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Abstract

This paper introduces a general methodology
through which a population of autonomous
agents can converge on a linguistic convention
that enables them to refer to arbitrary entities
in their environment. The linguistic convention
emerges in a decentralised manner through lo-
cal communicative interactions between pairs
of agents drawn from the population. The
emergent convention consists of associations
between symbolic labels (word forms) and sub-
symbolic concept representations (word mean-
ings) that are grounded in a continuous feature
space. We confirm the generality and scalabil-
ity of the method through its evaluation on a
wide and diverse selection of 34 publicly avail-
able datasets. We also demonstrate the robust-
ness of the method against perceptual variation,
including in heteromorphic populations, as well
as the ability of the emergent conventions to
self-adapt to changes in the environment.

1 Introduction

Human languages are evolutionary systems, which
emerge and evolve through local communicative
interactions between members of a linguistic com-
munity. Processes of variation and selection are at
play during each and every communicative inter-
action, at the level of concepts, words and gram-
matical structures (Schleicher, 1869; Darwin, 1871;
Maynard Smith and Szathmary, 1999; Oudeyer and
Kaplan, 2007; Steels and Szathmdry, 2018). Vari-
ants are introduced as creative solutions to com-
municative impasses and are selected for based
on their linguistic, cognitive and physical fitness
(Grice, 1967; Echterhoff, 2013; Van Eecke et al.,
2022). The evolutionary and self-organising na-
ture of human languages gives rise to a number of
unique qualities. First of all, such decentralised,
self-organising systems are known to be robust and
to be able to self-repair substantial perturbations
(Heylighen, 2001; Pfeifer et al., 2007). Second,

populations of language users converge on shared
conventions that remain adaptive to changes in their
environment and communicative needs (Beckner
et al., 2009). Finally, the resulting languages serve
as an abstraction layer above the sensory observa-
tions and internal mental representations of indi-
vidual language users (Nevens et al., 2020; Beuls
and Van Eecke, 2024; Garside et al., 2025). Indeed,
while linguistic forms can be observed and shared,
their meanings remain tied to each language user’s
individual physical and cognitive embodiment.

This agent-based and evolutionary perspective
on the human ability to communicate through lan-
guage has served as a starting point for the de-
velopment of a range of computational method-
ologies that model how artificial agents can co-
construct emergent languages that satisfy their com-
municative needs (see e.g. Steels and Belpaeme,
2005; Beuls and Steels, 2013; Foerster et al., 2016;
Lazaridou et al., 2017; Mordatch and Abbeel, 2018;
Chaabouni et al., 2021, 2022; Nevens et al., 2022;
Doumen et al., 2023; Lian et al., 2024). Rather
than modelling the learning of an existing natural
language, which has emerged and evolved to fit
the communicative needs of a population of human
language users, these methodologies allow for ar-
tificial natural languages to emerge and evolve to
optimally support the embodiment, environment
and communicative needs of populations of artifi-
cial agents. These languages are artificial in the
sense that they do not exist outside the experimental
set-up, yet natural in the sense that they emerge and
evolve through the same evolutionary principles as
human languages do.

In this paper, we focus on the emergence of lin-
guistic conventions that associate symbolic labels
(referred to as word forms) to subsymbolic concept
representations (referred to as word meanings). We
introduce a methodology through which a popu-
lation of autonomous agents tasked with verbally
referring to entities in their environment can con-



verge on a conceptually grounded vocabulary that
is adequate for solving their reference task. The
linguistic convention emerges in a decentralised
manner through local, task-oriented and situated
communicative interactions that take place between
pairs of agents drawn from the population. Impor-
tantly, the entities in the environment of the agents
do not come pre-categorised, but are perceived by
the agents as points in a multi-dimensional, contin-
uous feature space. As they take part in situated
communicative interactions, the agents gradually
converge on a vocabulary that associates shared
word forms with internal concept representations
that are personal yet compatible on a communica-
tive level.

The main contribution of the paper with respect
to the state of the art lies in the generality and
scalability of the method. We demonstrate its direct
applicability in wide variety of scenarios through
evaluation on a diverse selection of 34 publicly
available datasets. We also demonstrate that the
emergent convention indeed exhibits a number of
qualities typically associated with human linguistic
communication. In particular, we show that the
methodology is naturally robust against perceptual
deviation, which leads to languages that self-adapt
to changes in the environment of the agents.

2 Problem Definition

We address a de-centralised, multi-agent emergent
communication problem. More specifically, the
problem concerns the bootstrapping of a linguistic
convention that agents can use for drawing each
other’s attention to arbitrary entities in their envi-
ronment. Importantly, communicative interactions
always take place locally between two agents from
the population, agents need to be able to act both as
speakers and as listeners, the environment does not
come pre-categorised, and the emergent convention
needs to be suitable for communication about previ-
ously unseen entities. More formally, the problem
can be defined as follows:

Population There exists a population P =
{aq,...,ay} that consists in a set of k autonomous
agents. Agents have no access to each other’s in-
ternal state nor to any centralised knowledge base,
and start out as ‘blank slates’ without any words,
concepts or knowledge about the world.

World There exists a world W = {e1,...,en}
that consists in a set of m entities. An observation

of an entity by an agent a takes the form of a fea-
ture vector X, of [ dimensions, for example result-
ing from the agent’s sensor read-outs. The dimen-
sions of such a vector can be continuously-valued,
categorically-valued or a combination of both. Val-
ues on continuous dimensions can be assumed to
be in the range [0, 1], but it cannot be assumed that
all agents perceive a given entity identically or even
as a vector of the same dimensionality.

Interactions Agents take part in a sequence G =
(gj)§:1 of 7 task-oriented communicative interac-
tions. At the beginning of each interaction g € G,
a scene C = {ey,...,ep} C W of n entities
from the world is randomly created. Two agents
ap,aq € P are randomly selected from the pop-
ulation, where a,, is assigned the role of speaker
(S = ap), while a, is assigned the role of listener
(L = ag). A topic entity T' € C'is randomly se-
lected from the scene and is only disclosed to S. .S
is tasked with drawing the attention of L to 1" by
producing an utterance U that is passed onto L. L
should then identify T' € C. Success occurs if L
correctly identifies 7. In case of failure, 7" is dis-
closed to L. After the interaction, both agents are
informed about whether the interaction succeeded
or failed. Identification or disclosure of entities
always happens in terms of the agents’ own per-
ceived feature vectors, i.e. Xg for .S and X, for
L.

The formal definition of the problem was de-
signed to be generic and is straightforwardly instan-
tiable in a variety of scenarios. An intuitive sce-
nario would involve a population of robotic agents
that are each equipped with a set of sensors. The
values recorded by an agent’s sensors for a given
entity would then yield the perceived feature vec-
tor for that agent for that entity. Other scenarios
involve populations of simulated agents commu-
nicating about entities that are stored as entries in
tabular datasets. In such cases, agents ‘perceive’
a given entry as the vector composed of that en-
try’s (normalised) column values. The problem
definition will be instantiated in 34 different scenar-
ios below. For illustrative purposes, we will focus
in particular on four prototypical scenarios, with
environments that are perceived in continuous di-
mensions (CLEVR and WINE), in categorical dimen-
sions (MUSHROOMS) or in a combination of both
(EXOPLANETS). The CLEVR scenario makes use
of the images from the CLEVR dataset (Johnson
et al., 2017), which were preprocessed according



to the procedure described by Nevens et al. (2020).
The dataset comprises 85K images, in which each
depicted object is represented through a feature
vector. The 20 dimensions of these feature vectors
are continuously-valued and correspond to informa-
tion obtained through computer vision techniques
(e.g. width-height ratio, colour channel values, x-
axis position). The WINE scenario is based on the
Wine Quality dataset (Cortez et al., 2009), which
holds information about 6497 wine samples along
12 dimensions that are all continuously-valued and
describe their physicochemical characteristics (e.g.
acidity, residual sugar, sulphates). The EXOPLAN-
ETS scenario features 4575 exoplanets, described
along a combination of 8 continuously-valued di-
mensions (e.g. planet radius, orbital period) and 4
categorically-valued dimensions (e.g. planet type,
detection method) (Mishra, 2023). Finally, the
MUSHROOMS scenario features 8124 mushrooms
described along 23 categorical dimensions (e.g.
poisonous, habitat) (Schlimmer, 1981).

In each scenario, the world W is defined as the
set of entries from the underlying dataset. For
methodological reasons, 25% of the entities in W
are held out for testing purposes. At the begin-
ning of each interaction, a new scene is created
by randomly selecting 10 entities from W, with
the constraint that training scenes can only hold
training entities and that test scenes can only hold
test entities. The exception to this rule is CLEVR,
where the original dataset already consists of train
and test splits holding scenes of (3 to 10) entities,
which we adopt in our experiments.

In line with common practice in the field (Steels,
1999; Loetzsch, 2015; Van Eecke et al., 2022), the
results are analysed in terms of three quantitative
metrics both during training and at test time:

Degree of communicative success The degree
of communicative success reflects how successful
a population of agents is at solving the task. It
is computed as the average outcome of all inter-
actions, where success counts as 1 and failure as
0.

Degree of conventionality The degree of con-
ventionality quantifies to what extent the different
agents in the population would produce the same ut-
terance under the same circumstances, thereby mea-
suring convergence towards a predictable linguistic
convention. It is computed by averaging over all in-
teractions a binary measure that indicates whether
the listener agent would have used the same utter-

ance as the one produced by the speaker agent to
describe the topic entity, if this agent would have
been the speaker.

Linguistic inventory size The average linguistic
inventory size is calculated as the average number
of distinct words uttered by the agents.

3 Methodology

In order to solve the problem defined above, agents
need to be able to represent concepts and words,
and update them based on the communicative in-
teractions they take part in. The resulting learning
dynamics should ensure that a communicatively
adequate and conventional language emerges in
the population. Let us first generically define how
agents will represent concepts and words:

Linguistic inventory The linguistic inventory
of an agent @ € P, denoted as I, is a potentially
empty set of words, with each word w € I be-
ing a coupling w = (f, ¢, s) between a word form
f € F, a concept representation ¢ and a score
0 < s < 1. F'is an infinite set of word forms (enu-
merated through a regular expression). Each agent
is initialised with an empty linguistic inventory.

Concept representations A concept represen-
tation ¢ = ((w1,61)...(wy,0;)) is a sequence of
couplings between a weight value w and a distribu-
tion 6. This sequence holds one such coupling for
each dimension in the feature vectors that an agent
perceives. Depending on whether a dimension is
continuously-valued or categorically-valued, 6 will
be a normal distribution parametrised by a mean
p and standard deviation o, i.e. § = (u,0), or an
empirical distribution § = f, where f corresponds
to absolute frequencies of categories. The weight
value w represents the importance of a particular
dimension for a concept. Concepts are thus rep-
resented as a sequence of distributions, with one
distribution being associated to each observed di-
mension via a weight that indicates the importance
of this dimension for the concept.

Concrete representations for concepts and words
are learnt as agents take part in communicative
interactions. These interactions follow the protocol
defined in Section 2: a scene C' = {e; ...ejo} of
10 entities is created, a topic ' € C'is selected, and
two agents are assigned the roles of speaker S and
listener L. Then, S needs to produce an utterance
U to draw the attention of L to 7":



Conceptualisation and production The
speaker S computes the concept similarity
sim¢(c, Xg) between the concept representation
¢ = ((w1,61)...(ws,60;)) of each word in its
linguistic inventory w = (f,¢,s) € Ig and the
perceived feature vector Xg = (x1,...,2;) for
each entity in the context C. As formalised in
Equations 1 and 2, the concept similarity sim,
between a concept ¢ and a feature vector X is
defined as the sum over all dimensions of the
dimension similarity simg between the distribution
0 for a given dimension in the concept and the
value x for the same dimension in the feature
vector, weighted by the weight value w for that
dimension in the concept. Weight values are
normalised to sum to 1 across dimensions to avoid
an inherent bias towards concept representations
with a higher number of relevant channels.
The dimension similarity simq is defined for
continuous dimensions as the z-score of the value
for this dimension in the feature vector given
the distribution for this dimension in the concept
representation (mapped between 0 and 1), and for
categorical dimensions as the relative frequency
of the category for this dimension in the feature
vector with respect to the frequencies of categories
in the concept representation.
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All words w € Ig in the speaker’s linguistic
inventory for which it holds that the similarity be-
tween their concept representation ¢ and the per-
ceived feature vector for the topic entity 7' is larger
than the similarity between c and any other entity
in C are collected into a set of candidate words
K (see Eq. 3). K thus groups all words in .S” in-
ventory that distinguish the topic entity from the
other entities in the context. Then, the candidate
words are ranked according to their communicative
adequacy, computed as the product of their score
s and their discriminative power, which is itself
computed as the similarity between c and 7' minus
the similarity between c and the closest other entity
in C' (see Eq. 4). The word form f of the candidate
word with the highest communicative adequacy w*

is then uttered by S as the utterance U. U is shared
with the listener L.

K = {w; € Is | sim(¢;, T) > max simc(ci,e)}  (3)
ecC\T

w” = argmax s; * |simc(c;, T) — max simc(c;,e)| (4)
w; EK ecC\T

discriminative power

Invention If there were no candidate words in Ig
(ie. K = @), S adds a new word w = (f, ¢, s)
to Ig, with f being randomly selected from the
infinite set of forms F' (see Linguistic inventory
above) and s being assigned a default initial value
si. ¢ = ((w1,01) ... (wy,6;)) is initialised based
on the perceived feature vector X g. For continuous
features, where 0 = (u, ), ... are initialised
with the values of Xg and 07...0; are assigned a
default initial value ;. For categorical features,
where § = f, the frequency of the observed cate-
gory is set to 1. Finally, the weight values w;...w;
are assigned a default initial value w;. Then, f is
uttered as U.

Comprehension and interpretation The lis-
tener L observes the utterance U. If L knows a
word with the form U, i.e. w = (U,¢,s) € Iy, L
identifies the entity in the context e € C that is
most similar to c¢ as the hypothesised topic T*:

T = argmax simc(c, e;) 5
e;eC

If L correctly identifies the topic entity, i.e.
T* = T, the interaction is considered successful.
Otherwise, the interaction is considered a failure
and T is disclosed to L as Xj. After each com-
municative interaction, both .S and L will update
the words and concept representations in their re-
spective linguistic inventories Ig and I1,. We dis-
tinguish between successful interactions and failed
interactions:

Successful interaction update After a success-
ful interaction, S will increase the score s of the
used word wy = (U,¢,s) € Ig by a fixed re-
ward value s,.. At the same time, S will decrease
the scores of the word’s competitors, i.e. all other
w € Ig that were earlier identified as belonging
to the set of candidate words K, by a value that is
proportional to how similar their concept represen-
tation is to the concept representation of the used
word. This is done by multiplying the similarity



between both concept representations with a fixed
inhibition value s;;. Thus, words that are more
similar are considered stronger competitors and are
punished harder (see Eq. 6).
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The similarity between two concept representa-
tions is computed as the sum over all channels of
the complement of the Hellinger distance (a type of
f-divergence, Hellinger, 1909) between the corre-
sponding distributions, multiplied by the similarity
between their normalised weights and their average
normalised weight (see Eq. 7). The distribution
similarity component is included to reflect the rela-
tive importance of the similarity between the distri-
butions for corresponding channels, where closer
distributions lead to a higher similarity. The nor-
malised weight similarity component is included
to reflect the relative importance of the similarity
between the weights on corresponding channels,
where a smaller difference between the weights
indicates a higher similarity between the channels.
Finally, the average normalised weights compo-
nent is included to reflect that channel similarities
are more meaningful if channel weights are higher,
with channels holding a higher average weight con-
tributing more to the overall similarity score.
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Similarly, L will collect all words in its linguis-
tic inventory that are considered candidate words
according to the procedure described in Conceptu-
alisation and production above (now based on [y,
and X, instead of Ig and Xg), and update their
scores as defined in Equation 6.

Both S and L will also update their concept rep-
resentation associated to U based on the context
C'. For continuous features, in each channel , they
update p; and o; to include their perceived feature
vector X g or X, using Welford’s online algorithm

(Welford, 1962). For categorical features, the fre-
quency of the observed category f; is incremented.
To update the weights wj . ..w;, the dimensions
with a positive discriminative power (see Conceptu-
alisation and production above) are identified and
increased by a fixed step ¢, on a sigmoid function
o(x). The weights from the other dimensions are
decreased by a fixed step ¢, in the same function.
The weight values are thereby bounded between 0
and 1, with values becoming more stable as they
approach O or 1.

Failed interaction update After a failed interac-
tion, S will decrease the score of wy = (U, ¢, s) €
Is by a fixed value s,. If L knew a word with
the observed form, L will decrease the score of
wy = (U, ¢, s) € I, by a fixed value s, and up-
date its ¢ based on I" with relation to C' in the same
way as if the interaction would have been success-
ful. If L did not know a word w = (U, ¢, s), L will
adopt the word as follows:

Adoption A new word w = (f,¢,s) is added
to I, with f being the observed utterance U
and s being assigned a default initial value s;.
¢ = ((w1,01)...(wy, 6;)) is initialised based on
the perceived feature vector X . For continuous
features, where 0 = (u, ), ...y are initialised
with the values of X and o0;...0; are assigned a
default initial value ;. For categorical features,
where 0 = f, the frequency of the observed cate-
gory is set to 1. Finally, the weight values wy...w;
are assigned a default initial value w;.

4 Results

We evaluate the methodology on a wide and diverse
collection of 34 publicly available datasets. We
use the experimental set-up described in Section 2,
train for 1M interactions and evaluate on 100K in-
teractions that only feature entities not seen during
training, averaging over 10 independent experimen-
tal runs. The methodology was defined in Section
3 in terms of a number of parameters that need to
be set when running a concrete experiment. We
have optimised these parameters (except # agents
and # entities) on the training portion of CLEVR
(see Supplementary Materials) and obtained the
values reported in Table 1. We have then evalu-
ated the methodology on all 34 datasets using the
same parameter settings, with no dataset-specific
fine-tuning.

The results of evaluation on the test sets in terms



Parameter Value Description
k 10 # agents in population
n 10 # entities in context
Si 0.5 initial word score
Sr +0.1 word score reward
Sp -0.1 word score punishment
Sti —0.02 competitor score punishment
i 0.01 initial standard deviation
wi 0.5 initial dimension weight
cr +1 dimension weight reward
Cp -5 dimension weight punishment
o(x) ﬁ sigmoid function

Table 1: Overview of parameter settings.

of degree of communicative success, degree of con-
ventionality and linguistic inventory size, as de-
fined in Section 2, are shown in Table 2. In all
34 scenarios, the population reaches a degree of
communicative success of over 95%, with a degree
of conventionality above 80%. The average lin-
guistic inventory size ranges from 55 to 267 words.
These results confirm that the populations consis-
tently converge on communicatively effective and
conventional languages with a limited number of
words as compared to the number of entities in the
training data.

5 Analysis

The evolutionary dynamics that take place during
the training phase of the prototypical CLEVR exper-
iments are visualised in Figure 1. The graph shows
the degree of communicative success (solid line,
left y-axis), the degree of conventionality (dashed
line, left y-axis) and the average linguistic inven-
tory size (dashdotted line, right y-axis) as a func-
tion of the number of communicative interactions
that took place and averaged over a sliding window
of 5K interactions. The degree of communicative
success starts at 0, as all agents start with an empty
linguistic inventory. It rises to about 90% after 50K
interactions, and continues to grow to 99.72% over
the course of the 1M interactions that take place.
The degree of conventionality roughly follows the
same dynamics as the degree of communicative
success, although the growth is much slower. Af-
ter 1M interactions, the degree of conventionality
has reached 93.30%. The average linguistic in-
ventory size shows the typical ‘overshoot pattern’
that is found in many language emergence exper-
iments (Van Eecke et al., 2022). Indeed, many
words emerge during the initial phase of the exper-
iment, as the individual agents are constantly faced
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Figure 1: Evolutionary dynamics during the training
phase of the CLEVR experiment: degree of commu-
nicative success, degree of conventionality and average
linguistic inventory size as a function of the number of
communicative interactions.
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Figure 2: Example of a word emerged in the EXOPLAN-
ETS scenario, which has specialised towards two dimen-
sions, one continuous (‘radius-multiplier’) and the other
categorical (‘planet-type’).

with the need to invent. Then, as a result of the
rewarding and punishing of words, the population
converges on a smaller inventory size. The graph
shows that the peak linguistic inventory size lies
around 90 words, while an average of 48.42 words
is reached after 1M interactions.

Figure 2 shows a word with the form “penaru”
that emerged in agent 1 in the EXOPLANETS sce-
nario and was fully entrenched after 1M inter-
actions (s = 1.0). Two dimensions are impor-
tant in the concept representation of this word
(w > 0.0): the continuously-valued dimension
radius-multiplier (expressed in earth radii) and
the categorically-valued dimension planet-type (ei-
ther ‘terrestrial’, ‘gas giant’, ‘Neptune-like’ or ‘su-
per earth’). De-normalising the radius-multiplier
value reveals that “penatu” prototypically refers
to terrestrial-type exoplanets with a radius around
81% of the earth’s radius.

Figure 3 visualises the trajectories that concepts
follow as they are shaped during training, projected
in two dimensions using the Aligned-UMAP tech-
nique for temporal data (Mclnnes et al., 2018). Sub-
figure 3a shows the trajectory of the concept repre-
sentation associated to the word “xipabu” in each
of the 10 agents during one of the CLEVR runs. Ini-



Dataset #ent. #cont. #cat. comm. success (%) convent. (%) inventory size
Johnson et al. (2017) (CLEVR) 468K 20 0 99.74 (~0.09)  93.27 (~1.46) 55.56 (~3.43)
Cortez et al. (2009) (WINE) 5K 12 0 99.64 (~0.20)  87.40 (~1.57) 78.50 (~5.08)
De Vito et al. (2008) 7K 15 0 99.62 (~0.18)  90.52 (~1.37) 78.40 (~3.20)
Jadikar (2019) 37K 11 0 99.48 (~0.65)  88.50 (~2.08) 76.00 (~3.40)
Ma (2019) 10K 39 0 99.41 (~0.09) 91.99 (~0.85) 92.50 (~5.97)
Vijaya et al. (2018) 303 16 0 99.28 (~0.77)  84.86 (~3.68) 86.00 (~3.50)
Tuameh (2023) 1K 99 0 99.29 (~0.22)  92.99 (~2.16) 86.10 (~5.65)
Brooks and Pope (1989) 2K 6 0 98.86 (~0.13)  91.17 (~3.29) 126.30 (~4.57)
Boksha (2024) 8K 7 1 99.70 (~0.06)  90.27 (~0.99) 65.90 (~3.78)
Mishra (2023) (EXOPLANETS) 5K 8 4 99.67 (~0.10)  92.30 (~0.86) 80.50 (~4.74)
Kadiwal (2021) 2K 9 1 99.65 (~0.17)  88.45 (~1.32) 65.90 (~3.57)
Smith et al. (1988) 768 8 1 99.63 (~0.26)  91.06 (~1.95) 82.90 (~5.26)
Agrawal (2017) 54K 7 3 99.55 (~0.14)  93.28 (~1.08) 96.20 (~6.56)
Dal Pozzolo et al. (2014) 284K 30 1 99.55 (~0.19)  86.37 (~1.99) 75.60 (~2.67)
Koklu and Ozkan (2020) 14K 16 1 99.50 (~0.24)  92.23 (~1.20) 77.40 (~5.38)
Kottarathil (2022) 611K 7 1 99.41 (~0.25) 92.80 (~1.46) 91.50 (~4.55)
Wolberg et al. (1993) 569 31 1 99.36 (~0.45)  90.38 (~3.00) 77.20 (~4.29)
Olteanu (2020) 10K 58 1 99.29 (~0.92)  86.50 (~2.35) 77.00 (~3.13)
Sejnowski and Gorman (1988) 208 60 1 99.27 (~0.64)  87.46 (~2.74) 68.50 (~4.65)
Er (2024) 51K 126 2 99.16 (~0.42) 87.90 (~1.92) 83.20 (~5.65)
USDA (2023) 5K 66 1 99.15 (~0.77)  87.04 (~2.64) 85.10 (~4.58)
Lo (2024) 4K 3 1 98.98 (~0.30)  89.23 (~1.52) 128.70 (~5.23)
Jikadara (2024) 1K 10 10 98.94 (~0.11)  89.77 (~3.18) 148.20 (~4.78)
Lainguyn123 (2024) 6K 7 13 98.92 (~0.15) 88.70 (~1.62) 142.70 (~8.78)
Mujtaba (2024) 765 3 1 98.57 (~0.64)  91.68 (~2.59) 89.40 (~2.99)
Romero-Hernandez (2022) 2K 18 10 98.38 (~0.74)  90.08 (~2.46) 88.00 (~4.42)
Francois (2024) 1K 4 3 98.14 (~0.57)  91.50 (~2.31) 119.30 (~5.19)
Khorasani (2024) 1K 10 7 98.06 (~0.75)  92.70 (~1.41) 84.30 (~4.27)
Bart (2015) 3K 9 8 97.93 (~0.62)  90.20 (~2.79) 107.78 (~4.47)
Ms (2024) 1K 7 2 97.88 (~1.04)  92.05 (~1.42) 93.90 (~6.05)
Fisher (1936) 147 4 1 96.41 (~1.03) 83.57 (~4.27) 92.60 (~7.44)
Banik (2018) 339 33 5 95.11 (~2.23) 86.91 (~3.68) 86.90 (~8.05)
Bohanec and Rajkovi¢ (1998) 2K 0 7 99.19 (~0.22)  92.31 (~0.83) 120.20 (~9.32)
Schlimmer (1981) (MUSHROOMS) 8K 0 23 98.22 (~0.38)  86.79 (~2.07) 267.60 (~14.65)

Table 2: Experimental results on the 34 test sets. Mean and 2 standard deviations computed over 10 independent
experimental runs. The columns describe the dataset, number of entities, number of continuous dimensions, number
of categorical dimensions, communicative success, conventionality and linguistic inventory size.

tially, the concept representations of the 10 agents
are very different, as each was learnt locally from
a specific interaction. Over time, the concept repre-
sentations of the different agents align as a result
of the evolutionary dynamics that take place. Sub-
figure 3b shows the trajectories of all words in the
final linguistic inventories of the ten agents. Not
only does the figure show the alignment of concept
representations, but also the formation of niches
that structure the conceptual space.

6 Further experiments

Through a range of additional experiments, we also
showcase that the emergent languages indeed ex-
hibit a number of qualities typically associated with
human linguistic communication. For reasons of
conciseness, we summarise the conclusions here
and attach a full specification of the experimental
set-ups and results as supplementary material to

this paper. A first experiment confirms the compo-
sitional generalisability of the emergent convention,
i.e. its adequacy to refer to entities that exhibit pre-
viously unseen attribute combinations. Two experi-
ments demonstrate the robustness of the methodol-
ogy against perceptual differences, where the val-
ues of the perceived feature vectors for speaker and
listener are substantially different. A fourth exper-
iment confirms the applicability of the methodol-
ogy to heteromorphic populations, where different
agents perceive the environment in different dimen-
sions, in this case because they are equipped with
a different set of sensors. A final experiment con-
firms that the emergent conventions self-adapt to
changes in the environment, in this case due to
sudden sensor defects. Overall, these additional
experiments show that the methodology does not
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Figure 3: Aligned-UMAP visualisations of the trajectories of concept representations over time.

break down under these challenging conditions.

7 Related Work

Our problem definition and general experimental
framework build on a long tradition of population-
based models of language emergence, collectively
called language game experiments (Steels, 1996;
de Boer, 2001; Oudeyer, 2006; Steels, 2012). The
basic mechanisms were established through ex-
periments on the emergence of grounded nam-
ing conventions (Steels and Loetzsch, 2012; Loet-
zsch, 2015; Steels et al., 2016), later moving to
grounded concept learning in categorical environ-
ments (Wellens et al., 2008; Wellens, 2012) and in
domain-specific continuous environments (Steels
and Belpaeme, 2005; Bleys, 2016; Spranger and
Beuls, 2016). The grounding of predefined con-
cepts in perceptual data has also been modelled
within this paradigm (Spranger and Beuls, 2016;
Wang et al., 2016; Nevens et al., 2020). The main
limitation of prior language game experiments re-
sides in their limited applicability resulting from
strict assumptions about input data.

Other related work on emergent communica-
tion has been less concerned with modelling the
conditions under which human languages emerge
(see Section 2) (Foerster et al., 2016; Havrylov
and Titov, 2017; Kottur et al., 2017; Bouchacourt
and Baroni, 2018; Mordatch and Abbeel, 2018;
Noukhovitch et al., 2021; Chaabouni et al., 2021;
Kim and Oh, 2021; Chaabouni et al., 2022). The

'An interactive version of this figure is accessi-
ble at https://anonymous-git-links.github.io/
grounded-vocabularies/trajectory.html.

problems that are addressed and the methodolo-
gies that are presented are thereby rather distantly
related to ours, while definitely valuable and inter-
esting in their own right.

8 Conclusion

This paper has introduced a methodology through
which a communicatively effective, robust and
adaptive linguistic convention can emerge in a pop-
ulation of autonomous agents. Along with a formal
definition of the methodology, we have presented
an extensive evaluation on 34 publicly available
datasets and reported on a number of experiments
that demonstrate the desirable properties of the
emergent artificial natural languages. The research
reported on in this paper constitutes a substantial
contribution to the state of the art as it lifts three
consequential limitations that were never jointly
overcome in prior work. First, the conceptual sys-
tems are truly emergent and grounded in the percep-
tions of the agents. They do not need to correspond
to any predefined ontology or set of concepts occur-
ring in an existing natural language. Second, the
circumstances under which the conventions emerge
reflect key properties of those under which human
language emerge: populations consist of more than
two agents, agents can both speak and listen, and
learning is fully decentralised. Finally, the method
is general and thereby directly applicable, even
without fine-tuning, to any dataset that describes
any kind of entity in terms of any combination of
continuously-valued and categorically-valued di-
mensions.
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