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ABSTRACT

Document classification remains a critical challenge in natural language processing
(NLP) as text volumes and thematic complexity escalate. Although transformer-
based architectures like BERT excel at capturing contextual semantics, they of-
ten overlook the latent thematic structures inherent in document-level discourse.
Conversely, probabilistic topic models effectively distill coarse-grained thematic
patterns but struggle with nuanced contextual dependencies. To address these limi-
tations, this study introduces a novel hybrid approach that synergizes the contextual
depth of ModernBERT with the interpretable thematic representations of smoothed-
Dirichlet-based topic models. Our model aligns token-level representations with
document-level thematic distributions by optimizing contextual and topic objec-
tives through a co-attention mechanism layer. By utilizing a dynamic fusion layer,
where co-attention scores dynamically gate and blend BERT’s embeddings with
topic mixtures at each instance, the approach captures both fine-grained context and
global theme interplay in a unified representation. Our method bridges a critical gap
in the NLP methodology, paving the way for enhanced model generalizability in do-
mains that require both thematic abstraction and contextual granularity. Empirical
evaluations on benchmark corpora demonstrate consistent classification robustness
over standalone approaches. To ensure the reproducibility of our experiments and
encourage further research, we open-source our implementation code.

1 INTRODUCTION

Document classification is a fundamental task in natural language processing (NLP), which underpins
applications such as news categorization, sentiment analysis, and information retrieval Devlin et al.
(2019); Bao et al. (2019). Early methods relied on hand-crafted features and statistical models,
but the exponential growth in text volume and complexity has driven a shift toward deep learning.
Recurrent architectures such as LSTMs Clavié et al. (2021) and GRUs Ravanelli et al. (2018); Ahmed
et al. (2023); Mortezapour Shiri et al. (2023) automated feature extraction and sequential patterns
captured, although their inherently sequential nature limits parallelism and long-range dependency
modeling Nam et al. (2017). Hybrid approaches that combine truncated attention with recurrent units
or integrate self-attention into bidirectional GRUs have partially alleviated these issues Nam et al.
(2017); Sun et al. (2019b); Jiang & Wang (2022).

The advent of transformers, particularly BERT with its multi-head self-attention and contextual
embeddings Vaswani et al. (2017), has further transformed the field by allowing full parallel pro-
cessing of entire sequences. Fine-tuning techniques have delivered state-of-the-art results across
benchmarks Sun et al. (2019a); Wang et al. (2020a), and extensions combining BERT with capsule
networks Wang et al. (2020b); Liu et al. (2012) or graph neural networks Li & Jia (2025); Qasim et al.
(2022); Jamshidi et al. (2024); Davidson & Dym (2024) continue to push performance. Despite these
advances, transformer models can overlook global thematic coherence, misread sarcasm or broader
discourse, and offer limited interpretability. In contrast, probabilistic topic models Luo et al. (2022),
such as smoothed Dirichlet distribution, identify coherent themes but struggle with contextual nuance
Nallapati et al. (2007). Bridging this gap, hybrid frameworks like TopicBERT fuse Gaussian topic
priors with BERT embeddings Chaudhary et al. (2020a), yet typically employ shallow concatenation
that underutilizes the complementary strengths of each paradigm.
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Despite these advances, reconciling token-level contextual precision with document-level thematic
interpretability remains an open challenge. To this end, we propose Smoothed-ModernBER: co-
attentional synergy of probabilistic topic models and ModernBERT through dynamic fusion (SD-
MoBERT), a novel architecture that integrates ModernBERT with a dynamically smoothed Dirichlet
topic model via a co-attentional synergy mechanism. Unlike prior shallow-fusion methods, our
model jointly optimizes the dynamically fused contextual and thematic losses, fostering mutual
reinforcement between granular semantics and global topics. We demonstrate that this integration
yields better performance and interpretability across multiple benchmark corpora, bridging the
methodological gap between contextual depth and thematic coherence. The main contributions of our
studies are summarized as follows:

1. We propose a novel hybrid architecture that integrates ModernBERT’s contextual semantics
with smoothed-Dirichlet topic modeling, bridging neural and probabilistic paradigms to
jointly optimize fine-grained context and interpretable thematic structures.

2. Dynamic co-attention fusion: We introduce a gated mechanism that dynamically blends
token-level BERT embeddings with smoothed Dirichlet document-level topic mixtures,
enabling adaptive weighting of local and global thematic information.

3. Empirical Validation and Reproducibility: We show that SD-MoBERT consistently
outperforms baseline models and make our full implementation publicly avail-
able to facilitate future research and practical adoption https://github.com/
anonymousPapersSubmissions/Smoothed-ModernBERT.

The remainder of this paper is organized as follows. Section 2 reviews related work on transformer
encoders and topic modeling. Section 3 reviews the background studies, while Section 4 presents the
proposed model. The experimental results and conclusion are presented in Section 5 and Section 6,
respectively.

2 RELATED WORK

Document classification has evolved through five key paradigms: traditional statistical methods,
neural architectures, transformers, hybrid topic-neural frameworks, and co-attentional synergy. Early
approaches relied on manually engineered features such as Bag-of-Words (BoW) Qader et al. (2019)
and TF-IDF Christian et al. (2016), which quantified the importance of words, but ignored context.
Bag-of-N-Grams Li et al. (2016) improved phrase representation, while bag-of-means models
integrated word embeddings, although semantic nuances remained elusive.

Neural architectures addressed these limitations through character-level CNNs Zhang et al. (2015);
Bielik et al. (2017), though fixed kernel sizes hindered long-range dependency modeling Yue et al.
(2018). The compact CNN variants Talai & Kherici (2023) reduced parameters, but retained locality
constraints. Sequential models such as LSTMs Clavié et al. (2021) and GRUs Michael et al. (2024)
captured longer contexts but suffered from limited parallelism. Bidirectional GRUs with truncated
drop loss Abbasi et al. (2024) mitigated class imbalance, yet sequential processing persisted as a
bottleneck.

Transformers revolutionized the field via self-attention mechanisms Vaswani et al. (2017), with
BERT Devlin et al. (2019) achieving state-of-the-art through bidirectional pre-training. ModernBERT
Warner et al. (2024) scaled efficiency via flash attention but lacked document-level thematic coherence.
Hybrid enhancements like capsule networks Wang et al. (2020b) and graph neural networks Li & Jia
(2025) improved hierarchical features but struggled with global topic integration.

Hybrid topic-neural frameworks emerged to bridge thematic and contextual modeling. Probabilistic
topic models (PTMs) Wang et al. (2022) like LDA Blei et al. (2003) abstracted themes but ignored
word order. Neural topic models (NTMs) Wu et al. (2024); Ojo & Bouguila (2024) used variational
autoencoders for continuous distributions, while Topic-BERT Chaudhary et al. (2020a) combined
BERT with Gaussian topic vectors, a shallow fusion lacking synergy. Class-based TF-IDF clustering
enhanced interpretability but limited classifier integration. Recent work includes SBERT-TM for
short texts Cheng et al. (2023) and ensemble models like ENTM-TS Voskergian et al. (2024), though
computational costs constrained scalability. Concurrently, co-attentional architectures Lee et al.
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(2025) optimized feature fusion but overlooked probabilistic topic priors, leaving opportunities for
deeper integration of thematic structure and contextual semantics.

2.1 MOTIVATION: TOWARD CO-ATTENTIONAL SYNERGY

Co-attention mechanisms have proven effective in multimodal reasoning by aligning heterogeneous
representations Nam et al. (2017). However, their application to intra-textual fusion of context
and themes remains underexplored. SD-MoBERT diverges from shallow fusion by employing a
co-attention layer that dynamically aligns ModernBERT’s token embeddings with smoothed Dirichlet
topic distributions. This mutual reinforcement allows topic priors to guide attention heads toward
thematically salient tokens, while contextual features refine topic coherence via variational inference.
By unifying transformer efficiency, probabilistic topic modeling, and co-attentional interaction in a
single, scalable architecture, SD-MoBERT transcends the limitations of each paradigm and offers a
robust, informed solution for document classification in complex, heterogeneous corpora.

3 BACKGROUND STUDIES

3.1 SMOOTHED DIRICHLET DISTRIBUTION (SD)

The smoothed Dirichlet distribution extends the conventional Dirichlet distribution by introducing
regularization, making it a robust prior for categorical data in Bayesian frameworks. This adaptation
is particularly advantageous for mitigating zero-probability issues in sparse categorical settings, such
as emotion recognition in social media analytics Najar & Bouguila (2022), happiness modeling,
and pain estimation Najar & Bouguila (2021). By redistributing probability mass across categories,
smoothing enhances model stability Heckerman (1998) and generalizability Chen & Goodman (1999).
Following Nallapati et al. (2007), a smoothed proportion Fu is derived from raw word counts using a
tunable parameter λ:

Fu =
Xs − (1− λ)XGE

λ
(1)

where Xs and XGE denote the smoothed feature proportion and baseline word distribution (e.g.,
general English), respectively. The likelihood of observing Xs under the smoothed Dirichlet prior is:

p(X | α, ε) = 1

B(α+ ε )

K∏
i=1

X
(αi+ε)−1
i ,

1

B(α+ ε)
=

Γ
(∑

i(αi + ε)
)∏

i Γ(αi + ε)
, (2)

where K and ε > 0 denote the vocabulary size and smoothing parameter, respectively, Xs
i the

smoothed feature, and αi is the concentration parameters. The normalizer B(α⃗) ensures a valid
probability simplex.

In contrast to prior work that smooths raw inputs Nallapati et al. (2007), our method applies smoothing
directly to the Dirichlet parameters and the latent representation. Preliminary experiments revealed
that smoothing raw features induces covariate shifts in the feature representations, destabilizing
training. Thus, our approach maintains feature consistency while enabling end-to-end optimization.
This strategy aligns with the model’s dynamic adaptation capabilities.

3.2 MODERNBERT

ModernBERT builds upon BERT’s bidirectional Transformer architecture to deliver powerful contex-
tual embeddings while addressing the original’s quadratic time and memory complexity in relation to
sequence length Warner et al. (2024). By extending its maximum input length from 512 to 8,192
tokens, ModernBERT can capture long-range dependencies and global context in lengthy documents.
A key innovation is FlashAttention, an optimized CUDA kernel that reorganizes attention computa-
tions to reduce memory accesses and fully exploit on-chip caches, yielding up to a two-fold speedup
in self-attention layers Dao et al. (2022). Positional information is encoded using rotary positional
embeddings (RoPE), which applies continuous rotation transformations to token representations
and scales gracefully to very long sequences without the need for learned positional parameters
Warner et al. (2024). To further mitigate computational costs, ModernBERT employs sequence
packing and blockwise attention, splitting inputs into contiguous chunks and restricting attention to
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ZSD ~ sDir(⍺SD) 

⍺SD

⍺
⍴1 ⍴2

ε ~ 𝒩(0, 1)

HCLS= H[:, 0, :] (B ⨉ D)

ModernBERT 

H (B ⨉ T ⨉ D)

K-Topics

Compute Affinity and 
Attention Weights

Dynamic Fusion

+ GELU

Classifier

Document: (M = {w1, w2, …, wN}; У = Уl)

BOW Tokenized

Figure 1: A schematic representation of the proposed SD-MoBERT model, leveraging smoothed
Dirichlet neural topic model and ModernBERT.

intra-block and adjacent-block interactions; this achieves sub-quadratic complexity while preserving
essential cross-chunk dependencies Warner et al. (2024). Finally, feed-forward sublayers incorporate
low-rank matrix factorizations and sparse projection patterns that reduce parameter counts and confine
expensive operations to the most informative tokens. These enhancements allow ModernBERT to
handle long sequences of tokens efficiently, making it a scalable and context-rich foundation for
hybrid models.

4 PROPOSED MODEL: SMOOTHED-MODERNBERT (SD-MOBERT)

Figure 1 illustrates the architecture of SD-MoBERT, combining a neural topic model with an advanced
transformer-based modernBERT. We employ ModernBERT because of its architectural innovations,
such as support for up to 8,192 token contexts, FlashAttention, and rotary positional embeddings,
which enable fast, memory-efficient processing of very long documents without sacrificing contextual
depth Warner et al. (2024). Given a document M = {w1, w2, . . . , wN} with label y, SD-MoBERT
processes two parallel streams. Firstly, a normalized bag-of-words vector X ∈ RV (V = vocabulary
size) for latent topic inference is generated. Secondly, a copy of the document is segmented into

4
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subword tokens {tn} to generate a token sequence {t1, . . . , tT } (T ≤ 8192) via ModernBERT’s
tokenizer, producing contextual embeddings E ∈ RT×D (hidden size D), with [CLS] and [SEP]
marking the start and the end.

In the generative process, we first draw from the neural topic model and infer a latent topic vector
Z ∈ RK (K topics) under a smoothed Dirichlet prior:

ZSD ∼ sDir(αSD)⇐=
exp(αi

SD)∑K
i=1 exp(α

i
SD)

(3)

αSD = α + ρ2 + ϵ ⊙ exp
(
logρ1

)
∈ RK , (4)

where α, ρ1, and ρ2 are the neural topic model’s outputs, ϵ ∼ N (0, I).

Conversely, let the ModernBERT output be denoted by hCLS. We then project ZSD and hCLS each
through a linear layer followed by a GELU activation to produce Zt

SD and ZCLS, respectively. Next,
we define the attention score S and the attention weight Zatt as:

S = ⟨Zt
SD,ZCLS⟩D + b0, Zatt = σ(S) (5)

where b0 and σ denote the attention bias weight and sigmoid function, respectively. Following this,
we dynamically fuse representation as:

Zfused = ZattZ
t
SD + (1− Zatt)ZCLS, Z = tanh(Zfused) ∈ RB×D (6)

where Z, B and D denote the latent representation, batch size, and sequence dimension, respectively.
The latent representation is further projected through two linear layers and fed to the classifier, and
we optimized with the joint loss:

L = −
∑
i

yi log ŷi︸ ︷︷ ︸
LCE

+ β DKL

(
q(Z | X)∥sDir(αSD)

)︸ ︷︷ ︸
LKL

, (7)

where β balances classification accuracy against topic coherence and LCE denotes the classification
loss. yi and ŷ represent the actual label and the prediction, respectively. LKL Ojo et al. (2025)
denotes the thematic loss that regularizes the latent space and penalizes the loss function to ensure
that the model does not overfit. By aligning the thematic representations from the Dirichlet-based
topic model with the contextual embeddings from ModernBERT through a co-attention mechanism,
SD-MoBERT achieves a synergistic understanding of documents. This fusion enables the model to
maintain interpretability through topic distributions while capturing nuanced contextual relationships,
improving the performance of document classification tasks. See Section B for more details on the
pseudocode for the generative process and Section B.1 for details on LKL.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETTINGS

Please note that we conduct 30 separate experiments with different seeds using different validation
sets at each experiment. Thus, we report the average value of our experiments over 30 runs. We
explore the hyperparameter space using grid search to select the best combination of parameters for
the experiment. We use a learning rate of 2e−5 with a warm-up of 10 and use AdamW optimizer,
β = 0.2. We set the batch size and epoch to 8 and 20, respectively. We set the topic number of the
smoothed Dirichlet component to 100. Section C presents the effect of hyperparameter tuning.

5.2 DATASETS

We compare our proposed model with the baseline models on five widely used benchmark datasets,
allowing insightful comparisons. The 20 Newsgroups (20NG) dataset Albishre et al. (2015) comprises
18,846 documents distributed across 20 categories, ranging from sports and politics to technology
and religion. It contains 11,314 samples for training and 7,532 for testing. The Movie Review

5
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(MR) dataset Haider Rizvi et al. (2025) contains 10,662 movie reviews balanced between 5,331
positives and 5,331 negatives for sentiment analysis. Ohsumed Haider Rizvi et al. (2025) consists of
MEDLINE abstracts tagged in 23 categories of cardiovascular disease. It contains 7,400 documents,
split into 3,357 for training and 4,043 for testing. Finally, we use the Reuters collection, drawn from
the 1987 newswire, which is commonly evaluated via its R8 subset (8 classes, 5,485 training and
2,189 test documents) and R52 subset (52 classes, 6,532 training and 2,568 test documents) Moschitti
& Basili (2004).

MR Ohsumed 20NG R8 R52
Data sets
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SD-MoBERT
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Figure 2: Analyses of the area under curve (AUC) of SD-MoBERT against BERT and MoBERT,
K = 100, β = 0.2.

5.3 BASELINE MODELS

To evaluate SD-MoBERT, we benchmark it against five close variants: BERT Devlin et al. (2019) and
MoBERT Warner et al. (2024) without smoothed Dirichlet, SD-BERT (smoothed Dirichlet + BERT)
Devlin et al. (2019), SD-RoBERTa (smoothed Dirichlet + RoBERTa-base) Masala et al. (2020), and
SD-DistilBERT (smoothed Dirichlet + DistilBERT) Sanh et al. (2019), as well as a number of topic
and graph-augmented models. These include TopicBERT-64/128 Chaudhary et al. (2020b), TextING
Zhang et al. (2020), HyperGAT Ding et al. (2020), TextFCG Wang et al. (2023), TextSSL Piao et al.
(2022), BertGCN Lin et al. (2021), GTC Liu et al. (2023), MHGAT Galke et al. (2022), and PaSIG-S
Wang et al. (2025), providing a comprehensive backdrop for assessing the gains afforded by smoothed
Dirichlet fusion in modern transformers.

5.4 AREA UNDER CURVE (AUC) ANALYSIS OF SD-MOBERT AGAINST BERT AND
MOBERT

The AUC Çorbacıoğlu & Aksel (2023) plots the true positive rate (TPR) versus the false positive rate
(FPR) to evaluate a model’s ability to differentiate between classes across different thresholds. We
use the trapezoidal rule to approximate the AUC, defined in Yeh et al. (2002)

AUC ≈
n−1∑
i=1

(FPRi+1 − FPRi) ·
TPRi+1 + TPRi

2
(8)

Figure 2a illustrates the relative AUC gains of SD-MoBERT over the original BERT encoder across
the five datasets. SD-MoBERT (blue squares) consistently outperforms BERT (green triangles),
with improvements ranging from 2.2% to 8.5%. The largest gains occur on the 20 Newsgroups and
Ohsumed corpora (both 8.5% gains), while even on Reuters R8, the margin remains substantial at
2.2%. Similarly, Figure 2b shows the AUC improvements of SD-MoBERT’s relative to the MoBERT
variant. Across all data sets, SD-MoBERT achieves gains between 1.5% on R8 and 7.5% on Ohsumed
data sets. These results underscore the robustness of the smoothed Dirichlet in capturing the thematic
structures inherent in document-level discourse and the dynamic fusion mechanism in enhancing
discriminative power over the base ModernBERT architecture.

5.5 PERFORMANCE COMPARISON OF SD-MOBERT AGAINST BASELINES AND MODEL
VARIANTS

Tables 1 and 2 present a detailed evaluation of SD-MoBERT relative to ten established baselines
and five BERT-family variants across five benchmark datasets, reporting mean accuracy and F1

6
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Table 1: Comparisons of the average test accuracy and F1 scores with their respective standard
deviations. We evaluate SD-MoBERT alongside other baseline models across three datasets (MR,
Ohsumed, and 20NG), K = 100, β = 0.2.

Model MR Ohsumed 20NG
Accuracy F1 Accuracy F1 Accuracy F1

Baselines

TextING 79.75± 0.78 79.63± 0.85 73.51± 1.05 68.15± 0.77 85.13± 0.66 84.32± 0.12

HyperGAT 76.64± 0.81 76.58± 0.92 66.55± 1.37 59.05± 1.84 83.29± 0.46 82.72± 0.24

TextFCG 80.59± 0.29 80.56± 0.47 69.58± 0.39 56.16± 0.71 85.95± 0.33 84.91± 0.51

TextSSL 75.74± 0.25 75.64± 0.38 62.01± 0.41 51.99± 0.78 79.55± 0.27 79.11± 0.65

TopicBERT-64 85.21± 0.91 85.01± 0.76 72.31± 0.33 71.13± 0.48 83.86± 0.55 83.19± 0.82

TopicBERT-128 86.89± 0.33 86.15± 0.64 74.10± 0.74 73.92± 0.22 82.60± 0.10 82.60± 0.41

BertGCN 84.92± 0.84 84.05± 0.67 71.88± 0.52 62.72± 0.47 88.69± 0.45 88.02± 0.20

GTC 77.22± 0.37 77.01± 0.24 69.72± 0.72 62.8± 0.11 87.03± 0.61 85.73± 0.40

MHGAT 78.09± 0.73 77.24± 0.57 72.88± 0.84 65.04± 1.60 92.68± 0.30 91.94± 0.13

PaSIG-S 87.05± 0.09 87.04± 0.09 81.18± 0.21 74.58± 0.42 93.21± 0.07 92.91± 0.08

Proposed
Model

Variants

BERT 85.72± 0.13 84.50± 0.41 76.94± 0.01 76.70± 0.00 85.33± 0.14 82.31± 0.01

MoBERT 86.00± 0.05 84.9± 0.03 76.99± 0.02 76.51± 0.01 87.72± 0.33 85.24± 0.12

SD-BERT 86.02± 0.02 85.39± 0.23 77.01± 0.02 76.90± 0.03 89.12± 0.11 87.03± 0.47

SD-RoBERTa 88.10± 0.24 87.69± 0.39 79.82± 0.11 79.01± 0.13 92.55± 0.03 91.31± 0.05

SD-DistilBERT 87.09± 1.31 84.59± 0.94 75.62± 0.01 75.11± 0.06 86.40± 0.16 81.60± 0.01

SD-MoBERT 88.97± 0.02 88.13± 0.05 83.49± 0.04 80.00± 0.21 95.27± 0.05 93.11± 0.07
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Figure 3: Comparison of the classification accuracy and F1 score in six transformer-based models
on five text classification benchmarks. The bar plots (sky blue) depict mean test accuracy with the
error bars, while the overlaid red lines trace mean F1 scores. Each subplot corresponds to a different
dataset: MR (top left), Ohsumed (top right), 20NG (bottom left), Reuters R8 (bottom center), and
Reuters R52 (bottom right), K = 100, β = 0.2.
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Table 2: Comparisons of the average test accuracy and F1 scores with their respective standard
deviations. We evaluate SD-MoBERT alongside other baseline models across two datasets (R8 and
R52), K = 100, β = 0.2.

Model R8 R52
Accuracy F1 Accuracy F1

Baselines

TextING 97.45± 0.70 95.94± 0.63 94.95± 0.95 76.71± 0.87

HyperGAT 96.43± 0.63 92.12± 1.51 94.24± 0.54 72.35± 1.83

TextFCG 97.53± 0.34 92.44± 0.21 95.64± 0.15 69.13± 0.28

TextSSL 97.31± 0.42 93.01± 0.33 93.97± 0.66 72.79± 1.41

TopicBERT-64 93.01± 0.29 92.11± 0.63 72.89± 0.57 72.18± 0.98

TopicBERT-128 93.94± 0.22 92.83± 0.51 73.42± 0.37 72.84± 0.29

BertGCN 97.94± 0.73 94.60± 0.44 95.50± 0.44 52.30± 0.73

GTC 97.21± 0.85 93.73± 0.64 94.51± 0.97 94.52± 0.77

MHGAT 97.65± 0.47 93.09± 1.21 94.78± 0.37 76.74± 1.06

PaSIG-S 99.02± 0.04 98.16± 0.12 98.34± 0.03 85.99± 1.52

Proposed
Model

Variants

BERT 97.84± 0.07 93.52± 0.01 96.41± 1.43 84.37± 0.25

MoBERT 98.01± 0.08 97.11± 0.15 94.20± 0.10 90.97± 0.09

SD-BERT 97.19± 0.04 94.01± 0.20 97.23± 1.21 85.14± 0.47

SD-RoBERTa 98.26± 0.08 97.11± 0.05 96.12± 0.14 93.16± 0.28

SD-DistilBERT 96.03± 0.15 93.42± 0.03 94.49± 0.28 92.01± 0.53

SD-MoBERT 99.01± 0.03 98.94± 0.07 98.99± 0.03 97.17± 0.07

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

scores with their corresponding standard deviations. On the MR short-text sentiment classification
task, PaSIG-S achieved an average accuracy of 87.05% ± 0.09 and F1 score of 87.04% ± 0.09.
SD-MoBERT raises accuracy to 88.97% ± 0.02, a (88.97 − 87.05)/87.05 × 100 ≈ 2.3% relative
gain, and boosts F1 to 88.13%± 0.05, a ≈ 1.3% improvement in F1. On the Ohsumed corpus, SD-
MoBERT attains 83.49%±0.04 accuracy, outperforming the best baseline (PaSIG-S: 81.18%±0.21)
by 2.85%, and achieves an F1 score of 80.00%±0.21, a 7.26% over PaSIG-S’s 74.58%±0.42. These
gains underscore SD-MoBERT’s enhanced ability to disambiguate complex medical terminology
where graph-based methods (e.g. HyperGAT) exhibit lower F1 score. For the 20 Newsgroups (20NG),
SD-MoBERT reaches 95.27%±0.05 accuracy, a 2.21% improvement over PaSIG-S’s 93.21%±0.07,
and records an F1 of 93.11%± 0.07, surpassing the next-best model (MHGAT: 91.94%± 0.13) by
1.27%. SD-MoBERT shows its ability to distinguish semantically overlapping categories.

On R8, PaSIG-S achieves 99.02%±0.04 accuracy and 98.16%±0.12 F1, while SD-MoBERT records
99.01% ± 0.03 (a negligible −0.01% change) and 98.94% ± 0.07, corresponding to a ≈ 0.8% F1
improvement. On Reuters R52, SD-MoBERT yields an F1 score of 97.17%± 0.07, representing a
12.98% increase over PaSIG-S’s 85.99%± 1.52. Such a substantial margin highlights its robustness
in hierarchical news classification, where error propagation across parent-child categories is a known
challenge. When compared to other BERT variants, SD-MoBERT consistently delivers further gains.
In the MR short-text sentiment benchmark, accuracy improves from BERT’s 85.72% ± 0.13 and
MoBERT’s 86.00%±0.05 to 88.97%±0.02, corresponding to relative increases of 3.25% and 2.97%,
respectively. On Reuters R8, SD-MoBERT’s F1 score of 98.94%± 0.07 exceeds SD-RoBERTa’s
97.11%± 0.05 by 1.88%, demonstrating the efficacy of smoothed-Dirichlet regularization. Against
SD-DistilBERT on Ohsumed, SD-MoBERT’s F1 advantage of 6.51% (80.00% vs. 75.11%) further
confirms that model compression without careful calibration can degrade performance on specialized
domains. Across all five datasets, SD-MoBERT exhibits minimal performance variance (standard
deviations between±0.02 and±0.07), in stark contrast to several baselines and variants (e.g. TextSSL
on Ohsumed, GTC on R52, and SD-DistilBERT on MR), whose larger fluctuations signal instability.
This consistency is attributable to the smoothed-Dirichlet fusion’s ability to regularize confidence
estimates and mitigate overfitting. As shown in Table 3, we evaluate whether the observed accuracy
gains of SD-MoBERT over the best baseline (PaSIG-S) are statistically significant. As indicated in
Table 3, all p-values (≪ 0.05), uniformly reject H0, while the CIs remain vanishingly narrow. See
more details in Section E.

H0 : µSD-MoBERT = µPaSIG-S vs. H1 : µSD-MoBERT ̸= µPaSIG-S (9)

5.6 ERROR-BAR ANALYSIS OF ACCURACY AND F1 ACROSS PROPOSED MODEL VARIANTS

Figure 3 presents the error bar across the five data sets. The accuracy bars exhibit consistently
narrow error margins, typically under 0.5 %, indicating that each model’s mean performance is
highly stable over repeated runs. Notably, the unsmoothed BERT and MoBERT backbones show
slightly wider accuracy-bar spreads (up to 1.3 % on SD-DistilBERT’s R52 result), whereas the
smoothed-Dirichlet variants (SD-BERT, SD-RoBERTa, SD-DistilBERT, SD-MoBERT) reduce that
variability to under 0.3 %, reflecting more reliable convergence. In contrast, the F1 scores (red
lines) display larger error bands, ranging from virtually zero for MoBERT on MR up to 0.94 %
for SD-DistilBERT, highlighting that the precision-recall balance is intrinsically more sensitive in
the architectures. Importantly, SD-MoBERT not only attains the highest mean accuracy and F1 in
every data set but also maintains among the smallest F1-error spreads (≤ 0.07 %), underscoring its
robustness in both overall correctness and class-balanced performance.

5.7 LIMITATIONS

SD-MoBERT requires manual selection of the topic count K, as too few topics yield overly broad
themes and too many produce fragmented noise, necessitating costly hyperparameter searches. The
added topic model and co-attention layer also incur extra parameters and runtime overhead, and
learned topics may not transfer across domains without retraining. Future work will explore adaptive
topic estimation and computation efficiency. See more discussion on the time complexity and runtime
cost in Section F.

9
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Table 3: Statistical analyses of SD-MoBERT over 30 runs using different validation sets and the best
baseline model (PaSIG-S) accuracy. The bold values signify p-values that are below 0.05, CI and S
denote the class interval, and standard deviation, respectively, K = 100, β = 0.2.

MR Ohsumed 20NG R8 R52

SD-MoBERT

Mean (F1) 88.13 80.00 93.11 98.94 97.17

Variance 8.54e−4 2.57e−2 1.37e−3 1.51e−3 1.53e−3

S 0.029 0.160 0.037 0.039 0.039

CI [88.120 – 88.140] [79.943 – 80.057] [93.097 – 93.123] [98.926 – 98.954] [97.156 – 97.184]

Best baseline (PaSIG-S) F1 87.04 74.58 92.91 98.16 85.99

p-value 2.378e−47 3.782e−46 3.087e−23 1.487e−39 5.488e−73

6 CONCLUSION

This study addresses the critical challenge of document classification in NLP by harmonizing the
complementary strengths of transformer architectures and probabilistic topic modeling. While
ModernBERT captures nuanced contextual semantics and topic models distill interpretable thematic
structures, their isolated applications leave a methodological gap in handling both granular context and
global discourse. Our proposed framework bridges this divide through a novel co-attention mechanism
that dynamically fuses token-level BERT embeddings with document-level smoothed-Dirichlet topic
distributions, enabling joint optimization of contextual and thematic objectives. Empirical validation
across benchmark corpora demonstrates that this synergistic approach achieves superior classification
robustness, outperforming standalone models by effectively leveraging multi-granular semantic
signals. The dynamic gating mechanism ensures adaptive weighting of contextual and thematic
features, enhancing generalizability across domains requiring both precision and abstraction. By
open-sourcing our implementation, we invite the community to build upon this work, advancing
methodologies that unify local and global text representations. This contribution not only advances
document classification but also establishes a blueprint for integrating neural and probabilistic
paradigms in NLP, fostering models that balance interpretability with state-of-the-art performance.
Future work will explore adaptive topic number estimation and multi-head co-attention to model
richer interactions between topics and tokens.
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A APPENDIX

B PSEUDOCODE FOR SD-MOBERT GENERATIVE PROCESS

In this section, we present the high-level algorithmic steps of SD-MoBERT’s generative process.
Algorithm 1 outlines how each document is first encoded via a bag-of-words topic model and a Mod-
ernBERT backbone, then dynamically fused through a smoothed-Dirichlet co-attention mechanism,
and finally passed through a classification head. By iterating thematic nuances for the smoothed-
Dirichlet prior and jointly optimizing the transformer and topic parameters, SD-MoBERT learns to
leverage both topical and contextual information in a unified training loop.

Algorithm 1 Generative process for SD-MoBERT

1: Data:
2: M : document tokens {w1, . . . , wN}
3: y: true label
4: Parameters:
5: Transformer weights (ModernBERT)
6: Topic MLP weights {W (i), b(i)},
7: Wµ, bµ,Wlog σ, blog σ,Wα, bα
8: Fusion weights Wt, bt,Wc, bc, b0,W1, b1,W2, b2
9: Result:

10: Logits o, loss Ltotal
11: Initialize all parameters
12: while not converged do
13: // 1. Prepare Inputs
14: X← BoW(M) ▷ size V
15: {t1, . . . , tT } ← Tokenize(M) ▷ T ≤ 8192
16: E← ModernBERT({ti}) ▷ size T ×D
17: hCLS ← E[0] ▷ D-dim
18:
19: // 2. Neural Topic Model Inference
20: π ← MLP(X) ▷ size H
21: µ←Wµ π + bµ
22: logσ ←Wlog σ π + blog σ

23: α←Wα π + bα
24: ϵ ∼ N (0, I)
25: αSD ← α+ µ+ ϵ⊙ exp(logσ)
26: ZSD ← softmax(αSD)
27:
28: // 3. Co-Attention Fusion
29: Zt

SD ← GELU(Wt ZSD + bt)
30: ZCLS ← GELU(Wc hCLS + bc)
31: S ← ⟨Zt

SD,ZCLS⟩+ b0
32: Zatt ← σ(S)
33: Zfused ← Zatt Z

t
SD + (1− Zatt)ZCLS

34: Z← tanh(Zfused)
35:
36: // 4. Classification Head
37: h1 ← GELU(W1 Z+ b1)
38: o←W2 h1 + b2
39:
40: // 5. Loss
41: LCE ← CrossEntropy(o, y)
42: LKL ← KL_Dirichlet(α̃∥α01)
43: Ltotal ← LCE + λLKL

44: Update parameters via optimizer
45: end while
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B.1 SMOOTHED DIRICHLET THEMATIC LOSS: KULLBACK-LEIBLER DIVERGENCE (KL)

Below we extend the standard Dirichlet-to-Dirichlet KL proof to the case where both distributions
include an additive smoothing parameter ε > 0. In essence, if

P = Dir(α+ ε1), Q = Dir(β + ε1), (10)

then the KL divergence KL[P∥Q] takes exactly the same closed-form as for the unsmoothed case,
with each αi and βi replaced by αi + ε and βi + ε, respectively.

The Dirichlet density with smoothing ε is defined for X ∈ ∆K−1 by

p(X | α, ε) = 1

B(α+ ε1)

K∏
i=1

X
(αi+ε)−1
i , (11)

where

B(α+ ε) =

∏K
i=1 Γ(αi + ε)

Γ
(∑K

i=1(αi + ε)
) (12)

is the multivariate Beta function Nallapati et al. (2007). The standard KL divergence between two
densities p and q is

KL[P∥Q] =

∫
p(x) log

p(x)

q(x)
dx (13)

Let P (x) = Dir(α+ ε1), Q(x) = Dir(β + ε1). (14)

Substituting both into the KL definition and bringing out constant terms yields

KL[P∥Q] =

∫
P (x)

[
log B(β+ε)

B(α+ε) +

K∑
i=1

(
(αi + ε)− (βi + ε)

)
log xi

]
dx

= log B(β+ε)
B(α+ε) +

K∑
i=1

(αi − βi)EP [log xi],

(15)

For a smoothed Dirichlet with parameters α′
i = αi + ε, the moment is

E[log xi] = ψ(αi + ε) − ψ
(∑K

j=1(αj + ε)
)
, (16)

where ψ is the digamma function. Writing the log-ratio of Beta functions in terms of Gamma yields

log B(β+ε)
B(α+ε) =

K∑
i=1

[
log Γ(βi+ε)−log Γ(αi+ε)

]
+log Γ

(∑
i αi+K ε

)
−log Γ

(∑
i βi+K ε

)
(17)

Combining the above parts, the KL divergence between two smoothed Dirichlet distributions is

LKL =⇒ KL[Dir(α+ ε) ∥ Dir(β + ε)] =

K∑
i=1

[
log Γ(βi + ε)− log Γ(αi + ε)

]
+ log Γ

( K∑
i=1

αi +K ε
)
− log Γ

( K∑
i=1

βi +K ε
)

+

K∑
i=1

(αi − βi)
[
ψ(αi + ε)− ψ

(∑K
j=1 αj +K ε

)]
(18)
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Figure 4: Sensitivity of classification accuracy to the number of latent topics on five data sets. Each
subplot corresponds to a different dataset: MR (top left), Ohsumed (top right), 20NG (bottom left),
Reuters R8 (bottom center), and Reuters R52 (bottom right), β = 0.2.

Note that this expression reduces to the standard Dirichlet KL divergence when ε→ 0.

C EFFECT OF TOPIC NUMBER ON CLASSIFICATION PERFORMANCE

C depicts how the variation in the number of latent topics influences the classification accuracy in
five benchmark datasets (MR, Ohsumed, 20 Newsgroups, R8, and R52) for four smoothed-Dirichlet
variants: SD-BERT, SD-RoBERTa, SD-DistilBERT, and SD-MoBERT. In all cases, performance
increases when the topic number increases from very low values (10-40), reflecting the transition
from an overly coarse to a sufficiently expressive latent representation. Beyond approximately 70-100
topics, gains begin to plateau or even fluctuate slightly, indicating diminishing returns from further
topic subdivisions.

On the Movie Review (MR) dataset, SD-MoBERT achieves the highest peak accuracy of roughly
90% at 80 topics, outperforming its counterparts by 2-4%, while all models converge around 86-88%
for larger topic numbers. A similar pattern emerges on Ohsumed: SD-MoBERT reaches about 84%
at 90–100 topics, whereas the other transformers level off around 77-80%. In the more fine-grained
20 Newsgroups setting, SD-MoBERT again leads with nearly 96% at 80 topics, compared to 92–93%
for SD-RoBERTa and SD-BERT, and slightly lower performance for the DistilBERT variant. For the
more specialized Reuters subsets R8 and R52, the advantage of SD-MoBERT is most pronounced. On
R8, SD-MoBERT rapidly climbs to over 99% accuracy at 80 topics and sustains this around 98-99%
as topics increase. The other models attain roughly 96-98% in the same range, with SD-DistilBERT
typically the lowest. On R52, SD-MoBERT surpasses 99% by 100 topics, while SD-RoBERTa and
SD-BERT stabilize around 95-97%, and SD-DistilBERT around 91–94%.

In general, these plots demonstrate that integrating ModernBERT with a smoothed Dirichlet topic
prior (SD-MoBERT) consistently yields better classification performance, especially once the latent
dimensionality is sufficiently large (70 to 100 topics), and that beyond this range, additional topics
confer minimal benefit across various text classification scenarios.
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Figure 5: Sensitivity of classification accuracy to the regularization weight β across five benchmarks.
Each subplot corresponds to a different dataset: MR (top left), Ohsumed (top right), 20NG (bottom
left), Reuters R8 (bottom center), and Reuters R52 (bottom right), K = 100.

D EFFECT OF THE KL-WEIGHT FACTOR ON CLASSIFICATION PERFORMANCE

Figure 5 depicts the test-accuracy plots to visualize how the balance between cross-entropy loss
and the KL divergence (controlled by the regularization coefficient β in L = LCE + β LKL) affects
classification accuracy on five benchmark corpora (MR, Ohsumed, 20NG, R8 and R52).

Across the five benchmarks, we observe the following consistent pattern: when β is large (β ≥ 0.6),
the models under-emphasize the cross-entropy term and suffer in accuracy. For example, on the
MR, all four methods plateau around 70-80 % at β ≥ 0.6. As β decreases into the range [0.4, 0.2],
the accuracy rises, indicating that the KL regularization has been sufficiently relaxed to allow the
classifier to leverage discriminative features while still benefiting from topic-based smoothing. In
particular, β = 0.2 yields near-peak performance for every dataset. SD-BERT achieves 86.02 % on
MR and 89.12 % on 20NG, SD-RoBERTa reaches 88.10 % and 92.55 %, SD-DistilBERT attains
87.09 % and 86.40 %, and SD-MoBERT tops out at 89.97 % and 95.27 %, respectively—while
further reductions of β below 0.2 produce only marginal gains or slight degradations.

On the Ohsumed, R8, and R52 corpora a similar “elbow” appears at β = 0.2: performance rises
from the mid-70s to the high-70s or low-80s as β falls from 0.6 to 0.2, then asymptotes or even dips
slightly for β < 0.2. This behaviour confirms that β = 0.2 achieves the optimal trade-off between
enforcing the consistency of the topic model (via LKL) and preserving classification accuracy (via
LCE) across all settings. We therefore fix β = 0.2 in subsequent experiments, as it uniformly delivers
near-best or best accuracy with robust stability across data sets and model backbones.
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E HYPOTHESIS TESTING: STATISTICAL COMPARISON OF SD-MOBERT AND
PASIG-S

Table 3 summarizes the F1 mean, variance, standard deviation (S), 95% confidence intervals (CI), and
two-sided p-values for SD-MoBERT versus the best baseline (PaSIG-S) across the five benchmarks.

We compute each 95% confidence interval using Greenland et al. (2016)

CI = µ ± z∗
s√
n
, z∗ = 1.96, (19)

where n is the number of evaluation runs. For example, on the MR dataset with µ = 88.13,
S = 0.029, and 30 trials, the resulting interval is [88.120 - 88.140].

To test whether SD-MoBERT’s mean F1 differs from PaSIG-S, we formulate

H0 : µSD-MoBERT = µPaSIG-S vs. H1 : µSD-MoBERT ̸= µPaSIG-S (20)

We calculate the two-sided p-value as Greenland et al. (2016)

p = 2
(
1− CDF(|t|, df)

)
, df = n− 1, (21)

where

CDF(|t|, df) =
∫ |t|

−∞
f(t, df) dt, (22)

and the Student’s t-distribution PDF is

f(t, df) =
Γ
(
df+1
2

)
√
df π Γ

(
df
2

)(1 + t2

df

)−df+1
2
. (23)

where df = n− 1 denotes the degree of freedom and Γ represents the Gamma function.

All five datasets yield p < 0.05, thus, we reject the NULL hypothesis H0 and accept the alternative
hypothesisH1. The extremely small p-values (e.g. 2.38×10−47 on MR) and tight confidence intervals
demonstrate that SD-MoBERT’s improvements over PaSIG-S are both statistically significant and
consistently observed.

F EFFICIENCY ANALYSIS: TIME COMPLEXITY AND RUNTIME COST

Table 4 compares six transformer-based classifiers in terms of their time complexity, approximate
floating-point operations per token (FLOPs), and measured CPU inference time on a single Reuters
R8 document. All experiments are conducted on a 12th Gen Intel(R) Core(TM) i7-12700K processor
(3.60 GHz), 64GB RAM, and a 64-bit operating system. The baseline BERT and its long-context
variant MoBERT both exhibit the familiar O(b · L · T 2 ·D) complexity, where b denotes the batch
size, L the number of transformer layers, T the sequence length, and D the hidden dimension. BERT
incurs approximately 148 GFLOPs per token and requires 0.74 ms to process a single R8 document,
whereas MoBERT’s optimizations reduce this to 118 GFLOPs and 0.59 ms.

Incorporating the smoothed-Dirichlet topic model adds an O(b (V · H + H · K)) term (with vo-
cabulary size V , topic-MLP hidden size H , and K topics). Thus SD-BERT’s complexity becomes
O(b (LT 2D + V H +HK)), raising FLOPs to 158 GFLOPs and inference time to 0.79 ms. SD-
RoBERTa, which uses a larger embedding dimension Dlarge, further increases cost to 220 GFLOPs
and 1.10 ms. DistilBERT’s lighter backbone (L′ < L) yields the fastest pure transformer variant:
SD-DistilBERT achieves only 84 GFLOPs and 0.42 ms despite the same topic-model overhead.
Finally, SD-MoBERT combines ModernBERT’s quantization advantages with a small co-attention
fusion (O(b (D′H ′))), resulting in O(b (LT 2D + V H +HK +D′H ′)), 126 GFLOPs, and 0.63
ms. D′ denotes the fusion layer output dimensionality, Dlarge is the larger embedding dimension in
RoBERTa-base, and H ′ is the hidden layer size in the classification head.

Overall, MoBERT and SD-MoBERT strike the best balance between high capacity and low la-
tency, while SD-DistilBERT offers the most lightweight option when computational resources are
constrained.
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Table 4: Comparison of time complexity, per-token FLOPs, and CPU inference latency on the Reuters
R8 dataset (single document) for BERT, MoBERT, and their smoothed-Dirichlet variants.

Model Time complexity FLOPs CPU Time (ms)

BERT O(b · L · T 2 ·D) 148 GFLOPs 0.74

MoBERT O(b · L · T 2 ·D) 118 GFLOPs 0.59

SD-BERT O(b · (L · T 2 ·D + V ·H +H ·K)) 158 GFLOPs 0.79

SD-RoBERTa O(b · (L · T 2 ·Dlarge + V ·H +H ·K)) 220 GFLOPs 1.1

SD-DistilBERT O(b · (L′ · T 2 ·D + V ·H +H ·K)) 84 GFLOPs 0.42

SD-MoBERT O(b · (L · T 2 ·D + V ·H +H ·K +D′ ·H ′)) 126 GFLOPs 0.63

Listing 1 Smoothed-Dirichlet MLP forward function; see SMDIRICHLET class below.

1 def forward(self, input_bows):
2 # Run BOW through MLP
3 pi = self.mlp(input_bows)
4

5 # Use this to get rho1, log_rho2 for Dirichlet
6 rho1 = self.rho1(pi)
7 logrho2 = self.rho2(pi)
8 alpha = self.alpha(pi)
9

10 epsilons = torch.normal(0, 1, size=(
11 input_bows.size()[0], self.num_topics)).to(input_bows.device)
12

13 sample, alpha_smoothed = self.reparameterize(alpha, rho1, logrho2, epsilons)
14

15

16 logits = self.log_softmax(self.dec_projection(sample))
17

18

19 kld = self.kld(alpha_smoothed , prior_alpha = torch.tensor(0.01), epsilon=torch.tensor(0.00000000001))
20

21 rec_loss = -1 * torch.sum(logits * input_bows, 1)
22 loss_nvdm_lb = torch.mean(rec_loss + kld)
23

24 return sample, logits, torch.mean(kld), loss_nvdm_lb
25
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Listing 2 Smoothed-Dirichlet MLP (SMDIRICHLET class)

1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4

5 class SMDIRICHLET(nn.Module):
6

7 @staticmethod
8 def _param_initializer(module):
9 if isinstance(module, nn.Linear):

10 nn.init.xavier_normal_(module.weight)
11

12 if isinstance(module, nn.Linear) and module.bias is not None:
13 module.bias.data.zero_()
14

15 def __init__(self, vocab_size, num_topics=10, hidden_size=256, hidden_layers=1, nonlinearity=nn.GELU):
16 super().__init__()
17 self.num_topics = num_topics
18 self.vocab_size = vocab_size
19

20 # First MLP layer compresses from vocab_size to hidden_size
21 mlp_layers = [nn.Linear(vocab_size, hidden_size), nonlinearity()]
22 # Remaining layers operate in dimension hidden_size
23 for _ in range(hidden_layers - 1):
24 mlp_layers.append(nn.Linear(hidden_size, hidden_size))
25 mlp_layers.append(nonlinearity())
26

27 self.mlp = nn.Sequential(*mlp_layers)
28 self.mlp.apply(SMDIRICHLET._param_initializer)
29

30 # Create linear projections for Dirichlet params (rho1 & rho2)
31 self.rho1 = nn.Linear(hidden_size, num_topics)
32 self.rho1.apply(SMDIRICHLET._param_initializer)
33

34 # Custom initialization for rho2
35 self.rho2 = nn.Linear(hidden_size, num_topics)
36 self.rho2.bias.data.zero_()
37 self.rho2.weight.data.fill_(0.)
38

39 # create linear projrction for alpha
40 self.alpha = nn.Linear(hidden_size, num_topics)
41 self.alpha.apply(SMDIRICHLET._param_initializer)
42

43 self.dec_projection = nn.Linear(num_topics, vocab_size)
44 self.log_softmax = nn.LogSoftmax(-1)
45

46 def reparameterize(self, alpha, rho1, logrho2, eps):
47 rho2 = torch.exp(logrho2)
48 #eps = torch.randn_like(std)
49 alpha_smoothed = alpha + eps * rho2 + rho1
50

51 Z_sd = F.softmax(alpha_smoothed, dim=1)
52

53 return Z_sd, alpha_smoothed
54

55 def kld(self, model_alpha, prior_alpha, epsilon):
56

57 model_alpha = torch.max(torch.tensor(0.0001), model_alpha).to(model_alpha.device)
58 alpha = prior_alpha.expand_as(model_alpha)
59 sum1 = torch.sum((model_alpha + epsilon - 1) * torch.digamma(model_alpha + epsilon), dim=1)
60

61 sum2 = torch.sum((alpha + epsilon - 1) * torch.digamma(alpha + epsilon), dim=1)
62 kl_loss = torch.mean(sum1 - sum2)
63

64 return kl_loss
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Listing 3 Smoothed Dirichlet ModernBERT

1 '''This module contains the SD-ModernBERT model with a co-attention mechanism and dynamic fusing.'''
2

3 import torch
4 import torch.nn as nn
5 from transformers import ModernBertModel
6 from models.smdirichlet import SMDIRICHLET
7

8

9 class TopicBERT(nn.Module):
10 '''This module contains the SD-ModernBERT model with a co-attention mechanism and dynamic fusing.'''
11 def __init__(self, vocab_size, num_labels, alpha=0.9, dropout=0.1):
12 super().__init__()
13 self.encoder = ModernBertModel.from_pretrained('answerdotai/ModernBERT-base')
14 self.smdirichlet = SMDIRICHLET(vocab_size)
15

16 # Co-attention projection layers
17 hidden_size = self.encoder.config.hidden_size
18 topic_dim = self.smdirichlet.num_topics
19 self.co_attn_b = nn.Linear(hidden_size, hidden_size, bias=False)
20 self.co_attn_t = nn.Linear(topic_dim, hidden_size, bias=False)
21 self.attn_bias = nn.Parameter(torch.zeros(1))
22

23 # Combine co-attended representation
24 self.combine_proj = nn.Linear(hidden_size, hidden_size)
25

26 # Classification head
27 self.projection = nn.Sequential(
28 nn.Dropout(dropout),
29 nn.Linear(hidden_size, hidden_size, bias=False),
30 nn.GELU(),
31 nn.Linear(hidden_size, num_labels)
32 )
33 self.projection.apply(TopicBERT._get_init_transformer(self.encoder))
34

35 self.bert_loss = nn.CrossEntropyLoss(reduction='mean')
36

37 @staticmethod
38 def _get_init_transformer(transformer):
39 def init_transformer(module):
40 if isinstance(module, (nn.Linear, nn.Embedding)):
41 module.weight.data.normal_(mean=0.0, std=transformer.config.initializer_range)
42 elif isinstance(module, nn.LayerNorm):
43 module.bias.data.zero_()
44 module.weight.data.fill_(1.0)
45 if isinstance(module, nn.Linear) and module.bias is not None:
46 module.bias.data.zero_()
47 return init_transformer
48
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Listing 4 Smoothed Dirichlet ModernBERT forward function

1

2 def forward(self, input_ids, attention_mask, bows, labels):
3 # BERT encoding
4 hiddens_last = self.encoder(input_ids, attention_mask=attention_mask)[0]
5 embs = hiddens_last[:, 0, :] # [CLS] token embeddings
6

7 # Topic model encoding
8 h_tm, _, kld, loss_diri = self.smdirichlet(bows)
9

10 # Co-attention
11 proj_b = self.co_attn_b(embs) # (batch_size, hidden_size)
12 proj_t = self.co_attn_t(h_tm) # (batch_size, hidden_size)
13 # Compute affinity and attention weight
14 scores = torch.sum(proj_b * proj_t, dim=1, keepdim=True) + self.attn_bias # (batch_size, 1)
15 alpha = torch.sigmoid(scores) # (batch_size, 1)
16 #alpha = self.softmax(scores)
17 # Fuse representations
18 joint = alpha * proj_b + (1 - alpha) * proj_t
19 co_emb = torch.tanh(self.combine_proj(joint)) # (batch_size, hidden_size)
20

21 # Classification
22 logits = self.projection(co_emb)
23

24 # Loss computation
25 loss_bert = self.bert_loss(logits, labels.max(1).indices)
26 loss_total = loss_bert + kld * 0.2
27 return logits, loss_total, kld
28

23
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