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Abstract

In this paper we contribute to the frequently studied question of how to
decompose a continuous piecewise linear (CPWL) function into a difference
of two convex CPWL functions. Every CPWL function has infinitely many
such decompositions, but for applications in optimization and neural net-
work theory, it is crucial to find decompositions with as few linear pieces as
possible. This is a highly challenging problem, as we further demonstrate
by disproving a recently proposed approach by Tran & Wang (2024). To
make the problem more tractable, we propose to fix an underlying polyhe-
dral complex determining the possible locus of nonlinearity. Under this as-
sumption, we prove that the set of decompositions forms a polyhedron that
arises as intersection of two translated cones. We prove that irreducible
decompositions correspond to the bounded faces of this polyhedron and
minimal solutions must be vertices. We then identify cases with a unique
minimal decomposition, and illustrate how our insights have consequences
in the theory of submodular functions. Finally, we improve upon previous
constructions of neural networks for a given convex CPWL function and
apply our framework to obtain results in the nonconvex case.

1 Introduction

Continuous piecewise linear (CPWL) functions play a crucial role in optimization and ma-
chine learning. While they have traditionally been used to describe problems in geometry,
discrete and submodular optimization, or statistical regression, they recently gained signif-
icant interest as functions represented by neural networks with rectified linear unit (ReLU)
activations (Arora et al., 2018). Extensive research has been put into understanding which
neural network architectures are capable of representing which CPWL functions (Chen
et al., 2022; Haase et al., 2023; Hertrich et al., 2021). A major source of complexity in
all the aforementioned fields is nonconvexity. Indeed, not only are nonconvex optimization
problems generally much harder to solve than convex ones, but also for neural networks,
nonconvexities are usually responsible for making the obtained representations complicated.
It is a well-known folklore fact that every (potentially nonconvex) CWPL function f : Rn →
R can be written as the difference f = g − h of two convex CPWL functions (Melzer, 1986;
Kripfganz & Schulze, 1987). Consequently, a natural idea to circumvent the challenges
induced by nonconvexity is to use such a decomposition f = g − h and solve the desired
problem separately for g and h. This is the underlying idea of many successful optimization
routines, known as DC programming (see survey by Le Thi & Pham Dinh (2018)), and
also occurs in the analysis of neural networks (Zhang et al., 2018). However, the crucial
question arising from this strategy is: how much more complex are g and h compared to f?
A well-established measure for the complexity of a CPWL function is the number of its
linear pieces. Therefore, the main question we study in this article is the following.
Problem 1.1. How to decompose a CPWL function f into a difference f = g − h of two
convex CPWL functions with as few pieces as possible?

There exist many ways in the literature to obtain such a decomposition, as we discuss later,
but none of them guarantees minimality or at least a useful bound on the number of pieces
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of g and h depending on those of f . In fact, no finite procedure is known that guarantees
to find a minimal decomposition, despite a recent attempt by Tran & Wang (2024).

1.1 Our Contributions

In this article, we propose a novel perspective on Problem 1.1 making use of polyhedral
geometry and prove a number of structural results. We then apply our approach to existing
decompositions in the literature, as well as to the theory of submodular functions and to
the construction of neural networks representing a given CPWL function, serving as an
additional motivation. Our detailed contributions are outlined as follows.

Decomposition Polyhedra. After setting the preliminaries in Section 2, Section 3
presents our new polyhedral approach to Problem 1.1. Instead of aiming for a globally
optimal decomposition, we propose to restrict to solutions that are compatible with a given
regular polyhedral complex P. In short, this means fixing where the functions g and h may
have breakpoints, that is, points where they are not locally linear. We prove that the set of
solutions to decompose f in a way that is compatible with P is a polyhedron DP(f) that
arises as the intersection of two shifted polyhedral cones (Theorem 3.5). We call this the
decomposition polyhedron of f with respect to P. We prove several structural properties
of DP(f). Among them, we show that the bounded faces of DP(f) are exactly those that
cannot easily be simplified by subtracting a convex function (Theorem 3.8), and we show
that a minimal solution must be a vertex of DP(f) (Theorem 3.13). The latter implies a
finite procedure to find a minimal decomposition among those that are compatible with P,
by simply enumerating the (potentially many) vertices of DP(f). It also implies that, if
only a single vertex exists, then there is a unique minimal decomposition. We demonstrate
that this is indeed the case for important CPWL functions, e.g., the median function, or
those computed by a 1-hidden-layer ReLU network.

Existing Decompositions. Afterwards, in Section 4, we put our investigations into a
broader context within the existing literature. We compare our minimality conditions with
existing methods to construct decompositions. Notably, in this context, we refute a conjec-
ture by Tran & Wang (2024), who provide an optimal construction method in dimension 2
and suggest that it might generalize to higher dimensions. We show that it does not.

Applications to Submodular Function. In Section 5, we show that our framework
entails the setup of set functions which are decomposed into differences of submodular set
functions. Representing a set function as such a difference is a popular approach to solve
optimization problems similarly to DC programming, see Narasimhan & Bilmes (2005); Iyer
& Bilmes (2012); El Halabi et al. (2023). We apply our results from Section 3 to obtain
analogous structural insights about (submodular) set functions (Corollary 5.4).

Application to Neural Network Constructions. Finally, in Section 6, we study the
problem of constructing neural networks representing a given CPWL function. For convex
CPWL functions, we blend two incomparable previous constructions by Hertrich et al. (2021)
and Chen et al. (2022) to let the user freely choose a trade-off between depth and width
of the constructed networks. We then apply the results of this paper to extend this to the
nonconvex case by first decomposing the input function as a difference of two convex ones.

Limitations. We emphasize that the focus of our paper is fundamental research by build-
ing a theoretical foundation to tackle Problem 1.1 and connecting it with other fields. As
such, our paper does not imply any direct improvement for a practical task, but it might
prove helpful for that in the future. In particular, it is beyond the scope of our paper to pro-
vide any implementation of a (heuristic or exact) method to decompose a CPWL function
into a difference of two convex ones. We consider it an exciting avenue for future research
to do so, and to apply it to DC programming, discrete optimization, or neural networks.
On the theoretical side, the approach of fixing an underlying compatible polyhedral com-
plex imposes some restriction on the set of possible solutions and can therefore be seen
as a limitation. However, we think that this assumption is well justified by the structural
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properties this assumption allows us to infer and by the examples we demonstrate to fit into
the framework. Even with this assumption, the problem remains very challenging.

1.2 Further Related Work

Explicit constructions to decompose CPWL functions as differences of convex CPWL func-
tions can be found in several articles, such as Kripfganz & Schulze (1987); Zalgaller (2000);
Wang (2004); Schlüter & Darup (2021). This was initiated in the 1-dimensional case by
Bittner (1970), and already laid out for positively homogeneous functions in general dimen-
sions by Melzer (1986). Typically, such decompositions are based on certain representa-
tions of CPWL functions, which have been constructed, e.g., in Tarela & Martinez (1999);
Ovchinnikov (2002); Wang & Sun (2005); see also Koutschan et al. (2023; 2024) for a fresh
perspective. These representations also help to understand the representative capabilities
of neural networks, see Arora et al. (2018); Hertrich et al. (2021); Chen et al. (2022).
Recently, a minimal decomposition for the 2-dimensional case was given by Tran & Wang
(2024). They use a duality between CPWL functions and polyhedral geometry, based on the
“balancing condition” from tropical geometry. This condition has already been studied by
McMullen (1996) in terms of weight spaces of polytopes. Generally, methods from tropical
geometry have been successfully used to understand the geometry of neural networks, see
e.g. Zhang et al. (2018); Hertrich et al. (2021); Montúfar et al. (2022); Haase et al. (2023);
Brandenburg et al. (2024).
Submodular functions are sometimes called the discrete analogue of convex functions, and
optimizing over them is a widely studied problem, which is also relevant for machine learning.
A submodular function can be minimized in polynomial time (Grötschel et al., 1981). In
analogy to DC programming, this sparked the idea of minimizing a general set function by
representing it as a difference of two submodular ones (Narasimhan & Bilmes, 2005; Iyer
& Bilmes, 2012; El Halabi et al., 2023). Related decompositions were recently studied by
Bérczi et al. (2024). In polyhderal theory, such a decomposition is equivalent to Minkowski
differences of generalized permutahedra (Ardila et al., 2009; Jochemko & Ravichandran,
2022).
Another closely related stream of work is concerned with the (exact and approximate)
representative capabilities of neural networks, starting with universal approximation theo-
rems (Cybenko, 1989), and specializing to ReLU networks, their number of pieces, as well
as depth-width-tradeoffs (Telgarsky, 2016; Eldan & Shamir, 2016; Arora et al., 2018). In
addition, Hertrich & Skutella (2023); Hertrich & Sering (2024) provide neural network con-
structions for CPWL functions related to combinatorial optimization problems. Geometric
insights have also proven to be useful to understand the computational complexity of train-
ing neural networks (Froese et al., 2022; Bertschinger et al., 2024; Froese & Hertrich, 2024).
Recently, Safran et al. (2024) give an explicit construction of how to efficiently approximate
the maximum function with ReLU networks.

2 Preliminaries

In this section we introduce the necessary preliminaries on polyhedral geometry and CPWL
functions. For m ∈ N, we write [m] := {1, 2, . . . , m}.

Polyhedra and Polyhedral Complexes. A polyhedron P is the intersection of finitely
many closed halfspaces and a polytope is a bounded polyhedron. A hyperplane supports P if
it bounds a closed halfspace containing P , and any intersection of P with such a supporting
hyperplane yields a face F of P . A face is a proper face if F ⊊ P and inclusion-maximal
proper faces are referred to as facets. A polyhedral cone C ⊆ Rn is a polyhedron such
that λu + µv ∈ C for every u, v ∈ C and λ, µ ∈ R≥0. The dual cone of C is C∨ =
{y ∈ (Rn)∗ | ⟨x, y⟩ ≥ 0 for all x ∈ C}. A cone is pointed if it does not contain a line. A
cone C is simplicial, if there are linearly independent vectors v1, . . . , vk ∈ Rn such that
C = {

∑k
i=1 λivi | λi ≥ 0}. For a cone C and t ∈ Rn, we call t + C a shifted cone or

translated cone.
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A polyhedral complex P is a finite collection of polyhedra such that (i) ∅ ∈ P, (ii) if P ∈ P
then all faces of P are in P, and (iii) if P, P ′ ∈ P, then P ∩P ′ is a face both of P and P ′. For
a polyhedral complex P in Rn, we denote by Pd the set of d-dimensional polyhedra in P.
Given two n-dimensional polyhedral complexes P, Q, the complex P is a refinement of Q if
for every τ ∈ Pn there exists σ ∈ Qn such that τ ⊆ σ. The complex Q is a coarsening of P
if P is a refinement of Q.
The star of a face τ ∈ P is the set of all faces containing τ , i.e., starP(τ) = {σ ∈ P | τ ⊆ σ}.
We only consider complete polyhedral complexes, i.e., complexes covering Rn. A polyhedral
fan is a polyhedral complex in which every polyhedron is a cone (see e.g., Figure 1b).
An n-dimensional polyhedral complex can be equipped with a weight function w : Pn−1 →
R, as we describe as follows. Given a face σ ∈ P, we denote by aff(σ) ⊆ Rn the unique
smallest affine subspace containing σ. The relative interior of σ is the interior of σ inside
the affine space aff(σ). For any dimension d ≤ n and any τ ∈ Pd−1, σ ∈ Pd with τ ⊆ σ, let
eσ/τ ∈ Rn be the normal vector of τ with respect to σ, that is, the unique vector with length
one that is parallel to aff(σ), orthogonal to aff(τ), and points from the relative interior of τ
into the relative interior of σ. A pair (P, w) forms a balanced (weighted) polyhedral complex
if the weight function satisfies the balancing condition at every τ ∈ Pn−2 (see Figure 1a):∑

σ∈Pn−1:
σ⊃τ

w(σ) · eσ/τ = 0.

We will see (Lemma 3.2) that considering only faces of codimension 2 indeed makes sense,
see also the structure theorem of tropical geometry (Maclagan & Sturmfels, 2015).

Continuous Piecewise Linear Functions. A continuous function f : Rn → R is called
continuous and piecewise linear (CPWL), if there exists a polyhedral complex P such that
the restriction of f to each full-dimensional polyhedron P ∈ Pn is an affine function. If this
condition is satisfied, we say that f and P are compatible with each other.
In line with Chen et al. (2022), we define the number of pieces q of f to be the smallest
possible number |Pn| of full-dimensional regions of a compatible polyhedral complex P.
Note that this requires pieces to be convex sets, as they are polyhedra. The function f
might realize the same affine function on distinct pieces P, Q ∈ Pn. To account for that, we
define the number of affine components k to be the the number of different affine functions
realized on all the pieces in Pn. Note that this quantity is independent of the choice of the
particular compatible complex P.
It holds that k ≤ q ≤ k! and each of these inequalities can be strict, compare the discussion
by Chen et al. (2022). We can assume that k > n (and thus q > n) because otherwise f
can be written as a composition of an affine projection to a lower dimension n′ followed by
a CPWL function defined on Rn′ .
If f is a convex CPWL function, then it can be uniquely written as the maximum of
finitely many affine functions f(x) = maxi∈[k] gi(x) such that k = q. It follows that there
is a unique coarsest compatible polyhedral complex Pf , namely the one with Pn

f = {{x |
gi(x) = maxj gj(x)} | i ∈ [k]}. In particular, we have k = q if f is convex. We call a
polyhedral complex P regular, if there exists a convex CPWL function f such that P = Pf .

3 Decomposition Polyhedra

In this section, we introduce and generally study the main concept of the paper, decompo-
sition polyhedra. These polyhedra describe the set of possible decompositions of a CPWL
function f into a difference f = g − h that are compatible with a given polyhedral complex.
We start by establishing a handful of general results concerning the space of CPWL func-
tions compatible with a given polyhedral complex. Proofs that are omitted from the main
text as well as some auxiliary statements can be found in Appendix E.
Lemma 3.1. Let P be a polyhredral complex. The set of CPWL functions compatible with
P forms a linear subspace VP of the space of continuous functions.
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1

−1

1−1

√
2

−
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2
0 ≤ x1 ≤ x2

0 ≤ x2 ≤ x1
x1 ≤ 0 ≤ x2

x2 ≤ 0 ≤ x1

x2 ≤ x1 ≤ 0

x1 ≤ x2 ≤ 0

(a) Parameterization of the median function
via the weights on the 1-dimensional facets.
The origin is the only (n−2)-dimensional face
and it satisfies the balancing condition.

x1

x2
0

0
x1

x2

(b) Parameterization of the median function
via its linear maps on the maximal polyhedra.

Figure 1: Two different parameterizations of the function that computes the median of
{0, x1, x2}. This function has q = 6 pieces and k = 3 affine components, see Example A.1
for more details. In Figure 1a, the convex breakpoints are colored in blue, and concave
breakpoints are dashed and colored in red. The absolute value of the weights are given by the
euclidean distance of the gradient of the affine components separated by these breakpoints.
A refinement of this polyhedral complex is e.g. given by the function which computes the
second largest value of {0, x1, x2, x1 + x2}, whose supporting polyhedral complex has an
additional hyperplane with normal (1, 1), subdividing the second and fourth quadrant.

Let Aff(Rn) be the space of affine functions from Rn to R. For many of our arguments,
adding or subtracting an affine function a ∈ Aff(Rn) does not change anything. In particular,
a function f is convex if and only if f + a is convex. Therefore it makes sense to define the
quotient space VP := VP/ Aff(Rn), where we identify functions in VP that only differ by
adding an affine function. The following lemma shows that we can parameterize a function
f ∈ VP by keeping track of “how convex or concave” the function is at the common face
σ ∈ Pn−1 of two neighboring pieces. For the case that w is nonnegative and rational,
the lemma follows from the structure theorem of tropical geometry (Maclagan & Sturmfels,
2015). In Appendix E.2, we present a generalization of the proof adapted to our setting.
Lemma 3.2. The vector space WP := {w : Pn−1 → R | (P, w) is balanced} is isomorphic
to VP .

For a function f ∈ VP , let wf ∈ WP be the corresponding weight function according to
Lemma 3.2. Figure 1 illustrates the different parameterizations of the median function
according to Lemma 3.2. Moreover, from Lemma 3.2 we can deduce that VP is finite-
dimensional (Corollary E.1) and the following proposition.
Proposition 3.3. A function f ∈ VP is convex if and only if wf is nonnegative. Moreover,
f is convex with P = Pf if and only if wf is strictly positive.

The set V+
P of convex functions in VP forms a polyhedral cone (Lemma E.2). In the following,

we now fix a function f ∈ VP and consider the space of decompositions f = g − h into
differences of convex functions which are also compatible with P. In Lemma E.3, we show
that for a regular complex P such a decomposition does indeed always exist. In particular,
VP = span(V+

P), which implies that dim(VP) = dim(V+
P).

Definition 3.4. For a CPWL function f and a polyhedral complex P, the decomposition
polyhedron of f with respect to P is DP(f) := {(g, h) | g, h ∈ V+

P , f = g − h}.

The projection π((g, h)) = g induces an isomorphism between DP(f) and π(DP(f)) since
DP(f) = {(g, g − f) | g ∈ π(DP(f))}. We now show that this is indeed a polyhedron, which
arises as the intersection of two shifted copies of a cone.

5
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Theorem 3.5. The set DP(f) is a polyhedron that arises as the intersection of convex
functions with an affine hyperplane Hf = {(g, h) | f = g − h}, namely DP(f) = (V+

P ×
V+

P) ∩ Hf . Under the bijection π, the decomposition polyhedron is the intersection of two
shifted copies of the polyhedral cone V+

P . More specifically, π(DP(f)) = V+
P ∩ (V+

P + f).
Remark 3.6. Under the isomorphism of Lemma 3.2, we identify DP(f) with the polyhedron
{(wg, wh) ∈ W+

P × W+
P | wg − wh = wf } in WP × WP and π(DP(f)) with the polyhedron

{wg ∈ W+
P | wg ≥ wf }, where W+

P = {w ∈ WP | w ≥ 0}.

For the remainder of this section, we analyze the faces of the polyhedron V+
P in terms of the

properties of the corresponding decompositions.
Definition 3.7. A decomposition (g, h) ∈ DP(f) is called reduced, if there is no convex
function ϕ ∈ V+

P \ {0} such that g − ϕ and h − ϕ are both convex.

If a decomposition is not reduced, then we can obtain a “better” decomposition by simulta-
neously simplifying both g and h through subtracting a convex function ϕ. Hence, it makes
sense to put a special emphasis on reduced decompositions. Conveniently, the following
theorem links this notion to the geometry of DP(f).
Theorem 3.8. A decomposition (g, h) ∈ DP(f) is reduced if and only if (g, h) is contained
in a bounded face of DP(f).

Definition 3.9. We call a convex function g ∈ V+
P a coarsening of another convex function

g′ ∈ V+
P if the unique coarsest polyhedral complex Pg of g is a coarsening of the unique

coarsest polyhedral complex Pg′ . For a pair of convex CPWL functions (g, h), we call (g′, h′)
a coarsening of (g, h) if g − h = g′ − h′ and g and h are coarsenings of g′ and h′ respectively.
The coarsening is called non-trivial if (Pg, Ph) ̸= (Pg′ , Ph′). For a function f ∈ VP , let
suppP(f) = {σ ∈ Pn−1 | wg(σ) ̸= 0}.

Lemma 3.10. A convex function g′ ∈ V+
P is a coarsening of g ∈ V+

P if and only if
suppP(g′) ⊆ suppP(g). The coarsening is non-trivial if and only if suppP(g′) ⊂ suppP(g).
Theorem 3.11. Let (g, h) ∈ DP(f), then the following three statements are equivalent:

1. There is no non-trivial coarsening of (g, h).
2. (g, h) is a vertex of DP(f).
3. (g, h) is a vertex of DQ(f) for all polyhedral complexes Q compatible with g and h.

Definition 3.12. A decomposition (g, h) ∈ DP(f) is called minimal, if it is not dominated
by any other decomposition, that is, if there is no other decomposition (g′, h′) ∈ DP(f)
where g′ has at most as many pieces as g, h′ has at most as many pieces as h, and one of
the two has stricly fewer pieces. See Figure 2 in Appendix A.2 for a visualization.

Phrasing it in terms of multi-objective optimization, we require that the number of pieces
of f and g in a minimal decomposition are Pareto-optimal. The number of pieces relates
to the notion of monomial complexity studied in Tran & Wang (2024), and a minimal
decomposition translates to a decomposition which is minimal with respect to monomial
complexity. We now give a geometric interpretation of this property in terms of DP(f).
Theorem 3.13. A minimal decomposition (g, h) ∈ DP(f) is always a vertex of DP(f).

This theorem implies a simple finite procedure to find a minimal decomposition: enumerate
all the vertices of DP(f) and choose one satisfying Definition 3.12. It also suggests the
following important special case.
Proposition 3.14. If DP(f), or equivalently π(DP(f)), has a unique vertex, then this
vertex corresponds to the unique minimal decomposition within DP(f).

We now demonstrate that this case is not only convenient, but also it indeed arises for
important classes of functions. To this end, recall that π(DP(f)) = V+

P ∩ (V+
P + f), where

V+
P is a convex, pointed polyhedral cone. In Lemma E.6, we give some sufficient conditions

for such intersections of shifted cones to yield a polyhedron with a unique vertex. Moreover,

6
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the support of a decomposition can serve as certificate to verify if a decomposition is a
unique vertex, and hence minimal. For f ∈ V+

P , let supp+
P(f) := {σ ∈ P | wf (σ) > 0} and

supp−
P(f) := {σ ∈ P | wf (σ) < 0}.

Proposition 3.15. If for f ∈ VP , there are g, h ∈ V+
P such that f = g − h and supp+(f) =

suppP(g) as well as supp−(f) = suppP(h), then (g, h) is the unique vertex of DQ(f) for
every regular complete complex Q compatible with f . In this case, g and h have at most as
many pieces as f .

While Proposition 3.15 sounds technical, it is powerful as it allows us to prove that important
functions satisfy the condition of Proposition 3.14.
Definition 3.16. A hyperplane function with k hyperplanes is a function f : Rn → R given
by f(x) =

∑
i∈[k] λi · max{⟨x, ai⟩ + bi, ⟨x, ci⟩ + di} for any ai, ci ∈ Rn, bi, di, λi ∈ R, i ∈ [k].

Hyperplane functions are precisely the functions that are computable by a ReLU neural
network with one hidden layer and appear in this context as 2-term max functions (Hertrich
et al. (2021)). They also coincide with functions computable with the hinging hyperplane
model (Breiman (1993); Wang & Sun (2005)). Moreover, in Example D.14 we will see that
hyperplane functions include continuous extensions of cut functions.
Definition 3.17. The k-th order statistic is the function f : Rn → R that returns the k-th
largest entry of an input vector x ∈ Rn. For k = ⌊ n

2 ⌋, this coincides with the median.

In Appendix A.3, we show that the conditions of Propositions 3.14 and 3.15 are indeed
fulfilled for both, hyperplane functions and k-th order statistics. This shows that they
admit decompositions with at most as many pieces as the function itself.
Theorem 3.8 characterizes the reduced decompositions as bounded faces and Proposi-
tion 3.15 provides a condition that can identify a given decomposition as the minimal one.
The natural follow-up question is how to find these decompositions. In the following, we
show that this can be done via linear programming over the decomposition polyhedron.
Theorem 3.18. A decomposition in π(DP(f)) = V+

P ∩ (f + V+
P) is reduced if and only if

it is the optimal solution of a linear program with feasible solutions π(DP(f)) and objective
linear functional contained in the interior of the dual cone of V+

P . In particular, if π(DP(f))
has a single vertex, then the unique optimal solution is the unique reduced and minimal
decomposition. Under the isomorphism to WP , the objective function u can be chosen as
u(σ) = 1 for all σ.

4 Analysis of existing decompositions

Constructions of decompositions of CPWL functions as difference of two convex functions
have appeared in many contexts. In this section, we relate some of these existing construc-
tions to our framework. Moreover, we provide a counterexample to a construction which was
proposed by Tran & Wang (2024) to obtain a minimal decomposition in general dimensions.
Hyperplane extension and local maxima decomposition. The literature contains
a variety of different constructions to decompose a CPWL function. It is worth noting,
however, that these constructions usually follow one of two main themes. The first theme
is to construct (g, h) in a way such that they are compatible with the complex P that
arises by extending the codimension-1 faces of Pf to hyperplanes, see e.g. Zalgaller (2000)
and Schlüter & Darup (2021). The second theme is to exploit the properties of the lattice
representation of a CPWL function (Wang, 2004).
Both of these themes were already illustrated by Kripfganz & Schulze (1987), and we de-
scribe their constructions in Appendix B as Construction B.1 (“hyperplane extensions”) and
Construction B.2 (“local maxima decomposition”). In Appendix B.1, we show that for the
functions that compute the k-th order statistic, both constructions do not yield the unique
minimal decompositions, which exist by Proposition 3.14. This implies the following result.
Proposition 4.1. There is a CPWL function f such that constructions B.1 and B.2 do
not provide a vertex of DP(f) for any regular polyhedral complex P compatible with f .
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Moreover, Proposition B.3 shows that the suboptimality of the existing decompositions
in the literature is not caused by the concrete construction method, but rather by the
polyhedral complexes underlying these methods.
Minimal decompositions. A construction for a unique minimal decomposition for
certain CPWL functions f in dimension 2 was presented by Tran & Wang (2024), by intro-
ducing a single new 1-dimensional face to Pf and an adapted weight function to satisfy the
balancing condition.
Their approach builds on a duality theory between positively homogeneous convex CPWL
functions and Newton polytopes. A CPWL function f is positively homogeneous if f(0) = 0
and Pf is a polyhedral fan. Such functions are the support functions of their Newton
polytopes, as we describe in more detail in Appendix C.1; see also Joswig (2021, Section
1.2) and Maclagan & Sturmfels (2015, Chapter 2).
Based on their 2-dimensional construction, Tran & Wang (2024) propose a procedure to
reduce the n-dimensional case to 2-dimensions via projections, which we describe in Con-
struction C.2 in Appendix C.2. The final step in this procedure is to construct a global
function in n dimensions by “gluing together” the projections. In Example C.3 we illustrate
that this final step is not always well-defined. Our conclusion is that the construction by
Tran & Wang (2024) does not extend beyond the 2-dimensional case, leaving it an open
problem to find any finite algorithm that guarantees to return a minimal decomposition
without fixing an underlying polyhedral complex. Note that for any fixed underlying poly-
hedral complex, Theorem 3.13 implies a finite algorithm by enumerating the vertices of the
decomposition polyhedron, as discussed earlier.

5 Submodular Functions

We demonstrate that a special case of our framework is to decompose a general set func-
tion into a difference of submodular set funtions and translate our results to this setting.
Such decompositions are a popular approach to solve optimization problems as disussed in
the introduction. Here, we sketch the idea, all details can be found in Appendix D. Let
the polyhedral complex P be induced by the braid arrangement, that is, the hyperplane
arrangement consisting of the

(
n
2
)

hyperplanes xi = xj , with 1 ≤ i < j ≤ n, and let Fn be
the vector space of set functions from 2[n] to R.
Proposition 5.1. The mapping Φ that maps f ∈ VP to the set function F (S) = f(1S),
where 1S =

∑
i∈S ei, is a vector space isomorphism.

Conversely, starting with a set function F , then f = Φ−1(F ) is by definition a continuous
extension of F , which is known as the Lovász extension (Lovász, 1983). The Lovász extension
is an important concept in the theory and practice of submodular function optimization as
it provides a link between discrete submodular functions and continuous convex functions.
Definition 5.2. A set function F : 2[n] → R is called submodular if F (A) + F (B) ≥ F (A ∪
B) + F (A ∩ B) for all A, B ⊆ [n]. F is called modular if equality holds for all A, B ⊆ [n].

Since a set function F is submodular if and only if its Lovász extension f = Φ−1(F ) is convex
(Lovász (1983)), we can specialize Problem 1.1 in the setting of this section as follows.
Problem 5.3. Given a set function F ∈ Fn, how to decompose it into a difference of
submodular set functions such that their Lovász extensions have as few pieces as possible?

Having a Lovász extension with few pieces is desirable because it allows the submodular
function to be stored and accessed efficiently during computational tasks. Moreover, as
we argue in Appendix D, for accordingly normalized submodular functions, the number
of pieces of the Lovász extension is precisely the number of vertices of the base polytope,
which, in turn, is precisely the Newton polytope of the Lovász extension.
As Problem 5.3 is a special case of Problem 1.1, we can translate our results from Section 3
to the setting of submodular functions.
Corollary 5.4 (informal). The set of decompositions of a general set function into a dif-
ference of submodular functions (modulo modular functions) is a polyhedron that arises as
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the intersection of two shifted copies of the cone of submodular functions. In analogy to our
general results, the irreducible decompositions correspond precisely to the bounded faces of
that polyhedron and every minimal decomposition is a vertex.

Example D.14 shows that the Lovász extensions of cut functions are hyperplane functions
and thus admit a unique minimal decomposition into submodular functions, which are
themselves cut functions. In particular, the Lovász extensions of the decomposition have at
most as many pieces as the Lovász extensions of the original cut function.

6 Neural Network Constructions

In this section we consider the following question: Given a CPWL function f : Rn → R with
q pieces and k affine components, what is the necessary depth, width, and size of a neural
network exactly representing this function? To this end, we first discuss the necessary
background on neural networks and known results on neural complexity. We then prove
better results for the case of f being convex. Finally, we extend these results to nonconvex
functions by writing them as a difference of convex functions.
Background. For a number of hidden layers d ≥ 0, a neural network with rectified linear
unit (ReLU) activiations is defined by a sequence of d+1 affine transformations Ti : Rni−1 →
Rni , i ∈ [d + 1]. We assume that n0 = n and nd+1 = 1. If σ denotes the function that
computes the ReLU function x 7→ max{x, 0} in each component, the neural network is said
to compute the function f : Rn → R given by f = Td+1 ◦ σ ◦ Td ◦ σ ◦ · · · ◦ σ ◦ T1. We say
that the neural network has depth d + 1, width maxi∈[d] ni, and size

∑
i∈[d] ni.

It is well-known that the maximum of n numbers can be computed with depth ⌈log2 n⌉ + 1
and overall size O(n) (Arora et al., 2018). This simple fact has been used in the literature
to deduce exact representations of CPWL functions with neural networks from known rep-
resentations of CPWL functions. We would like to focus on two of them here, which are
in a sense incomparable. The first one goes back to Hertrich et al. (2021) and builds upon
ideas from Wang & Sun (2005). We present it here in a slightly stronger form.
Theorem 6.1. Every CPWL function f : Rn → R with k affine components can be repre-
sented by a neural network with depth ⌈log2(n + 1)⌉ + 1 and overall size O(kn+1).

The second one goes back to Chen et al. (2022) and is based on the lattice representation
of CPWL functions, compare Tarela & Martinez (1999).
Theorem 6.2 ((Chen et al., 2022)). Every CPWL function f : Rn → R with q pieces and k
affine components can be represented by a neural network with depth ⌈log2 p⌉ + ⌈log2 q⌉ + 1
and overall size O(kq).

As noted before, one can assume that n < k ≤ q, since otherwise we could affinely project to a
lower dimension without losing information. In fact, one would usually assume that the input
dimension n is much lower than the number of affine components k. Therefore, Theorem 6.1
provides the better representation in terms of depth, while Theorem 6.2 provides the better
representation in terms of size. However, both theorems are kind of inflexible for the user,
dictating a certain depth and providing only these two specific options. So, the naturally
occurring question is: can we somehow freely choose a depth and trade depth against size
in these representations? In other words: can we smoothly interpolate between the low-
depth high-size representation of Theorem 6.1 and the low-size high-depth representation of
Theorem 6.2? In the remaining section we present results that achieve this to some extent.
New Constructions for the Convex Case. In this part we prove that we can achieve the
desired tradeoff easily in the convex case by mixing the two representations of Theorem 6.1
and Theorem 6.2.
Theorem 6.3. Every convex CPWL function f : Rn → R with k affine components can
be represented by a neural network with depth ⌈log2(n + 1)⌉ + ⌈log2 r⌉ + 1 and overall size
O(rsn+1), for any free choice of parameters r and s with rs ≥ k = q.

In order to see how this provides a tradeoff between the representations of Theorem 6.1 and
Theorem 6.2, it is worth looking at the extreme cases. If we choose r = 1 and s = k, we
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exactly obtain the bounds from Theorem 6.1. On the other hand, if we choose r = k and
s = 1, we obtain a neural network with depth O(log k) and size O(k), which is qualitatively
close to the bounds of Theorem 6.2. In fact, the even better size bound stems from the fact
that our construction heavily relies on convexity.
In conclusion, by choosing an appropriate r (and corresponding s), the user can freely decide
how to trade depth against size in neural network representations and thereby interpolate
between the two extreme representations of Theorem 6.1 and Theorem 6.2.
Extension to the Nonconvex Case. The construction of Theorem 6.3 provides a nice
blueprint of how to interpolate between Theorem 6.1 and Theorem 6.2, but it has the big
limitation that it only works in the convex case. Simply mixing the two known representa-
tions of Theorems 6.1 and 6.2 does not appear to work in the nonconvex case, as one cannot
as easily identify groups of affine components that can be treated separately.
Instead we propose a different approach: given a CPWL function, first split it into a dif-
ference of two convex ones and then apply Theorem 6.3 to these two functions. To do this
efficiently, it requires to find a good answer to Problem 1.1.
As discussed in this paper, it is quite challenging to give a satisfying answer to Problem 1.1
in full generality, but there are special cases, where we do have a good answer; see Section 3.
For example, we obtain the following result by combining Theorem 6.3 with Lemma E.3.

Corollary 6.4. Let f : Rn → R be a CPWL function that is compatible with a regular
polyhedral complex P with q̃ = |Pn| full-dimensional polyhedra. Then, f can be represented
by a neural network with depth ⌈log2(n + 1)⌉ + ⌈log2 r⌉ + 1 and overall size O(rsn+1), for
any free choice of parameters r and s with rs ≥ q̃.

For a given CPWL function f , provided that one can find a regular polyhedral complex such
that q̃ is not much larger than the number of pieces q, Corollary 6.4 does indeed provide
a smooth tradeoff between Theorem 6.1 and Theorem 6.2 in the general, nonconvex case.
As q is the minimal number of fulldimensional polyhedra in any (potentially nonregular)
polyhedral complex compatible with f , the big question is how much of a restriction the
assumption of regularity might be.

7 Open Problems

From the theoretical perspective, the maybe most dominant open question is the following
precise version of Problem 1.1.

Problem 7.1. Given a CPWL function f in dimension n with q pieces, does there always
exist a decomposition f = g − h such that the number of pieces of g and h is polynomial in
n and q?

Note that by definition, f is compatible with a polyhedral complex P with |Pn| = q. To
answer Problem 7.1 positively, by Lemma E.3 it would be sufficient to find a regular poly-
hedral complex Q with |Qn| = poly(n, q) that is a refinement of P. Conversely, if we can
answer Problem 7.1 positively, then the underlying complex of g + h would give us such a
regular complex Q. Therefore, to solve Problem 7.1, one needs to answer the following ques-
tion: given an arbitrary complete polyhedral complex P, what is the “coarsest” refinement
of P that is regular? A positive answer to Problem 7.1 would have useful consequences for
our two applications in the context of (submodular) set function optimization and neural
network representations. However, also a negative answer would be equally interesting.
One possible approach to resolve Problem 7.1 could be to analyze which objective direction
according to Theorem 3.18 leads to a good vertex of the decomposition polyhedron and
prove theoretical properties about that vertex. The same theorem might also be key to
developing algorithms that find good decompositions with linear programming. Generally,
while beyond the scope of this paper, turning any of our insights into practical algorithms,
preferably with theoretical guarantees, is a broad avenue for future research.
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A Examples

A.1 Different parameterizations of median function

Example A.1 (Median). In this example, we have a look at the different parameterizations
for the function that computes the median of 3 numbers. To have a 2-dimensional example,
we set x3 := 0. Let the polyhedral complex P be induced by the maximal polyhedra
Pπ = {x ∈ R2 | xπ(1) ≤ xπ(2) ≤ xπ(3)} where π : [3] → [3] is a permutation and f : R3 → R
be the function given by f |Pπ

(x) = xπ(2). The function f has concave breakpoints whenever
the median and the higher coordinate change, i.e., at the facets that are given as σπ,1 =
{x ∈ R2 | xπ(1) ≤ xπ(2) = xπ(3)} and convex breakpoints whenever the median and the
lower coordinate change, that is, at the facets that are given as σπ,2 = {x ∈ R2 | xπ(1) =
xπ(2) ≤ xπ(3)}. Since ∥e1 − e2∥2 =

√
2 and ∥e1∥2 = ∥e2∥2 = 1, it holds that

wf (σπ,1) =
{

−
√

2 xπ(1) = x3
−1 xπ(1) ̸= x3

and wf (σπ,2) =
{√

2 xπ(3) = x3
1 xπ(3) ̸= x3.

See Figure 1 for a 2-dimensional illustration.

A.2 Illustration of Definition 3.12

pieces of g

pieces of h

(a) The blue point corresponds to a minimal
decomposition.

pieces of g

pieces of h

(b) The blue point corresponds to a decompo-
sition that is not minimal.

Figure 2: Visualization of minimality, where a decomposition (g, h) is described by the
number of pieces of g and h. A decomposition is minimal, if the rectangle spanned with
(0, 0) does not contain another decomposition.

A.3 Examples for unique minimal decompositions

Example A.2 (Minimal decomposition for hyperplane functions). Let f : Rn → R be a
hyperplane function given as f(x) =

∑
i∈[k] λi · max{⟨x, ai⟩ + bi, ⟨x, ci⟩ + di}. We can

assume without loss of generality that the hyperplanes

Hi = {x ∈ Rn | ⟨x, ai⟩ + bi = ⟨x, ci⟩ + di}

are pairwise distinct, because otherwise we can simply adjust λi. The polyhedral complex
P induced by the hyperplane arrangement {Hi}i∈[k] is compatible with f . The convex
functions g, h given by

g(x) =
∑
λi≥0

λi·max{⟨x, ai⟩+bi, ⟨x, ci⟩+di} and h(x) = −
∑
λi<0

λi·max{⟨x, ai⟩+bi, ⟨x, ci⟩+di}

are the unique minimal decomposition of f since suppP(g) = supp+
P(f) = {σ ∈ Pn−1 | σ ⊆⋃

λi≥0 Hi} and suppP(h) = supp−
P(f) = {σ ∈ Pn−1 | σ ⊆

⋃
λi<0 Hi}.
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Example A.3 (Minimal decomposition of k-th order statistic). We construct a polyhedral
complex that is compatible with the function f : Rn → R that outputs the k-th largest entry
of x ∈ Rd. For U ⊆ [n] with |U | = k and i ∈ [n] \ U , let

Pi,U = {x ∈ Rn | xj ≤ xi ≤ xℓ ∀ℓ ∈ U, j ∈ [n] \ U}.

All such polyhedra and their faces form a polyhedral complex P that is compatible with
the function f : Rn → R given by f(Pi,U ) = xi. It is not hard to see that f = g − h where
g, h ∈ V+

P are convex functions given by

g(x) := max
I⊆[n]
|I|=k

(∑
i∈I

xi

)
and h(x) := max

I⊆[n]
|I|=k−1

(∑
i∈I

xi

)
.

Moreover, let σi,j,U := {x ∈ Rn | xℓ ≤ xj = xi ≤ xm for all m ∈ U, ℓ ∈ [n] \ U}. Then
suppP(g) = supp+

P(f) = {σi,j,U | U ⊆ [n], |U | = k+1} and suppP(h) = supp−
P(f) = {σi,j,U |

U ⊆ [n], |U | = k}. Thus, Proposition 3.15 implies that (g, h) is the unique vertex of every
regular polyhedral complex compatible with f .

B Constructions by Kripfganz & Schulze (1987)

Construction B.1 (Hyperplane extension). For all convex breakpoints, the local convex
functions are extended to global convex functions with breakpoints supported on a single
hyperplane, and the function g is defined as the sum of all these functions. To analyze it in
our framework, let P be any polyhedral complex that is compatible with f and let wf ∈ WP
be the weight function corresponding to f . For σ ∈ Pn−1, let Hσ be the hyperplane spanned
by σ and A+

f = {Hσ | wf (σ) > 0} be the hyperplane arrangement consisting of the hyper-
planes supporting the breakpoints where f is convex. Let H+

f be the common refinement
of the polyhedral complex induced by A+

f and P. The weight function wg : Pn−1 → R
given by wg(σ) :=

∑
σ⊆Hσ′ ,

wf (σ′)>0

wf (σ′) is in WH+
f

and nonnegative and hence the corresponding

function g ∈ VH+
f

is convex. It follows that h := g − f is convex as well, yielding the desired
decomposition.
Construction B.2 (Local Maxima Decomposition). Let {P1, . . . , Pm} = Pn and fi be the
unique linear extension of f |Pi . Moreover, let Mi := {j ∈ [m] | fi(x) ≥ fj(x) for all x ∈ Pi}
and gi := maxj∈Mi Pj . Then

f = min
i∈[m]

max
j∈Mi

fi = min
i∈[m]

gi

and g :=
∑

i∈[m] gi is a convex function. Furthermore, let hi := g −gi, then h := maxi∈[m] hi

is a convex function as well and it holds that
g − h = g − max

i∈[m]
(g − gi) = g − (g − min

i∈[m]
gi) = g − (g − f) = f

Let Hi,j := {x ∈ Rn | fi(x) = fj(x)} and Af = {Hi,j | i ̸= j}. Furthermore, let Hf be
the polyhedral complex induced by the hyperplane arrangement Af . Then we have that
g, h ∈ VHf

.
Proposition B.3. There is a CPWL function f and convex CPWL functions g, h with
f = g − h such that every decomposition (g′, h′) ∈ DHf

(f) as well as every decomposition
(g′, h′) ∈ DH+

f
(f) is dominated by (g, h).

Proof. Let P be the polyhedral complex in R2 with rays ρ1 = cone((1, 0)), ρ2 = cone((0, 1)),
ρ3 = cone((1, 2)) and ρ4 = cone((2, 1)). Let wf (ρ1) = wf (ρ2) = 1 and wf (ρ3) = wf (ρ4) =√

5
3 . Then according to Theorem C.1 the unique minimal decomposition is given by the

complex obtained by adding the ray ρ5 = cone((−1, −1)) and the weight function

wg(ρ) =


wf (ρ) ρ ∈ supp+

P(f)
0 ρ ∈ supp−

P(f)√
2 ρ = ρ5
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as well as wh = wg − wf . Nevertheless, the ray ρ5 is not contained in (the support of) Hf

and hence this solution is not in DHf
(f). Since (g, h) is the unique (up to adding a linear

function) minimal decomposition, it follows that any solution in DHf
(f) must be dominated

by (g, h). Since H+
f is a coarsening of Hf , it holds that every decomposition in DH+

f
(f) is

contained in DHf
(f) as well, impyling the result for DH+

f
(f).

B.1 Examples of existing decompositions

Example B.4 (hyperplane extension of k-th order statistic). Let f be the function from
Example A.3. For any i, j ∈ [n] and U ⊆ [n] with i, j ∈ U and |U | = k + 1 it holds that
σi,j,U ∈ supp+(f) and Hσi,j,U

= {x ∈ Rn | xi = xj}. Hence, Pg is the braid fan and it holds
that g(x) =

(
n

k−1
)∑

i ̸=j max{xi, xj}. Thus, the unique vertex (g∗, h∗) from Example A.3 is
clearly a non-trivial coarsening of the decomposition obtained from the hyperplane extension
(since g∗ is a non-trivial coarsening of g) and hence the decomposition cannot be a vertex
of DQ(f) for any regular polyhedral complex Q.

1

1

11

√
2

√
2

x1 + 2x2

2x1 + x2
2x2

2x1

x1

x2

(a) g(x) = max(x1, x2) + max(x1, 0) +
max(x2, 0)

0

2

02

0

2
√

2

2x2

2x1
2x2

2x2

0

0

(b) h(x) = g(x) − f(x), where f is the
median.

Figure 3: The hyperplane extension of the median (second largest number) of 0, x1, x2 (i.e.,
n = 3) (Example B.4), which agrees with the local maxima decomposition (Example B.5)
up to a factor 2. These representations do not agree for the median when n > 3.

Example B.5 (local maxima decomposition of k-th order statistic). Let f be the function
from Example A.3. Then, for U ⊆ [n] with |U | = k − 1 and i ∈ [n] \ U , we have that
gi,U (x) = max

j∈[n]\U
xj . Thus,

g(x) =
∑
i,U

gi,U (x) = (n − k + 1) ·
∑

S⊆[n]
|S|=n−k+1

max
j∈S

xj .

Note that g has only breakpoints when two coordinates that are the two highest coordinates
in some set S swap places in the ordering. So, for any T ⊆ [n] such that |T | = n − k and
any bijection π : [k] → [n] \ T , let

PT,π := {x ∈ Rn | xj ≤ xπ(1) ≤ . . . ≤ xπ(k+1), j ∈ T}.

It follows that the set of full-dimensional cones Pn
g of the unique coarsest polyhedral complex

Pg compatible with g is given as Pn
g = {Pπ,T }π,T . Again, the unique vertex (g∗, h∗) from

Example A.3 is clearly a non-trivial coarsening of the decomposition obtained from the
lattice representation and hence the decomposition cannot be a vertex of DQ(f) for any
regular polyhedral complex Q.
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C Counterexample to a construction of Tran & Wang (2024)

C.1 Duality and Newton polytopes

In this section we describe the duality between convex piecewiese linear functions and New-
ton polytopes, adapted to our setup.
A positively homogenous convex CPWL function is a function f such that f(0) = 0, and
Pf is a polyhedral fan. In this case, it can be written as f(x) = maxi∈[k]⟨x, vi⟩, where
vi ∈ Rn. We define the Newton polytope of f as the convex hull Newt(f) = conv(v1, . . . , vk).
Then f is the support function of Newt(f), i.e., f(x) = maxp∈Newt(f)⟨p, x⟩. We now give an
interpretation of Pf and wf in terms of the Newton polytope.
Given any n-dimensional polytope P ⊂ Rn, the (outer) normal cone of a k-dimensional face
F of P is the (n − k)-dimensional cone

NF (P ) =
{

x ∈ Rn

∣∣∣∣ ⟨z, x⟩ = max
p∈P

⟨p, x⟩ for all z ∈ F

}
. (1)

In particular, if P = Newt(f) and v is a vertex of P , then the description of the normal
cone turns into

Nv(Newt(f)) = {x ∈ Rn | ⟨v, x⟩ = f(x)} ,

and agrees with a maximal polyhedron in Pn
f . The normal fan of a polytope is the collec-

tion of normal cones over all faces. Thus, for positively homogeneous convex functions, the
polyhedral complex Pf agrees with the normal fan of Newt(f), and the number of linear
pieces of f equals the number of vertices of Newt(f). The duality between Pf and Newt(f)
also establishes a bijection between faces σ ∈ Pn−1

f and edges of Newt(f), and for the corre-
sponding weight function wf ∈ WP holds that wf (σ) equals the Euclidean length of the edge
that is dual to σ. This correspondence extends to general convex CWPL functions, where
Pf is a complex which is dual to a polyhedral subdivision of Newt(f), and wf corresponds
to lengths of edges in this subdivision (Maclagan & Sturmfels, 2015, Chapter 3.4).

C.2 The Construction from Tran & Wang (2024)

The duality between positively homogeneous convex CPWL functions and Newton poly-
topes, as described in Appendix C.1, serves as a motivation for Tran & Wang (2024) to
construct minimal decompositions f = g − h of positively homogeneous CPWL functions as
the difference of two convex such functions in dimension 2.
Theorem C.1 (Tran & Wang (2024)). For every positively homogeneous CPWL-function
f : R2 → R exists a unique (up to adding a linear function) minimal representation as
difference of two convex functions g, h.

The decomposition can be obtained as follows. Let Pf be a 2-dimensional polyhedral fan
compatible with f with rays ρ1, . . . , ρm ⊂ R2 and ray generators r1, . . . , rm ∈ R2 such
that ∥ri∥ = 1 for i = 1, . . . , m. Furthermore, let wf be the corresponding element in
WPf

and w+
f := max{wf , 0}. We now define an additional ray ρm+1 with ray generator

rm+1 = −
∑m

i=1 max(wf (ρi), 0)ri and a convex function g through the weights

wg(ρi) =


wf (ρi) if wf (ρi) > 0, i ∈ [m]
0 if wf (ρi) ≤ 0, i ∈ [m]∑m

i=1 max(wf (ρi), 0) if i = m + 1.

This defines the convex functions g, h = g − f , and results in a minimal decomposition
f = g − h in the 2-dimensional positively homogeneous case. Considering this construction
through to the duality to Newton polytopes, we can identify rays of Pf which correspond to
convex breakpoints of f with edges of the Newton polytope Newt(g), and the construction
from Theorem C.1 adds a "missing" edge to the Newton polygon Newt(g). We now describe
the proposed construction to generalize the 2-dimensional method to higher dimensions.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Construction C.2 (Tran & Wang (2024, Section 4.1)). Let f : Rn → R be a positively
homogeneous CWPL-function and P a polyhedral fan compatible with f . The attempt is
to balance w+

f locally around every τ ∈ Pn−2 and then “glue together" the local balancings
to a global balancing. So, for some τ ∈ Pn−2, suppose that {σ1, . . . σk} = starP(τ) are the
cones containing τ . The rays spanned by eσi/τ that inherit the weights w+

f (σi) for i ∈ [k]
induce a 2-dimensional fan Pτ in the 2-dimensional linear space span(τ)⊥ orthogonal to
span(τ). Let Pτ be the polygon in span(τ)⊥ corresponding to the minimal balancing of w+

f

regarded as map w+
f : P1

τ → R. Now proceed with the following steps.

1. For every τ ∈ Pn−2, construct the polygon Pτ .
2. Place the polygons Pτ in Rn in such a way, that whenever τ1, τ2 ∈ Pn−2 are faces

of σ ∈ supp+
P(f), then the edges in Pτ1 and Pτ2 that correspond to σ are identified

with each other.
3. Take the convex hull Pg of the polygons {Pτ }τ∈Pn−2 .
4. The support function g of the polytope Pg and h := g − f are a decomposition of f .

One can check that for some σ ∈ Pn−1 and τ ∈ Pn−2 being a face of σ, the edge eσ of
length w(σ) which is perpendicular in span(τ)⊥ to τ is independent of the choice of the
face τ . In particular, the direction of the edge eσ is normal to the hyperplane spanned
by σ. However, it remained unclear, whether or not, the second step in this procedure is
always well-defined, that is, that placing the polygons in such a coherent way is possible.
To make this more precise, let for some τ ∈ Pn−2 the edges of the polygon Pτ be given in a
cyclic way {eσ1 , . . . eσm

}. Placing a polygon Pτ refers to choosing an xτ ∈ Rn and defining
the placed polygon as Pτ (xτ ) = conv(xτ , xτ + eσ1 , xτ + eσ1 + eσ2 , . . . , xτ +

∑m
i=1 eσm

).
Placing them in a coherent way means choosing an xτ ∈ Rn for every τ ∈ Pn−2 such that
Pτ1(xτ1)∩Pτ2(xτ2) = conv(xσ, xσ + eσ) for some xσ ∈ Rn whenever τ1 and τ2 are faces of σ.
A priori it is not clear that such xτ always exist. The following example will in fact show
that the resulting linear equation system not always yields a solution.

C.3 Counterexample to the construction

In the remaining of this section, we give a counterexample to Construction C.2, which
is stated in Tran & Wang (2024) in terms of (virtual) Newton polytopes as a potential
generalization of the 2-dimensional construction to higher dimensions.
Example C.3 (Counterexample to Construction C.2). Figure 4 is an illustration of 4
polygons with labelled edges that cannot be placed in R3 such that the edges of different
polygons with the same label are identified with each other. Hence, applying the above
procedure to the CPWL-function f : R3 → R given by

f(x) = max{0, max
i,j∈[3]

i ̸=j

{min{xi, xj − xi}}}

is not well-defined since these 4 polygons arise and should be identified in the indicated way,
which is impossible.
We describe the 2-skeleton of a polyhedral fan P that is compatible with f . Let ei be the
i-th standard unit vector. The rays are given as follows:

P1 = {cone(−ei), cone(ei), cone(ei + ej), cone(ei + ej + 2ek), cone(ei + 2ej + 2ek),
cone(ei + ej + 2ek), cone(ei + ej + ek) | i, j, k ∈ [3] pairwise distinct}

and the 2-dimensional cones as

P2 = { cone(ei, −ej), cone(−ei, ei + ej + 2ek), cone(−ei, ej + ek), cone(ei, ei + ej + 2ek),
cone(ej + ek, ei + ej + 2ek), cone(ei + ej + 2ek, ei + 2ej + 2ek), cone(ei + ej + 2ek, ei + ej + ek),
cone(ei + 2ej + 2ek, ei + ej + ek), cone(ej + ek, ei + 2ej + 2ek) | i, j, k ∈ [3] pairwise distinct}

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

eσ1

eσ2

eσ3

Pρ1

eσ2

eσ7

eσ8

eσ9

Pρ3

eσ10

eσ11

eσ12

eσ4

eσ13

eσ9

Pρ4

eσ5

eσ4eσ3

eσ6

Pρ2

Figure 4: 4 polygons that cannot be placed in a coherent way in R3

The weight function wf : P2 → R given by

w(cone(ei, −ej)) = 1
w(cone(−ei, ei + ej + 2ek)) = −

√
5

w(cone(−ei, ej + ek)) =
√

8
w(cone(ei, ei + ej + 2ek)) =

√
2,

w(cone(ej + ek, ei + ej + 2ek)) =
√

3,

w(cone(ei + ej + 2ek, ei + 2ej + 2ek)) = −
√

5,

w(cone(ei + ej + 2ek, ei + ej + ek)) =
√

2,

w(cone(ei + 2ej + 2ek, ei + ej + ek)) =
√

2,

w(cone(ej + ek, ei + 2ej + 2ek)) = 0

corresponds to the function f and is therefore balanced. See Figure 5 for a 2-dimensional
illustration of P.
Consider the 4 rays

ρ1 = cone((0, 1, 1)), ρ2 = cone((1, 1, 2)), ρ3 = cone((1, 2, 1)), ρ4 = cone((1, 1, 1))

We will see that the corresponding polygons Pρ1 , Pρ3 , Pρ3 and Pρ4 equal the ones in Figure 4.
The 2-dimensional cones which are in the stars of the 4 rays are the following:

σ1 = cone((0, 1, 1), (−1, 0, 0)), σ2 = cone((0, 1, 1), (1, 2, 1)), σ3 = cone((0, 1, 1), (1, 1, 2)),
σ4 = cone((1, 1, 2), (1, 1, 1)), σ5 = cone((1, 1, 2), (1, 0, 1)), σ6 = cone((1, 1, 2), (0, 0, 1)),
σ7 = cone((1, 2, 1), (0, 1, 0)), σ8 = cone((1, 2, 1), (1, 1, 0)), σ9 = cone((1, 2, 1), (1, 1, 1)),
σ10 = cone((1, 1, 1), (2, 2, 1)), σ11 = cone((1, 1, 1), (2, 1, 1), σ12 = cone((1, 1, 1), (2, 1, 2),
σ13 = cone((1, 2, 2), (1, 1, 1)),

The direction of the edges of the polygons are given by the normal vectors of the hyperplanes
spanned by the corresponding 2-dimensional cone and their length by the weight of the
corresponding 2-dimensional cone.
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(−1, 0, 0)

(0, 1, 0) (0, 0, −1)

(1, 0, 0)

(0, −1, 0)(0, 0, 1)

ρ1 = (0, 1, 1) (2, 1, 1)

(1, 1, 0)

ρ2 = (1, 1, 2)

ρ3 = (1, 2, 1)

(1, 0, 1)

(1, 2, 2)

(2, 2, 1)

(2, 1, 2)

ρ4 = (1, 1, 1)
σ1

σ6

σ7

σ2

σ8

σ5

σ3 σ12

σ9

σ13 σ11

σ10

σ4

Figure 5: A 2-dimensional representation of P. The blue lines correspond to convex break-
points of the function f , that is, a cone σ ∈ P2 such that w(σ) > 0. The concave breakpoints
(w(σ) < 0) are dashed and colored in orange. f has no breakpoints on the gray, dotted lines
(w(σ) = 0).
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eσ1 = (0, 2, −2), eσ2 = (1, −1, 1), eσ3 = (−1, −1, 1), eσ4 = (1, −1, 0), eσ5 = (1, 1, −1),
eσ6 = (−1, 1, 0), eσ7 = (1, 0, −1), eσ8 = (−1, 1, −1), eσ9 = (−1, 0, 1), eσ10 = (1, −1, 0),
eσ11 = (0, −1, 1), eσ12 = (−1, 0, 1), eσ13 = (0, 1, −1)

In order to construct the polygons one needs to consider the orientation of the edge (and the
normal vector) in the particular polygon. One can convince themselves that the polygons
Pρ1 , Pρ3 , Pρ3 and Pρ4 of the 4 rays are given as:

Pρ1(xρ1) = conv(xρ1 + eσ1 , xρ1 + eσ1 + eσ2 , xρ1 + eσ1 + eσ2 + eσ3)
Pρ2(xρ2) = conv(xρ2 − eσ3 , xρ2 − eσ3 − eσ4 , xρ2 − eσ3 − eσ4 − eσ5 , xρ2 − eσ3 − eσ4 − eσ5 − eσ6)
Pρ3(xρ3) = conv(xρ3 − eσ2 , xρ3 − eσ2 + eσ7 , xρ3 − eσ2 + eσ7 + eσ8 , xρ3 − eσ2 + eσ7 + eσ8 + eσ9)
Pρ4(xρ4) = conv(xρ3 + eσ9 , xρ4 + eσ9 + eσ10 , xρ4 + eσ9 + eσ10 + eσ11 , xρ4 + eσ9 + eσ10 + eσ11 + eσ12 ,

xρ4 + eσ9 + eσ10 + eσ11 + eσ12 + eσ4 , xρ4 + eσ9 + eσ10 + eσ11 + eσ12 + eσ4 + eσ13)

Figure 4 already shows that they cannot be placed in a coherent way. To make this math-
ematically precise, one obtains a system of linear equations for xρ1 , xρ2 , xρ3 and xρ4 , by
plugging in the values for the normal vectors, that ensures that the edges for the same 2-
dimensional cone in different polygons are identified. This linear equation system does not
have a solution.

D Submodular Functions

This section is a detailed version of Section 5, where we demonstrate that a special case
of our framework is to decompose a general set function into a difference of submodular
set funtions and translate our results to this setting. Such decompositions are a popular
approach to solve optimization problems as disussed in the introduction.
Definition D.1. The braid arrangement in Rn is the hyperplane arrangement consisting
of the

(
n
2
)

hyperplanes xi = xj , with 1 ≤ i < j ≤ n.

For the remaining section, let P be the polyhedral complex arising from the braid arrange-
ment. Let Fn be the vector space of set functions from 2[n] to R. We first show that
functions in VP are in one-to-one correspondence with the set functions Fn. To this end,
for a set S ⊆ [n], let 1S =

∑
i∈S ei be the indicator vector of S, that is, the vector that

contains entries 1 for indices in S and 0 otherwise.
Proposition D.2. The mapping Φ that maps f ∈ VP to the set function F (S) = f(1S) is
a vector space isomorphism.

Proof. The map Φ is clearly a linear map. To prove that Φ is an isomorphism, we show
that a function f ∈ VP is uniquely determined by its values on {1S}S⊆[n] and any choice of
real values {yS}S⊆[n] give rise to a function f ∈ VP such that f(1S) = yS .

First, note that the maximal polyhedra Pn are of the form Pπ = {x ∈ Rn | xπ(1) ≤
. . . ≤ xπ(n)} for a permutation π : [n] → [n]. There are exactly the n + 1 indicator vec-
tors {1Si

}i=0,...,n contained in Pπ, where Si := {π(n + 1 − i), . . . , π(n)} for i ∈ [n] and
S0 := ∅. Moreover, the vectors {1Si

}i=0,...,n are affinely independent and hence the values
{f(1Si

)}i=0,...,n uniquely determine the affine linear function f |Pπ
. Therefore, f is uniquely

determined by {f(1Si
)}S⊆[n].

Given any values {yS}S⊆[n], by the discussion above, there are unique affine linear maps
f |Pπ yielding f |Pπ (1S) = yS for all S ⊆ [n] such that 1S ∈ Pπ. It remains to show that the
resulting function f is well-defined on the facets Pn−1. Any such facet is of the form

σπ,i = {x ∈ Rn | xπ(1) ≤ . . . ≤ xπ(i) = xπ(i+1) ≤ . . . ≤ xπ(n)},

which is the intersection of Pπ and Pπ◦(i,i+1), where (i, i + 1) denotes the transposition
swapping i and i + 1. However, the indicator vectors {1Si

}i∈[n]\{i} contained in σπ,i are
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a subset of the indicator vectors contained in Pπ and Pπ◦(i,i+1). Therefore, it holds that
f |Pπ

(x) = f |Pπ◦(i,i+1)(x) for all x ∈ σπ,i implying that f is well-defined as a CPWL function.

If we think this the other way around, starting with a set function F , then f = Φ−1(F )
is by definition a continuous extension of F . It turns out that this particular extension is
known as the Lovász extension (Lovász, 1983), as we argue below. The Lovász extension is
an important concept in the theory and practice of submodular function optimization as it
provides a link between discrete submodular functions and continuous convex functions.
Definition D.3. For a set function F : 2[n] → R, the Lovász extension f : Rn → R is
defined by f(x) =

∑n
i=0 λiF (Si), where ∅ = S0 ⊂ S1 ⊂ . . . ⊂ Sn = [n] is a chain such that∑n

i=1 λi1Si
= x and λi ≥ 0 for all i ∈ [n − 1] and λ0 = 1 −

∑n
i=1 λi.

Remark D.4. In many contexts in the literature, the Lovász extension is only defined on
the hypercube [0, 1]n. For our purposes, it is more convenient to omit this restriction, which
is captured by the above definition.

The intuition of the Lovász extension can already be seen in the proof of Proposition D.2:
depending on the ordering of the components of an input vector x, the Lovász extension
writes x as an affine combination of indicator vectors 1Si , and uses the coefficients of the
affine combination to compute the value f(x). Following the intuition, we see in the next
proposition that Φ−1(F ) is actually the Lovász extension of F .
Proposition D.5. For a set function F ∈ Fn, the function f = Φ−1(F ) is precisely the
Lovász extension of F .

Proof. By the definition of the Lovász extension, it follows that it is compatible with P.
Thus, the Lovász extension is contained in VP . Moreover, as it is an extension that fixes
indicator vectors, it follows that Φ applied to the Lovász extension of F gives us back F . As
Φ is an isomorphism by Proposition D.2, the Lovász extension must be exactly Φ−1(F ).

Definition D.6. A set function F : 2[n] → R is called submodular if

F (A) + F (B) ≥ F (A ∪ B) + F (A ∩ B) (2)

for all A, B ⊆ [n]. F is called modular if equality holds for all A, B ⊆ [n].

The following well-known property is key to the insights of this section.
Proposition D.7 (Lovász (1983)). A set function F is submodular if and only if its Lovász
extension f = Φ−1(F ) is convex.

Applying our insights from Section 3 to the previous proposition, we obtain the following
well-known statement.
Corollary D.8. The set of submodular functions forms a polyhedral cone SMn in the
vector space Fn.

In particular, we can specialize Problem 1.1 in the setting of this section as follows.
Problem D.9. Given a set function F ∈ Fn, how to decompose it into a difference of
submodular set functions such that their Lovász extensions have as few pieces as possible?

Having a Lovász extension with few pieces is desirable because it allows the submodular
function to be stored and accessed efficiently during computational tasks. As Problem D.9
is a special case of Problem 1.1, we are able to translate our results from Section 3 to the
setting of submodular functions.
Let Mn ⊆ Fn be the vector space of modular functions, that is, set functions that satisfy
equation 2 with equality. Note that a set function is modular if and only if its Lovász
extension is an affine function (Lovász, 1983). Since for any M ∈ Mn, a set function F is
submodular if and only if F +M is submodular, we define the vector space Fn = Fn/Mn of
set functions modulo modular functions. Furthermore, let SMn be the cone of submodular
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functions in this quotient. A decomposition (G, H) ∈ SMn ×SMn of a set function F ∈ Fn

is called irreducible if there does not exist a submodular function I ∈ SMn \ {0} such that
G − I and H − I are submodular. Since a set function M ∈ Fn is modular if and only if
Φ−1(M) is affine linear, the isomorphism Φ of Proposition D.2 descends to an isomorphism
Φ: Fn → VP such that Φ(SMn) = V+

P .

For a set function F ∈ Fn, the set of decompositions D(F ) := {(G, H) ∈ SMn × SMn |
F = G − H} is a polyhedron.
Corollary D.10. A decomposition (G, H) is irreducible if and only if (G, H) is contained
in a bounded face of D(F).

Proof. The extension of Φ to the cartesian product Φ × Φ: VP × VP → Fn × Fn is an
isomorphism. Then the statement follows from the fact that D(F ) = (Φ × Φ)(DP(Φ−1(F ))
and Theorem 3.8.

Definition D.11. For a submodular function F : 2[n] → R, the base polytope B(F ) is
defined as

B(F ) := {x ∈ Rn |
∑
i∈S

xi ≤ F (S) ∀S ⊂ [n],
∑
i∈[n]

xi = F ([n])}.

Since we factored out modular functions, we can assume without loss of generality that a
set function F ∈ Fn is normalized, that is, F (∅) = 0. In this case, f = Φ−1(F ) is positively
homogeneous. For the remaining chapter, we will assume all set functions to be normalized
and all CPWL functions to be positively homogeneous. If F is submodular, f agrees with
the support function of the base polytope B(F ), and therefore B(F ) is the Newton polytope
Newt(f) of the Lovász extension f (see e.g. Aguiar & Ardila (2017) Theorem 12.3.). The
Newton polytopes of functions that differ by a linear map are a translation of each other
and modular functions correspond to linear functions. Hence, if we denote by Bn the
set of base polytopes in Rn modulo translation, the maps B : Fn → Bn, F 7→ B(F ) and
Newt: VP → Bn, f 7→ Newt(f) are well defined and we obtain the following diagramm:

Fn Bn

VP

B

Φ Newt

In this setting, we call a decomposition (G, H) ∈ D(F ) minimal, if it is not dominated by
any other decomposition, that is, if there is no other decomposition (G′, H ′) ∈ D(F ) where
B(G′) has at most as many vertices as B(G), B(H ′) has at most as many vertices as B(H),
and one of the two has strictly fewer vertices.
For a tuple of submodular functions (G, H) ∈ SM × SM, let (PG, PH) be the tuple of the
normal fans of the base polytopes B(G) and B(H). A decomposition (G′, H ′) ∈ D(F ) is
called a (non-trivial) coarsening of (G, H) ∈ D(F ) if PG′ and PH′ are coarsenings of PG

and PH , respectively (and at least one of them is a non-trivial coarsening).
Corollary D.12. (G, H) ∈ D(F ) is a vertex if and only if there is no non-trivial coarsening
of (G, H).

Proof. Since g = Φ−1(G) and h = Φ−1(H) are the support functions of the base polytopes
B(G) respectively B(H), the tuple of normal fans (PG, PH) agrees with the tuple (Pg, Ph) of
the unique coarsest polyhedral complexes compatible with g and h. Hence by Theorem 3.11,
there is no non-trivial coarsening of (G, H) if and only if (g, h) is a vertex of DP(f) which
is the case if and only if (G, H) is a vertex of D(F ).

Corollary D.13. For a normalized set function F ∈ Fn, a minimal decomposition of F is
a vertex of D(F ).

Proof. If (G, H) is not a vertex, then there is a coarsening (G′, H ′) ∈ D(F ) of (G, H)
implying that (G′, H ′) dominates (G, H).
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The following example shows that the Lovász extensions of cut functions are hyperplane
functions thus admit a unique minimal decomposition into submodular functions, which are
themselves cut functions. In particular, the Lovász extensions of the decomposition have at
most as many pieces as the Lovász extensions of the original cut function.
Example D.14 (Minimal decompositions of cut functions). Let G = (V, E) be a graph
where V = [n] and c : E → R a weight function on the edges. Let F ∈ Fn be the cut function
given by F (S) =

∑
{u,v}∈δ(S) c({u, v}), where δ(S) := {{u, v} ∈ E | u ∈ S, v ∈ V \ S}.

The function f := Φ−1(F ) ∈ VP is given by f(x) =
∑

{u,v}∈E c({u, v}) · fu,v(x), where
fu,v(x) = max{xu − xv, xv − xu}. To see this, first note that f ∈ VP . Thus, it suffices to
check that F (S) = f(1S) for all S ⊆ [n], which follows due to the observation that

fu,v(1S) =
{

1 {u, v} ∈ δ(S)
0 {u, v} ̸∈ δ(S)

Hence, Example A.2 implies that the functions

g =
∑

c({u,v})>0

c({u, v}) · fu,v and h =
∑

c({u,v})<0

c({u, v}) · fu,v

form the unique minimal decomposition of f . Thus, G = Φ(g) and H = Φ(h), the submod-
ular functions given by

G(S) =
∑

{u,v}∈δ(S)
c({u,v})>0

c({u, v}) and H(S) =
∑

{u,v}∈δ(S)
c({u,v})<0

c({u, v})

are the unique minimal decompositions of F into submodular functions.

E Proofs

E.1 Proof of Lemma 3.1

Proof. Let f, g be CPWL functions which are compatible with P, and λ, µ ∈ R. Then for
any P ∈ Pn holds (λf + µg)|P = λf |P + µg|P , which is an affine function restricted to
P . Thus, the set VP of CPWL functions compatible with P forms a linear subspace of the
space of continuous functions.

E.2 Proof of Lemma 3.2

Proof. Let f ∈ VP . Since P is a complete polyhedral complex, for every σ ∈ Pn−1, there
are P, Q ∈ Pn such that σ = P ∩ Q. Let aP , aQ ∈ Rn and bP , bQ ∈ R such that f |P (x) =
⟨aP , x⟩ + bP and f |Q(x) = ⟨aQ, x⟩ + bQ. Consider the linear map ϕ : VP → WP given by

wf (σ) := ⟨eP/σ, aP ⟩ + ⟨eQ/σ, aQ⟩ = ⟨eP/σ, aP − aQ⟩.

Note that if f is locally convex at σ, then ⟨eP/σ, aP − aQ⟩ = ∥aP − aQ∥2 and if f is locally
concave at σ, then ⟨eP/σ, aP − aQ⟩ = −∥aP − aQ∥2. The proof proceeds analogously to
the case where f has only convex breakpoints and the coefficients of the affine maps are
rational. In this case, the lemma follows from the structure theorem of tropical geometry.
See Maclagan & Sturmfels (2015) Proposition 3.3.2 for a proof that wf ∈ WP and Maclagan
& Sturmfels (2015) Proposition 3.3.10 for a proof that ϕ is surjective. Here, we present an
adjusted proof (to not necessarily convex functions and irrational coefficients). First, we
check that wf ∈ WP . Let τ ∈ Pn−2 and {P1, . . . , Pm} = starP(τ) ∩ Pn and {σ1, . . . , σm} =
starP(τ) ∩ Pn−1 be ordered in a cyclic way, that is, Pi ∩ Pi+1 = σi for i ∈ [m], where
Pm+1 = P1. Note that, since f is continuous, we have that aPi − aPi+1 ∈ span(ePi/σi

). The
linear map Tτ : aff(τ)⊥ → aff(τ)⊥ satisfying Tτ (ePi/σi

) = eσi/τ (given by a rotation matrix)
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is an automorphism, implying that∑
σ⊃τ

σ∈Pn−1

wf (σ) · eσ/τ =
m∑

i=1
wf (σi) · Tτ (ePi/σi

)

= Tτ

(
m∑

i=1
⟨ePi/σi

, aPi
− aPi+1⟩ · ePi/σi

)

= Tτ

(
m∑

i=1
⟨ePi/σi

, ePi/σi
⟩ · (aPi − aPi+1)

)
= Tτ (0) = 0

We proceed by showing that the map ϕ is surjective and its kernel is precisely Aff(Rn) and
therefore, it induces an isomorphism between VP and WP .
The kernel of ϕ is Aff(Rn) since wf (σ) = ⟨eP/σ, aP ⟩ + ⟨eQ/σ, aQ⟩ = ⟨eP/σ, aP − aQ⟩ = 0 if
and only if aP − aQ = 0 due to the fact that aP − aQ ∈ span(eP/σ). Due to the continuity
of f , this also implies that bP = bQ and hence f |Q = f |P and therefore the map f is affine
linear.
To show surjectivity, let w ∈ WP . We aim to find an f ∈ VP such that w = ϕ(f). Let
Pn = {P1, . . . Pk} and for P ∈ Pn, σ ∈ Pn−1, let bP/σ ∈ R such that σ is contained in
the hyperplane {x ∈ Rn | ⟨eP/σ, x⟩ + bP/σ = 0} and define the function fP/σ : Rn → R
by fP/σ(x) = ⟨eP/σ, x⟩ + bP/σ. Since P is complete, the graph G = (V, E) given by V =
{1, . . . , k} and E = {{i, j} | Pj ∩ Pi ∈ Pn−1} is connected. Start by defining the function
f |P1 = 0. For 1 < i ≤ k, let (j1, . . . jm) be a path from 1 to i and for ℓ ∈ [m − 1], let
σℓ = Pjℓ

∩ Pjℓ+1 and define the function

f |Pi
=

m−1∑
ℓ=1

w(σℓ) · fPjℓ
/σℓ

.

First, we argue that f |Pi is well-defined, that is, the definition of f |Pi does not depend on
the path from vertex 1 to i. Equivalently, it suffices to show that for any cycle (i1, . . . , im)
in G with i1 = im, it holds that

∑m−1
ℓ=1 w(σℓ)fPiℓ

/σℓ
= 0, where σℓ = Piℓ

∩ Piℓ+1 . Since P is
complete any cycle decomposes into cycles (i1, . . . , im) corresponding to the star of a cone
τ ∈ Pn−2, that is, {σ1, . . . , σm−1} = {σ ∈ Pn−1 | σ ⊃ τ}. Since Tτ is an automorphism, it
holds that

∑m−1
ℓ=1 w(σℓ) · eσℓ/τ = 0 if and only if

∑m−1
ℓ=1 w(σℓ) · ePiℓ

/σℓ
= 0

So, let x ∈ Rn be arbitrary and x′ ∈ aff(τ) and x′′ ∈ aff(τ)⊥ such that x = x′ + x′′. Since
w is in WP , it holds that

∑
σ⊃τ

σ∈Pn−1

w(σ) · eσ/τ = 0 and hence it follows that

m−1∑
ℓ=1

w(σℓ)fPiℓ
/σℓ

(x) =
m−1∑
ℓ=1

w(σℓ) · ⟨ePiℓ
/σℓ

, x′ + x′′⟩ + bPiℓ
/σℓ

=
m−1∑
ℓ=1

w(σℓ) · ⟨ePiℓ
/σℓ

, x′′⟩

= ⟨
m−1∑
ℓ=1

w(σℓ) · ePiℓ
/σℓ,x′′⟩

= 0
By definition, f is a CPWL function and compatible with P and hence in VP . To see that
w = ϕ(f), let P, Q ∈ Pn such that σ = P ∩ Q ∈ Pn−1. Then it holds that aP − aQ =
w(σ) · eP/σ and hence

wf (σ) = ⟨eP/σ, aP ⟩ + ⟨eQ/σ, aQ⟩ = ⟨eP/σ, aP − aQ⟩ = ⟨eP/σ, w(σ) · eP/σ⟩ = w(σ),
finishing the proof.
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E.3 Corollary E.1

Corollary E.1. VP is finite-dimensional.

Proof. By Lemma 3.2, we have that VP = VP/ Aff(Rn) ∼= WP . Thus, the dimension of VP
is bounded from above by dim(WP) + dim(Aff(Rn)) ≤ |Pn−1| + (n + 1).

E.4 Proof of Proposition 3.3

Proof. The function f is convex if and only if it is locally convex around every x ∈ Rn. If
x is in the relative interior of some P ∈ Pn, then this is clearly satisfied since the function
is locally affine linear. Now, assume that f is not locally convex around a x ∈ τ for some
τ ∈ Pn−2. In other words, there are z, y ∈ Rn such that f(λz+(1−λ)y) > λf(z)+(1−λ)f(y)
and such that the line between x and y intersects τ . Let L be the Lipschitz constant of f
and δ := f(λz + (1 − λ)y) − λf(z) + (1 − λ)f(y) > 0. Let ε := δ

4L > 0. Then there are
v, w ∈ Rn with ∥v∥, ∥w∥ < ε such that the line between z + v and y + w does not intersect
any face τ ∈ Pn−2. But then,

f(λ(z + v) + (1 − λ)(y + w)) ≥ f(λz + (1 − λ)y) − L(∥λv∥ + ∥(1 − λ)w∥)
> f(λz + (1 − λ)y) − 2Lε

= δ + λf(z) + (1 − λ)f(y) − 2Lε

≥ δ + λf(z + v) + (1 − λ)f(y + w) − 2Lε − 2Lε

= λf(z + v) + (1 − λ)f(y + w)

and there must be a x′ in the relative interior of some σ ∈ Pn−1 such that f is not locally
convex around x′. Hence, f is convex if and only f is locally convex around every σ ∈ Pn−1,
that is, f is locally convex around every x in the relative interior of σ. For any such x, there
is a λ > 0 such that x + λ · eP/σ ∈ P and x + λ · eQ/σ ∈ Q, by construction of eP/σ

and eQ/σ. Recall from the proof of Lemma 3.2 that wf (σ) = ⟨eP/σ, aP ⟩ + ⟨eQ/σ, aQ⟩, where
f |P (x) = ⟨aP , x⟩+bP and f |Q(x) = ⟨aQ, x⟩+bQ. Since P, Q ∈ Pn and ∥eP/σ∥ = ∥eQ/σ∥ = 1,
we have that x is the midpoint of x + λ · eP/σ and x + λ · eQ/σ. Therefore, f is convex if
and only if f(x) ≤ 1

2 f(x + λ · eP/σ) + 1
2 f(x + λ · eQ/σ). Equivalently,

0 ≤ f(x + λ · eP/σ) + f(x + λ · eQ/σ) − 2f(x) = λ(⟨eP/σ, aP ⟩ + ⟨eQ/σ, aQ⟩) = λ · wf (σ).

If P = Pf , then we have strict local convexity at every σ ∈ Pn−1, which means a strict
inequality in the inequality above.

E.5 Lemma E.2

Lemma E.2. V+
P forms a polyhedral cone in VP .

Proof. Lemma 3.2 and Proposition 3.3 imply that the set of convex functions in VP satisfies
V+

P
∼= W+

P :=
⋂

σ∈Pn−1{w ∈ WP | w(σ) ≥ 0}. This is a finite intersection of linear
inequalities, so W+

P is a polyhedral cone. Moreover, “∼=” is a linear isomorphism, which
implies that V+

P is a polyhedral cone.

E.6 Lemma E.3

Lemma E.3. Let P be a regular polyhedral complex. Then every CPWL function compatible
with P can be written as a difference of two convex CPWL functions that are also compatible
with P. In particular, VP = span(V+

P).

Proof. Let f ∈ VP be an arbirtary function. Since P is regular, by definition there exists a
convex function g ∈ VP such that P = Pg. Proposition 3.3 implies that wg(σ) > 0 for all
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σ ∈ Pn−1. For sufficiently large λ > 0, it follows that wf+λg ≥ 0 and thus f = (f +λg)−λg
is a representation of f as a difference of two compatible, convex functions, as desired.

E.7 Proof Theorem 3.5

Proof. For the set of decompositions holds

DP(f) = {(g, h) | g ∈ V+
P , h ∈ V+

P , f = g − h} = (V+
P × V+

P) ∩ Hf .

For the projection we have

π(DP(f)) = π({(g, g − f) | g ∈ V+
P , g − f ∈ V+

P}) = {g | g ∈ V+
P , g ∈ f + V+

P} = V+
P ∩ (f + V+

P).

E.8 Proof of Theorem 3.8

The statement follows from a more general statement about polyhedra. Recall that any
polyhedron P can written as the Minkowski sum

P = Q + C = {q + c | q ∈ Q, c ∈ C}

where Q is a bounded polytope, and C a unique polyhedral cone, the recession cone of P .
Proposition E.4. A point x ∈ P is contained in a bounded face of P if and only if
x − c ̸∈ P ∀c ∈ C \ {0}.

Proof. Any face of the polyhedron P is of the form

P u = {x ∈ P | ⟨x, u⟩ ≥ ⟨y, u⟩ ∀y ∈ P},

and for Minkowski sums holds P u = Qu +Cu. Let x ∈ P be a point contained in a bounded
face P u of P . Since P u is bounded, we have that P u = Qu + Cu with Cu = {0} being
the unique bounded face of C. Thus, ⟨c, u⟩ < ⟨0, u⟩ for all c ∈ C \ {0}. This implies that
⟨x−c, u⟩ = ⟨x, u⟩−⟨c, u⟩ > ⟨x, u⟩ and therefore, by definition of P u, we have that x−c ̸∈ P .
Conversely, suppose that x ∈ P is not contained in a bounded face. We want to show that
there exists some direction c ∈ C \ {0} such that x − c ∈ P . Since x is not contained in a
bounded face, it is contained in the relative interior of an unbounded face F (where possibly
F = P ). Since the face is unbounded, it contains a ray x +Rc for some direction c ∈ C. On
the other hand, since x ∈ int(F ), we have that x − εc ∈ F for ε > 0 small enough. As C is
a cone, we have that εc ∈ C, which finishes the proof.

Proof of Theorem 3.8. Since π induces a bijection between DP(f) and its image, this is
also a bijection between bounded faces. By Theorem 3.5, π(DP(f)) is a polyhedron with
recession cone V+

P . Proposition E.4 implies that g is contained in a bounded face if and
only if there exists no convex function ϕ ∈ V+

P such that g − ϕ ∈ π(DP(f)). Therefore,
π−1(g) = (g, h), h = g − f is contained in a bounded face of DP(f) if and only if there is no
ϕ ∈ V+

P such that (g − ϕ, g − f − ϕ) = (g − ϕ, h − ϕ) ̸∈ DP(f). Since (g − ϕ) − (h − ϕ) = f ,
this is equivalent to g − ϕ or h − ϕ being nonconvex, i.e., (g, h) is reduced.

E.9 Proof of Lemma 3.10

Proof. First note that B(g) :=
⋃

σ∈suppP (g)
σ are exactly the points where g is not affine

linear. Hence, the closures of the connected components of the complement of B(g) are the
maximal polyhedra of the unique coarsest polyhedral complex Pg compatible with g.
Let suppP(g′) ⊆ suppP(g). Equivalently, for the complement holds (Rn \ B(g)) ⊆ (Rn \
B(g′)), and the same holds for the closures of the (open) connected components, i.e., the
maximal faces in Pn

g and Pn
g′ . In other words, this is equivalent to that for every face P ∈ Pn

g
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there exists some P ′ ∈ Pn
g′ such that P ⊆ P ′. Thus, suppP(g′) ⊆ suppP(g) if and only if

Pg′ is a coarsening of Pg.
The coarsening is non-trivial if and only if there is a P ′ ∈ Pn

g′ such that there is no P ∈ Pn
g

with P ′ ⊆ P . This is the case if and only if there is a σ ∈ Pn−1
g that intersects the interior

of P ′, which occurs if and only if σ ∈ suppP(g) \ suppP(g′).

E.10 Proof of Theorem 3.11

We first prove the following proposition that relates coarsenings of the decompositions to
inclusion relations of the minimal faces that contain the decompositions.
Proposition E.5. For (g, h) ∈ DP(f), let F be the minimal face of DP(f) containing
(g, h). Then (g′, h′) is a coarsening of (g, h) if and only if there is a face G of DP(f) with
G ⊆ F such that (g′, h′) ∈ G. The coarsening is non-trivial if and only if F ̸= G.

Proof. For a face F , let GF = {σ ∈ Pn−1 | wg(σ) = 0 for all (wg, wh) ∈ F} and HF =
{σ ∈ Pn−1

f | wh(σ) = 0 for all (wg, wh) ∈ F} be the set of facets where the corresponding
inequalities ensuring convexity of the functions g and h are tight. It is not hard to see that
G ⊆ F if and only if GF ⊆ GG and HF ⊆ HG. In other words, if (g′, h′) is contained in a face
G ⊆ F , then one can move from (g, h) to (g′, h′) without losing tight inequalities. Hence,
Lemma 3.10 implies that (g′, h′) is a coarsening of (g, h). If G ⊂ F , then either GF ⊂ GG

or HF ⊂ HG. Thus, another inequality becomes tight when moving from (g, h) to (g′, h′)
implying that the coarsening is non-trivial.
For the converse direction, let (g′, h′) be a coarsening of (g, h), which in particular means
that g′ and h′ are compatible with P. Hence, f = g′ − h′ implies that (g′, h′) ∈ DP(f).
Now, assume that there is no face G ⊆ F such that (g′, h′) ∈ G. Then the line between
(g, h) and (g′, h′) is not contained in F . Thus, a tight inequality gets lost when moving from
(g, h) towards (g′, h′). Hence, without loss of generality, there is a σ ∈ suppP(g′)\suppP(g),
which according to Lemma 3.10 is a contradiction to (g′, h′) being a coarsening of (g, h).

Proof of Theorem 3.11. 1 and 2 are equivalent by Proposition E.5. 3 trivially implies 2.
Hence, it remains to show 1 =⇒ 3. Assume that there is a polyhedral complex Q compatible
with g and h such that (g, h) is not a vertex of DQ(f). Then there is vertex (g′, h′) of DQ(f)
contained in the face containing (g, h). By Proposition E.5, it follows that (g′, h′) is a non-
trivial coarsening of (g, h).

E.11 Proof of Theorem 3.13

Proof. If (g, h) is not not a vertex, the by Theorem 3.11, there is a coarsening (g′, h′) of
(g, h). Thus, (g, h) is dominated by (g, h) and therefore not minimal.

E.12 Proof of Proposition 3.14

Proof. As DP(f) is nonempty, there must exist a minimal decomposition. By Theorem 3.13,
every minimal decomposition must be a vertex. As there is only one vertex, it must coincide
with the unique minimal decomposition.

E.13 Lemma E.6

Lemma E.6. Let C ⊂ Rd be a convex, pointed polyhedral cone. If C is simplicial then
C ∩ (C + t) is a (potentially shifted) cone, i.e. a polyhedron with a single vertex, for any
translation t. If C is not simplicial, then C ∩ (C + t) is a (shifted) cone if t ∈ C.

Proof. If C is a simplicial full-dimensional cone, then it is the image of the nonnegative
orthant under an affine isomorphism. Thus, it suffices to show that C ∩ (C + t) is a shifted
cone for C = Rd

≥0. Let t̂ ∈ Rd such that t̂i = max(ti, 0). Then
C ∩ (C + t) = {x | xi ≥ 0 and xi ≥ ti} = {x | xi ≥ t̂i} = C + t̂.
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On the other hand, if C is an arbitrary polyhedral cone and t ∈ C, then C ∩ (C + t) = C + t,
and hence a shifted cone.

Example E.7. The converse of the second statement from Lemma E.6 does not hold,
that is, t ̸∈ C does not imply that C ∩ (C + t) is not a shfited cone. Indeed, let C =
cone

((
1
0
0

)
,
(

1
1
0

)
,
(

1
0
1

)
,
(

1
1
1

))
and t =

(
0
1
1

)
. Then C ∩ (C + t) = C +

(
1
1
1

)
is a shifted cone.

On the other hand, the choice t =
(

0
1
2

)
yields the unbounded polyhedron C ∩ (C + t) =

conv
((

2
2
2

)
,
(

2
1
2

))
+ C, which has two vertices and one line segment as bounded faces.

E.14 Proof of Proposition 3.15

Proof. Let Q be any regular complete complex that is compatible with f . Then, g and
h are as well compatible with Q, since suppP(g), suppP(h) ⊆ suppP(f) implies that
suppQ(g), suppQ(h) ⊆ suppQ(f). Let (g′, h′) ∈ DQ(f). Then it holds that supp+

Q(f) ⊆
suppQ(g′) since wg − wf = wh ≥ 0. Hence, suppQ(g) ⊆ suppQ(g′) and Lemma 3.10 implies
that g is a coarsening of g′ and analogously it follows that h is a coarsening of h′. Therefore,
(g, h) is a coarsening of every decomposition and thus by Theorem 3.11 the only vertex of
DQ(f). Clearly, g and h cannot have more pieces than f .

E.15 Proof of Theorem 3.18

Before proving this statement, we give a description of the dual cone (V+
P)∨. Recall that

V+
P

∼=
⋂

σ∈Pn−1{w ∈ WP | w(σ) ≥ 0}, i.e., the intersection of the nonnegative orthant
{w(σ) ≥ 0} with the linear space WP . By duality of intersections and sums, it follows
that (V+

P)∨ is isomorphic to the Minkowksi sum of the nonnegative orthant with W⊥
P . In

particular, any w with positive weights w(σ) > 0 lies in the interior. Theorem 3.18 follows
from a general fact about face of polyhedra.
Lemma E.8. Let C be a convex, pointed polyhedral cone and P a polyhedron with recession
cone C. Then u ∈ int(C∨) is a direction in the interior of the dual cone of C if and only if
the face P u of P which is minimized by u is a bounded face.

Proof. Let P = C + Q, where Q is a bounded polyhedron. Then for any direction u
holds P u = Cu + Qu. As C is a pointed cone, we have that Cu is bounded if and only if
u ∈ int(C∨). Since Qu is bounded for any direction, it follows that P u is bounded if and
only if u ∈ int(C∨).

Proof of Theorem 3.18. Recall that every polyhedron P is the set of feasible solutions to
some linear program, and that, given a linear functional u such that P u is bounded, the face
P u coincides with the set of optimal solutions of the linear program. Now, P = V+

P ∩(V+
P +f)

is a polyhedron with recession cone V+
P . Applying Lemma E.8 yields that for any u ∈

(int((V+
P)∨), every minimizer in π(DP(f)) lies in a bounded face, which, by Theorem 3.8,

are precisely the reduced decompositions. Moreover, if π(DP(f)) contains a unique vertex
then by Proposition 3.14 this coincides with the unique minimal decompoition.

E.16 Proof of Theorem 6.1

Proof. In the convex case, this is literally proven by Hertrich et al. (2021). While Hertrich
et al. (2021) have a slightly weaker bound for the nonconvex case, it follows from Koutschan
et al. (2023, Thm. 2.4) that the stronger bound for the convex case also applies to the
nonconvex case.

E.17 Proof of Theorem 6.3

Proof. Recall that a convex CPWL function can be written as the maximum of its affine
components, that is, f(x) = maxi∈[k] aT

i x+bi. The idea is to split the k affine components of
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f into r groups of size at most s, apply Theorem 6.1 to compute the maximum within each
group, and then simply compute the maximum of the r group maxima in a straight-forward
way.
Let us first focus on computing the maximum of at most s affine components within each
of the r groups. By Theorem 6.1, one can achieve this with a neural network of depth
⌈log2(n + 1)⌉ + 1 and overall size O(sn+1). We put all these r neural networks in parallel
to each other and add, at the end, the simple neural network computing the maximum of
these r maxima according to Arora et al. (2018), which has depth ⌈log2 r⌉ + 1 and overall
size O(r). Altogether, the resulting neural network will have the desired depth and size.

E.18 Proof of Corollary 6.4

Proof. By Lemma E.3, f can be decomposed into a difference of two convex functions which
are compatible with P. Consequently, each of them has at most q̃ affine components. Ap-
plying Theorem 6.3 to both functions separately and simply putting the two corresponding
neural networks in parallel, subtracting the outputs, yields a neural network representing f
with the desired size bounds.
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