CURIOSITY-DRIVEN LLM-AS-A-JUDGE FOR PERSON-ALIZED CREATIVE JUDGMENT

Anonymous authorsPaper under double-blind review

ABSTRACT

Modern large language models (LLMs) excel at objective tasks such as evaluating mathematical reasoning and factual accuracy, yet they falter when faced with the nuanced, subjective nature of assessing creativity. In this work, we propose a novel curiosity-driven LLM-as-a-judge for evaluating creative writing which is personlized to each individual's creative judgments. We use the Torrance Test of Creative Thinking(TTCW) benchmark introduced in Chakrabarty et al. (2024), which has stories annotated by expert humans across various subjective dimensions like *Originality*, to test our hypothesis. We show that our method enables models across various sizes, to learn the nuanced creative judgments of different individuals, by showing improvements over baseline supervised finetuning(SFT) method across various evaluation metrics like Pearson correlation, Cohen's κ and F1 values. Our method is especially useful in subjective evaluations where not all the annotators agree with each other.

1 Introduction

Rigorous, standardized evaluation has repeatedly catalyzed progress in machine learning, from ImageNetRussakovsky et al. (2015) and GLUEWang et al. (2019), driving leaps in the fields of computer vision and Natural Language Processing, respectively. The same effect is evident in objective math reasoning, where benchmarks like GSM8KCobbe et al. (2021), together with RL-trained reasoning models such as OpenAI's o1OpenAI et al. (2024) and DeepSeek-R1DeepSeek-AI et al. (2025) have obtained strong results on hard contests like AIME and IMO.

While robust evaluation metrics exist for objective tasks such as mathematical reasoning and factual verification, subjective tasks like creativity remain difficult to assess reliably. There are many previous works Panickssery et al. (2024a); Wataoka et al. (2025) which show that using Large Language Models(LLM) as a judge prefer their own generations making them unreliable. Despite the success of LLMs on objective benchmarks, they still struggle to evaluate creativity in a manner aligned with human judgment. As shown in Chakrabarty et al. (2024) and Table 12 and Table 2, even state-of-the-art models fall short in consistently evaluating the subjective dimensions of the story as well as a human expert. This can be attributed to the fact that individual preferences shape creativity and rarely align uniformly across people.

To address this gap, we present an enhanced LLM-as-a-judge that not only learns from a diverse pool of annotations but also adapts its scoring to align with individual annotators or experts. This allows for more faithful and preference-aware evaluation of creativity. We emphasize personalization in our framework because the task of assessing subjective criteria is inherently variable across individuals. To this end, we propose a curiosity-driven LLM-as-a-judge for evaluating creativity in text generation, drawing inspiration from the curiosity-based Reinforcement Learning (RL) framework of Pathak et al. (2017). However, unlike the RL setting in Pathak et al. (2017), we reinterpret curiosity as an *belief-shift signal* for creative evaluation. Specifically, when the model is "surprised" by an expert's explanation, it signals a mismatch between the LLM's prior belief and the expert's preference; conversely, low surprise indicates alignment between the LLM and the expert (see Fig 5. To implement this, we first train an Intrinsic Curiosity Model (ICM) that measures the LLM's surprise at a given explanation while simultaneously predicting which expert or annotator produced the explanation. The intuition behind predicting the annotator is that the model can learn which annotator caused the belief shift, allowing it to calibrate the curiosity signal for each annotator

individually, thereby improving personalization. The resulting *curiosity score* is then fed as an auxiliary, self-supervised signal to improve a supervised fine-tuning (SFT) model (see Fig 1).

In our experiments, we establish a baseline using an SFT model that predicts annotators' binary judgments from the story and question (see Fig 3a). To evaluate the effect of curiosity, we enhance this baseline with an ICM-derived curiosity score. More concretely we append the curiosity score to story and question in the baseline model. This helps us do a fair comparison on effect of curiosity signal on the final judgment and thereby measure the lift in performance our methodology provides over the baseline.

We conduct extensive experiments across various model sizes to ensure our method scales well with model size. Since the TTCW dataset size is extremely small, we do a 5-fold cross validation in order to ensure that our results are statistically significant. We also test our method in out-of-distribution scenarios to ensure that our method generalizes well. Averaged across model sizes, ICM significantly improves Pearson correlation and F1 scores. More details about the results can be found in Fig 4.

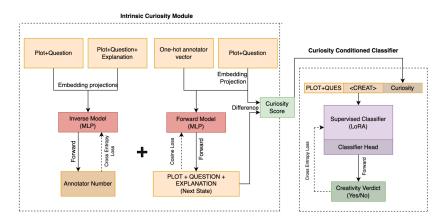


Figure 1: Overview of Architecture during training for Curiosity Driven LLM-as-a-judge

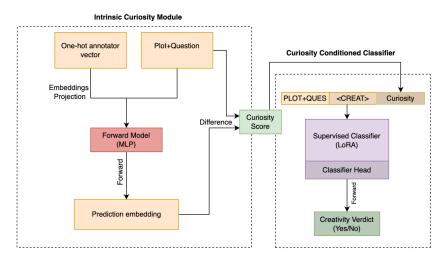


Figure 2: Overview of Architecture during inference for Curiosity Driven LLM-as-a-judge

2 METHODOLOGY

In this section, we describe our curiosity-driven LLM-as-a-judge for evaluating creativity in text generation, which combines belief shift estimation with expert attribution. Our method leverages the TTCW dataset Chakrabarty et al. (2024), which is based on the Torrance Test of Creative Thinking

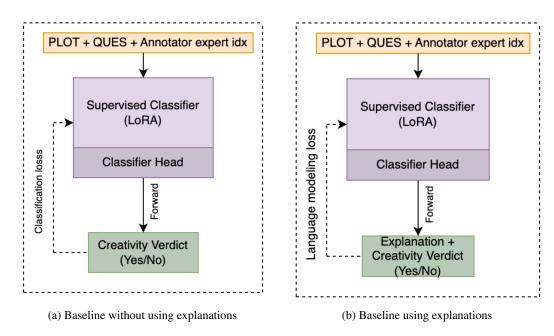


Figure 3: Comparison of baselines with and without using explanations.

Torrance (1966) but adapted for LLMs. We focus on a subset of five creativity dimensions particularly relevant for evaluating the creative judgments of generative language models. We detail the dataset structure, model architecture, loss functions, and the formulation of our curiosity signal.

2.1 Dataset

The TTCW dataset¹ provides expert human-annotated creativity judgments across 14 distinct dimensions. All the distinct dimensions in the TTCW dataset are mentioned in Appendix A.1. For this study, we focus on five dimensions, 3 of which are categorised under Originality and 2 under flexibility: *Originality in Thought, Originality in Form, Originality in Theme and Content, Structural Flexibility*, and *Perspective and Voice Flexibility*. Our analysis is restricted to these five dimensions, encompassing all dimensions under *Originality* and two representative dimensions from *Flexibility*. We picked these 5 dimensions among the 14(Table 4) as these are more subjective in nature and hence the most ideal to evaluate our methodology. We defer exploration of the remaining dimensions to future work. Questions associated with each dimension can be found in appendix 6.

2.2 Data Format and Task Setup

Each example in the dataset consists of a story S, a creativity-focused question Q_d specific to dimension d, an expert ID z_i where $i \in \{1,2,3\}$ for each annotation by an expert, three expert-provided explanations $\mathcal{E} = \{e_1, e_2, e_3\}$, and corresponding binary verdicts $V_i \in \{\text{yes}, \text{no}\}$ for each explanation.

The task is to improve the model's performance on producing judgments similar to that of a particular expert when the model is presented with the story and the creative question

2.3 Intrinsic Curiosity Model Overview

Our model operates in two stages:

1. **Belief Shift Estimation (Forward Score)**: The model measures the impact of an expert explanation on their prediction of creativity.

¹Huggingface TTCW dataset

Under review as a conference paper at ICLR 2026 2. Expert Attribution (Backward Score): The model identifies which expert wrote a given explanation. 2.3.1 FORWARD SCORE: BELIEF SHIFT VIA COSINE LOSS We define two states: • State A: Input consisting of the story and question and one-hot vector of the expert ID z_i represented as $(S, Q_d, onehot(z_i))$ where $i \in \{1, 2, 3\}$ as each story-question pair is annotated by 3 experts. • State B: Input augmented with one expert explanation (S, Q_d, e_i) where $i \in \{1, 2, 3\}$. Let $f_{\theta}^{(A)} = f_{\theta}(S, Q_d, onehot(z_i))$ and $f_{\theta}^{(B)} = f_{\theta}(S, Q_d, e_i)$, where f_{θ} denote the judge's scoring function (logit head) with parameters θ that maps the input to a scalar judgment logit. The forward loss is defined as the cosine loss between these two predictions: $\mathcal{L}_{\text{forward}} = 1 - \frac{f_{\theta}^{(A)} \cdot f_{\theta}^{(B)}}{\|f_{\theta}^{(A)}\| \|f_{\theta}^{(B)}\|}$ This loss captures how much the model's belief about creativity of the story shifts when it incorporates the explanation by the annotator, which we define as the intrinsic curiosity measure. 2.3.2 BACKWARD SCORE: EXPERT ATTRIBUTION VIA CROSS-ENTROPY $z_i \in \{1, 2, 3\}$ who authored explanation e_i :

To help the model to understand the distinct reasoning styles of different experts, we introduce an auxiliary classification task. Given (S, Q_d, e_i) , the model predicts the identity of the expert

$$p_{\phi}(z_i \mid S, Q_d, e_i) = \operatorname{softmax}(g_{\phi}(S, Q_d, e_i))$$

The backward loss is the cross-entropy between the predicted and true expert label:

$$\mathcal{L}_{\text{backward}} = -\log p_{\phi}(z_i \mid S, Q_d, e_i)$$

2.3.3 Loss function of Intrinsic curiosity model(ICM)

 We define the ICM model's loss as a weighted combination of the forward and backward components:

$$\mathcal{L}_{curiosity} = \mathcal{L}_{forward} + \lambda \cdot \mathcal{L}_{backward}$$

where λ is a tunable hyperparameter that balances the two objectives. In our experiments we set λ as 1.

INCORPORATING THE CURIOSITY SIGNAL TO SFT 2.3.4

To evaluate the utility of the learned curiosity signal, we use it as a conditioning input to a supervised fine-tuning (SFT) model trained to predict expert verdicts. For each instance, we append the scalar curiosity score to the original input using a special delimiter token <CREAT>, resulting in the following input format:

$$\label{eq:core} \texttt{Input:} \quad Q_d + S + < \texttt{CREAT} > + Curiosity_{\texttt{Score}} \quad \longrightarrow \quad \texttt{Target:} \quad V_i$$

Curiosity_{score} =
$$f_{\theta}(S, Q_d, e_i) - f_{\theta}(S, Q_d, \text{ onehot(expert_idx)})$$

 $V_i \in \{ \text{yes}, \text{no} \}$ is the binary verdict associated with explanation e_i . The model uses the $Curiosity_{\text{Score}}$ as a signal to predict the verdict of the given annotator. We use cross-entropy loss for training this classifier model

2.4 Inference

During inference(see Fig 2), the story and creativity-focused questions are first passed through the intrinsic curiosity model (ICM) to compute a curiosity score. This score reflects the model's internal belief shift in response to the input for that particular annotator. The resulting curiosity score is then appended to the original input, using a special delimiter token <CREAT>—and passed to the SFT classifier model. This classifier then predicts the binary creativity verdict (yes or no) for the given story-question pair.

2.5 BASELINE WITH EXPLANATIONS

For the baseline comparison, we use a standard SFT model that produces the explanation and binary verdict given the input(see fig. 3b). The model input is structured as:

Input:
$$Q_d + S + z_i \longrightarrow \text{Target}: \{V_i, e_i\}$$

At inference time, we provide Q_d , S, and z_i as input, and the model outputs a JSON structure, from which the predicted verdict is parsed and compared to the ground truth. This baseline is trained using language modeling loss.

2.6 Baseline without explanations

We ensure to compare our method against the baseline SFT in a classification setting rather than a causal language model setting to ensure fairness in comparison(see fig. 3a). Since we set up the baseline SFT in a classification setting, we do not include the explanations as neither part of the input or the output of the classification task. In this classification setting we use the question and the story as part of input and the verdict as part of the output.

Input:
$$Q_d + S + z_i \longrightarrow \text{Target}: \{V_i\}$$

2.7 EVALUATION

Evaluating subjective tasks like creativity presents unique challenges, as even human annotators often disagree on what constitutes a "correct" judgment. Rather than attempting to define a universal metric for creativity, our approach embraces this subjectivity by focusing on personalization. We aim to adapt evaluation signals to individual experts by learning from a small number of their labeled examples. This allows us to model subjective preferences more faithfully and use this personalized model to assess creativity in a user-aligned manner. To quantify model performance in capturing individual judgments, we report **Pearson Correlation** Benesty et al. (2009) and **Cohen's** κ Cohen (1960), along with **Precision**, **Recall**, and **F1-score**. These metrics enable us to assess both the predictive accuracy and ranking consistency of our models in aligning with subjective human evaluations.

3 THEORY: WHY CURIOSITY BEATS USING EXPLANATION TEXT DIRECTLY

Let e denote the expert's explanation, $\mathbf{x} = Q_d + S$, $s_{\text{base}}(x) = f_{\theta}(S, Q_d, \text{ onehot}(z_i))$ the pre-explanation logit, and $s_{\text{expl}}(x, e_i) = f_{\theta}(S, Q_d, e_i)$ the post-explanation logit produced by the model when conditioned on e. The Curiosity_{Score} is defined as the belief shift.

Curiosity_{score} =
$$f_{\theta}(S, Q_d, e_i) - f_{\theta}(S, Q_d, \text{ onehot}(z_i))$$
,

and discard e thereafter. We train a predictor $\hat{p}_{\theta}(V=1 \mid x, \text{Curiosity}_{\text{score}}) = \sigma(h_{\theta}(x, \text{Curiosity}_{\text{score}}))$ where V is the verdict, h is the LLM judge model and σ represents softmax. This yields three advantages grounded in standard theory.

Table 1: ICM method results against the SFT baseline with explanations

Model	Exp.	LoRA α /R	Pearson	Cohen's κ	F1	Precision	Recall
Qwen0.5B	SFT ICM		0.170 ±0.049				
	ICM	32/10	0.524 ± 0.092	U.383 ±0.076	U.010 ±0.048	U.494 ±0.046	U.010 ±0.067
Qwen1.5B	SFT ICM		$\begin{array}{c} \textbf{0.170} \pm\! 0.048 \\ \textbf{0.587} \pm\! \textbf{0.061} \end{array}$				
Qwen3B	SFT ICM		0.113 ±0.083 0.540 ± 0.057				
Qwen7B	SFT ICM	128/128 32/16			$\begin{array}{c} 0.371 \pm 0.021 \\ \textbf{0.643} \pm \textbf{0.053} \end{array}$		

(1) **Weight-of-evidence sufficiency.** In logit/Bayesian updates, additional information acts *additively* on log-odds via a log-likelihood ratio (*weight of evidence*) (Agresti, 2013):

$$\log \frac{\Pr(V=1 \mid x, e_i)}{\Pr(V=0 \mid x, e_i)} = \log \frac{\Pr(V=1 \mid x)}{\Pr(V=0 \mid x)} + \underbrace{\log \frac{p(e \mid V=1, x)}{p(e \mid V=0, x)}}_{\text{weight of evidence}}.$$

In our methodology, Curiosity_{Score} = $s_{\rm expl} - s_{\rm base}$ is an *empirical estimate* of this increment on the log-odds scale, so it preserves the decision-relevant effect of e while removing lexical/style nuisance. Consequently, conditioning on Curiosity_{Score} approximates the theoretically "right" sufficient update in a logistic decision rule (Agresti, 2013).

(2) Variance reduction via a control-variate effect. Let Z be the random quantity we wish to estimate more stably (e.g., per-example loss), and let $C = \text{Curiosity}_{\text{Score}}$ be the control signal. With Pearson correlation

$$\rho \ = \ \mathrm{Corr}(Z,C) \ = \ \frac{\mathrm{Cov}(Z,C)}{\sqrt{\mathrm{Var}(Z)\,\mathrm{Var}(C)}} \in [-1,1],$$

the classic control-variate construction implies that the optimally adjusted estimator $Z^* = Z - \alpha^*(C - \mathbb{E}[C])$ achieves

$$\operatorname{Var}(Z^{\star}) = \operatorname{Var}(Z) (1 - \rho^2)$$
 at $\alpha^{\star} = \frac{\operatorname{Cov}(Z, C)}{\operatorname{Var}(C)}$.

Thus any nonzero correlation with c strictly reduces variance (Owen, 2013, Ch. 8). Here, $Z = \ell_i(\theta)$ (per-example cross-entropy loss) to reduce risk variance. Lower variance improves sample efficiency and stabilizes training.

(3) Curiosity as a Model of Annotator Behaviour and Generalization Subjective labels reflect both item difficulty and rater idiosyncrasy. A classic way to formalize this is a random–effects logit (Dawid and Skene, 1979; Agresti, 2013):

logit
$$\Pr(V=1 \mid x, z_i) = f(x) + b_{z_i}(x),$$
 (1)

where f(x) captures item evidence and $b_a(x)$ represents the (possibly context-dependent) strictness/leniency of annotator a. Since the curiosity score is able to model the annotator behaviour without considering the idiosyncrasies of the explanation text, it is able to better generalize to out-of-distribution dimensions for that annotator.

4 EXPERIMENTS

We evaluate our Intrinsic Curiosity Modeling (ICM) approach against a supervised fine-tuning (SFT) baseline (see Section 2) across multiple model sizes. For a fair comparison in terms of identical input and outputs, we compare the ICM setup against SFT baseline with explanations. We also compare the ICM setup against FT baseline without explanations in order to ensure the same classification loss is used.

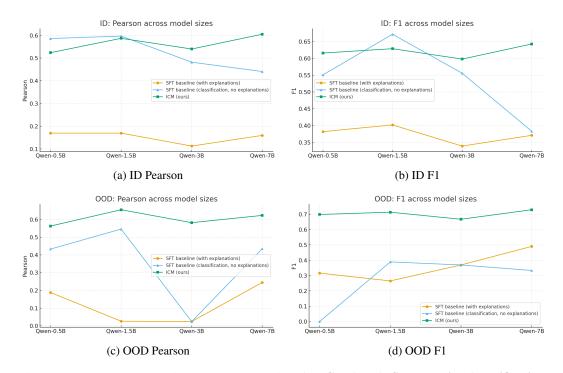


Figure 4: Three-way comparison across model sizes for **ICM** (ours), **SFT baseline** (classification, no explanations), and **SFT baseline** (with explanations). Panels show Pearson and F1 for indistribution (top) and out-of-distribution (bottom). For exact results of the ID and OOD experiments of baseline without explanation(classification), refer to Table 13 and Table 14

Table 2: Comparison of ICM method against GPT-5 one-shot

		1			
Model	Exp.	Pearson	F1	Precision	Recall
Qwen0.5B	ICM	0.524 ± 0.092	0.616 ± 0.048	0.494 ± 0.046	0.818 ± 0.067
Qwen1.5B	ICM	0.587 ± 0.061	0.629 ± 0.045	0.506 ± 0.045	0.836 ± 0.056
Qwen3B	ICM	0.540 ± 0.057	0.598 ± 0.054	0.481 ± 0.050	0.794 ± 0.070
Qwen7B	ICM	$0.605~\pm 0.083$	0.643 ± 0.053	0.518 ± 0.051	0.850 ± 0.072
GPT-5	ICM	0.2409 ±0.1379	0.3467 ± 0.1592	0.5698 ± 0.2305	0.2608 ± 0.1378

Dataset TTCW contains 48 stories annotated on 5 dimensions with three expert judgments per story–dimension pair, yielding 720 examples. We use 5-fold cross-validation with an 80/20 split, giving approximately 576 training and 144 test items per fold. Because individual folds are small, we report means across folds for all metrics (Table 1; see also Section 2.7). Splits are stratified to preserve the positive/negative label ratio.

Training setup. The *baseline with explanations* uses a causal language modeling objective and our ICM model uses a classification objective. We align shared hyperparameters—learning rate, LoRA Hu et al. (2022) rank, and batch size—wherever applicable to ensure comparability. The ICM combined loss uses $\lambda = 1$. All fine-tuning (ICM and SFT baselines) uses LoRA; full details are in Table 5. For the *baseline without explanations*, which also uses a classification loss, we match all of the ICM hyperparameters.

Compute and precision. All runs use a single NVIDIA A100 (80 GB) GPU. Mixed precision with **bfloat16** is enabled when supported. When base models are loaded with 8-bit quantization, matrix multiplies in bitsandbytes execute in FP16 while LoRA heads operate in bfloat16.

Table 3: ICM method results against the SFT baseline with explanations on Out-of-distribution data

Model	Experiment	${\rm LoRA}~\alpha/{\rm Rank}$	Pearson	Cohen's κ	F1	Precision	Recall
Qwen0.5B	SFT	256/256	0.188	0.147	0.316	0.632	0.211
	ICM	32/16	0.563	0.458	0.698	0.625	0.790
Qwen1.5B	SFT	256/256	0.026	0.023	0.265	0.423	0.193
	ICM	32/16	0.655	0.486	0.713	0.639	0.807
Qwen3B	SFT	256/256	0.024	0.024	0.369	0.413	0.333
	ICM	32/16	0.582	0.403	0.667	0.597	0.754
Qwen7B	SFT	128/128	0.245	0.237	0.490	0.585	0.421
	ICM	32/16	0.623	0.514	0.729	0.653	0.825

Convergence and reproducibility. We train to loss convergence in all runs and fix random seeds for data splits and initialization. Hyperparameters and implementation details appear in Table 5.

5 ANALYSIS

5.1 EFFECT OF MODEL SCALE

From Fig 4 we can see that our ICM method improves across model sizes whereas the *baseline classification method with no explanation* degrades with increase in model size for both ID and OOD settings. The reason why the *baseline classification method with no explanation* maybe degrading with scale is because this method primarily overfits on the small dataset with larger model sizes. Although the *baseline with explanation* improves with increase in model size, it remains uniformly low compared to the ICM method.

5.2 GENERALIZATION

To understand the generalization ability of the baseline and the ICM models, we use the same setup as earlier but train the model in both methods on 4 dimensions - *Originality in Form, Originality in Theme and Content, Structural Flexibility*, and *Perspective and Voice Flexibility*, and test these trained models on the held out dimension of *Originality in Thought*. In this way there is absolutely no data leakage since the dimension the model is tested on was never seen during the training. From figure 4, we can see that gains of the ICM method over both the baseline methods are much more in the OOD settings rather than ID settings. This suggests the generalizability of our method because we are essentially allowing the model to understand the user behavior before predicting which is much more generalizable as compared to both baseline SFT methods.

5.3 Comparison with GPT-5

Table 2 has the results of the ICM setup against GPT-5. We can see that even Qwen-0.5B model is able to beat GPT-5 model across all evaluation metrics except precision. The GPT-5 model was prompted with the same story, question and annotator index along with one shot example(randomly picked from training set) by the same annotator. GPT-5 model was more biased towards the answer "no" and whenever "yes" was predicted, it was almost always wrong. This further proves the effectiveness of our method.

6 CONCLUSION AND FUTURE WORK

We introduced a curiosity-driven LLM-as-a-judge for evaluating creativity in text generation, addressing the limitations of baseline SFT for inherently subjective tasks. Our approach leverages a two-part curiosity signal, capturing belief shifts via model responses to expert explanations and incorporating

expert attribution through a backward prediction task. This signal enhances a SFT setup, leading to stronger alignment with human judgments across multiple creativity dimensions in the TTCW dataset. Experiments show that incorporating curiosity-based modeling consistently improves performance across model scales, surpassing standard SFT baselines in both correlation with human ratings and classification accuracy. Not only does it scale with model size, it also improves the performance in out-of-distribution scenarios, where we test the models on one heldout test dimension by training the models on the other 4 creativity dimension. Future work includes extending the curiosity-driven LLM-as-a-judge to other domains like marketing, evaluating novelty of scientific ideas etc,. We also plan to use the curiosity signal as a reward signal in RL setup to further improve our current results.

7 LITERATURE REVIEW

The evaluation of creativity in language models builds upon decades of work in creativity research, where the Torrance Tests of Creative Thinking (TTCT) assess fluency, flexibility, originality, and elaboration Torrance (1966), and the Consensual Assessment Technique (CAT) uses aggregated expert judgments, a reliable but labour-intensive process Patterson et al. (2024). The authors of Chakrabarty et al. (2024) adapted TTCT into the Torrance Tests for Creative Writing (TTCW), designing fourteen binary tests and enlisting creative-writing experts to evaluate 48 stories; their study showed that large language models pass these tests three to ten times less often than human writers Chakrabarty et al. (2024), highlighting a sizable gap in creative competence. Alternative evaluation paradigms, such as the Leap-of-Thought (LoT) framework for humorous, associative reasoning, argue that step-by-step chain-of-thought prompting can limit creativity and instead encourage non-sequential "leaps" Zhong et al. (2024). Efforts to automate creativity scoring (e.g., distributional-semantics proxies for novelty) often align weakly with expert judgments, reinforcing the need for human-aligned signals.

Because creativity judgments are *subjective*, collapsing rater perspectives via majority vote can erase systematic, meaningful disagreement. Following work on multi-annotator modeling, we treat annotators as distributions to be modeled rather than aggregated away Mostafazadeh Davani et al. (2022), rather than use the classical aggregation methods that infer a single latent "truth" Whitehill et al. (2009); Hovy et al. (2013). In parallel, recent results caution against naïve *LLM-as-judge* usage: evaluators can recognize and prefer their own generations, introducing self-preference bias Panickssery et al. (2024b). Calibrated autoraters offer a partial mitigation via broad multi-task training and bias auditing Vu et al. (2024). These findings motivate rater-aware or human-anchored evaluation signals for creativity.

Intrinsic-motivation signals from reinforcement learning offer a principled lens on novelty seeking. Information-gain and prediction-error formulations—VIME Houthooft et al. (2017), ICM Pathak et al. (2017), and Random Network Distillation Burda et al. (2018)—are effective for exploration under sparse extrinsic reward. By analogy, curiosity-style signals can inform language evaluation by rewarding "useful novelty" (divergent yet coherent), complementing semantic-distance and rater-based methods. Our work instantiates this by modeling belief shifts when a language model incorporates expert explanations (a prediction-error-like signal) and combining it with expert attribution, yielding a more interpretable and *personalized* measure of creativity.

REFERENCES

- Alan Agresti. Categorical Data Analysis. John Wiley & Sons, 3rd edition, 2013.
- Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.
- Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Unifying count-based exploration and intrinsic motivation, 2016. URL https://arxiv.org/abs/1606.01868.
- Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation coefficient. In *Noise reduction in speech processing*, pages 1–4. Springer, 2009.
- Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation. *arXiv preprint arXiv:1810.12894*, 2018.

487

488

489

490

491

492

493

494

495 496

497

498

499

500

501

504

505

506

507

509

510

511

512

513

514

515

516

517

519

521

522

523

524

525

527

528

529 530

531

532

534

535

538

Tuhin Chakrabarty, Philippe Laban, Divyansh Agarwal, Smaranda Muresan, and Chien-Sheng Wu. Art or artifice? large language models and the false promise of creativity, 2024. URL https://arxiv.org/abs/2309.14556.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

Jacob Cohen. A coefficient of agreement for nominal scales. *Educational and psychological measurement*, 20(1):37–46, 1960.

A. Philip Dawid and Allan Skene. Maximum likelihood estimation of observer error-rates using the em algorithm. *Journal of The Royal Statistical Society Series C-applied Statistics*, 28:20–28, 1979. URL https://api.semanticscholar.org/CorpusID:45813168.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

- Adam Fisch, Jacob Eisenstein, Vicky Zayats, Alekh Agarwal, Ahmad Beirami, Chirag Nagpal, Pete Shaw, and Jonathan Berant. Robust preference optimization through reward model distillation, 2025. URL https://arxiv.org/abs/2405.19316.
- J Paul Guilford. Creativity: Yesterday, today and tomorrow. *Journal of Creative Behavior*, 1:3–14, 1967. URL https://api.semanticscholar.org/CorpusID:143529843.
- Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime: Variational information maximizing exploration, 2017. URL https://arxiv.org/abs/1605.09674.
- Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani, and Eduard Hovy. Learning whom to trust with MACE. In Lucy Vanderwende, Hal Daumé III, and Katrin Kirchhoff, editors, *Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 1120–1130, Atlanta, Georgia, June 2013. Association for Computational Linguistics. URL https://aclanthology.org/N13-1132/.

541

542

543

544

546

547

548

549 550

551

552

553 554

558

559

561

562

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

581

582

583

584

585

588

592

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models with pairwise ranking and generative fusion, 2023. URL https://arxiv.org/abs/2306.02561.

Andrea Madotto, Mahdi Namazifar, Joost Huizinga, Piero Molino, Adrien Ecoffet, Huaixiu Zheng, Alexandros Papangelis, Dian Yu, Chandra Khatri, and Gokhan Tur. Exploration based language learning for text-based games, 2020. URL https://arxiv.org/abs/2001.08868.

Aida Mostafazadeh Davani, Mark Díaz, and Vinodkumar Prabhakaran. Dealing with disagreements: Looking beyond the majority vote in subjective annotations. *Transactions of the Association for Computational Linguistics*, 10:92–110, 2022. doi: 10.1162/tacl_a_00449. URL https://aclanthology.org/2022.tacl-1.6/.

Abhijnan Nath, Changsoo Jung, Ethan Seefried, and Nikhil Krishnaswamy. Simultaneous reward distillation and preference learning: Get you a language model who can do both, 2025. URL https://arxiv.org/abs/2410.08458.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alex Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian O'Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish, Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou,

- Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li. Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.
 - Art B Owen. Monte carlo theory, methods and examples, 2013.
 - Sarah Pan. Tiny reward models, 2025. URL https://arxiv.org/abs/2507.09973.
 - Arjun Panickssery, Samuel Bowman, and Shi Feng. Llm evaluators recognize and favor their own generations. *Advances in Neural Information Processing Systems*, 37:68772–68802, 2024a.
 - Arjun Panickssery, Samuel R. Bowman, and Shi Feng. Llm evaluators recognize and favor their own generations, 2024b. URL https://arxiv.org/abs/2404.13076.
 - Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by self-supervised prediction, 2017. URL https://arxiv.org/abs/1705.05363.
 - John D Patterson, Baptiste Barbot, James Lloyd-Cox, and Roger E Beaty. Audra: An automated drawing assessment platform for evaluating creativity. *Behavior Research Methods*, 56(4):3619–3636, 2024.
 - Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge, 2015. URL https://arxiv.org/abs/1409.0575.
 - J. Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990x2013;2010). *IEEE Trans. on Auton. Ment. Dev.*, 2(3):230–247, September 2010. ISSN 1943-0604. doi: 10.1109/TAMD.2010.2056368. URL https://doi.org/10.1109/TAMD.2010.2056368.
 - Hakim Sidahmed, Samrat Phatale, Alex Hutcheson, Zhuonan Lin, Zhang Chen, Zac Yu, Jarvis Jin, Simral Chaudhary, Roman Komarytsia, Christiane Ahlheim, Yonghao Zhu, Bowen Li, Saravanan Ganesh, Bill Byrne, Jessica Hoffmann, Hassan Mansoor, Wei Li, Abhinav Rastogi, and Lucas Dixon. Parameter efficient reinforcement learning from human feedback, 2024. URL https://arxiv.org/abs/2403.10704.
 - E. Paul Torrance. Torrance tests of creative thinking. 1966. doi: 10.1037/t05532-000.
 - Tu Vu, Kalpesh Krishna, Salaheddin Alzubi, Chris Tar, Manaal Faruqui, and Yun-Hsuan Sung. Foundational autoraters: Taming large language models for better automatic evaluation, 2024. URL https://arxiv.org/abs/2407.10817.
 - Yanming Wan, Jiaxing Wu, Marwa Abdulhai, Lior Shani, and Natasha Jaques. Enhancing personalized multi-turn dialogue with curiosity reward, 2025. URL https://arxiv.org/abs/2504.03206.
 - Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019. URL https://arxiv.org/abs/1804.07461.
 - Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models, 2023. URL https://arxiv.org/abs/2203.11171.
 - Koki Wataoka, Tsubasa Takahashi, and Ryokan Ri. Self-preference bias in llm-as-a-judge, 2025. URL https://arxiv.org/abs/2410.21819.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023. URL https://arxiv.org/abs/2201.11903.

Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier Movellan, and Paul Ruvolo. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems, volume 22. Curran Associates, Inc., 2009. URL https://proceedings.neurips.cc/paper_files/paper/2009/file/f899139df5e1059396431415e770c6dd-Paper.pdf.

Jerrold H Zar. Spearman rank correlation. Encyclopedia of Biostatistics, 7, 2005.

Yudi Zhang, Lu Wang, Meng Fang, Yali Du, Chenghua Huang, Jun Wang, Qingwei Lin, Mykola Pechenizkiy, Dongmei Zhang, Saravan Rajmohan, and Qi Zhang. Distill not only data but also rewards: Can smaller language models surpass larger ones?, 2025. URL https://arxiv.org/abs/2502.19557.

Yunpu Zhao, Rui Zhang, Wenyi Li, and Ling Li. Assessing and understanding creativity in large language models. *Machine Intelligence Research*, 22(3):417–436, April 2025. ISSN 2731-5398. doi: 10.1007/s11633-025-1546-4. URL http://dx.doi.org/10.1007/s11633-025-1546-4.

Shanshan Zhong, Zhongzhan Huang, Shanghua Gao, Wushao Wen, Liang Lin, Marinka Zitnik, and Pan Zhou. Let's think outside the box: Exploring leap-of-thought in large language models with creative humor generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 13246–13257, June 2024.

A APPENDIX

A.1 DIMENSIONS IN DATASET

In Table 4, all the dimensions that are part of the TTCW dataset are mentioned.

Dimension	Facets		
	Understandability & Coherence		
	Narrative Pacing		
Fluency	Scene vs Exposition		
	Literary Devices & Language Proficiency		
	Narrative Ending		
	Emotional Flexibility		
Flexibility	Perspective & Voice Flexibility		
	Structural Flexibility		
	Originality in Form		
Originality	Originality in Thought		
	Originality in Theme & Content		
	World Building & Setting		
Elaboration	Character Development		
	Rhetorical Complexity		

Table 4: Dimensions of TTCW dataset

A.2 More experiment and compute details

A.3 LIMITATIONS

Our study has some limitations that we hope to address in future work. First, the empirical scope is narrow: we evaluate only on TTCW dataset. Our current method is text-only; extending to richer modalities and subjective tasks beyond TTCW remains future work. In addition, the dataset is small (48 stories \times 5 dimensions with three expert judgments per story–dimension, totaling 720 instances). We therefore rely on 5-fold cross-validation and report means and deviation across 5 folds.

Table 5: Core hyperparameters used in all runs.

max_length	4096
lora_dropout	0.1
target_modules	["q_proj", "k_proj", "v_proj", "o_proj",
	"gate_proj","up_proj","down_proj"]
lr_scheduler	$cosine (warmup_ratio = 0.1)$
<pre>per_device_train_batch_size</pre>	4
gradient_accumulation_steps	8
weight_decay	0.01
max_grad_norm	0.5
num_train_epochs	3
seed	42

Finally, model coverage is limited to one family (Qwen2.5 0.5B–7B), leaving generalization across architectures untested, which we aim to do in future work.

A.4 QUESTION FOR EACH DIMENSION

Table 6: Creativity evaluation categories and questions

Question
Is the story an original piece of writing without any cliches? Does the story show originality in its form and/or structure?
Will an average reader of this story obtain a unique and original idea from reading it?
Does the story provide diverse perspectives, and if there are unlikeable characters, are their perspectives presented convinc-
ingly and accurately? Does the story contain turns that are both surprising and appropriate?

A.5 STATISTICAL SIGNIFICANCE TESTING

Table 7: Statistical significance test across 5 folds for Qwen-0.5b model

Metric	SFT(with expl) (mean±SD)	ICM (mean±SD)	Δ (ICM $-$ SFT)	p (paired t)	Statistically significant?
Pearson	0.160 ± 0.055	0.524 ± 0.092	0.364	0.002 < 0.001 < 0.001	Yes
Spearman	0.160 ± 0.055	0.484 ± 0.078	0.324		Yes
F1	0.371 ± 0.054	0.616 ± 0.048	0.245		Yes

A.6 ICM RESULTS AGAINST SFT BASELINE WITHOUT EXPLANATIONS

A.7 CURIOSITY SCORES BASED ON NON-FINETUNED BASE QWEN-0.5B MODEL'S PREDICTION AND GROUND TRUTH MATCH AND MISMATCH

A.8 Why is inverse model necessary?

When we ablated for the inverse model in our ICM setup with the given expert annotated data we do not see any difference in the results with using the inverse model or without using it. But the inverse model becomes necessary when we have a non-expert annotator like GPT-2, since it helps to clearly distinguish such outliers. This shows that our forward model of the ICM is good enough to distinguish between multiple expert annotators but we do need the inverse model for outlier cases. The details of our experiments can be found in Table 15, we used Qwen-0.5B model for this experiment.

Table 8: Statistical significance test across 5 folds for Qwen-1.5b model

Metric	SFT(with expl) (mean±SD)	ICM (mean±SD)	Δ (ICM $-$ SFT)	p (paired t)	Statistically significant?
Pearson	0.170 ± 0.058	0.586 ± 0.064	0.416	< 0.001	Yes
Spearman	0.170 ± 0.058	0.522 ± 0.069	0.352	< 0.001	Yes
F1	0.402 ± 0.050	0.629 ± 0.045	0.227	< 0.001	Yes

Table 9: Statistical significance test across 5 folds for Qwen-3b model.

Metric	SFT(with expl) (mean±SD)	ICM (mean±SD)	Δ (ICM $-$ SFT)	p (paired t)	Statistically significant?
Pearson	0.113 ± 0.092	0.540 ± 0.074	0.427	<0.001	Yes
Spearman	0.113 ± 0.092	0.494 ± 0.091	0.381	<0.001	Yes
F1	0.339 ± 0.053	0.618 ± 0.061	0.279	<0.001	Yes

Table 10: Statistical significance test across 5 folds for Qwen-7b model.

Metric	SFT(with expl) (mean \pm SD)	ICM (mean±SD)	Δ (ICM $-$ SFT)	p (paired t)	Statistically significant?
Pearson	0.170 ± 0.058	0.606 ± 0.084	0.436	< 0.001	Yes
Spearman	0.170 ± 0.058	0.542 ± 0.089	0.373	< 0.001	Yes
F1	0.381 ± 0.029	0.663 ± 0.058	0.282	< 0.001	Yes

Table 11: Average passing rate (%) on individual TTCW, based on annotations of 10 creative writing experts across 48 stories; last column reports Fleiss' κ (expert agreement).

Dimension	Test	GPT-3.5	GPT-4	Claude v1.3	New Yorker	Expert κ
	Understandability & Coherence	22.2	33.3	55.6	91.7	0.27
	Narrative Pacing	8.3	52.8	61.1	94.4	0.39
Fluency	Scene vs Exposition	8.3	50.0	58.3	91.7	0.27
	Literary Devices & Language	5.6	36.1	13.9	88.9	0.37
	Narrative Ending	8.3	19.4	33.3	91.7	0.48
	Emotional Flexibility	16.7	19.4	36.1	91.7	0.32
Flexibility	Perspective & Voice Flexibility	8.3	16.7	19.4	72.2	0.44
	Structural Flexibility	11.1	19.4	30.6	88.9	0.39
	Originality in Form	2.8	8.3	0.0	63.9	0.41
Originality	Originality in Thought	2.8	44.4	19.4	91.7	0.40
Originanty	Originality in Theme & Content	0.0	19.4	11.1	75.0	0.66
	World Building & Setting	16.7	41.7	58.3	94.4	0.33
Elaboration	Character Development	8.3	16.7	16.7	61.1	0.31
	Rhetorical Complexity	2.8	11.1	5.6	88.9	0.66
Average		8.7	27.9	30.0	84.7	0.41

Table 12: Correlation between LLM-administered TTCW and expert annotations (Cohen's κ) on all 48 stories.

Dimension	Test	GPT-3.5	GPT-4	Claude
	Understandability & Coherence	-0.01	-0.01	-0.17
	Narrative Pacing	0.05	0.00	-0.22
Fluency	Scene vs Exposition	-0.03	-0.08	-0.23
	Literary Devices & Language	0.04	-0.09	-0.11
	Narrative Ending	-0.02	0.02	0.02
	Emotional Flexibility	-0.04	0.00	0.09
Flexibility	Perspective & Voice	0.00	0.26	0.14
	Structural Flexibility	-0.04	0.00	-0.07
	Originality in Form	0.08	0.09	0.03
Originality	Originality in Thought	0.19	0.31	0.15
	Originality in Theme & Content	0.06	-0.01	0.18
	World Building & Setting	0.00	0.00	0.09
Elaboration	Character Development	-0.08	0.02	0.00
	Rhetorical Complexity	0.00	0.00	0.02
Average		0.016	0.035	-0.006

Table 13: ICM method results against the SFT baseline without explanations (classification). Means±SD are shown where SD was available from 5-fold runs.

Model	Experiment type	pearson	precision	recall	f1
Qwen-0.5B (SFT-Classification)	ID	$\textbf{0.586} \pm \textbf{0.085}$	0.769	0.461	0.551 ± 0.198
Qwen-0.5B (ICM)	ID	0.524 ± 0.092	0.494	0.818	$\textbf{0.616} \pm \textbf{0.048}$
Qwen-1.5B (SFT-Classification)	ID	$\textbf{0.602} \pm \textbf{0.064}$	0.787	0.602	$\textbf{0.663} \pm \textbf{0.070}$
Qwen-1.5B (ICM)	ID	0.586 ± 0.064	0.481	0.794	0.629 ± 0.045
Qwen-3B (SFT-Classification)	ID	0.482 ± 0.160	0.670	0.573	0.556 ± 0.094
Qwen-3B (ICM)	ID	$\textbf{0.540} \pm \textbf{0.074}$	0.481	0.794	$\textbf{0.618} \pm \textbf{0.061}$
Qwen-7B (SFT-Classification)	ID	0.441 ± 0.130	0.535	0.342	0.383 ± 0.251
Qwen-7B (ICM)	ID	$\textbf{0.606} \pm \textbf{0.084}$	0.518	0.850	$\textbf{0.663} \pm \textbf{0.058}$

Note. SDs for *precision* and *recall* were not available in the provided per-fold summaries; once those per-fold values are supplied, I will fill in their \pm SD as well. Pearson/F1 SDs are computed across 5 folds.

Table 14: ICM method results against the SFT baseline without explanations(classification) on Out-of-distribution data

Model	Experiment type	pearson	precision	recall	f1
Qwen-0.5B(SFT-Classification)	OOD	0.433	0.000	0.000	0.000
Qwen-0.5B(ICM)	OOD	0.563	0.625	0.790	0.698
Qwen-1.5B(SFT-Classification)	OOD	0.604	0.962	0.439	0.602
Qwen-1.5B(ICM)	OOD	0.655	0.639	0.807	0.713
Qwen-3B(SFT-Classification)	OOD	0.546	0.933	0.246	0.389
Qwen-3B(ICM)	OOD	0.582	0.597	0.754	0.667
Qwen-7B(SFT-Classification)	OOD	0.435	0.800	0.211	0.333
Qwen-7B(ICM)	OOD	0.623	0.653	0.825	0.729

Table 15: Inverse model ablations

Method	Annotations	Pearson	Precision	Recall	F1	Cohen's κ
ICM with Inverse ICM without Inverse	Without GPT-2 Without GPT-2	0.503 ± 0.014 0.500 ± 0.027	$\begin{array}{c} 0.552 \pm 0.014 \\ 0.551 \pm 0.011 \end{array}$	$\begin{array}{c} 0.728 \pm 0.017 \\ 0.727 \pm 0.009 \end{array}$	$\begin{array}{c} 0.628 \pm 0.015 \\ 0.627 \pm 0.010 \end{array}$	0.347 ± 0.027 0.346 ± 0.017
ICM with Inverse ICM without Inverse	With GPT-2 With GPT-2	0.151 ± 0.300 0.002 ± 0.041	0.153 ± 0.265 0.333 ± 0.577	0.233 ± 0.403 0.001 ± 0.002	0.185 ± 0.320 0.002 ± 0.004	0.093 ± 0.166 0.000 ± 0.004

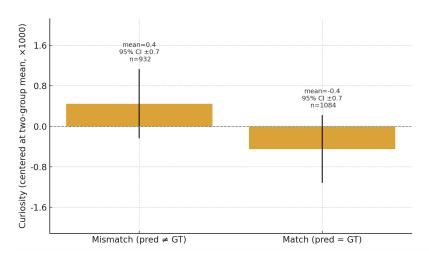


Figure 5: Curiosity scores based on match and mismatch of predictions from Qwen-0.5B base non-finetuned model and the ground truth