multilayer perceptron (MLP) to yield a fused representation:
313

314
$$z_{\text{fusion}} = \text{MLP}\left(f_m(m) \parallel \text{Attn}(f_m(m), \{f_f(f_i)\}_{i=1}^k)\right). \quad (3)$$

315

316 This fused embedding is trained to align with the pocket representation via contrastive loss:
317

318
$$\mathcal{L}_{\text{fusion}} = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(\text{sim}(f_p(p_i), z_{\text{fusion},i})/\tau)}{\sum_{j=1}^N \exp(\text{sim}(f_p(p_i), z_{\text{fusion},j})/\tau)}. \quad (4)$$

319

320 By emphasizing informative fragments and suppressing noise, the fusion module refines fragment
321 embeddings into more discriminative signals for retrieval, highlighting binding-relevant substruc-
322 tures and strengthening fragment-level representation learning.

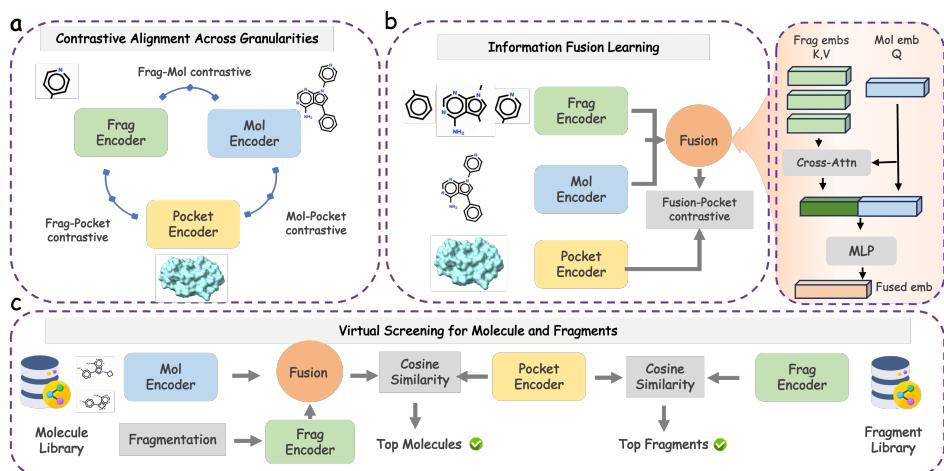


Figure 3: **Overview of the FRAGCLIP framework.** (a) *Contrastive Alignment Across Granularities*: three encoders model pockets, fragments, and molecules, aligned via multi-view contrastive losses to capture both fine-grained fragment–pocket interactions and scaffold-level semantics. (b) *Information Fusion Learning*: molecule and fragment embeddings are fused via cross-attention, enhancing fragment representation with contextual molecular information and enabling contrastive alignment with pockets. (c) *Fragment and Molecule Screening*: during inference, pockets are used to retrieve both top-scoring molecules and fragments via cosine similarity in the shared embedding space.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Tasks and Datasets

Our primary task is *fragment retrieval* on **FragBench**, a benchmark of curated undruggable targets with shallow or cryptic pockets. In addition to FragBench, we also construct fragment-level retrieval benchmarks for several classical virtual-screening datasets, including **DUD-E**, **LIT-PCBA**, and **DEKOIS 2.0**. For each dataset, we repeat docking using Glide and label fragment–pocket interactions with PLIP, designating fragments that form at least two non-covalent interactions consistently as positives. Detailed dataset statistics and construction procedures are provided in Appendix X.

For model training we use **PDBbind**. To prevent information leakage from test targets, we remove from the training pool all protein–ligand complexes whose sequence identity to any target in FragBench, DUD-E, LIT-PCBA, or DEKOIS 2.0 exceeds 90%. After filtering, the training and validation sets contain 14,223 and 744 protein–ligand pairs respectively. We further analyze the impact of different levels of sequence-homology filtering on fragment retrieval performance, and the complete results are provided in the Appendix.

Evaluation Metrics We report standard virtual screening metrics, focusing on early recognition performance. Specifically, we evaluate models using AUC, Enrichment Factor at top- k (EF@ k), and BEDROC. All results are averaged across targets.

Baselines. We compare **FRAGCLIP** with both classical docking/scoring methods and recent learning-based rescoring models. Glide-SP (Yang et al., 2021) and AutoDock Vina (Eberhardt et al., 2021) serve as standard docking baselines. We also include the widely-used machine learning scoring function **RF-Score** (Ballester & Mitchell, 2010), and two high-performing structure-based scoring methods that explicitly model 3D geometry and residue–atom interactions, **RTMScore** (Shen et al., 2022) and **EquiScore** (Cao et al., 2023). Among learning-based baselines, **DrugCLIP** (Gao et al., 2023) and **LigUnity** (Feng et al., 2025) align pocket–ligand pairs via contrastive representation learning for retrieval and screening.

378 4.2 RESULTS ON FRAGBENCH (UNDRUGGABLE TARGETS)
379

380 We evaluate our method on the FragBench dataset, comparing against classical docking tools (Vina,
381 Glide), machine learning models, and a recent contrastive learning baseline. As shown in Table 1,
382 classical docking-based approaches completely fail in the fragment-level virtual screening setting,
383 with Vina producing no meaningful ranking results and Glide achieving only marginal enrichment
384 (EF@0.5% of 1.86 and BEDROC of 0.03). DrugCLIP improves performance slightly (EF@0.5%
385 = 4.11). Our proposed method, **FragCLIP**, achieves the highest performance across all metrics,
386 with an BEDROC of **0.12**, and EF@0.5% of **6.85**. These results underscore the importance of our
387 framework: by explicitly modeling the fragment–pocket interaction in a contrastive and fragment-
388 centric manner, FragCLIP substantially outperforms both docking and prior learning-based methods.
389 This demonstrates the effectiveness of our design for fragment-level recognition in structure-based
390 drug discovery.

391
392 **Table 1: Performance comparison on FragBench. Results are averaged over all targets.**

Method	AUROC	BEDROC	EF@0.5%	EF@1%	EF@2%	EF@5%
Vina	0.476	0.025	1.665	1.419	1.208	1.113
Glide	0.597 _{0.009}	0.034 _{0.007}	1.862 _{0.543}	1.825 _{0.768}	1.821 _{0.422}	1.712 _{0.285}
RFscore	0.457	0.025	1.665	1.419	1.469	1.113
RTM Score [†]	0.571	0.094	1.896	1.997	1.940	1.824
EquiScore [†]	0.581	0.105	4.039	3.331	2.638	2.049
LigUnity [†]	0.505	0.089	4.262	3.562	2.933	2.087
DrugCLIP (90%)	0.597 _{0.027}	0.080 _{0.003}	4.110 _{0.056}	3.203 _{0.121}	2.660 _{0.072}	2.067 _{0.051}
FragCLIP (90%)	0.593 _{0.018}	0.115 _{0.003}	6.853 _{0.582}	5.797 _{0.258}	4.510 _{0.163}	3.000 _{0.161}

402 *Subscripts denote standard deviations across three independent runs.

403 [†]Evaluated using the original checkpoint without homology filtering on the test set.404
405 4.3 PERFORMANCE ON OTHER FRAGMENT BENCHMARKS

406 To rigorously evaluate FragCLIP across varying levels of difficulty, we conducted experiments on
407 three **fragment-version** benchmarks: DUD-E, Dekois, and LIT-PCBA. For the construction of these
408 datasets and detailed statistics, please refer to Appendix E. While DUD-E and Dekois represent
409 standard benchmarks with well-characterized targets, LIT-PCBA poses a significantly challenging
410 dataset.

411 Remarkably, FragCLIP consistently achieves the best Enrichment Factor (EF) scores across all three
412 datasets, demonstrating its superior capability in early recognition regardless of the benchmark dif-
413 ficulty. On the standard DUD-E and Dekois datasets, FragCLIP dominates with EF@0.5% scores
414 of **20.317** and **17.963**, respectively, substantially outperforming baselines like LigUnity and Drug-
415 CLIP. Even on the challenging LIT-PCBA dataset, FragCLIP still secures the highest enrichment
416 performance across all thresholds (e.g., **3.437** EF@0.5% vs. 2.939 for RTMScore). This consis-
417 tent superiority in metrics highlights FragCLIP’s robustness and practical value in prioritizing active
418 fragments for virtual screening tasks.

419
420 4.4 FRAGMENT-AIDED MOLECULE RETRIEVAL VIA FUSION

421 We explored whether informative fragment-level signals could enhance **molecule-level retrieval**,
422 results shown in Tabel 3. Our findings suggest that incorporating fragment supervision during
423 training improves the quality of molecular representations. Specifically, by introducing fragment-level
424 contrastive learning but performing retrieval solely using the molecule encoder, we observed an
425 improvement at EF1% from **31.87** to **33.56**.

426 Building on this, we further investigated how fragment information could be integrated at inference
427 time. As shown in Figure X, we combined fragment-level scores with molecule-level scores through
428 both fusion and ensembling strategies to obtain a more fine-grained assessment. In particular, we
429 implemented a multi-granularity ensemble where the final score is computed as:

$$430 \text{Score} = \text{MolScore} + \alpha \cdot \text{FragScore} + \beta \cdot \text{FusionScore}$$

432

433 Table 2: Performance comparison on DUD-E, Dekois, and LIT-PCBA benchmarks (fragment ver-
434 sion). Results are averaged over all targets.

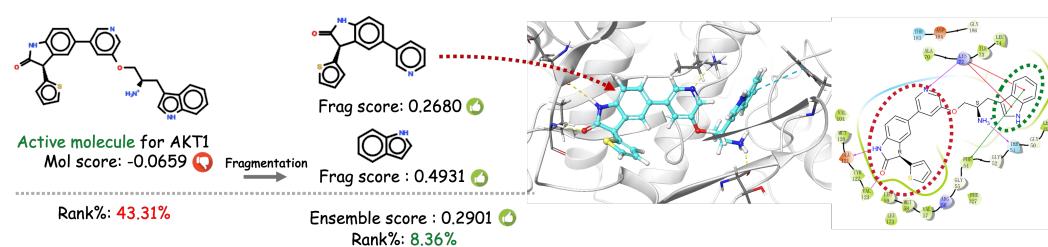
Method	AUROC	BEDROC	EF@0.5%	EF@1%	EF@2%	EF@5%
DUD-E (fragment version)						
Vina	0.521	0.062	4.805	3.897	3.155	2.323
Glide	0.621 _{0.009}	0.087 _{0.010}	7.535 _{1.458}	5.795 _{1.014}	4.153 _{0.577}	2.807 _{0.322}
RTMScore [†]	0.454	0.007	1.818	1.607	1.448	1.353
EquiScore [†]	0.658	0.137	4.442	3.569	3.217	2.726
LigUnity [†]	0.616 _{0.129}	0.194 _{0.136}	19.493	14.049	9.078	4.891
DrugCLIP (90%)	0.642 _{0.019}	0.136 _{0.003}	12.013 _{0.326}	9.333 _{0.220}	6.843 _{0.137}	4.320 _{0.140}
FragCLIP (90%)	0.761 _{0.015}	0.227 _{0.007}	20.317 _{1.020}	16.012 _{0.702}	11.307 _{0.293}	6.883 _{0.136}
Dekois (fragment version)						
Vina	0.546	0.053	3.619	3.022	2.770	2.330
Glide	0.630 _{0.010}	0.065 _{0.012}	4.694 _{1.964}	4.098 _{1.151}	3.297 _{0.736}	2.597 _{0.369}
RFscore	0.530	0.038	2.790	2.276	1.952	1.544
RTMScore [†]	0.506	0.069	2.153	1.819	1.569	1.274
EquiScore [†]	0.658	0.138	3.904	3.718	3.376	2.706
DrugCLIP (90%)	0.640 _{0.019}	0.113 _{0.002}	8.607 _{0.170}	7.523 _{0.145}	5.937 _{0.080}	4.027 _{0.175}
FragCLIP (90%)	0.750 _{0.013}	0.213 _{0.004}	17.963 _{0.764}	14.710 _{0.447}	10.907 _{0.157}	6.773 _{0.163}
LIT-PCBA (fragment version)						
Vina	0.492	0.025	1.483	1.250	1.261	1.324
Glide	0.546	0.018	0.528	0.939	1.038	0.927
RFscore	0.456	0.020	1.366	1.269	0.876	0.865
RTMScore [†]	0.567	0.095	2.939	2.818	2.111	1.698
EquiScore [†]	0.597	0.086	2.446	1.981	1.643	1.470
DrugCLIP (90%)	0.560 _{0.023}	0.032 _{0.003}	1.823 _{0.344}	1.550 _{0.164}	1.817 _{0.219}	1.673 _{0.225}
FragCLIP (90%)	0.575 _{0.029}	0.050 _{0.004}	3.437 _{0.125}	2.857 _{0.304}	2.517 _{0.324}	2.280 _{0.226}

461 *Subscripts denote standard deviations across three independent runs.

462 [†]Evaluated using the original checkpoint/settings without homology filtering on the test set where applica-
463 ble.

464

465

466 with hyperparameters $\alpha = \beta = 0.8$. This approach yielded a substantial gain in performance,
467 achieving an EF1% of 37.23—demonstrating the utility of learned fragment representations in
468 complementing molecular signals. Figure 4 highlights a representative case where a molecule initially
469 ranked poorly by the molecule encoder was significantly re-ranked due to strong fragment-level
470 evidence.

482

483 Figure 4: Case of fragment-level interactions boost molecule ranking. Two informative fragments
484 with strong pocket interactions (FragScores: 0.2680, 0.4931) were identified from an active AKT1
485 ligand initially poorly scored by the molecule encoder (MolScore: -0.0659, Rank

486

487

Table 3: Molecule-level virtual screening performance on the DUD-E dataset.

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

4.5 FRAGMENT LINKING ON BCL-2

504

505

506

507

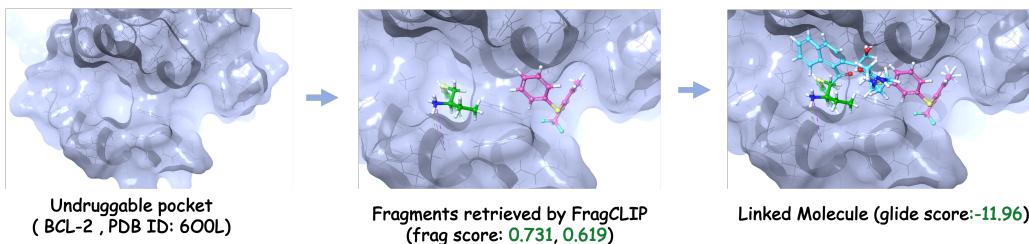
508

509

510

511

Fragments from virtual screening typically require growing or linking to form drug-like molecules. To demonstrate practical utility, we have performed fragment linking on the undruggable target BCL-2. FragCLIP retrieved 30 candidate fragments, which were docked with Glide to identify anchor conformations. Using DiffLinker, we generated complete molecules by linking fragment pairs. As shown in Fig. 5, two high-scoring fragments occupied distinct subpockets and served as effective anchors, yielding a linked molecule with a Glide score of **-11.96**. This case highlights the potential of combining FragCLIP with generative models for designing novel compounds against challenging targets.



522

523

524

525

526

527

528

529

5 CONCLUSION

530

531

532

533

534

535

536

537

538

539

In this paper, we present FRAGBENCH, the first large-scale benchmark for evaluating fragment-level retrieval on challenging, often *undruggable*, protein targets. Our findings reveal a core limitation: docking-based methods, though effective for full molecules, perform only marginally better than random in fragment ranking—especially for shallow or cryptic pockets found in transcription factors and PPI hubs. To address this, we introduce FRAGCLIP, a cross-modal framework that learns aligned representations of fragments, molecules, and pockets via multi-view contrastive pretraining. By integrating global context and local interactions, FRAGCLIP achieves strong, generalizable performance on FRAGBENCH, outperforming classical and neural baselines across all early enrichment metrics. Together, FRAGBENCH and FRAGCLIP lay the groundwork for learning-based, fragment-centric modeling in FBDD, advancing drug discovery for targets beyond the reach of conventional methods.

540 REFERENCES
541

542 Michelle R Arkin and James A Wells. Small-molecule inhibitors of protein–protein interactions:
543 progressing towards the dream. *Nature reviews Drug discovery*, 3(4):301–317, 2004.

544 Pedro J Ballester and John BO Mitchell. A machine learning approach to predicting protein–ligand
545 binding affinity with applications to molecular docking. *Bioinformatics*, 26(9):1169–1175, 2010.

546 Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
547 Ilya N Shindyalov, and Philip E Bourne. The protein data bank. *Nucleic acids research*, 28(1):
548 235–242, 2000.

549 Marta Bon, Alan Bilsland, Justin Bower, and Kirsten McAulay. Fragment-based drug discov-
550 ery—the importance of high-quality molecule libraries. *Molecular Oncology*, 16(21):3761–3777,
551 2022.

552 Ryan Brenke, Dima Kozakov, Gwo-Yu Chuang, Dmitri Beglov, David Hall, Melissa R Landon,
553 Carla Mattos, and Sandor Vajda. Fragment-based identification of druggable ‘hot spots’ of pro-
554 teins using fourier domain correlation techniques. *Bioinformatics*, 25(5):621–627, 2009.

555 John H Bushweller. Targeting transcription factors in cancer—from undruggable to reality. *Nature*
556 *Reviews Cancer*, 19(11):611–624, 2019.

557 Duanhua Cao, Geng Chen, Jiaxin Jiang, Jie Yu, Runze Zhang, Mingan Chen, Wei Zhang, Lifan
558 Chen, Feisheng Zhong, Yingying Zhang, et al. Equiscore: A generic protein-ligand interaction
559 scoring method integrating physical prior knowledge with data augmentation modeling. *bioRxiv*,
560 pp. 2023–06, 2023.

561 Yu Chen and Denise Teotico Pohlhaus. In silico docking and scoring of fragments. *Drug Discovery*
562 *Today: Technologies*, 7(3):e149–e156, 2010.

563 Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock: Dif-
564 fusion steps, twists, and turns for molecular docking. *arXiv preprint arXiv:2210.01776*, 2022.

565 Jorg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of com-
566 piling and using ‘drug-like’ chemical fragment spaces. *ChemMedChem*, 3(10):1503, 2008.

567 Jerome Eberhardt, Diogo Santos-Martins, Andreas F Tillack, and Stefano Forli. Autodock vina
568 1.2. 0: new docking methods, expanded force field, and python bindings. *Journal of chemical*
569 *information and modeling*, 61(8):3891–3898, 2021.

570 Daniel A Erlanson, Stephen W Fesik, Roderick E Hubbard, Wolfgang Jahnke, and Harren Jhoti.
571 Twenty years on: the impact of fragments on drug discovery. *Nature reviews Drug discovery*, 15
572 (9):605–619, 2016.

573 Bin Feng, Zijing Liu, Hao Li, Mingjun Yang, Junjie Zou, He Cao, Yu Li, Lei Zhang, and Sheng
574 Wang. Hierarchical affinity landscape navigation through learning a shared pocket-ligand space.
575 *Patterns*, 6(10), 2025.

576 Paul G Francoeur, Tomohide Masuda, Jocelyn Sunseri, Andrew Jia, Richard B Iovanisci, Ian Snyder,
577 and David R Koes. Three-dimensional convolutional neural networks and a cross-docked data set
578 for structure-based drug design. *Journal of chemical information and modeling*, 60(9):4200–
579 4215, 2020.

580 Bowen Gao, Bo Qiang, Haichuan Tan, Yinjun Jia, Minsi Ren, Minsi Lu, Jingjing Liu, Wei-Ying
581 Ma, and Yanyan Lan. Drugclip: Contrastive protein-molecule representation learning for virtual
582 screening. *Advances in Neural Information Processing Systems*, 36:44595–44614, 2023.

583 Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
584 Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chemb3D: a large-scale
585 bioactivity database for drug discovery. *Nucleic acids research*, 40(D1):D1100–D1107, 2012.

586 Thomas A Halgren. Identifying and characterizing binding sites and assessing druggability. *Journal*
587 *of chemical information and modeling*, 49(2):377–389, 2009.

594 Thomas A Halgren, Robert B Murphy, Richard A Friesner, Hege S Beard, Leah L Frye, W Thomas
 595 Pollard, and Jay L Banks. Glide: a new approach for rapid, accurate docking and scoring. 2. en-
 596 richment factors in database screening. *Journal of medicinal chemistry*, 47(7):1750–1759, 2004.
 597

598 Harren Jhoti, Anne Cleasby, Marcel Verdonk, and Glyn Williams. Fragment-based screening using
 599 x-ray crystallography and nmr spectroscopy. *Current opinion in chemical biology*, 11(5):485–
 600 493, 2007.

601 Craig Knox, Mike Wilson, Christen M Klinger, Mark Franklin, Eponine Oler, Alex Wilson, Al-
 602 lison Pon, Jordan Cox, Na Eun Chin, Seth A Strawbridge, et al. Drugbank 6.0: the drugbank
 603 knowledgebase for 2024. *Nucleic acids research*, 52(D1):D1265–D1275, 2024.

604 Christopher W Murray and David C Rees. The rise of fragment-based drug discovery. *Nature
 605 chemistry*, 1(3):187–192, 2009.

606

607 Michael M Mysinger, Michael Carchia, John J Irwin, and Brian K Shoichet. Directory of useful de-
 608 coys, enhanced (dud-e): better ligands and decoys for better benchmarking. *Journal of medicinal
 609 chemistry*, 55(14):6582–6594, 2012.

610 Christopher A Ross and Michelle A Poirier. Protein aggregation and neurodegenerative disease.
 611 *Nature medicine*, 10(Suppl 7):S10–S17, 2004.

612

613 Arman A Sadybekov, Anastasiia V Sadybekov, Yongfeng Liu, Christos Iliopoulos-Tsoutsouvas, Xi-
 614 Ping Huang, Julie Pickett, Blake Houser, Nilkanth Patel, Ngan K Tran, Fei Tong, et al. Synthon-
 615 based ligand discovery in virtual libraries of over 11 billion compounds. *Nature*, 601(7893):
 616 452–459, 2022.

617 Sebastian Salentin, Sven Schreiber, V Joachim Haupt, Melissa F Adasme, and Michael Schroeder.
 618 Plip: fully automated protein–ligand interaction profiler. *Nucleic acids research*, 43(W1):W443–
 619 W447, 2015.

620

621 Duncan E Scott, Andrew R Bayly, Chris Abell, and John Skidmore. Small molecules, big targets:
 622 drug discovery faces the protein–protein interaction challenge. *Nature Reviews Drug Discovery*,
 623 15(8):533–550, 2016.

624

625 Chao Shen, Xujun Zhang, Yafeng Deng, Junbo Gao, Dong Wang, Lei Xu, Peichen Pan, Tingjun
 626 Hou, and Yu Kang. Boosting protein–ligand binding pose prediction and virtual screening based
 627 on residue–atom distance likelihood potential and graph transformer. *Journal of Medicinal Chem-
 628 istry*, 65(15):10691–10706, 2022.

629

630 Alexander N Shivanyuk, Sergey V Ryabukhin, A Tolmachev, AV Bogolyubsky, DM Mykytenko,
 631 AA Chupryna, W Heilman, and AN Kostyuk. Enamine real database: Making chemical diversity
 632 real. *Chemistry today*, 25(6):58–59, 2007.

633

634 Jessica N Spradlin, Erika Zhang, and Daniel K Nomura. Reimagining druggability using chemo-
 635 proteomic platforms. *Accounts of Chemical Research*, 54(7):1801–1813, 2021.

636

637 Hannes Stärk, Octavian Ganea, Lagnajit Pattanaik, Regina Barzilay, and Tommi Jaakkola. Equibind:
 638 Geometric deep learning for drug binding structure prediction. In *International conference on
 639 machine learning*, pp. 20503–20521. PMLR, 2022.

640

641 Viet-Khoa Tran-Nguyen, Célien Jacquemard, and Didier Rognan. Lit-pcba: an unbiased data set for
 642 machine learning and virtual screening. *Journal of chemical information and modeling*, 60(9):
 643 4263–4273, 2020.

644

645 Jean-François Truchon and Christopher I Bayly. Evaluating virtual screening methods: good and
 646 bad metrics for the “early recognition” problem. *Journal of chemical information and modeling*,
 647 47(2):488–508, 2007.

648

649 Jacob White. Pubmed 2.0. *Medical reference services quarterly*, 39(4):382–387, 2020.

650

651 Ying Yang, Kun Yao, Matthew P Repasky, Karl Leswing, Robert Abel, Brian K Shoichet, and
 652 Steven V Jerome. Efficient exploration of chemical space with docking and deep learning. *Journal
 653 of Chemical Theory and Computation*, 17(11):7106–7119, 2021.

Junfeng Zhou, Jie Qiu, Zekun Chen, Bo Jiang, Zhitao Lu, Ning Qiao, Zheng Li, and Xiaodong Xie. Uni-mol: A universal 3d molecular representation learning framework. *arXiv preprint arXiv:2210.01784*, 2023.

A LLM USAGE STATEMENT:

GPT-4o was used exclusively for language polishing, including grammar correction and clarity enhancement. All scientific content and analyses were conducted independently of LLMs.

B EVALUATION OF FRAGMENT-POCKET LABEL QUALITY AND THRESHOLD SELECTION

To quantify the reliability of docking-based fragment interaction labelling and to determine appropriate interaction and consensus thresholds for defining positive fragments, we conducted a evaluation on 500 PDBbind complexes. For each complex, fragment labels derived from the experimental co-crystal pose using PLIP were treated as the reference, while labels generated from three independent random seeds Glide docking replicates served as predictions.

Experimental design. Two factors were varied to study their impact on label accuracy:

- **Interaction threshold:** a fragment is considered positive in a given docking run if it forms at least $k \in \{1, 2, 3\}$ distinct non-covalent interactions with the pocket.
- **Replicate consensus:** a fragment is considered positive overall if it is predicted positive in at least $m \in \{1, 2, 3\}$ of the docking runs.

This yields nine labeling configurations (k, m) , covering both lenient (low k or m) and conservative (high k and m) regimes. Precision, recall, and F1 score were computed by comparing docking-derived labels against the reference crystal-derived labels on a fragment-by-fragment basis. Heatmaps and trend plots summarizing the results are shown in Fig. 6.

Quantitative results. Table 4 summarizes the performance across all configurations. Overall, the results exhibit a clear and monotonic precision–recall trade-off. Increasing the replicate-consensus requirement consistently improves precision, while higher interaction thresholds further tighten the definition of a positive fragment. As expected, stricter criteria reduce recall, but they substantially suppress false positives. In the context of constructing positive labels for downstream learning—where precision is the primary concern—configurations enforcing both multiple interactions and cross-replicate consistency provide the most reliable supervision.

Interpretation. These analyses highlight that:

1. Docking-derived fragment labels align closely with crystal-structure interaction patterns across all threshold settings, demonstrating that docking provides a robust and trustworthy source of weak supervision in this context.
2. Multi-replicate agreement effectively filters out seed-dependent fluctuations and stabilizes interaction assignments.
3. Requiring multiple interactions preferentially selects structurally meaningful and well-supported contact motifs, improving label reliability even at the cost of lower recall.

Based on these observations, we adopt the setting $k=2$ and $m=3$ for constructing the benchmark. Under this configuration, the labeled positive fragments achieve a precision of 89.4%, which, in the absence of large-scale experimental fragment-binding datasets, provides sufficiently reliable supervision for building a high-quality benchmark.

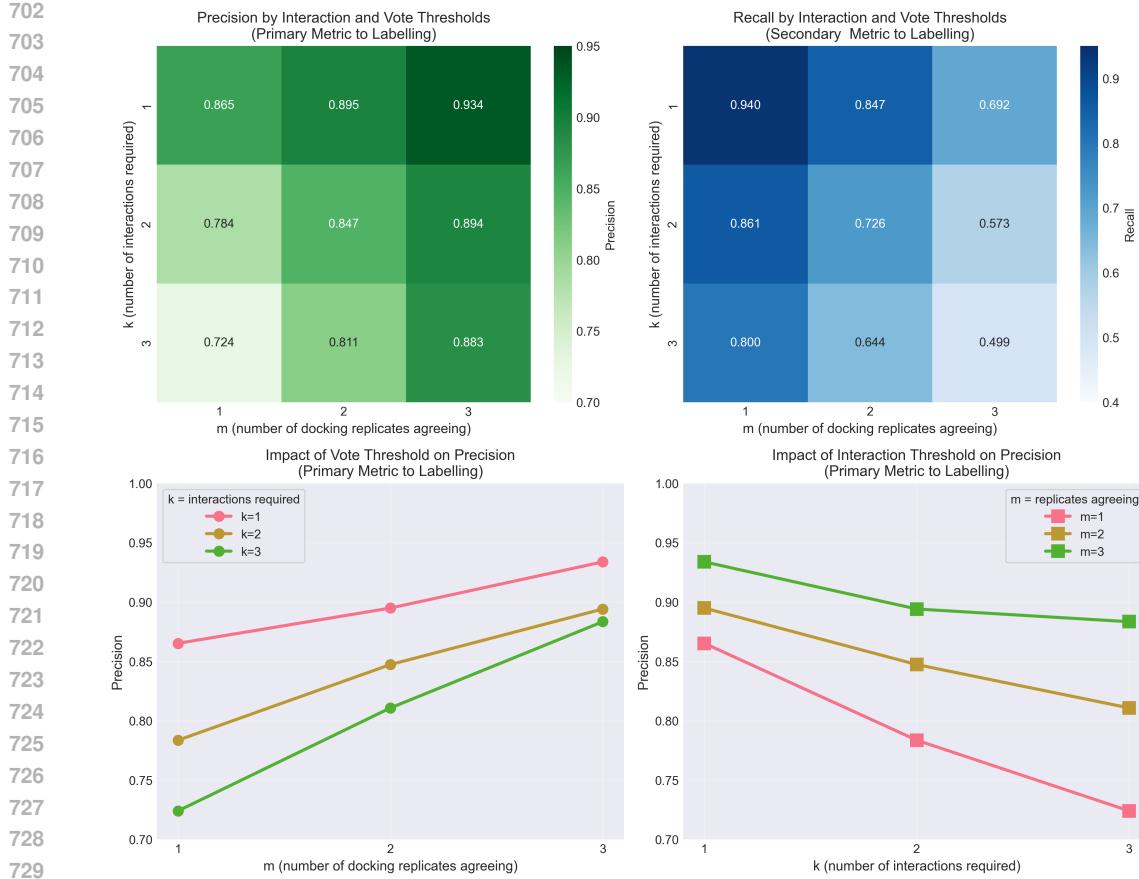


Figure 6: Precision and recall of fragment labels under different interaction and voting thresholds.

Table 4: Label accuracy across interaction and replicate-consensus thresholds, comparing docking-derived labels to crystal-based labels.

Setting	Precision	Recall	F1
$k=1, m=3$	0.934	0.692	0.795
$k=1, m=2$	0.895	0.847	0.870
$k=1, m=1$	0.865	0.940	0.901
$k=2, m=3$	0.894	0.573	0.698
$k=2, m=2$	0.847	0.726	0.782
$k=2, m=1$	0.784	0.861	0.821
$k=3, m=3$	0.883	0.499	0.638
$k=3, m=2$	0.811	0.644	0.718
$k=3, m=1$	0.724	0.800	0.760

C ABLATION STUDIES

To assess the contribution of each architectural component in FragCLIP, we perform ablations shown in Table 5. We evaluate two major variants:

No Fusion Module. In this setting, we retain all three encoders—pocket, fragment, and molecule—but remove the fusion module responsible for cross-modal interaction between the fragment and molecule representations. This modification isolates the effect of the fusion mechanism.

756
No Molecule Modality. Here we disable the molecule encoder entirely and perform contrastive
757 learning only between pocket and fragment representations. Architecturally, this reduces FragCLIP
758 to a two-encoder framework analogous to DrugCLIP, but trained specifically on fragment-level
759 data. Performance decreases notably compared to the full model, indicating that molecular con-
760 text provides valuable structural and chemical cues that improve fragment discrimination beyond
761 pocket-fragment geometry alone.

762 Overall, the ablation results clearly show that both the fusion module and the molecule modality
763 play essential and complementary roles. The fusion module enables richer cross-modal reasoning,
764 while the molecule encoder provides contextual constraints that guide fragment-level preferences.
765 Removing either component consistently degrades performance, confirming that the full tri-modal
766 design of FragCLIP is proper for fragment retrieval.
767

768
769 **Table 5: Ablation study on model architecture.**

770 Setting	771 AUROC	772 BEDROC	773 EF@0.5%	774 EF@1%	775 EF@2%
771 FragCLIP	772 $0.593_{0.018}$	773 $0.115_{0.003}$	774 $6.853_{0.582}$	775 $5.797_{0.258}$	776 $4.510_{0.163}$
772 No Fusion Module	773 $0.585_{0.006}$	774 $0.105_{0.007}$	775 $6.428_{0.241}$	776 $5.072_{0.394}$	777 $4.174_{0.271}$
773 No Molecule Modality	774 $0.584_{0.002}$	775 $0.106_{0.006}$	776 $6.170_{0.429}$	777 $5.296_{0.217}$	778 $4.049_{0.274}$

779 *Subscripts denote standard deviations across three independent runs.
780
781
782
783

784 D IMPACT OF SEQUENCE-HOMOLOGY FILTERING ON FRAGMENT 785 RETRIEVAL

786 To evaluate how sequence similarity between training and test proteins affects fragment retrieval
787 performance, we construct three increasingly stringent de-homogenized training sets by filtering
788 PDBbind according to protein sequence identity with respect to all test targets in test dataset. We
789 consider three levels of sequence-homology filtering when constructing the training set:

790 **PDB-ID-deduplicated setting (Default).** Only protein-ligand complexes with the exact same PDB
791 ID as any test target are removed. This corresponds to the 100% identity setting and serves as our
792 full training set.

793 **90% / 60% / 30% sequence-identity-filtered setting.** All training proteins whose sequence iden-
794 tity to any test protein exceeds 90% / 60% / 30% are removed.

795 Table 6 reports the resulting training and validation sizes under each setting.
796

797 **Table 6: Training/validation set sizes under different sequence-identity thresholds.**

798 Identity Setting	799 Train Pairs	800 Val Pairs	801 Change w.r.t. Full Set
802 100% (Full)	803 17,315	804 919	805 baseline
806 90% Filtered	807 14,223	808 744	809 $-3,267 (17.92\%)$
810 60% Filtered	811 12,487	812 657	813 $-5,090 (27.91\%)$
814 30% Filtered	815 10,376	816 556	817 $-7,302 (40.05\%)$

818 Overall, stricter sequence-homology filtering leads to a clear decline in fragment retrieval perfor-
819 mance (Table 7). The largest drop occurs when moving from the full PDB-ID-deduplicated setting
820 (100%) to the 90% identity threshold, indicating that removing highly homologous proteins has the
821 strongest impact. Further tightening the threshold from 90% to 60% produces a smaller relative de-
822 crease. Notably, when the threshold is further restricted to 30%, the magnitude of the performance
823 drop becomes even more marginal, confirming that the sensitivity to homology reduction diminishes
824 at stricter levels.

825 Taken together, these results show that FragCLIP is sensitive to homology filtering—as expected.
826 The 90% sequence-identity setting provides a practical balance between avoiding information
827 leakage and maintaining sufficient training diversity, and is therefore adopted as our primary de-
828 homogenized evaluation condition in the main paper.

810
 811 **Table 7: Fragment retrieval performance of FragCLIP under different sequence-homology filtering**
 812 **thresholds on FragBench.**

Setting	AUROC	BEDROC	EF@0.5%	EF@1%	EF@2%	EF@5%
FragCLIP (100%)	0.637 _{0.007}	0.147 _{0.006}	10.741 _{0.324}	8.155 _{0.292}	5.737 _{0.137}	3.767 _{0.077}
FragCLIP (90%)	0.593 _{0.018}	0.115 _{0.003}	6.853 _{0.582}	5.797 _{0.258}	4.510 _{0.163}	3.000 _{0.161}
FragCLIP (60%)	0.593 _{0.022}	0.091 _{0.010}	4.843 _{0.372}	4.283 _{0.750}	3.569 _{0.449}	2.660 _{0.301}
FragCLIP (30%)	0.554 _{0.008}	0.079 _{0.006}	4.337 _{0.186}	3.977 _{0.221}	3.213 _{0.255}	2.270 _{0.053}

813 *Subscripts denote standard deviations across three independent runs.
 814
 815
 816
 817

820 **E CONSTRUCTION OF FRAGMENT-LEVEL BENCHMARKS FOR DUD-E,
 821 DEKOIS 2.0, AND LIT-PCBA**

824 In addition to FragBench, we construct fragment-level retrieval benchmarks for three widely used
 825 structure-based virtual screening datasets: **DUD-E**, **DEKOIS 2.0**, and **LIT-PCBA**. Our goal is to
 826 provide fragment-based counterparts to these classical molecule-level benchmarks, enabling consis-
 827 tent evaluation of fragment retrieval methods across diverse protein families and pocket types.
 828

829 **Fragment generation and interaction labeling.** For each dataset, we begin from the original
 830 active and decoy molecules associated with each target. Each molecule is decomposed into syn-
 831 thetically accessible fragments using the BRICS algorithm. For every target, the protein pocket is
 832 extracted from its reference binding structure, and each fragment is docked into the pocket using
 833 Glide. Fragment–pocket interactions are then quantified using PLIP. A fragment is labeled as *pos-
 834 itive* if it forms at least two distinct non-covalent interactions with the pocket in a docking pose
 835 and this interaction pattern is consistently reproduced across three independent docking replicates.
 836 In all three datasets, we applied the same fingerprint-based fragment clustering procedure used in
 837 FragBench to reduce redundancy and ensure diversity among the fragment candidates. To maintain
 838 consistency with the imbalance characteristics of the original molecule-level datasets (e.g., DUD-
 839 E’s heavy active–decoy skew), we sample negatives at a fixed ratio of **1:90** relative to positives for
 840 each target.

841 **Dataset statistics.** Table 8 reports the number of targets, positive fragments, negative fragments,
 842 and dataset-level averages for all three fragment benchmarks.
 843

845 **Table 8: Fragment-level dataset statistics for DUD-E, DEKOIS 2.0, and LIT-PCBA.**

Dataset	Targets	Positives	Negatives	Avg Pos/Target	Avg Neg/Target
DUD-E	96	8,740	786,600	91.0	8,193.8
DEKOIS 2.0	81	6,398	575,820	79.0	7,108.9
LIT-PCBA	15	1,256	113,040	83.7	7,536.0
Total	246	20,950	1,885,500	85.2	7,664.6

853 These fragment-level benchmarks complement FragBench and enable comprehensive evaluation of
 854 fragment retrieval performance across both druggable and challenging targets.
 855

856 **F IMPLEMENTATION DETAILS**

859 All models were trained on 4 NVIDIA A100 GPUs (80GB) using a batch size of 20. We employed
 860 a linear learning rate warm-up schedule for the first 5% of training steps, followed by cosine de-
 861 cay. The protein and molecular encoders are implemented as SE(3)-equivariant 3D convolutional
 862 neural networks following the Uni-Mol architecture (Zhou et al., 2023). All contrastive losses use a
 863 temperature parameter $\tau = 1$, and we optimize using the AdamW optimizer with weight decay of
 1×10^{-3} . Models are trained for 100 epochs.

864 **G CHEMBL DATA FILTERING PROTOCOL**
865866 To ensure the reliability and consistency of bioactivity data used in our benchmark, we applied a
867 set of rigorous filtering criteria to extract high-confidence ligand–target interactions from ChEMBL.
868 The selection process involved both assay-level and activity-level filters, focusing on well-annotated
869 functional assays with validated outcomes. Specifically, the following conditions were enforced:
870

- 871 • **Assay Confidence and Type:** Only entries with `assays.confidence_score = 9`,
872 indicating direct target assignment, and `assays.assay_type` being either ‘B’ (binding)
873 or ‘F’ (functional) were retained.
- 874 • **Activity Validity:** We retained entries where `activities.data_validity_comment`
875 was either `NULL` or ‘Manually validated’, ensuring manual curation.
- 876 • **Quantitative Bioactivity Measurements:** We included entries with either a valid combi-
877 nation of `standard_relation`, `standard_value`, and `standard_units`—where
878 `standard_units` $\in \{pM, nM, \mu M\}$ and `standard_value` $\in [0.001, 1,000,000]$ —or
879 a textual `activity_comment` indicative of biological activity. The accepted
880 comments include: ‘active’, ‘weak activity’, ‘slightly active’,
881 ‘slight inhibition’, ‘potent inhibitor’, ‘partially active’,
882 ‘partial antagonist’, ‘partial agonist’, ‘non-competitive
883 antagonist’, ‘no significant effect’, ‘no significant
884 activity’, ‘no effect’, ‘no activity’, ‘no action’, ‘inverse
885 agonist’, ‘irreversible antagonist’, ‘inhibition not detected’,
886 ‘inactive’, ‘dose-dependent effect’, ‘antagonist’, ‘agonist’,
887 ‘activator’, as well as comments beginning with ‘not active’ or ‘no
888 inhibit’.
- 889 • **Standard Types:** Only the following potency-related measurement types were included:
890
$$\text{Standard_Type} \in \{IC_{50}, XC_{50}, EC_{50}, AC_{50}, K_i, K_d, ED_{50}\}$$

- 891 • **Relation Operators:** To ensure comparability, we kept entries where:
892

$$\text{Standard_Relation} \in \{=, <, >, \leq, \geq, \ll, \gg\}$$

893 **H FRAGMENT CLUSTERING PROTOCOL**
894895 To ensure chemical diversity and reduce redundancy in the fragment pool, we performed cluster-
896 ing based on molecular similarity. Fragments were first filtered to ensure chemical validity—only
897 molecules with valid SMILES, successful sanitization, and an atom count between 6 and 24 were
898 retained.
899900 For each valid fragment, we computed **feature-based circular fingerprints (FCFP6)** using RDKit
901 with a radius of 3 and 4096 bits. Pairwise Tanimoto similarities were used to construct a distance
902 matrix, followed by **hierarchical agglomerative clustering** with Ward linkage. A distance thresh-
903 old of 0.9 was applied to define cluster membership.
904905 From each resulting cluster, representative fragments were sampled to maintain diversity across
906 the dataset. This clustering process was applied in parallel across all fragment sets using Python’s
907 `multiprocessing` utilities for scalability.
908909 **I FRAGBENCH TARGETS DETAILS**
910911 Table 9 presents the detailed information for the targets included in the FragBench dataset. For each
912 entry, we provide the UniProt ID, protein name, functional classification, and the reference PDB
913 structure. Structural properties include the SiteScore and AA Num, which denotes the number of
914 amino acid residues located within the 6Å binding pocket. Additionally, the table lists associated
915 diseases to highlight the clinical relevance of each target.
916

917

Table 9: Targets and associated diseases formatted in dual-row style

Uniprot	Protein Name	Class	SiteScore	AA Num	PDB
P00749	Urokinase-type plasminogen activator	Enzyme	0.799	23	1gi8
	Diseases: breast cancer, colorectal cancer, lung cancer, pancreatic cancer, rheumatoid arthritis, pulmonary fibrosis, neurodegenerative diseases				
P62993	Growth factor receptor-bound protein 2	Signaling / regulatory	0.557	15	1x0n
	Diseases: cervical cancer, colorectal cancer, chronic myeloid leukemia, hepatocellular carcinoma, prostate cancer (anti-androgen resistance)				
P00441	Superoxide dismutase [Cu-Zn]	Enzyme	0.372	10	2wz6
	Diseases: amyotrophic lateral sclerosis (ALS), Parkinson's disease, cardiovascular diseases, COVID-19, ischemic stroke				
P17931	Galectin-3	Other	0.463	21	4bm8
	Diseases: NASH-related hepatic fibrosis, idiopathic pulmonary fibrosis, pancreatic ductal adenocarcinoma, IgA nephropathy, insulin resistance				
P14735	Insulin-degrading enzyme	Enzyme	0.783	19	4gs8
	Diseases: Type 2 diabetes mellitus, Alzheimers disease, Cancer (various types), Neurodegenerative disorders involving amyloid- β aggregation, Nonalcoholic fatty liver disease				
P19491	Glutamate receptor 2	Receptor	0.428	18	4u23
	Diseases: Nicotine addiction, Alcohol use disorder, Schizophrenia and related psychoses, Alzheimers disease, Amyotrophic lateral sclerosis				
Q13822	Autotaxin	Enzyme	0.790	14	4zg9
	Diseases: idiopathic pulmonary fibrosis (IPF), systemic sclerosis (SSc), cancer (e.g., breast cancer, lung adenocarcinoma), cholestatic pruritus, cardiovascular and metabolic diseases				
P47929	Galectin-7	Other	0.557	15	5h9q
	Diseases: cancer (multiple types), SJS/TEN, preeclampsia, psoriasis, asthma				
Q9UIF8	Bromodomain adjacent to zinc finger domain protein 2B	Transcription / epigenetic	0.787	16	5or9
	Diseases: orthodontic-related gingival overgrowth				
P22734	Catechol O-methyltransferase	Enzyme	0.659	11	5pa0
	Diseases: breast cancer, systemic lupus erythematosus (SLE), autoimmune diseases involving Tfh dysregulation, allergic rhinitis, narcolepsy type 1				
Q14145	Kelch-like ECH-associated protein 1	Signaling / regulatory	0.762	12	5wiy
	Diseases: non-small cell lung cancer, KRAS-driven lung adenocarcinoma, neurodegenerative diseases, non-alcoholic fatty liver disease, sepsis-associated ferroptosis				
P41182	B-cell lymphoma 6 protein	Transcription / epigenetic	0.547	12	6c3l
	Diseases: breast cancer, autoimmune diseases, systemic lupus erythematosus, narcolepsy type 1, allergic rhinitis				
Q9NUW8	Tyrosyl-DNA phosphodiesterase 1	Enzyme	0.792	20	6w4r

Continued on next page...

972	Uniprot	Protein Name	Class	SiteScore	AA Num	PDB
973	Diseases: non-small cell lung cancer, colorectal cancer, pancreatic ductal adenocarcinoma, lung adenocarcinoma, low-grade epilepsy-associated developmental tumors					
974	P01116	GTPase KRas	Signaling / regulatory	0.758	20	7acf
975	Diseases: Non-small cell lung cancer, colorectal cancer, pancreatic ductal adenocarcinoma, lung adenocarcinoma, adenomatoid odontogenic tumor					
976	O15151	Protein Mdm4	Signaling / regulatory	0.726	20	7c3y
977	Diseases: hepatocellular carcinoma, renal cell carcinoma, colon cancer, breast cancer (including metastases), pulmonary fibrosis					
978	Q92793	CREB-binding protein	Transcription / epigenetic	0.351	16	8fup
979	Diseases: colorectal cancer, pancreatic ductal adenocarcinoma, chronic myeloid leukemia, neurodegenerative disorders, inflammatory diseases					
980	P16581	E-selectin	Receptor	0.481	20	8r5m
981	Diseases: acute myeloid leukemia, prostate cancer, pancreatic cancer, atherosclerosis, venous thrombosis					
982	P02879	Ricin	Other	0.750	13	8t9v
983	Diseases: ricin intoxication/poisoning					
984	P02769	Albumin	Transport / carrier	0.455	13	8wdd
985	Diseases: pancreatic carcinoma, gastric cancer with peritoneal metastasis, liver failure with systemic inflammation, inflammatory bowel disease, acute ischemic stroke					
986	P02766	Transthyretin	Transport / carrier	0.497	14	1eta
987	Diseases: Transthyretin amyloid cardiomyopathy, Hereditary transthyretin amyloidosis with polyneuropathy, Hereditary/mixed-phenotype ATTR amyloidosis, Wild-type (senile systemic) transthyretin amyloidosis					
988	P60568	Interleukin-2	Other	0.684	17	1py2
989	Diseases: multiple sclerosis, transplant rejection, high-risk neuroblastoma, metastatic melanoma, autoimmune hepatitis, autoimmune diseases (general), lymphoma, advanced/metastatic renal cell carcinoma					
990	P08254	Stromelysin-1	Enzyme	0.752	16	1usn
991	Diseases: cancer (general, including mammary tumor models), metastatic melanoma, lung cancer, gastric cancer and gastric carcinogenesis associated with Helicobacter pylori infection					
992	Q92731	Estrogen receptor beta	Receptor	0.789	14	2fsz
993	Diseases: breast cancer, triple-negative breast cancer, prostate cancer, lung cancer, glioblastoma, colorectal cancer					
994	P56524	Histone deacetylase 4	Enzyme	0.799	17	2vqv
995	Diseases: pulmonary arterial hypertension, myocardial infarction, cardiac fibrosis and cardiovascular disease, ischemic stroke, diabetic nephropathy					
996	P10275	Androgen receptor	Receptor	0.657	16	2ylo
997	Diseases: prostate cancer, metastatic castration-resistant prostate cancer, triple-negative breast cancer, androgenetic alopecia, hirsutism					
998	P42574	Caspase-3	Enzyme	0.629	13	3dek
999	Diseases: Spinal cord injury, Mechanical-ventilation-induced diaphragm atrophy, Cancer (various types), Ischemia/reperfusion injury, Age-related macular degeneration					
1000	Q00987	E3 ubiquitin-protein ligase Mdm2	Enzyme	0.789	25	3blk
1001	Diseases: osteosarcoma, chronic myeloid leukemia, glioblastoma, melanoma, breast cancer					
1002	P08235	Mineralocorticoid receptor	Receptor	0.690	15	3vhv
1003	Diseases: hypertension (including resistant hypertension), heart failure, diabetic kidney disease, chronic kidney disease, primary aldosteronism					

Continued on next page...

1026	Uniprot	Protein Name	Class	SiteScore	AA Num	PDB
1027	P00747	Plasminogen	Coagulation factor	0.628	13	4cik
1028	Diseases: fibrotic renal disease, thrombotic/fibrinolytic disorders (VTE, pulmonary embolism, myocardial infarction, ischemic stroke), cancers, Alzheimers disease, submacular hemorrhage					
1029	P14740	Dipeptidyl pepti- dase 4	Enzyme	0.786	26	4ffw
1030	Diseases: type 2 diabetes mellitus, obesity, autoimmune diabetes, bullous pemphigoid, colorectal cancer					
1031	P06802	Ectonucleotide py- rophosphatase/PDE 1	Enzyme	0.794	25	4gtz
1032	Diseases: calcium pyrophosphate deposition disease (CPPD), chondrocalcinosis, breast cancer stem cell generation					
1033	P45452	Collagenase 3	Enzyme	0.662	10	4l19
1034	Diseases: osteoarthritis, cancer (including breast and esophageal cancer), intestinal fibrosis in Crohns disease, pulmonary fibrosis, keratoconus					
1035	Q8NB16	Mixed lineage ki- nase domain-like protein	Signaling / regulatory	0.726	14	4mwi
1036	Diseases: dementia_in_Alzheimers_disease, non_alcoholic_fatty_liver_disease, amy- otrophic_lateral_sclerosis, liver_fibrosis, diabetic_kidney_disease					
1037	P03951	Coagulation factor XI	Coagulation factor	0.763	29	4na8
1038	Diseases: deep vein thrombosis, ischemic stroke, myocardial infarction, venous thromboembolism, car- dioembolic stroke					
1039	Q9BY41	Histone deacetylase 8	Enzyme	0.748	16	4rn2
1040	Diseases: breast cancer, glioma, endometriosis, peritoneal fibrosis, Schistosoma mansoni infection (schis- tosomiasis)					
1041	P08684	Cytochrome P450 3A4	Enzyme	0.555	11	5a1p
1042	Diseases: Affecting drug metabolism and drug interactions					
1043	P08246	Neutrophil elastase	Enzyme	0.774	21	5abw
1044	Diseases: breast and lung cancer metastasis, cystic fibrosis airway inflammation, COVID-19-associated lung injury, atherosclerosis, Alzheimers disease with inflammatory exacerbation					
1045	O14965	Aurora kinase A	Enzyme	0.773	16	5dn3
1046	Diseases: neuroendocrine prostate cancer, breast cancer, pancreatic cancer, non-small-cell lung cancer, acute myeloid leukemia					
1047	P21836	Acetylcholinesterase	Enzyme	0.760	14	5eih
1048	Diseases: Alzheimer's disease, Myasthenia gravis, Vascular dementia, Parkinson's disease (symptom- related), Autism spectrum disorders					
1049	P39748	Flap endonuclease 1	Enzyme	0.785	18	5fv7
1050	Diseases: oral squamous cell carcinoma, breast cancer (including paclitaxel-resistant subtype), hepatocel- lular carcinoma, glioma, hepatitis B virus infection (cccDNA formation)					
1051	P09958	Furin	Enzyme	0.362	13	5mim
1052	Diseases: SARS-CoV-2 infection, atherosclerosis, epilepsy, cancer/metastasis, MERS-CoV infection					
1053	P09382	Galectin-1	Other	0.643	23	5mwt
1054	Diseases: cancer (multiple types), HIV infection, fibrotic diseases, neurodegenerative diseases, retinal dis- eases (nAMD, DME, RVO)					
1055	P06276	Cholinesterase	Enzyme	0.476	12	5nn0
1056	<i>Continued on next page...</i>					

	Uniprot	Protein Name	Class	SiteScore	AA Num	PDB
1080						
1081						
1082						
1083						
1084	O75164	Lysine-specific demethylase 4A	Enzyme	0.591	10	5var
1085						
1086						
1087	Q95PM0	Cysteine protease (Fragment)	Enzyme	0.792	23	6ex8
1088						
1089						
1090						
1091	Q03111	Protein ENL	Transcription / epigenetic	0.606	12	6hpx
1092						
1093						
1094	P07550	Beta-2 adrenergic receptor	Receptor	0.798	17	6n48
1095						
1096						
1097						
1098	P10415	Apoptosis regulator Bcl-2	Signaling / regulatory	0.721	27	6o0l
1099						
1100						
1101						
1102	P07339	Cathepsin D	Enzyme	0.624	19	6qbg
1103						
1104						
1105	Q8N884	Cyclic GMP-AMP synthase	Enzyme	0.705	13	7ftm
1106						
1107						
1108						
1109	Q9Y657	Spindlin-1	Transcription / epigenetic	0.784	15	7ocb
1110						
1111						
1112	A5H660	histone deacetylase	Enzyme	0.756	16	7p2v
1113						
1114						
1115	P0C6X7	Replicase polyprotein 1ab	Other	0.594	15	8c0g
1116						
1117						
1118						
1119	P61964	WD repeat-containing protein 5	Transcription / epigenetic	0.748	15	8g3e
1120						
1121						
1122						
1123						
1124						
1125						
1126						
1127						
1128						
1129						
1130						
1131						
1132						
1133						