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Abstract001

This paper introduces a general methodology002
through which a population of autonomous003
agents can converge on a linguistic convention004
that enables them to refer to arbitrary entities005
in their environment. The linguistic convention006
emerges in a decentralised manner through lo-007
cal communicative interactions between pairs008
of agents drawn from the population. The009
emergent convention consists of associations010
between symbolic labels (word forms) and sub-011
symbolic concept representations (word mean-012
ings) that are grounded in a continuous feature013
space. We confirm the generality and scalabil-014
ity of the method through its evaluation on a015
wide and diverse selection of 34 publicly avail-016
able datasets. We also demonstrate the robust-017
ness of the method against perceptual variation,018
including in heteromorphic populations, as well019
as the ability of the emergent conventions to020
self-adapt to changes in the environment.021

1 Introduction022

Human languages are evolutionary systems, which023

emerge and evolve through local communicative024

interactions between members of a linguistic com-025

munity. Processes of variation and selection are at026

play during each and every communicative inter-027

action, at the level of concepts, words and gram-028

matical structures (Schleicher, 1869; Darwin, 1871;029

Maynard Smith and Szathmáry, 1999; Oudeyer and030

Kaplan, 2007; Steels and Szathmáry, 2018). Vari-031

ants are introduced as creative solutions to com-032

municative impasses and are selected for based033

on their linguistic, cognitive and physical fitness034

(Grice, 1967; Echterhoff, 2013; Van Eecke et al.,035

2022). The evolutionary and self-organising na-036

ture of human languages gives rise to a number of037

unique qualities. First of all, such decentralised,038

self-organising systems are known to be robust and039

to be able to self-repair substantial perturbations040

(Heylighen, 2001; Pfeifer et al., 2007). Second,041

populations of language users converge on shared 042

conventions that remain adaptive to changes in their 043

environment and communicative needs (Beckner 044

et al., 2009). Finally, the resulting languages serve 045

as an abstraction layer above the sensory observa- 046

tions and internal mental representations of indi- 047

vidual language users (Nevens et al., 2020; Beuls 048

and Van Eecke, 2024; Garside et al., 2025). Indeed, 049

while linguistic forms can be observed and shared, 050

their meanings remain tied to each language user’s 051

individual physical and cognitive embodiment. 052

This agent-based and evolutionary perspective 053

on the human ability to communicate through lan- 054

guage has served as a starting point for the de- 055

velopment of a range of computational method- 056

ologies that model how artificial agents can co- 057

construct emergent languages that satisfy their com- 058

municative needs (see e.g. Steels and Belpaeme, 059

2005; Beuls and Steels, 2013; Foerster et al., 2016; 060

Lazaridou et al., 2017; Mordatch and Abbeel, 2018; 061

Chaabouni et al., 2021, 2022; Nevens et al., 2022; 062

Doumen et al., 2023; Lian et al., 2024). Rather 063

than modelling the learning of an existing natural 064

language, which has emerged and evolved to fit 065

the communicative needs of a population of human 066

language users, these methodologies allow for ar- 067

tificial natural languages to emerge and evolve to 068

optimally support the embodiment, environment 069

and communicative needs of populations of artifi- 070

cial agents. These languages are artificial in the 071

sense that they do not exist outside the experimental 072

set-up, yet natural in the sense that they emerge and 073

evolve through the same evolutionary principles as 074

human languages do. 075

In this paper, we focus on the emergence of lin- 076

guistic conventions that associate symbolic labels 077

(referred to as word forms) to subsymbolic concept 078

representations (referred to as word meanings). We 079

introduce a methodology through which a popu- 080

lation of autonomous agents tasked with verbally 081

referring to entities in their environment can con- 082
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verge on a conceptually grounded vocabulary that083

is adequate for solving their reference task. The084

linguistic convention emerges in a decentralised085

manner through local, task-oriented and situated086

communicative interactions that take place between087

pairs of agents drawn from the population. Impor-088

tantly, the entities in the environment of the agents089

do not come pre-categorised, but are perceived by090

the agents as points in a multi-dimensional, contin-091

uous feature space. As they take part in situated092

communicative interactions, the agents gradually093

converge on a vocabulary that associates shared094

word forms with internal concept representations095

that are personal yet compatible on a communica-096

tive level.097

The main contribution of the paper with respect098

to the state of the art lies in the generality and099

scalability of the method. We demonstrate its direct100

applicability in wide variety of scenarios through101

evaluation on a diverse selection of 34 publicly102

available datasets. We also demonstrate that the103

emergent convention indeed exhibits a number of104

qualities typically associated with human linguistic105

communication. In particular, we show that the106

methodology is naturally robust against perceptual107

deviation, which leads to languages that self-adapt108

to changes in the environment of the agents.109

2 Problem Definition110

We address a de-centralised, multi-agent emergent111

communication problem. More specifically, the112

problem concerns the bootstrapping of a linguistic113

convention that agents can use for drawing each114

other’s attention to arbitrary entities in their envi-115

ronment. Importantly, communicative interactions116

always take place locally between two agents from117

the population, agents need to be able to act both as118

speakers and as listeners, the environment does not119

come pre-categorised, and the emergent convention120

needs to be suitable for communication about previ-121

ously unseen entities. More formally, the problem122

can be defined as follows:123

Population There exists a population P =124

{a1, . . . , ak} that consists in a set of k autonomous125

agents. Agents have no access to each other’s in-126

ternal state nor to any centralised knowledge base,127

and start out as ‘blank slates’ without any words,128

concepts or knowledge about the world.129

World There exists a world W = {e1, . . . , em}130

that consists in a set of m entities. An observation131

of an entity by an agent a takes the form of a fea- 132

ture vector Xa of l dimensions, for example result- 133

ing from the agent’s sensor read-outs. The dimen- 134

sions of such a vector can be continuously-valued, 135

categorically-valued or a combination of both. Val- 136

ues on continuous dimensions can be assumed to 137

be in the range [0, 1], but it cannot be assumed that 138

all agents perceive a given entity identically or even 139

as a vector of the same dimensionality. 140

Interactions Agents take part in a sequence G = 141

(gj)
i
j=1 of i task-oriented communicative interac- 142

tions. At the beginning of each interaction g ∈ G, 143

a scene C = {e1, . . . , en} ⊂ W of n entities 144

from the world is randomly created. Two agents 145

ap, aq ∈ P are randomly selected from the pop- 146

ulation, where ap is assigned the role of speaker 147

(S = ap), while aq is assigned the role of listener 148

(L = aq). A topic entity T ∈ C is randomly se- 149

lected from the scene and is only disclosed to S. S 150

is tasked with drawing the attention of L to T by 151

producing an utterance U that is passed on to L. L 152

should then identify T ∈ C. Success occurs if L 153

correctly identifies T . In case of failure, T is dis- 154

closed to L. After the interaction, both agents are 155

informed about whether the interaction succeeded 156

or failed. Identification or disclosure of entities 157

always happens in terms of the agents’ own per- 158

ceived feature vectors, i.e. XS for S and XL for 159

L. 160

The formal definition of the problem was de- 161

signed to be generic and is straightforwardly instan- 162

tiable in a variety of scenarios. An intuitive sce- 163

nario would involve a population of robotic agents 164

that are each equipped with a set of sensors. The 165

values recorded by an agent’s sensors for a given 166

entity would then yield the perceived feature vec- 167

tor for that agent for that entity. Other scenarios 168

involve populations of simulated agents commu- 169

nicating about entities that are stored as entries in 170

tabular datasets. In such cases, agents ‘perceive’ 171

a given entry as the vector composed of that en- 172

try’s (normalised) column values. The problem 173

definition will be instantiated in 34 different scenar- 174

ios below. For illustrative purposes, we will focus 175

in particular on four prototypical scenarios, with 176

environments that are perceived in continuous di- 177

mensions (CLEVR and WINE), in categorical dimen- 178

sions (MUSHROOMS) or in a combination of both 179

(EXOPLANETS). The CLEVR scenario makes use 180

of the images from the CLEVR dataset (Johnson 181

et al., 2017), which were preprocessed according 182
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to the procedure described by Nevens et al. (2020).183

The dataset comprises 85K images, in which each184

depicted object is represented through a feature185

vector. The 20 dimensions of these feature vectors186

are continuously-valued and correspond to informa-187

tion obtained through computer vision techniques188

(e.g. width-height ratio, colour channel values, x-189

axis position). The WINE scenario is based on the190

Wine Quality dataset (Cortez et al., 2009), which191

holds information about 6497 wine samples along192

12 dimensions that are all continuously-valued and193

describe their physicochemical characteristics (e.g.194

acidity, residual sugar, sulphates). The EXOPLAN-195

ETS scenario features 4575 exoplanets, described196

along a combination of 8 continuously-valued di-197

mensions (e.g. planet radius, orbital period) and 4198

categorically-valued dimensions (e.g. planet type,199

detection method) (Mishra, 2023). Finally, the200

MUSHROOMS scenario features 8124 mushrooms201

described along 23 categorical dimensions (e.g.202

poisonous, habitat) (Schlimmer, 1981).203

In each scenario, the world W is defined as the204

set of entries from the underlying dataset. For205

methodological reasons, 25% of the entities in W206

are held out for testing purposes. At the begin-207

ning of each interaction, a new scene is created208

by randomly selecting 10 entities from W , with209

the constraint that training scenes can only hold210

training entities and that test scenes can only hold211

test entities. The exception to this rule is CLEVR,212

where the original dataset already consists of train213

and test splits holding scenes of (3 to 10) entities,214

which we adopt in our experiments.215

In line with common practice in the field (Steels,216

1999; Loetzsch, 2015; Van Eecke et al., 2022), the217

results are analysed in terms of three quantitative218

metrics both during training and at test time:219

Degree of communicative success The degree220

of communicative success reflects how successful221

a population of agents is at solving the task. It222

is computed as the average outcome of all inter-223

actions, where success counts as 1 and failure as224

0.225

Degree of conventionality The degree of con-226

ventionality quantifies to what extent the different227

agents in the population would produce the same ut-228

terance under the same circumstances, thereby mea-229

suring convergence towards a predictable linguistic230

convention. It is computed by averaging over all in-231

teractions a binary measure that indicates whether232

the listener agent would have used the same utter-233

ance as the one produced by the speaker agent to 234

describe the topic entity, if this agent would have 235

been the speaker. 236

Linguistic inventory size The average linguistic 237

inventory size is calculated as the average number 238

of distinct words uttered by the agents. 239

3 Methodology 240

In order to solve the problem defined above, agents 241

need to be able to represent concepts and words, 242

and update them based on the communicative in- 243

teractions they take part in. The resulting learning 244

dynamics should ensure that a communicatively 245

adequate and conventional language emerges in 246

the population. Let us first generically define how 247

agents will represent concepts and words: 248

Linguistic inventory The linguistic inventory I 249

of an agent a ∈ P , denoted as Ia, is a potentially 250

empty set of words, with each word w ∈ I be- 251

ing a coupling w = (f, c, s) between a word form 252

f ∈ F , a concept representation c and a score 253

0 ≤ s ≤ 1. F is an infinite set of word forms (enu- 254

merated through a regular expression). Each agent 255

is initialised with an empty linguistic inventory. 256

Concept representations A concept represen- 257

tation c = ((ω1, θ1) . . . (ωl, θl)) is a sequence of 258

couplings between a weight value ω and a distribu- 259

tion θ. This sequence holds one such coupling for 260

each dimension in the feature vectors that an agent 261

perceives. Depending on whether a dimension is 262

continuously-valued or categorically-valued, θ will 263

be a normal distribution parametrised by a mean 264

µ and standard deviation σ, i.e. θ = (µ, σ), or an 265

empirical distribution θ = f , where f corresponds 266

to absolute frequencies of categories. The weight 267

value ω represents the importance of a particular 268

dimension for a concept. Concepts are thus rep- 269

resented as a sequence of distributions, with one 270

distribution being associated to each observed di- 271

mension via a weight that indicates the importance 272

of this dimension for the concept. 273

Concrete representations for concepts and words 274

are learnt as agents take part in communicative 275

interactions. These interactions follow the protocol 276

defined in Section 2: a scene C = {e1 . . . e10} of 277

10 entities is created, a topic T ∈ C is selected, and 278

two agents are assigned the roles of speaker S and 279

listener L. Then, S needs to produce an utterance 280

U to draw the attention of L to T : 281
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Conceptualisation and production The282

speaker S computes the concept similarity283

simc(c,XS) between the concept representation284

c = ((ω1, θ1) . . . (ωl, θl)) of each word in its285

linguistic inventory w = (f, c, s) ∈ IS and the286

perceived feature vector XS = (x1, . . . , xl) for287

each entity in the context C. As formalised in288

Equations 1 and 2, the concept similarity simc289

between a concept c and a feature vector X is290

defined as the sum over all dimensions of the291

dimension similarity simd between the distribution292

θ for a given dimension in the concept and the293

value x for the same dimension in the feature294

vector, weighted by the weight value ω for that295

dimension in the concept. Weight values are296

normalised to sum to 1 across dimensions to avoid297

an inherent bias towards concept representations298

with a higher number of relevant channels.299

The dimension similarity simd is defined for300

continuous dimensions as the z-score of the value301

for this dimension in the feature vector given302

the distribution for this dimension in the concept303

representation (mapped between 0 and 1), and for304

categorical dimensions as the relative frequency305

of the category for this dimension in the feature306

vector with respect to the frequencies of categories307

in the concept representation.308

simc(c,X) =

l∑
i=1

ωi∑l
k=1 ωk︸ ︷︷ ︸

normalised weight

simd(θi, xi)︸ ︷︷ ︸
dimension similarity

(1)309

simd(θ, x) =

{
exp

(
−
∣∣x−µ

σ

∣∣) if continuous dim.
fx∑k
i=1 fi

if categorical dim. (2)310

All words w ∈ IS in the speaker’s linguistic311

inventory for which it holds that the similarity be-312

tween their concept representation c and the per-313

ceived feature vector for the topic entity T is larger314

than the similarity between c and any other entity315

in C are collected into a set of candidate words316

K (see Eq. 3). K thus groups all words in S’ in-317

ventory that distinguish the topic entity from the318

other entities in the context. Then, the candidate319

words are ranked according to their communicative320

adequacy, computed as the product of their score321

s and their discriminative power, which is itself322

computed as the similarity between c and T minus323

the similarity between c and the closest other entity324

in C (see Eq. 4). The word form f of the candidate325

word with the highest communicative adequacy w∗326

is then uttered by S as the utterance U . U is shared 327

with the listener L. 328

K = {wi ∈ IS | sim(ci, T ) > max
e∈C\T

simc(ci, e)} (3) 329

w∗ = argmax
wi∈K

si ∗
[
simc(ci, T )− max

e∈C\T
simc(ci, e)

]
︸ ︷︷ ︸

discriminative power

(4) 330

Invention If there were no candidate words in IS 331

(i.e. K = ∅), S adds a new word w = (f, c, s) 332

to IS , with f being randomly selected from the 333

infinite set of forms F (see Linguistic inventory 334

above) and s being assigned a default initial value 335

si. c = ((ω1, θ1) . . . (ωl, θl)) is initialised based 336

on the perceived feature vector XS . For continuous 337

features, where θ = (µ, σ), µ1...µl are initialised 338

with the values of XS and σ1...σl are assigned a 339

default initial value σi. For categorical features, 340

where θ = f , the frequency of the observed cate- 341

gory is set to 1. Finally, the weight values ω1...ωl 342

are assigned a default initial value ωi. Then, f is 343

uttered as U . 344

Comprehension and interpretation The lis- 345

tener L observes the utterance U . If L knows a 346

word with the form U , i.e. w = (U, c, s) ∈ IL, L 347

identifies the entity in the context e ∈ C that is 348

most similar to c as the hypothesised topic T ∗: 349

T ∗ = argmax
ei∈C

simc(c, ei) (5) 350

If L correctly identifies the topic entity, i.e. 351

T ∗ = T , the interaction is considered successful. 352

Otherwise, the interaction is considered a failure 353

and T is disclosed to L as XL. After each com- 354

municative interaction, both S and L will update 355

the words and concept representations in their re- 356

spective linguistic inventories IS and IL. We dis- 357

tinguish between successful interactions and failed 358

interactions: 359

Successful interaction update After a success- 360

ful interaction, S will increase the score s of the 361

used word wU = (U, c, s) ∈ IS by a fixed re- 362

ward value sr. At the same time, S will decrease 363

the scores of the word’s competitors, i.e. all other 364

w ∈ IS that were earlier identified as belonging 365

to the set of candidate words K, by a value that is 366

proportional to how similar their concept represen- 367

tation is to the concept representation of the used 368

word. This is done by multiplying the similarity 369
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between both concept representations with a fixed370

inhibition value sli. Thus, words that are more371

similar are considered stronger competitors and are372

punished harder (see Eq. 6).373

s← s+

{
sr if w = wU

sli · simcc(c, cU ) if w ∈ K \ wU
(6)374

The similarity between two concept representa-375

tions is computed as the sum over all channels of376

the complement of the Hellinger distance (a type of377

f-divergence, Hellinger, 1909) between the corre-378

sponding distributions, multiplied by the similarity379

between their normalised weights and their average380

normalised weight (see Eq. 7). The distribution381

similarity component is included to reflect the rela-382

tive importance of the similarity between the distri-383

butions for corresponding channels, where closer384

distributions lead to a higher similarity. The nor-385

malised weight similarity component is included386

to reflect the relative importance of the similarity387

between the weights on corresponding channels,388

where a smaller difference between the weights389

indicates a higher similarity between the channels.390

Finally, the average normalised weights compo-391

nent is included to reflect that channel similarities392

are more meaningful if channel weights are higher,393

with channels holding a higher average weight con-394

tributing more to the overall similarity score.395

simcc(cq, cr) =

l∑
i=1

(1−Df (θq,i ∥ θr,i))︸ ︷︷ ︸
distribution similarity

∗

(
1− | ωq,i∑l

k=1 ωq,k

− ωr,i∑l
k=1 ωr,k

|

)
︸ ︷︷ ︸

normalised weight similarity

∗
ωq,i∑l

k=1
ωq,k

+
ωr,i∑l

k=1
ωr,k

2︸ ︷︷ ︸
average normalised weights

(7)396

Similarly, L will collect all words in its linguis-397

tic inventory that are considered candidate words398

according to the procedure described in Conceptu-399

alisation and production above (now based on IL400

and XL instead of IS and XS), and update their401

scores as defined in Equation 6.402

Both S and L will also update their concept rep-403

resentation associated to U based on the context404

C. For continuous features, in each channel i, they405

update µi and σi to include their perceived feature406

vector XS or XL using Welford’s online algorithm407

(Welford, 1962). For categorical features, the fre- 408

quency of the observed category fi is incremented. 409

To update the weights ω1 . . . ωl, the dimensions 410

with a positive discriminative power (see Conceptu- 411

alisation and production above) are identified and 412

increased by a fixed step cr on a sigmoid function 413

σ(x). The weights from the other dimensions are 414

decreased by a fixed step cp in the same function. 415

The weight values are thereby bounded between 0 416

and 1, with values becoming more stable as they 417

approach 0 or 1. 418

Failed interaction update After a failed interac- 419

tion, S will decrease the score of wU = (U, c, s) ∈ 420

IS by a fixed value sp. If L knew a word with 421

the observed form, L will decrease the score of 422

wU = (U, c, s) ∈ IL by a fixed value sp and up- 423

date its c based on T with relation to C in the same 424

way as if the interaction would have been success- 425

ful. If L did not know a word w = (U, c, s), L will 426

adopt the word as follows: 427

Adoption A new word w = (f, c, s) is added 428

to IL, with f being the observed utterance U 429

and s being assigned a default initial value si. 430

c = ((ω1, θ1) . . . (ωl, θl)) is initialised based on 431

the perceived feature vector XL. For continuous 432

features, where θ = (µ, σ), µ1...µl are initialised 433

with the values of XL and σ1...σl are assigned a 434

default initial value σi. For categorical features, 435

where θ = f , the frequency of the observed cate- 436

gory is set to 1. Finally, the weight values ω1...ωl 437

are assigned a default initial value ωi. 438

4 Results 439

We evaluate the methodology on a wide and diverse 440

collection of 34 publicly available datasets. We 441

use the experimental set-up described in Section 2, 442

train for 1M interactions and evaluate on 100K in- 443

teractions that only feature entities not seen during 444

training, averaging over 10 independent experimen- 445

tal runs. The methodology was defined in Section 446

3 in terms of a number of parameters that need to 447

be set when running a concrete experiment. We 448

have optimised these parameters (except # agents 449

and # entities) on the training portion of CLEVR 450

(see Supplementary Materials) and obtained the 451

values reported in Table 1. We have then evalu- 452

ated the methodology on all 34 datasets using the 453

same parameter settings, with no dataset-specific 454

fine-tuning. 455

The results of evaluation on the test sets in terms 456
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Parameter Value Description

k 10 # agents in population
n 10 # entities in context
si 0.5 initial word score
sr +0.1 word score reward
sp −0.1 word score punishment
sli −0.02 competitor score punishment
σi 0.01 initial standard deviation
ωi 0.5 initial dimension weight
cr +1 dimension weight reward
cp −5 dimension weight punishment

σ(x) 1

1+e−1/2x sigmoid function

Table 1: Overview of parameter settings.

of degree of communicative success, degree of con-457

ventionality and linguistic inventory size, as de-458

fined in Section 2, are shown in Table 2. In all459

34 scenarios, the population reaches a degree of460

communicative success of over 95%, with a degree461

of conventionality above 80%. The average lin-462

guistic inventory size ranges from 55 to 267 words.463

These results confirm that the populations consis-464

tently converge on communicatively effective and465

conventional languages with a limited number of466

words as compared to the number of entities in the467

training data.468

5 Analysis469

The evolutionary dynamics that take place during470

the training phase of the prototypical CLEVR exper-471

iments are visualised in Figure 1. The graph shows472

the degree of communicative success (solid line,473

left y-axis), the degree of conventionality (dashed474

line, left y-axis) and the average linguistic inven-475

tory size (dashdotted line, right y-axis) as a func-476

tion of the number of communicative interactions477

that took place and averaged over a sliding window478

of 5K interactions. The degree of communicative479

success starts at 0, as all agents start with an empty480

linguistic inventory. It rises to about 90% after 50K481

interactions, and continues to grow to 99.72% over482

the course of the 1M interactions that take place.483

The degree of conventionality roughly follows the484

same dynamics as the degree of communicative485

success, although the growth is much slower. Af-486

ter 1M interactions, the degree of conventionality487

has reached 93.30%. The average linguistic in-488

ventory size shows the typical ‘overshoot pattern’489

that is found in many language emergence exper-490

iments (Van Eecke et al., 2022). Indeed, many491

words emerge during the initial phase of the exper-492

iment, as the individual agents are constantly faced493
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Figure 1: Evolutionary dynamics during the training
phase of the CLEVR experiment: degree of commu-
nicative success, degree of conventionality and average
linguistic inventory size as a function of the number of
communicative interactions.

 radius-multiplier 
μ : 0.091
σ : 0.017

ω : 1.0

ω : 1.0

s : 1.0  planet-type 
f: ('terrestrial': 2026, 'gas giant': 248, 

'Neptune-like': 18, 'super earth': 4)

"penatu"

Figure 2: Example of a word emerged in the EXOPLAN-
ETS scenario, which has specialised towards two dimen-
sions, one continuous (‘radius-multiplier’) and the other
categorical (‘planet-type’).

with the need to invent. Then, as a result of the 494

rewarding and punishing of words, the population 495

converges on a smaller inventory size. The graph 496

shows that the peak linguistic inventory size lies 497

around 90 words, while an average of 48.42 words 498

is reached after 1M interactions. 499

Figure 2 shows a word with the form “penatu” 500

that emerged in agent 1 in the EXOPLANETS sce- 501

nario and was fully entrenched after 1M inter- 502

actions (s = 1.0). Two dimensions are impor- 503

tant in the concept representation of this word 504

(ω > 0.0): the continuously-valued dimension 505

radius-multiplier (expressed in earth radii) and 506

the categorically-valued dimension planet-type (ei- 507

ther ‘terrestrial’, ‘gas giant’, ‘Neptune-like’ or ‘su- 508

per earth’). De-normalising the radius-multiplier 509

value reveals that “penatu” prototypically refers 510

to terrestrial-type exoplanets with a radius around 511

81% of the earth’s radius. 512

Figure 3 visualises the trajectories that concepts 513

follow as they are shaped during training, projected 514

in two dimensions using the Aligned-UMAP tech- 515

nique for temporal data (McInnes et al., 2018). Sub- 516

figure 3a shows the trajectory of the concept repre- 517

sentation associated to the word “xipabu” in each 518

of the 10 agents during one of the CLEVR runs. Ini- 519

6



Dataset # ent. # cont. # cat. comm. success (%) convent. (%) inventory size

Johnson et al. (2017) (CLEVR) 468K 20 0 99.74 (~0.09) 93.27 (~1.46) 55.56 (~3.43)
Cortez et al. (2009) (WINE) 5K 12 0 99.64 (~0.20) 87.40 (~1.57) 78.50 (~5.08)
De Vito et al. (2008) 7K 15 0 99.62 (~0.18) 90.52 (~1.37) 78.40 (~3.20)
Jadikar (2019) 37K 11 0 99.48 (~0.65) 88.50 (~2.08) 76.00 (~3.40)
Ma (2019) 10K 39 0 99.41 (~0.09) 91.99 (~0.85) 92.50 (~5.97)
Vijaya et al. (2018) 303 16 0 99.28 (~0.77) 84.86 (~3.68) 86.00 (~3.50)
Tuameh (2023) 1K 99 0 99.29 (~0.22) 92.99 (~2.16) 86.10 (~5.65)
Brooks and Pope (1989) 2K 6 0 98.86 (~0.13) 91.17 (~3.29) 126.30 (~4.57)

Boksha (2024) 8K 7 1 99.70 (~0.06) 90.27 (~0.99) 65.90 (~3.78)
Mishra (2023) (EXOPLANETS) 5K 8 4 99.67 (~0.10) 92.30 (~0.86) 80.50 (~4.74)
Kadiwal (2021) 2K 9 1 99.65 (~0.17) 88.45 (~1.32) 65.90 (~3.57)
Smith et al. (1988) 768 8 1 99.63 (~0.26) 91.06 (~1.95) 82.90 (~5.26)
Agrawal (2017) 54K 7 3 99.55 (~0.14) 93.28 (~1.08) 96.20 (~6.56)
Dal Pozzolo et al. (2014) 284K 30 1 99.55 (~0.19) 86.37 (~1.99) 75.60 (~2.67)
Koklu and Ozkan (2020) 14K 16 1 99.50 (~0.24) 92.23 (~1.20) 77.40 (~5.38)
Kottarathil (2022) 611K 7 1 99.41 (~0.25) 92.80 (~1.46) 91.50 (~4.55)
Wolberg et al. (1993) 569 31 1 99.36 (~0.45) 90.38 (~3.00) 77.20 (~4.29)
Olteanu (2020) 10K 58 1 99.29 (~0.92) 86.50 (~2.35) 77.00 (~3.13)
Sejnowski and Gorman (1988) 208 60 1 99.27 (~0.64) 87.46 (~2.74) 68.50 (~4.65)
Er (2024) 51K 126 2 99.16 (~0.42) 87.90 (~1.92) 83.20 (~5.65)
USDA (2023) 5K 66 1 99.15 (~0.77) 87.04 (~2.64) 85.10 (~4.58)
Lo (2024) 4K 3 1 98.98 (~0.30) 89.23 (~1.52) 128.70 (~5.23)
Jikadara (2024) 1K 10 10 98.94 (~0.11) 89.77 (~3.18) 148.20 (~4.78)
Lainguyn123 (2024) 6K 7 13 98.92 (~0.15) 88.70 (~1.62) 142.70 (~8.78)
Mujtaba (2024) 765 3 1 98.57 (~0.64) 91.68 (~2.59) 89.40 (~2.99)
Romero-Hernandez (2022) 2K 18 10 98.38 (~0.74) 90.08 (~2.46) 88.00 (~4.42)
François (2024) 1K 4 3 98.14 (~0.57) 91.50 (~2.31) 119.30 (~5.19)
Khorasani (2024) 1K 10 7 98.06 (~0.75) 92.70 (~1.41) 84.30 (~4.27)
Bart (2015) 3K 9 8 97.93 (~0.62) 90.20 (~2.79) 107.78 (~4.47)
Ms (2024) 1K 7 2 97.88 (~1.04) 92.05 (~1.42) 93.90 (~6.05)
Fisher (1936) 147 4 1 96.41 (~1.03) 83.57 (~4.27) 92.60 (~7.44)
Banik (2018) 339 33 5 95.11 (~2.23) 86.91 (~3.68) 86.90 (~8.05)

Bohanec and Rajkovič (1998) 2K 0 7 99.19 (~0.22) 92.31 (~0.83) 120.20 (~9.32)
Schlimmer (1981) (MUSHROOMS) 8K 0 23 98.22 (~0.38) 86.79 (~2.07) 267.60 (~14.65)

Table 2: Experimental results on the 34 test sets. Mean and 2 standard deviations computed over 10 independent
experimental runs. The columns describe the dataset, number of entities, number of continuous dimensions, number
of categorical dimensions, communicative success, conventionality and linguistic inventory size.

tially, the concept representations of the 10 agents520

are very different, as each was learnt locally from521

a specific interaction. Over time, the concept repre-522

sentations of the different agents align as a result523

of the evolutionary dynamics that take place. Sub-524

figure 3b shows the trajectories of all words in the525

final linguistic inventories of the ten agents. Not526

only does the figure show the alignment of concept527

representations, but also the formation of niches528

that structure the conceptual space.529

6 Further experiments530

Through a range of additional experiments, we also531

showcase that the emergent languages indeed ex-532

hibit a number of qualities typically associated with533

human linguistic communication. For reasons of534

conciseness, we summarise the conclusions here535

and attach a full specification of the experimental536

set-ups and results as supplementary material to537

this paper. A first experiment confirms the compo- 538

sitional generalisability of the emergent convention, 539

i.e. its adequacy to refer to entities that exhibit pre- 540

viously unseen attribute combinations. Two experi- 541

ments demonstrate the robustness of the methodol- 542

ogy against perceptual differences, where the val- 543

ues of the perceived feature vectors for speaker and 544

listener are substantially different. A fourth exper- 545

iment confirms the applicability of the methodol- 546

ogy to heteromorphic populations, where different 547

agents perceive the environment in different dimen- 548

sions, in this case because they are equipped with 549

a different set of sensors. A final experiment con- 550

firms that the emergent conventions self-adapt to 551

changes in the environment, in this case due to 552

sudden sensor defects. Overall, these additional 553

experiments show that the methodology does not 554
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Figure 3: Aligned-UMAP visualisations of the trajectories of concept representations over time.

break down under these challenging conditions.555

7 Related Work556

Our problem definition and general experimental557

framework build on a long tradition of population-558

based models of language emergence, collectively559

called language game experiments (Steels, 1996;560

de Boer, 2001; Oudeyer, 2006; Steels, 2012). The561

basic mechanisms were established through ex-562

periments on the emergence of grounded nam-563

ing conventions (Steels and Loetzsch, 2012; Loet-564

zsch, 2015; Steels et al., 2016), later moving to565

grounded concept learning in categorical environ-566

ments (Wellens et al., 2008; Wellens, 2012) and in567

domain-specific continuous environments (Steels568

and Belpaeme, 2005; Bleys, 2016; Spranger and569

Beuls, 2016). The grounding of predefined con-570

cepts in perceptual data has also been modelled571

within this paradigm (Spranger and Beuls, 2016;572

Wang et al., 2016; Nevens et al., 2020). The main573

limitation of prior language game experiments re-574

sides in their limited applicability resulting from575

strict assumptions about input data.576

Other related work on emergent communica-577

tion has been less concerned with modelling the578

conditions under which human languages emerge579

(see Section 2) (Foerster et al., 2016; Havrylov580

and Titov, 2017; Kottur et al., 2017; Bouchacourt581

and Baroni, 2018; Mordatch and Abbeel, 2018;582

Noukhovitch et al., 2021; Chaabouni et al., 2021;583

Kim and Oh, 2021; Chaabouni et al., 2022). The584

1An interactive version of this figure is accessi-
ble at https://anonymous-git-links.github.io/
grounded-vocabularies/trajectory.html.

problems that are addressed and the methodolo- 585

gies that are presented are thereby rather distantly 586

related to ours, while definitely valuable and inter- 587

esting in their own right. 588

8 Conclusion 589

This paper has introduced a methodology through 590

which a communicatively effective, robust and 591

adaptive linguistic convention can emerge in a pop- 592

ulation of autonomous agents. Along with a formal 593

definition of the methodology, we have presented 594

an extensive evaluation on 34 publicly available 595

datasets and reported on a number of experiments 596

that demonstrate the desirable properties of the 597

emergent artificial natural languages. The research 598

reported on in this paper constitutes a substantial 599

contribution to the state of the art as it lifts three 600

consequential limitations that were never jointly 601

overcome in prior work. First, the conceptual sys- 602

tems are truly emergent and grounded in the percep- 603

tions of the agents. They do not need to correspond 604

to any predefined ontology or set of concepts occur- 605

ring in an existing natural language. Second, the 606

circumstances under which the conventions emerge 607

reflect key properties of those under which human 608

language emerge: populations consist of more than 609

two agents, agents can both speak and listen, and 610

learning is fully decentralised. Finally, the method 611

is general and thereby directly applicable, even 612

without fine-tuning, to any dataset that describes 613

any kind of entity in terms of any combination of 614

continuously-valued and categorically-valued di- 615

mensions. 616
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