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ABSTRACT

Modern large language models (LLMs) excel at objective tasks such as evaluating
mathematical reasoning and factual accuracy, yet they falter when faced with the
nuanced, subjective nature of assessing creativity. In this work, we propose a
novel curiosity-driven LL.M-as-a-judge for evaluating creative writing which is
personlized to each individual’s creative judgments. We use the Torrance Test of
Creative Thinking(TTCW) benchmark introduced in |Chakrabarty et al.| (2024),
which has stories annotated by expert humans across various subjective dimensions
like Originality, to test our hypothesis. We show that our method enables models
across various sizes, to learn the nuanced creative judgments of different individuals,
by showing improvements over baseline supervised finetuning(SFT) method across
various evaluation metrics like Pearson correlation, Cohen’s x and F1 values. Our
method is especially useful in subjective evaluations where not all the annotators
agree with each other.

1 INTRODUCTION

Rigorous, standardized evaluation has repeatedly catalyzed progress in machine learning, from
ImageNetRussakovsky et al.| (2015) and GLUEWang et al.| (2019), driving leaps in the fields of
computer vision and Natural Language Processing, respectively. The same effect is evident in
objective math reasoning, where benchmarks like GSM8KCobbe et al.[(2021), together with RL-
trained reasoning models such as OpenAlI’s 01|OpenAl et al.[(2024) and DeepSeek-R1|DeepSeek-Al
et al.| (2025) have obtained strong results on hard contests like AIME and IMO.

While robust evaluation metrics exist for objective tasks such as mathematical reasoning and factual
verification, subjective tasks like creativity remain difficult to assess reliably. There are many previous
works [Panickssery et al.| (2024a); [Wataoka et al.| (2025) which show that using Large Language
Models(LLM) as a judge prefer their own generations making them unreliable. Despite the success
of LLMs on objective benchmarks, they still struggle to evaluate creativity in a manner aligned
with human judgment. As shown in [Chakrabarty et al|(2024) and Table [12] and Table 2] even
state-of-the-art models fall short in consistently evaluating the subjective dimensions of the story as
well as a human expert. This can be attributed to the fact that individual preferences shape creativity
and rarely align uniformly across people.

To address this gap, we present an enhanced LLM-as-a-judge that not only learns from a diverse pool
of annotations but also adapts its scoring to align with individual annotators or experts. This allows
for more faithful and preference-aware evaluation of creativity. We emphasize personalization in our
framework because the task of assessing subjective criteria is inherently variable across individuals.
To this end, we propose a curiosity-driven LLM-as-a-judge for evaluating creativity in text generation,
drawing inspiration from the curiosity-based Reinforcement Learning (RL) framework of Pathak
et al| (2017). However, unlike the RL setting in [Pathak et al.|(2017), we reinterpret curiosity
as an belief-shift signal for creative evaluation. Specifically, when the model is “surprised” by
an expert’s explanation, it signals a mismatch between the LLM’s prior belief and the expert’s
preference; conversely, low surprise indicates alignment between the LLM and the expert (see Fig
E} To implement this, we first train an Intrinsic Curiosity Model (ICM) that measures the LLM’s
surprise at a given explanation while simultaneously predicting which expert or annotator produced
the explanation. The intuition behind predicting the annotator is that the model can learn which
annotator caused the belief shift, allowing it to calibrate the curiosity signal for each annotator
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individually, thereby improving personalization. The resulting curiosity score is then fed as an
auxiliary, self-supervised signal to improve a supervised fine-tuning (SFT) model (see Fig|[I).

In our experiments, we establish a baseline using an SFT model that predicts annotators’ binary
judgments from the story and question (see Fig[3a). To evaluate the effect of curiosity, we enhance
this baseline with an ICM-derived curiosity score. More concretely we append the curiosity score to
story and question in the baseline model. This helps us do a fair comparison on effect of curiosity
signal on the final judgment and thereby measure the lift in performance our methodology provides
over the baseline.

We conduct extensive experiments across various model sizes to ensure our method scales well with
model size. Since the TTCW dataset size is extremely small, we do a 5-fold cross validation in order
to ensure that our results are statistically significant. We also test our method in out-of-distribution
scenarios to ensure that our method generalizes well. Averaged across model sizes, ICM significantly
improves Pearson correlation and F1 scores. More details about the results can be found in Fig[d]
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Figure 1: Overview of Architecture during training for Curiosity Driven LLM-as-a-judge
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Figure 2: Overview of Architecture during inference for Curiosity Driven LLM-as-a-judge

2 METHODOLOGY

In this section, we describe our curiosity-driven LLM-as-a-judge for evaluating creativity in text
generation, which combines belief shift estimation with expert attribution. Our method leverages the
TTCW dataset|Chakrabarty et al.| (2024), which is based on the Torrance Test of Creative Thinking
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Figure 3: Comparison of baselines with and without using explanations.

Torrance| (1966) but adapted for LLMs. We focus on a subset of five creativity dimensions particularly
relevant for evaluating the creative judgments of generative language models. We detail the dataset
structure, model architecture, loss functions, and the formulation of our curiosity signal.

2.1 DATASET

The TTCW datasetﬂ provides expert human-annotated creativity judgments across 14 distinct di-
mensions. All the distinct dimensions in the TTCW dataset are mentioned in Appendix [AT] For
this study, we focus on five dimensions, 3 of which are categorised under Originality and 2 under
flexibility: Originality in Thought, Originality in Form, Originality in Theme and Content, Structural
Flexibility, and Perspective and Voice Flexibility. Our analysis is restricted to these five dimensions,
encompassing all dimensions under Originality and two representative dimensions from Flexibility.
We picked these 5 dimensions among the 14(Table[d) as these are more subjective in nature and hence
the most ideal to evaluate our methodology. We defer exploration of the remaining dimensions to
future work. Questions associated with each dimension can be found in appendix [6}

2.2 DATA FORMAT AND TASK SETUP

Each example in the dataset consists of a story S, a creativity-focused question @4 specific to
dimension d, an expert ID z; where ¢ € {1,2, 3} for each annotation by an expert, three expert-
provided explanations £ = {ey, e3, €3}, and corresponding binary verdicts V; € {yes, no} for each
explanation.

The task is to improve the model’s performance on producing judgments similar to that of a particular
expert when the model is presented with the story and the creative question

2.3 INTRINSIC CURIOSITY MODEL OVERVIEW

Our model operates in two stages:

1. Belief Shift Estimation (Forward Score): The model measures the impact of an expert
explanation on their prediction of creativity.

"Huggingface TTCW dataset


https://huggingface.co/datasets/Salesforce/ttcw_creativity_eval
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2. Expert Attribution (Backward Score): The model identifies which expert wrote a given
explanation.

2.3.1 FORWARD SCORE: BELIEF SHIFT VIA COSINE LOSS

‘We define two states:

» State A: Input consisting of the story and question and one-hot vector of the expert ID
z; represented as (S, Qq, onehot(z;)) where i € {1,2,3} as each story-question pair is
annotated by 3 experts.

* State B: Input augmented with one expert explanation (S, Qq, e;) where i € {1,2, 3}.

Let fo(A) = fo(S, Q4, onehot(z;)) and fe(B) = fo(S, Qa, e;), where fy denote the judge’s scoring
function (logit head) with parameters 6 that maps the input to a scalar judgment logit.

The forward loss is defined as the cosine loss between these two predictions:

(A)  £(B)

__Je 0
A B
LFS LS

This loss captures how much the model’s belief about creativity of the story shifts when it incorporates
the explanation by the annotator, which we define as the intrinsic curiosity measure.

ﬁforward =1

2.3.2 BACKWARD SCORE: EXPERT ATTRIBUTION VIA CROSS-ENTROPY

To help the model to understand the distinct reasoning styles of different experts, we introduce
an auxiliary classification task. Given (5, @4, ¢;), the model predicts the identity of the expert
z; € {1,2, 3} who authored explanation e;:

p¢(zl ‘ S7 Qd7 67;) = softmax(g¢(S, Qd)ei))

The backward loss is the cross-entropy between the predicted and true expert label:

Lbackward = — Ingqﬁ(Zi | S> Qd7 ei)

2.3.3 LOSS FUNCTION OF INTRINSIC CURIOSITY MODEL(ICM)

We define the ICM model’s loss as a weighted combination of the forward and backward components:

[fcuriosity = [fforward + A £backward

where A is a tunable hyperparameter that balances the two objectives. In our experiments we set A as
1.

2.3.4 INCORPORATING THE CURIOSITY SIGNAL TO SFT

To evaluate the utility of the learned curiosity signal, we use it as a conditioning input to a supervised
fine-tuning (SFT) model trained to predict expert verdicts. For each instance, we append the scalar
curiosity score to the original input using a special delimiter token <CREAT>, resulting in the
following input format:

Input: Qg4+ S+ <CREAT> 4 Curiositysee — Target: V;

Curiosityoe = fo(S, Qa, €i) — fo(S, Qa, onehot (expert_idx))
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Vi € {yes,no} is the binary verdict associated with explanation e;. The model uses the
Curiosityg.. as a signal to predict the verdict of the given annotator. We use cross-entropy
loss for training this classifier model

2.4 INFERENCE

During inference(see Fig[2), the story and creativity-focused questions are first passed through the
intrinsic curiosity model (ICM) to compute a curiosity score. This score reflects the model’s internal
belief shift in response to the input for that particular annotator. The resulting curiosity score is then
appended to the original input, using a special delimiter token <CREAT>—and passed to the SFT
classifier model. This classifier then predicts the binary creativity verdict (yes or no) for the given
story-question pair. .

2.5 BASELINE WITH EXPLANATIONS

For the baseline comparison , we use a standard SFT model that produces the explanation and binary
verdict given the input(see fig.[3b). The model input is structured as:

Input: Qq+S+z — Target:{V; e}

At inference time, we provide ()4, S, and z; as input, and the model outputs a JSON structure, from
which the predicted verdict is parsed and compared to the ground truth. This baseline is trained using
language modeling loss.

2.6 BASELINE WITHOUT EXPLANATIONS

We ensure to compare our method against the baseline SFT in a classification setting rather than
a causal language model setting to ensure fairness in comparison(see fig.[3a). Since we set up the
baseline SFT in a classification setting, we do not include the explanations as neither part of the input
or the output of the classification task. In this classification setting we use the question and the story
as part of input and the verdict as part of the output.

Input: Qq+S+2z — Target:{V;}

2.7 EVALUATION

Evaluating subjective tasks like creativity presents unique challenges, as even human annotators often
disagree on what constitutes a "correct” judgment. Rather than attempting to define a universal metric
for creativity, our approach embraces this subjectivity by focusing on personalization. We aim to adapt
evaluation signals to individual experts by learning from a small number of their labeled examples.
This allows us to model subjective preferences more faithfully and use this personalized model to
assess creativity in a user-aligned manner. To quantify model performance in capturing individual
judgments, we report Pearson Correlation Benesty et al.[(2009) and Cohen’s « Cohen|(1960), along
with Precision, Recall, and F1-score. These metrics enable us to assess both the predictive accuracy
and ranking consistency of our models in aligning with subjective human evaluations.

3 THEORY: WHY CURIOSITY BEATS USING EXPLANATION TEXT DIRECTLY

Let e denote the expert’s explanation, x = Q4 + 5, Spase(z) = fg(S, Qua, onehot(zi)) the pre-
explanation logit, and Sexpi(z, €;) = fg(S , Qa, ei) the post-explanation logit produced by the model
when conditioned on e. The Curiosityg,,,. is defined as the belief shift.

Curiosity,,. = fg(S, Qua, ei) — fg(S, Qa, onehot(zi)),

and discard e thereafter. We train a predictor pg(V=1 | z, Curiosity,.) = o(hg(z, Curiosity,,.))
where V' is the verdict, h is the LLM judge model and o represents softmax. This yields three
advantages grounded in standard theory.
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Table 1: ICM method results against the SFT baseline with explanations
Model Exp. LoRA o/R  Pearson  Cohen’s F1 Precision Recall

Qwen0.5B SFT 256/256 0.170 +0.049 0.155 +0.046 0.382 +0.049 0.452 +0.059 0.334 +0.060
ICM  32/16  0.524 +0.092 0.383 +0.076 0.616 +0.048 0.494 +0.046 0.818 +0.067

Qwenl.5B SFT 256/256 0.170 +0.048 0.155 +0.048 0.402 +0.049 0.432 +0.020 0.383 +0.083
ICM  32/16  0.587 +o0.061 0.406 +0.065 0.629 +0.045 0.506 +0.045 0.836 +0.056

Qwen3B SFT 256/256 0.113 +0.083 0.110 +0.081 0.339 +0.051 0.401 +0.067 0.298 +0.060
ICM  32/16  0.540 +0.057 0.356 +0.081 0.598 +0.054 0.481 +0.050 0.794 +0.070

Qwen7B  SFT 128/128 0.160 +0.050 0.168 +0.085 0.371 +0.021 0.443 +0.050 0.324 +0.038
ICM  32/16  0.605 +o0.083 0.429 +0.082 0.643 +0.053 0.518 +0.051 0.850 +0.072

(1) Weight-of-evidence sufficiency. In logit/Bayesian updates, additional information acts addi-
tively on log-odds via a log-likelihood ratio (weight of evidence) (Agresti, |[2013)):

Pr(V=1]z,¢) Pr(V=1]x) ple |V =1,x2)
I = I I .
BHV=0|me) PV =02 | ®pe|V =02

weight of evidence

In our methodology, Curiosityg, .. = Sexpl — Sbase 18 an empirical estimate of this increment on the
log-odds scale, so it preserves the decision-relevant effect of e while removing lexical/style nuisance.
Consequently, conditioning on Curiosityg..,. approximates the theoretically “right” sufficient update
in a logistic decision rule (Agrestil 2013).

(2) Variance reduction via a control-variate effect. Let Z be the random quantity we wish to
estimate more stably (e.g., per-example loss), and let C' = Curiosityg,,,. be the control signal. With
Pearson correlation

Cov(Z,C

WZ0) iy,

Var(Z) Var(C)
the classic control-variate construction implies that the optimally adjusted estimator Z* = Z —
a*(C — E[C]) achieves

p = Corr(Z,C) =

Cov(Z,0C)
Var(C)
Thus any nonzero correlation with ¢ strictly reduces variance (Owen, 2013} Ch. 8). Here, Z = ¢;(0)

(per-example cross-entropy loss) to reduce risk variance. Lower variance improves sample efficiency
and stabilizes training.

Var(Z*) = Var(Z) (1-p?) at o =

(3)Curiosity as a Model of Annotator Behaviour and Generalization Subjective labels reflect
both item difficulty and rater idiosyncrasy. A classic way to formalize this is a random—effects logit
(Dawid and Skene, 1979} |Agrestil [2013):

logit Pr(V=1|=z,2;) = f(z) + b,,(2), )]
where f(x) captures item evidence and b, (x) represents the (possibly context-dependent) strict-
ness/leniency of annotator a. Since the curiosity score is able to model the annotator behaviour

without considering the idiosyncrasies of the explanation text, it is able to better generalize to
out-of-distribution dimensions for that annotator.

4 EXPERIMENTS

We evaluate our Intrinsic Curiosity Modeling (ICM) approach against a supervised fine-tuning (SFT)
baseline (see Section[2)) across multiple model sizes. For a fair comparison in terms of identical input
and outputs, we compare the ICM setup against SFT baseline with explanations. We also compare
the ICM setup against FT baseline without explanations in order to ensure the same classification
loss is used.
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Figure 4: Three-way comparison across model sizes for ICM (ours), SFT baseline (classification,
no explanations), and SFT baseline (with explanations). Panels show Pearson and F1 for in-
distribution (top) and out-of-distribution (bottom). For exact results of the ID and OOD experiments
of baseline without explanation(classification), refer to Table ['1;3'] and Table@]

Table 2: Comparison of ICM method against GPT-5 one-shot

Model Exp.  Pearson F1 Precision Recall

Qwen0.5B ICM  0.524 +0.092 0.616 +0.048  0.494 +o.046 0.818 +0.067
Qwenl.5B ICM 0.587 0061  0.629 +0.045  0.506 +0.045 0.836 +0.056
Qwen3B ICM 0.540 +0.057 0.598 +0.054 0.481 +0.050 0.794 +0.070
Qwen7B ICM 0.605 +0.083 0.643 +0.053 0.518 0051  0.850 +0.072

GPT-5 ICM 0.2409 +0.1379 0.3467 +0.1592 0.5698 +0.2305 0.2608 +0.1378

Dataset TTCW contains 48 stories annotated on 5 dimensions with three expert judgments per
story—dimension pair, yielding 720 examples. We use 5-fold cross-validation with an 80/20 split,
giving approximately 576 training and 144 test items per fold. Because individual folds are small,
we report means across folds for all metrics (Table[I} see also Section [2.7). Splits are stratified to
preserve the positive/negative label ratio.

Training setup. The baseline with explanations uses a causal language modeling objective and
our ICM model uses a classification objective. We align shared hyperparameters—Ilearning rate,
LoRA |Hu et al.|(2022) rank, and batch size—wherever applicable to ensure comparability. The ICM
combined loss uses A = 1. All fine-tuning (ICM and SFT baselines) uses LoRA; full details are in
Table@ For the baseline without explanations, which also uses a classification loss, we match all of
the ICM hyperparameters.

Compute and precision. All runs use a single NVIDIA A100 (80 GB) GPU. Mixed precision with
bfloat16 is enabled when supported. When base models are loaded with 8-bit quantization, matrix
multiplies in bitsandbytes execute in FP16 while LoRA heads operate in bfloat16.
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Table 3: ICM method results against the SFT baseline with explanations on Out-of-distribution data

Model Experiment LoRA a/Rank Pearson Cohen’s x F1 Precision Recall
Qwen0.5B SFT 256/256 0.188 0.147 0316 0.632 0.211
ICM 32/16 0.563 0458 0.698 0.625 0.790
Qwenl.5B SFT 256/256 0.026 0.023 0.265 0423 0.193
ICM 32/16 0.655 0486 0.713 0.639 0.807
Qwen3B  SFT 256/256 0.024 0.024 0369 0413 0.333
ICM 32/16 0.582 0403 0.667 0.597 0.754
Qwen7B  SFT 128/128 0.245 0.237 0.490 0.585 0.421
ICM 32/16 0.623 0.514 0.729 0.653  0.825

Convergence and reproducibility. We train to loss convergence in all runs and fix random seeds
for data splits and initialization. Hyperparameters and implementation details appear in Table [5]

5 ANALYSIS

5.1 EFFECT OF MODEL SCALE

From Fig il we can see that our ICM method improves across model sizes whereas the baseline
classification method with no explanation degrades with increase in model size for both ID and OOD
settings. The reason why the baseline classification method with no explanation maybe degrading
with scale is because this method primarily overfits on the small dataset with larger model sizes.
Although the baseline with explanation improves with increase in model size, it remains uniformly
low compared to the ICM method.

5.2 GENERALIZATION

To understand the generalization ability of the baseline and the ICM models, we use the same setup
as earlier but train the model in both methods on 4 dimensions - Originality in Form, Originality
in Theme and Content, Structural Flexibility, and Perspective and Voice Flexibility, and test these
trained models on the held out dimension of Originality in Thought. In this way there is absolutely
no data leakage since the dimension the model is tested on was never seen during the training. From
figure |4l we can see that gains of the ICM method over both the baseline methods are much more in
the OOD settings rather than ID settings. This suggests the generalizability of our method because
we are essentially allowing the model to understand the user behavior before predicting which is
much more generalizable as compared to both baseline SFT methods.

5.3 COMPARISON WITH GPT-5

Table[2]has the results of the ICM setup against GPT-5. We can see that even Qwen-0.5B model is able
to beat GPT-5 model across all evaluation metrics except precision. The GPT-5 model was prompted
with the same story, question and annotator index along with one shot example(randomly picked
from training set) by the same annotator. GPT-5 model was more biased towards the answer "no" and
whenever "yes" was predicted, it was almost always wrong. This further proves the effectiveness of
our method.

6 CONCLUSION AND FUTURE WORK

We introduced a curiosity-driven LLM-as-a-judge for evaluating creativity in text generation, address-
ing the limitations of baseline SFT for inherently subjective tasks. Our approach leverages a two-part
curiosity signal, capturing belief shifts via model responses to expert explanations and incorporating
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expert attribution through a backward prediction task. This signal enhances a SFT setup, leading to
stronger alignment with human judgments across multiple creativity dimensions in the TTCW dataset.
Experiments show that incorporating curiosity-based modeling consistently improves performance
across model scales, surpassing standard SFT baselines in both correlation with human ratings and
classification accuracy. Not only does it scale with model size, it also improves the performance in
out-of-distribution scenarios, where we test the models on one heldout test dimension by training
the models on the other 4 creativity dimension. Future work includes extending the curiosity-driven
LLM-as-a-judge to other domains like marketing, evaluating novelty of scientific ideas etc,. We also
plan to use the curiosity signal as a reward signal in RL setup to further improve our current results.

7 LITERATURE REVIEW

The evaluation of creativity in language models builds upon decades of work in creativity research,
where the Torrance Tests of Creative Thinking (TTCT) assess fluency, flexibility, originality, and
elaboration Torrance|(1966)), and the Consensual Assessment Technique (CAT) uses aggregated expert
judgments, a reliable but labour-intensive process |Patterson et al.|(2024). The authors of |(Chakrabarty’
et al.| (2024)) adapted TTCT into the Torrance Tests for Creative Writing (TTCW), designing fourteen
binary tests and enlisting creative-writing experts to evaluate 48 stories; their study showed that large
language models pass these tests three to ten times less often than human writers |Chakrabarty et al.
(2024), highlighting a sizable gap in creative competence. Alternative evaluation paradigms, such as
the Leap-of-Thought (LoT) framework for humorous, associative reasoning, argue that step-by-step
chain-of-thought prompting can limit creativity and instead encourage non-sequential “leaps” |Zhong
et al.| (2024)). Efforts to automate creativity scoring (e.g., distributional-semantics proxies for novelty)
often align weakly with expert judgments, reinforcing the need for human-aligned signals.

Because creativity judgments are subjective, collapsing rater perspectives via majority vote can
erase systematic, meaningful disagreement. Following work on multi-annotator modeling, we treat
annotators as distributions to be modeled rather than aggregated away Mostafazadeh Davani et al.
(2022)), rather than use the classical aggregation methods that infer a single latent “truth” (Whitehill
et al.[ (2009); Hovy et al.|(2013). In parallel, recent results caution against naive LLM-as-judge
usage: evaluators can recognize and prefer their own generations, introducing self-preference bias
Panickssery et al.[(2024b). Calibrated autoraters offer a partial mitigation via broad multi-task training
and bias auditing |Vu et al.|(2024). These findings motivate rater-aware or human-anchored evaluation
signals for creativity.

Intrinsic-motivation signals from reinforcement learning offer a principled lens on novelty seeking.
Information-gain and prediction-error formulations—VIME |Houthooft et al.|(2017), ICM [Pathak et al.
(2017), and Random Network Distillation Burda et al.| (2018)—are effective for exploration under
sparse extrinsic reward. By analogy, curiosity-style signals can inform language evaluation by re-
warding “useful novelty” (divergent yet coherent), complementing semantic-distance and rater-based
methods. Our work instantiates this by modeling belief shifts when a language model incorporates
expert explanations (a prediction-error—like signal) and combining it with expert attribution, yielding
a more interpretable and personalized measure of creativity.
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A APPENDIX

A.1 DIMENSIONS IN DATASET

In Table[d] all the dimensions that are part of the TTCW dataset are mentioned.

Table 4: Dimensions of TTCW dataset
Dimension Facets
Understandability & Coherence
Narrative Pacing
Fluency Scene vs Exposition

Literary Devices & Language Proficiency
Narrative Ending

Emotional Flexibility

Flexibility Perspective & Voice Flexibility
Structural Flexibility

Originality in Form

Originality Originality in Thought
Originality in Theme & Content
World Building & Setting
Elaboration Character Development
Rhetorical Complexity

A.2 MORE EXPERIMENT AND COMPUTE DETAILS
A.3 LIMITATIONS

Our study has some limitations that we hope to address in future work. First, the empirical scope is
narrow: we evaluate only on TTCW dataset. Our current method is text-only; extending to richer
modalities and subjective tasks beyond TTCW remains future work. In addition, the dataset is
small (48 stories x 5 dimensions with three expert judgments per story—dimension, totaling 720
instances). We therefore rely on 5-fold cross-validation and report means and deviation across 5 folds.
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Table 5: Core hyperparameters used in all runs.

max_length 4096

lora_dropout 0.1

target_modules ["g_proj","k_proj","v_proj","o_proj",
"gate_proj", "up_proj", "down_proj"]

lr_scheduler cosine (warmup_ratio = 0.1)

per_device_train_batch_size 4
gradient_accumulation_steps 8

weight_decay 0.01
max_grad_norm 0.5
num_train_epochs 3
seed 42

Finally, model coverage is limited to one family (Qwen2.5 0.5B-7B), leaving generalization across
architectures untested, which we aim to do in future work.

A.4 QUESTION FOR EACH DIMENSION

Table 6: Creativity evaluation categories and questions

Category Question

Originality in Thought Is the story an original piece of writing without any cliches?

Originality in Form and Structure  Does the story show originality in its form and/or structure?

Originality in Theme and Content ~ Will an average reader of this story obtain a unique and original
idea from reading it?

Perspective and Voice Flexibility =~ Does the story provide diverse perspectives, and if there are
unlikeable characters, are their perspectives presented convinc-
ingly and accurately?

Structural Flexibility Does the story contain turns that are both surprising and appro-
priate?

A.5 STATISTICAL SIGNIFICANCE TESTING

Table 7: Statistical significance test across 5 folds for Qwen-0.5b model

Metric SFT(with expl) (mean£+SD) ICM (mean+SD) A (ICM—SFT) p (paired t) Statistically significant?
Pearson 0.160 £ 0.055 0.524 4+ 0.092 0.364 0.002 Yes
Spearman 0.160 + 0.055 0.484 £ 0.078 0.324 <0.001 Yes
F1 0.371 4+ 0.054 0.616 4+ 0.048 0.245 <0.001 Yes

A.6 ICM RESULTS AGAINST SFT BASELINE WITHOUT EXPLANATIONS

A.7 CURIOSITY SCORES BASED ON NON-FINETUNED BASE QWEN-0.5B MODEL’S
PREDICTION AND GROUND TRUTH MATCH AND MISMATCH

A.8 WHY IS INVERSE MODEL NECESSARY?

When we ablated for the inverse model in our ICM setup with the given expert annotated data we do
not see any difference in the results with using the inverse model or without using it. But the inverse
model becomes necessary when we have a non-expert annotator like GPT-2, since it helps to clearly
distinguish such outliers. This shows that our forward model of the ICM is good enough to distinguish
between multiple expert annotators but we do need the inverse model for outlier cases. The details of
our experiments can be found in Table[I3] we used Qwen-0.5B model for this experiment.
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Table 8: Statistical significance test across 5 folds for Qwen-1.5b model

Metric SFT(with expl) (mean+SD)  ICM (mean£SD) A (ICM—SFT) p (paired ) Statistically significant?
Pearson 0.170 £ 0.058 0.586 £ 0.064 0.416 <0.001 Yes
Spearman 0.170 £ 0.058 0.522 4 0.069 0.352 <0.001 Yes
Fl1 0.402 £ 0.050 0.629 £ 0.045 0.227 <0.001 Yes
Table 9: Statistical significance test across 5 folds for Qwen-3b model.
Metric SFT(with expl) (mean+SD) ICM (mean+SD) A (ICM—SFT) p (paired ) Statistically significant?
Pearson 0.113 £ 0.092 0.540 £+ 0.074 0.427 <0.001 Yes
Spearman 0.113 £ 0.092 0.494 £+ 0.091 0.381 <0.001 Yes
F1 0.339 £+ 0.053 0.618 £+ 0.061 0.279 <0.001 Yes
Table 10: Statistical significance test across 5 folds for Qwen-7b model.
Metric SFT(with expl) (mean+SD) ICM (mean+SD) A (ICM—SFT) p (paired t) Statistically significant?
Pearson 0.170 £ 0.058 0.606 £ 0.084 0.436 <0.001 Yes
Spearman 0.170 £ 0.058 0.542 £ 0.089 0.373 <0.001 Yes
Fl1 0.381 £ 0.029 0.663 £ 0.058 0.282 <0.001 Yes
Table 11: Average passing rate (%) on individual TTCW, based on annotations of 10 creative writing
experts across 48 stories; last column reports Fleiss’ x (expert agreement).
Dimension  Test GPT-3.5 GPT4 Claudevl.3 New Yorker Expertx
Understandability & Coherence 22.2 333 55.6 91.7 0.27
Narrative Pacing 8.3 52.8 61.1 94.4 0.39
Fluency Scene vs Exposition 8.3 50.0 583 91.7 0.27
Literary Devices & Language 5.6 36.1 13.9 88.9 0.37
Narrative Ending 8.3 19.4 333 91.7 0.48
Emotional Flexibility 16.7 19.4 36.1 91.7 0.32
Flexibility Perspective & Voice Flexibility 8.3 16.7 19.4 72.2 0.44
Structural Flexibility 11.1 19.4 30.6 88.9 0.39
Originality in Form 2.8 8.3 0.0 63.9 0.41
Originality ~ Originality in Thought 2.8 44.4 19.4 91.7 0.40
Originality in Theme & Content 0.0 19.4 11.1 75.0 0.66
World Building & Setting 16.7 41.7 58.3 94.4 0.33
Elaboration  Character Development 8.3 16.7 16.7 61.1 0.31
Rhetorical Complexity 2.8 11.1 5.6 88.9 0.66
Average 8.7 27.9 30.0 84.7 0.41
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Table 12: Correlation between LLM-administered TTCW and expert annotations (Cohen’s «) on all

48 stories.
Dimension  Test GPT-3.5 GPT-4 C(Claude
Understandability & Coherence -0.01 -0.01 -0.17
Narrative Pacing 0.05 0.00 -0.22
Fluency Scene vs Exposition -0.03 -0.08 -0.23
Literary Devices & Language 0.04 -0.09 -0.11
Narrative Ending -0.02 0.02 0.02
Emotional Flexibility -0.04 0.00 0.09
Flexibility Perspective & Voice 0.00 0.26 0.14
Structural Flexibility -0.04 0.00 -0.07
Originality in Form 0.08 0.09 0.03
Originality ~ Originality in Thought 0.19 0.31 0.15
Originality in Theme & Content 0.06 -0.01 0.18
World Building & Setting 0.00 0.00 0.09
Elaboration  Character Development -0.08 0.02 0.00
Rhetorical Complexity 0.00 0.00 0.02
Average 0.016 0.035 -0.006

Table 13: ICM method results against the SFT baseline without explanations (classification).
Means+SD are shown where SD was available from 5-fold runs.

Model Experiment type pearson  precision  recall f1
Qwen-0.5B (SFT-Classification) 1D 0.586 + 0.085 0.769 0.461 0.551 +0.198
Qwen-0.5B (ICM) ID 0.524 £+ 0.092 0.494 0.818 0.616 £ 0.048
Qwen-1.5B (SFT-Classification) 1D 0.602 £ 0.064 0.787 0.602 0.663 + 0.070
Qwen-1.5B (ICM) ID 0.586 + 0.064 0.481 0.794 0.629 £ 0.045
Qwen-3B (SFT-Classification) ID 0.482 £ 0.160 0.670 0.573 0.556 + 0.094
Qwen-3B (ICM) ID 0.540 & 0.074 0.481 0.794 0.618 + 0.061
Qwen-7B (SFT-Classification) ID 0.441 £ 0.130 0.535 0.342 0.383 +0.251
Qwen-7B (ICM) ID 0.606 + 0.084 0.518 0.850 0.663 £ 0.058

Note. SDs for precision and recall were not available in the provided per-fold summaries; once those per-fold
values are supplied, I will fill in their £ SD as well. Pearson/F1 SDs are computed across 5 folds.

Table 14: ICM method results against the SFT baseline without explanations(classification) on
Out-of-distribution data

Model Experiment type  pearson  precision recall f1

Qwen-0.5B(SFT-Classifcation) OOD 0.433 0.000  0.000 0.000

Qwen-0.5B(ICM) (0]0))] 0.563 0.625 0.790 0.698

Qwen-1.5B(SFT-Classifcation) OOD 0.604 0.962 0.439 0.602

Qwen-1.5B(ICM) (0]0))] 0.655 0.639 0.807 0.713

Qwen-3B(SFT-Classifcation) (0]0))] 0.546 0.933 0.246 0.389

Qwen-3B(ICM) (0]0))] 0.582 0.597 0.754 0.667

Qwen-7B(SFT-Classifcation) (00))] 0.435 0.800 0.211 0.333

Qwen-7B(ICM) (0]0))] 0.623 0.653 0.825 0.729

Table 15: Inverse model ablations

Method Annotations Pearson Precision Recall F1 Cohen’s k
ICM with Inverse Without GPT-2  0.503 +0.014 0.552 +0.014 0.728 £ 0.017 0.628 = 0.015 0.347 + 0.027
ICM without Inverse ~ Without GPT-2  0.500 & 0.027  0.551 £ 0.011  0.727 £ 0.009  0.627 & 0.010  0.346 £ 0.017
ICM with Inverse With GPT-2 0.151 £0.300 0.153 +0.265 0.233 +0.403 0.185 4+ 0.320 0.093 4+ 0.166
ICM without Inverse ~ With GPT-2 0.002 £ 0.041 0.333 £ 0.577 0.001 & 0.002 0.002 & 0.004  0.000 £ 0.004
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898 Figure 5: Curiosity scores based on match and mismatch of predictions from Qwen-0.5B base
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