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ABSTRACT

With the wide adoption of machine learning algorithms across various applica-
tion domains, there is a growing interest in the fairness properties of such algo-
rithms. The vast majority of the activity in the field of group fairness addresses
disparities between predefined groups based on protected features such as gen-
der, age, and race, which need to be available at train, and often also at test, time.
These approaches are static and retrospective, since algorithms designed to protect
groups identified a priori cannot anticipate and protect the needs of different at-
risk groups in the future. In this work we analyze the space of solutions for worst-
case fairness beyond demographics, and propose Blind Pareto Fairness (BPF), a
method that leverages no-regret dynamics to recover a fair minimax classifier that
reduces worst-case risk of any potential subgroup of sufficient size, and guaran-
tees that the remaining population receives the best possible level of service. BPF
addresses fairness beyond demographics, that is, it does not rely on predefined
notions of at-risk groups, neither at train nor at test time. Our experimental results
show that the proposed framework improves worst-case risk in multiple standard
datasets, while simultaneously providing better levels of service for the remaining
population, in comparison to competing methods.

1 INTRODUCTION

A large body of literature has shown that machine learning (ML) algorithms trained to maximize
average performance on existing datasets may present discriminatory behaviour across pre-defined
demographic groups (Barocas & Selbst (2016); Hajian et al. (2016)), meaning that segments of the
overall population (data) are measurably under-served by the ML model. This has sparked interest
in the study on why these disparities arise, and on how they can be addressed (Mitchell et al. (2018);
Chouldechova & Roth (2018); Barocas et al. (2019)). One popular notion is group fairness, where
the algorithm has access to a set of predefined demographic groups during training, and the goal is
to learn a model that satisfies a certain notion of fairness across these groups (e.g., statistical par-
ity, equality of opportunity) (Dwork et al. (2012); Hardt et al. (2016)); this is usually achieved by
adding a constraint to the standard optimization objective. It has been shown that optimality may be
in conflict with some notions of fairness (e.g., the optimal risk is different across groups) (Kaplow
& Shavell (1999); Chen et al. (2018)), and perfect fairness can, in general, only be achieved by
degrading the performance on the benefited groups without improving the disadvantaged ones. This
conflicts with notions of no-harm fairness such as in (Ustun et al. (2019)), which are appropriate
where quality of service is paramount. Notions such as minimax fairness, commonly known as
Rawlsian max-min fairness from an utility maximization perspective (Rawls (2001; 2009)), com-
bined with Pareto efficiency, naturally address this no-harm concern (Martinez et al. (2020)).

Recent works study fairness in ML when no information about the protected demographics is avail-
able, for example, due to privacy or legal regulations (Kallus et al. (2019)). This is an important
research direction and has been identified as a major industry concern (Veale & Binns (2017); Hol-
stein et al. (2019)), since many applications and datasets in ML currently lack demographic records.
We therefore study the problem of building minimax Pareto fair algorithms beyond demographics,
meaning that not only we lack group membership records but also have no prior knowledge about the
demographics to be considered (e.g., any subset of the population can be a valid protected group).
This has the advantage of making the model robust to any potential demographic even if they are
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unknown at the time of design, or change through time; it is also efficient, since the model offers the
best level of service to all the remaining (i.e., non-critical) population.

Main Contributions. We analyze subgroup robustness, where a model is minimax fair w.r.t. any
group of sufficient size (regardless of any preconceived notion of protected groups); we also adhere
to the notion of no-harm fairness by requiring our minimax model to be Pareto efficient (Mas-Colell
et al. (1995)) by providing the best level of service to the remaining population. A model with these
characteristics has a performance guarantee even for unidentified protected classes.

We show that being subgroup robust w.r.t. an unknown number of groups, where no individual group
is smaller than a certain size, is mathematically equivalent in terms of worst group performance to
solving a simplified two-group problem, where the population is divided into high and low risk
groups, thereby providing a clear means to design “universal” minimax fair ML models. We further
show the critical role of the minimum group size by proving that, for standard classification losses
(cross-entropy and Brier score), there is a limit to the smallest group size we can consider before
the solution degenerates to a trivial, uniform classifier. We additionally study the cost of subgroup
robustness when compared to learning a model that is minimax fair w.r.t. predefined demographics.

We then propose Blind Pareto Fairness (BPF), a simple training procedure that leverages recent
methods in no-regret dynamics Chen et al. (2017) to solve subgroup robustness subject to a user-
defined minimum subgroup size. Our method is provably convergent and can be used on classifi-
cation and regression tasks. We experimentally evaluate our method on a variety of standard ML
datasets and show that it effectively reduces worst-case risk and outperforms previous works in the
area. Although our work is motivated by fairness, subgroup robustness has applications beyond this
important problem, see for example (Sohoni et al. (2020a); Duchi et al. (2020)).

2 RELATED WORK

A body of work has addressed fairness without (explicit) demographics by using proxy variables
to discover the (unobserved) protected population labels (Elliott et al. (2008); Gupta et al. (2018);
Zhang (2018)). These methods contrast with our assumptions by relying on a preconceived notion on
what the protected demographics are (i.e., the protected demographics are known, but unobserved),
since prior knowledge is needed to design useful proxy variables. Moreover, it has been reported
that these approaches can exacerbate disparities by introducing undesired bias (Chen et al. (2019);
Kallus et al. (2019)); aiming to be fair by inferring protected attributes may be in conflict with
privacy or anonymity concerns. These works might need re-training if new protected classes are
identified, since a model trained under these conditions may be considerably harmful on an unknown
population. This phenomena further supports the value of blind subgroup robustness.

Individual fairness (Dwork et al. (2012)) provides guarantees beyond protected attributes, but re-
quires predefined similarity functions which may be hard or infeasible to design for real-world tasks.
The works of (Hébert-Johnson et al. (2017); Kearns et al. (2018)) address fairness w.r.t. subgroups
based solely on input features, and while these works greatly extend the scope of the protected de-
mographics, they still rely on labeled protected features for guidance. The work of Sohoni et al.
(2020b) partitions the input space to address robust accuracy. We note that partitions,' based only
on the input space of the model do not modify the solution of risk-based Pareto optimal models,
since the optimal classifier for any input value remains unchanged (i.e., there is no conflict between
objectives for any value of the input space, see Theorem 4.1 in Martinez et al. (2020)). In our work
we consider subgroups based not only on all input features but also on outcome, which broadens
the scope to all conceivable subgroups based on the information available to the model. For many
risk-based measures of utility, such as crossentropy, Brier score, or L2 regression loss, the optimal
classifier can be expressed as a function of the conditional output probability p(Y|X), X being the
input (features) and Y the output. In particular, if we only consider groups that introduce covariate
shift (i.e., p(X|A) varies across different values of the group membership A) but do not change the
conditional target distribution (p(Y'|X, A) = p(Y|X) for all A), then the set of Pareto classifiers
only contain one element and the Pareto curve degenerates to the utopia point. By specifically tak-
ing outcomes into account in our partition function, we allow for robustness to perturbations on the
conditional distribution p(Y'| X, A).

'In this work we consider “partition” and “subgroup” interchangeable.
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There are two recent approaches that are the closest to our objective (that of protecting unknown
and unobserved demographics). One is distributional robust optimization (DRO) (Hashimoto et al.
(2018); Duchi et al. (2020)), where the goal is to achieve minimax fairness for unknown popula-
tions of sufficient size. Similar to our work, they minimize the risk of the worst-case group for the
worst-case group partition, they use results from distributional robustness that focus the attention of
the model exclusively on the high-risk samples (i.e., their model reduces the tail of the risk distribu-
tion). However, they do not explicitly account for Pareto efficiency, meaning that their solution may
be sub-optimal on the population segment that lies below their high-risk threshold (doing unneces-
sary harm). The other recent method that tackles the minimax objective is adversarially reweighted
learning (ARL) (Lahoti et al. (2020)), where the model is trained to reduce a positive linear combi-
nation of the sample errors, these weighting coefficients are proposed by an adversary (implemented
as a neural network), with the goal of maximizing the weighted empirical error. This method, while
computationally attractive, provides no guarantees about the optimality of the adversary, tradeoffs
are also indirectly controlled by adversary capacity and training parameters, which may be less inter-
pretable than constrains on group size or risk thresholds. Our results on critical group size indicate
that a sufficiently large capacity adversary should produce a trivial, uniform classifier if no additional
constraint is provided. We experimentally compare with these two methods when appropriate.

3 PROBLEM FORMULATION

3.1 MINIMAX FAIRNESS

We first consider the supervised group fairness classification scenario (Barocas et al. (2019)), where
we have access to a dataset D = {(z4,ys,a:)}"; ~ p(X,Y, A)®" containing n i.i.d. triplets.
Here X € X denotes the input features, Y € ) the categorical target variable, and A € A group
membership. We consider a classifier h € H belonging to an hypothesis class H whose goal is to
predict Y from X, b : X — API=1; note that h(X) can take any value in the simplex and is readily
interpretable as a distribution over labels Y. Given a loss function ¢ : AL s AVIST L R
fairness is considered in the context of a Multi-Objective Optimization Problem (MOOP), where the
objective is to learn a classifier that minimizes the conditional group risks { Ry (h) }ac.s

Eéiﬁ(Rl(h), ooy Ry g (R)),

Ra(h) = EX,Y|A:a[€(h(X)7Y)]' M

The solution to this MOOP may not be unique (e.g., the optimal classifier of different groups differs),
and therefore there is a set of optimal (Pareto) solutions that can be achieved. It is possible that none
of these Pareto solutions satisfy some group fairness criteria (e.g., equality of risk), meaning that
achieving perfect fairness comes at the cost of optimality (Kaplow & Shavell (1999); Bertsimas
et al. (2011)). In this work we do not to compromise optimality, meaning that we do not degrade
the performance of a low-risk group if it does not directly benefit another, and consider a minimax
fairness approach (Rawls (2001; 2009)), where the goal is to find a Pareto-optimal classifier that
minimizes the worst-case group risk,

min max Ry(h), Pan={heM:Vh' € H\{h}Ia € Awith R,(h) < Ro(h)}. ()

he€Pa,n a€A

P 4w represent the set of optimal (Pareto) classifiers in 7{ given a group set .A, meaning that there
is no other model in the hypothesis class whose associated group risks are uniformly better for all
groups. If the loss function is convex w.r.t. the model h, and the hypothesis class # is a convex set,”,
a linear weighting problem on the conditional group risks (minpey Y, pla Ra(h); Y o = 1, pq >
0) characterizes all of the Pareto solutions. Solving Problem 2 is equivalent to finding the weighting

coefficients such that a classifier with the minimum worst-case group risk is the solution (Geoffrion
(1968); Chen et al. (2017); Martinez et al. (2020)).

3.2 BLIND PARETO FAIRNESS

In this work we consider a more challenging problem, namely Blind Pareto Fairness (BPF), where
the group variable a and the conditional distribution p(A|X,Y") are completely unknown (not just

*Meaning that for any h, b’ € H and X € [0, 1], exists by € H : ha(z) = Ah(z) + (1 — NI/ (z)Vz € X.
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unobserved), even at training time. Here the goal is to learn a model that has the best performance
on the worst-group risk of the worst partition density p(A|X,Y") (“sensitive” group assignment),
subject to a group size constraint (p(A=a) > p, Va). We formulate the following new problem,
R* = min max max R, (h).
hEPA 1 p(A'X, Y) acA (3)
st.p(A=a)>p, Vae A

Here R* is the minimum worst group error achieved for the worst partition density with known
number of partitions |.4|. The partition size constraint plays a key role on the solution to Problem
3, as we will show below,>. Problem 3 is undetermined in the sense that it admits several worst
partition densities and classifiers for |4| > 2. Fortunately, it is possible to show that the minimum
worst group error R* in Problem 3 is the same as the one achieved if we were to consider an
alternative formulation where a variable A € {0, 1} represents the worst-group risk membership,
this is shown in Lemma 3.1. This makes the study of the binary problem attractive when we wish to
minimize the number of assumptions we make on the protected groups. Here the objective becomes

h*, p*(A[X,Y), R* = {arg} p i p(An&fy) aggﬁ}Ra(h), @
s.t.p(A=a) > p, Ya € {0,1}

where we overload the notation P4 4, in the context of Problem 4 to refer to the Pareto set for
a binary group distribution. Lemma 3.1 shows that the minimum worst risk R* is the same for
problems 3 and 4, hence, we focus our analysis on the latter throughout the text. There are two
main advantages of working with the binary problem, the first is that finding the worst partition
p(A | X,Y) for a given h is straightforward when | A| = 2. The second is that in general we may
not know the number of groups we wish to be fair to, and this equivalence shows that it is sufficient
to specify the minimum size a group must have before it is considered for the purposes of minimax
fairness.

Lemma 3.1. Given an hypothesis class H and a finite alphabet, A : |A| > 2, problems 3 and 4
have the same minimum worst-group risk solution R* if p < ﬁ,

A question that arises from Problem 4 is how the optimal classifier and partition function depend on
the partition size. In Lemma 3.2, we show the existence of a critical size p* for standard classification
losses (cross-entropy and Brier score) whereby solving Problem 4 for partitions smaller than p*
leads to a uniformly random classifier. This result shows that attempting to be minimax fair w.r.t.
arbitrarily small group sizes yields a trivial classifier with limited practical utility.
Lemma 3.2. Given Problem 4 with p(Y |X) > 0 VX,Y,* and let the classification loss be cross-
entropy or Brier score. Let 1
h(X):hi(X)=—
V|

be the uniform classifier; and let h € H. There exists a critical partition size
o = Y Exlminp(y | X)) < 1

VX, Vi€ {0,.., |V — 1},

such that solutions to Problem 4, Vp < p*, are h* = h and R* = V-1 . .
o e=tes

R:¥%W|W=%E

That is, any partitions smaller than p* yield the uniform classifier with constant risk R.

It is straightforward to prove that R* is non-increasing with p (see Supplementary Material A.1). A
natural question that arises is what is the additional cost in optimality we pay if we apply subgroup
robustness instead of optimizing for a known partition. Lemma 3.3 provides an upper bound for
the cost of blind fairness, showing that it is at most the difference between R* and the risk of the
baseline model, and can be zero (no cost) if the known group happens to be the worst case partition
for the dataset. Moreover, the upper bound decreases with larger group size, and is in no scenario
larger than the difference between the risk of the uniform classifier and the baseline classifier for BE
and CE losses. Figure 1 shows these concepts graphically.

3 Attempting to be minimax optimal w.r.t. p smaller than some value will result in a random classifier, the
minimax risk of the partition is directly dependent on p.
“This restriction can be lifted and a similar result holds, see Supplementary Material for details.
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Lemma 3.3. Given a distribution p(X,Y') and any predefined partition group p(A’|X,Y") with

A e A | A finite. Let h,R = {arg} 1}f1m7r_tl max R, (h) be the minimax fair solution for this
cHa €A’

partition and its corresponding minimax risk. Let h* and R* be the classifier and risks that solve

Problem 4 with p = min, p(a’). Then the price of minimax fairness can be upper bounded by

* M * .
max R, (h*) — R < R* — min R(h).5 (5)
a’e A’ hcH
\‘ = BPFF on pre-defined partition % == Equal nsk line
0.5 \ == BPF on its worst partition = —w~- BFF on its worst partition
% \\ = Minimax on pre-defined partition g' 0.3+ - Menrmen e it wors‘f partition
g‘ \ —— Minimax result on its worst partition o o vz
o S imal average classifier ris g S g
4 Y Optimal ge classifier risk o s fo0
4 -y g o IOl
5 ————— £0.24 P T |!
= 0.3 e = @ .,o“"/- i -
w U ~ ] 7 F Py ok
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Figure 1: Left figure illustrates Lemma 3.3 by comparing worst case risk with known and unknown partitions.
BPF is compared against minimax fairness on their own worst partition and on the predefined partition,optimal
average risk (minpcy R(h)) is shown in blue. The price of (blind) fairness is the difference in risk we incur
when the groups are not known beforehand (BPF vs minimax fairness on predefined partition), represented
by the difference between continuous red and black curves. Conversely, optimizing for a known partition
(continuous black) leaves another group of the same size with significantly larger risks (dashed black) than
what could have been achieved with BPF (dashed red). Right figure highlights the importance of the Pareto
optimality constraint, since the space of solutions for subgroup robustness without it contains sub-optimal
models that do unnecessary harm on the remaining population. The group risks over the worst partition of the
minimax classifier are shown in black for reference; values corresponding to the same group size are linked by
arrows. Values shown are Brier scores obtained on a synthetic example, details in Supplementary Material A.2.

In the following section, we provide a practical algorithm that asymptotically,® solves Problem 4
and yields a classifier that both minimizes the worst-group risk and is also Pareto-efficient w.r.t. the
remaining population. (All proofs are presented in the Supplementary Material A.1.)

4  OPTIMIZATION

In order to develop our optimization approach, we begin by showing that for group sizes p < 1, we
can drop the innermost max operator in Problem 4, and we only need to consider the risk for the
a = 1 partition on a partition of size exactly equal to p (i.e., p(A = 1) = p). This is presented in the
following lemma, proved in the Supplementary Material.

Lemma 4.1. Given Problem 4 with minimum group size p < %, the following problems are equiva-

lent:
min max max R,(h) = min max Res (h).
R pAIXLY) oclon) WPan p(AX,Y)
st.p(A=a) > p, Ya € {0,1} st.p(A=1)=p

(6)
We note that the right hand side in Eq. 6 is in itself a valuable optimization problem for p > 1/2,
since it equates to efficiently minimizing the risk of the at-risk majority. The Pareto optimality
constraint in this scenario is easy to enforce if the base loss function ¢(h(x), ) is both bounded (i.e.,
U(h(z),y) < CVx,y,h € X x Y X H), and strictly convex w.r.t. model h. The result is shown in
the following lemma.

Lemma 4.2. Given the problem on the right hand side of Eq. 6, a convex hypothesis class H, and
a bounded loss function 0 < £(h(z),y) < C Vz,y,h € X x Y X H that is strictly convex w.r.t its

SR(h) = Exy[£(M(X),Y)].
®The algorithm is iterative, we prove convergence to the optimal solution with the number of iterations.
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first input h(x), the following problems are equivalent:

{arg} min max R,a(h) = {arg}min sup Ro (h).
hePan p(AlX,Y) 1 her p(A]X,Y) 1
st.p(A=1)=p st.p(A=1)=p

p(A=11X,Y) >0, VXY
(N
Where we explicitly add {arg} to both sides of the equivalence to indicate that these problems are
also equivalent in terms of the models & that achieve these minimax solutions. The BS loss satisfies
both conditions in Lemma 4.2, CE loss also satisfies these conditions if we restrict the hypothesis
set suchthat h € H C {h: h;(z) > ¢ > OVi € [V],z € X} (i.e., the classifier assigns a minimum
label probability for all values). the ¢, loss over a bounded set also satisfies these conditions. To deal

with the supremum constraint on the distribution in practice, we slightly limit adversary capacity and
ensure p(A =1|X,Y) > e > 0VX,Y € X x ).

We solve Problem 7 using no-regret dynamics (Freund & Schapire (1999)), the solution is the Nash
equilibrium of a two-player zero-sum game, where one player, the adversary, iteratively proposes
partition distributions p(A|X,Y), the modeler then responds near optimally with a model /, and
incurs loss Ry(h). Based on the history of losses, the adversary iteratively refines its proposed
partition function into the worst-case partition.

To solve the above problem with parameter ¢ > 0, we leverage the theoretical results presented
in Chen et al. (2017) for improper robust optimization of infinite loss sets with oracles. We first
present the results in terms of a finite dataset with n samples; assume that both players have access
to {z;,yi}'y ~ P(X,Y)®", and let t € {0,...,T} indicate the current round of the zero-sum
game. In each round ¢, the modeler produces a classifier ¢ and the adversary proposes an empirical

distribution of p(A|X,Y), denoted as o = {a!}l"; : of € [¢,1].), ‘;—f = p, where p is the
minimum partition size. The empirical risk (cost) of round ¢ is L* = L(ht, o), with
L(h Oé) _ i aie(h(wz)ﬂli). (8)

np
In order to find the Nash equilibrium of this game, we use projected gradient descent on the ad-
versary, while the modeler uses approximate best response with a Bayesian oracle ht = M(at).

In particular, we use a variant proposed in Chen et al. (2017) for robust non-convex optimization.
Algorithm 1 shows the proposed approach.

Algorithm 1 Blind Pareto Fairness

Require: Inputs: Dataset {(x;, y;)}!;, minimum partition size p
Require: Hyper-parameters: Number of rounds 7', parameter 7, adversary boundary coefficient
€ > 0, y-approximate Bayesian solver M(-) ~ argminy,c4, L(h, -)
Initialize o = & = {p}-,
Initialize classifier and loss
h® =M(a), L° = L(h°, &)
forroundt=1,...,7T do
Adversary updates its partition function by gradient descent and projec-

tion: )

_ AN 2(h?,
al «— o7V VL L(h, &) = ol 71 + ni,npy
& [T(at)

aai€le,1],3, Si=p
Solver provides a model that approximately solves for the current partition:

ht + M(&)
end for
return No-regret classifier 17

The proposed Algorithm 1 in an instantiation of Algorithm 3 in (Chen et al. (2017)) for oracle
efficient improper robust optimization with infinite loss sets. To implement the projection operator

116 , we use Dykstra’s projection algorithm (Boyle & Dykstra (1986)), using the fact
i €le 1.3, Sh=p
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that the set can be seen as the intersection of the [e, 1] hypercube and the («, 1) = np plane, where
both of these sets have known and exact projection functions individually. We can then immediately
leverage their results (Theorem 7 in Chen et al. (2017)) to show that the algorithm converges (proof
presented in the Supplementary Material).

Lemma 4.3. Consider the setting of Algorithm 1, with parameter ¢ > 0 and n =

[ed 2 np . . . )

max < \/o&, and L a 1-Lipschitz function w.rt. «, let P be a uniform
ac{aa;€le,1],y, Si=p} V 2r 2T

distribution over the set of models {h',... hT}, and let R* be the minimax solution to the loss

presented in Eq. 8. Then we have

2
max  EpopL(h,a) <yR* 44/ iy
aioi€le,1],3, S=p T

Asin Chen et al. (2017), we use 1! instead of the ensemble {A1, ..., hT}. We use stochastic gradient
descent (SGD) as our ~y-approximate Bayesian oracle, We note that the 1-Lipschitz constraint can
be relaxed to any G-Lipschitz function by working through the no regrets guarantees for projected
gradient descent of G-Lipschitz functions in the proof provided in Chen et al. (2017).

Figure 2 shows how group risks evolve across game rounds, results are shown for several minimum
partition size values. We observe that cross-entropy (CE) on the worst group gradually converges to
a value that depends on p, the rounds trade performance between low and high risk groups.
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Figure 2: Risk trade-off between low and high group risks in the BPF algorithm over the UCI adult Dua
& Graff (2017) dataset as a function of game rounds. Left figure indicates worst group cross-entropy, right
corresponds to low risk groups. Traces are shown for several p values. Small p values make the risk of the
worst group converge to that of the random classifier, as expected from Lemma 3.2, larger values show a more
stratified behaviour. We observe how performance between worst and best groups is traded off between game
rounds.

5 EXPERIMENTAL RESULTS

We experimentally validate our methods and theoretical results on a variety of standard datasets,
we compare performance against DRO (Hashimoto et al. (2018)), ARL (Lahoti et al. (2020)), and
a baseline (naive) classifier. We show the trade-offs of each method on their worst group and the
remaining population. The baseline method is, as expected, the one that performs best on the low-
risk population, but it suffers from large, fat tails in terms of loss distribution. We also show how
both DRO and BPF empirically achieve the theoretical results laid in Lemma 3.2, with BPF having
better results on the low-risk population than DRO, owing to the Pareto optimality constraint.

Datasets. We used four standard fairness datasets for comparison. The UCI Adult dataset (Dua
& Graff (2017)) which contains 48, 000 records of individual’s annual income as well as 13 other
attributes, including race, gender, relationship status, and education level. The target task is income
prediction (binary, indicating above or below 50K). The Law School dataset (Wightman (1998))
contains law school admission data used to predict successful bar exam candidates based on various
factors including family income, race, and gender. The COMPAS dataset (Barenstein (2019)) which
contains the criminal history, serving time, and demographic information such as sex, age, and race
of convicted criminals. The goal is prediction of recidivism per individual.” Lastly we used the

"This dataset is the source of extensive and very legitimate controversy in the fairness community, and is
here used for benchmarking only.
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MIMIC-III dataset, which consists of clinical records collected from adult ICU patients at the Beth
Israel Deaconess Medical Center Johnson et al. (2016). The objective is predicting patient mortality
from clinical notes. We analyze clinical notes acquired during the first 48 hours of ICU admission
following the pre-processing methodology in Chen et al. (2018), ICU stays under 48 hours and
discharge notes are excluded from the analysis. Tf-idf statistics on the 10, 000 most frequent words
in clinical notes are taken as input features.

UCT Adult Law school ~Compas  MIMIC-III | UCI Adult Law school ~Compas MIMIC-III

o
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Figure 3: Cross-entropy (CE) and accuracy (Acc) metrics on best and worst groups as a function of group size
for BPF, DRO, ARL, and baseline classifiers, random classifier shown for reference. Results are provided for
UCT adult, law school, COMPAS, and MIMIC-III datasets. Cross-entropy of both ARL and baseline classifiers
for the worst group are very large for small group size, DRO and BPF both approximate the theoretical result
shown in Lemma 3.2. The main difference between DRO and the proposed BPF is that BPF exhibits better
results on the best group partition than DRO for the same level of worst group performance, owing to the
Pareto restriction on the BPF classifier resulting in no-unnecessary-harm for any group (see also right panel of
Figure 1). Accuracy results largely mimic the observations on the cross-entropy metric.

Setup and Results. We train BPF for 8 minimum group sizes p = {0.15,0.20,...,0.5}, we
report cross-entropy loss and accuracy,® on the worst partition of the dataset (i.e., average over the
worst 100 * p% samples based on cross-entropy loss), the values for the remaining low risk group
is also reported (to evaluate optimality). DRO models were trained on 20 equispaced values of their
threshold parameter ( € [0, 1]). For ARL, we use the code provided in (Lahoti et al. (2020));
since it lacks a tuning hyper-parameter, besides the original setup, we tried four configurations
for their adversarial network (adversary with 1 to 4 hidden layers of 512 units each). The classifier
architecture for BPF, ARL, and DRO was standardized to a 4-layer MLP with 512 hidden units. In all
cases we use cross-entropy loss and same input data. Results correspond to the best hyper-parameter
for each group size; mean and standard deviations are computed using 5-fold cross-validation.

Figure 3 shows the performance of the best and worst groups across partition sizes. Both DRO and
BPF recover results close to the random classifier for the smaller group sizes, which aligns with the
results shown in Lemma 3.2, that is, below a certain partition size (e.g., p ~ 0.3 for adult dataset)
the average cross-entropy of the worst group is the risk of the uniform classifier (log 2). We observe
that, in general, BPF obtains better results for the low risk group than DRO for the same worst group
risk. ARL slightly reduces the worst group risk compared to the baseline classifier, but is in general
not able to reduce worst-case risk significantly.

Although none of the compared models address disparities along predefined populations, in some
cases they are nonetheless able to improve the worst group performance on the set. Consider the
Adult dataset, an unbalanced problem (= 23.6% of the samples present an income higher than
50k) where sample accuracy may be a misleading statistic (e.g., baseline classifier achieves > 81%
accuracy across male and female populations). Table 1 shows accuracy conditioned on both gender
and income, and on race and income for each competing method. We observe that both BPF and
DRO achieve results close to the uniform classifier for small partition sizes as expected, and no
predefined group larger than their partition size gets a worse-than-random performance. In many
cases, the results for BPF is better than DRO for each protected attribute (at same p value). We
also observe that on several minorities, the BPF model provides the best utility values out of all the
competing methods, BPF is also the best model at preserving worst group performance.

$ Accuracy is computed on the randomized classifier Y ~ h(X).
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Table 2 shows how target labels and predefined sensitive groups are represented in the high risk
group identified by BPF. We observe that, for low partition sizes, outcomes are balanced across
groups (in concordance with Lemma 3.2). As the partition size increases, the composition of the
high risk group becomes more similar to the base distribution. Similar results to tables 1 and 2 are
provided in Supplementary Material A.3 for law school, COMPAS and MIMIC-III datasets.

Group Prop (%) baseline ARL DRO .15 BPF .15 DRO .4 BPF .4 DRO .5 BPF .5
Race/Income (1 if >50k, 0 if <50k )
Male/0 46.7 82.7+0.1 81.3+0.3 51.2+0.9 50.7+1.3 68.4+1.6 70.242.1 74.0+1.6 78.9+0.4
Male/1 20.0 59.3+0.9 59.4+0.5 50.640.3 S51.141.2 54.240.8 57.5£1.3 55.341.2 58.840.1
Female/O 29.7 94.040.2 93.540.2 522+1.7 50.842.1 76.81+1.8 737417 84.941.5 90.240.6
Female/1 3.6 50.8+£2.2 50.0£0.5 50.6+£0.3 51.642.3 50.5+1.1 52.54£0.9 50.1+1.4 52.241.0
Ethnicity/Income (1 if >50k, 0 if <50k )

White/0 64.2 86.2+0.2 85.2+0.2 514+£1.1 52.742.1 70.7£1.7 68.34+2.4 77.1£1.5 82.5+0.5
White/1 214  58.6+£1.1 584404 50.6+£03  51.14£23 539408 57.0+£1.3 549412  58.140.1
Black/0 8.5 92.540.5 91.940.4 52.8£1.9 51.0£2.6 78.2+1.7 72.1£2.5 85.6£1.9 89.1£0.7
Black/1 1.1 52.240.0 51.9+£1.0 50.6+£0.3 50.842.3 514+19 532414 51.7£2.4 54.0£0.7
Asian-Pacl/0 2.1 86.5+0.7 83.8+£1.1 51.0£0.7 50.643.1 71.342.8 68.142.1 77.543.2 80.9+0.7
Asian-Pacl/1 0.8 59.3+1.5 60.242.0 50.8+0.4 52,3422 52.842.6 62.242.1 53.243.0 58.9+1.9
Other/0 1.5 93.340.2 93.24+0.4 51.7+1.3 50.842.1 77.6+1.9 73.942.0 85.5+2.2 89.5+1.5
Other/1 0.3 41.442.1 39.4+2.7 50.54+0.3 51.442.5 44.9+2.7 46.7+2.1 425434 44.6+3.1

Table 1: Accuracy across gender and ethnicity partitions (groups given no special consideration by the algo-
rithms) in the Adult dataset for ARL, DRO and BPF models for varying partition sizes.

Group Prop(%) BPF.15  BPF.3 BPF .4 BPF .5 Table 2: Demographic composition of
worst groups as a function of minimum
partition size on the Adult dataset. BPF

Proportion on Worst Partition, Ethnicity/Income

White/0 642 418409 448404 489401  S35H00  homogenizes outcomes across parti-
White/1 214 473410 449406 410400  35.640.1 " d orotected  attribut F
Black/0 85 27402 30400 34400  4.6+00 ons and protected aftributes. - - For
Black/l 11 29401 25400 22400  1.840.0 larger group sizes, the demographics of
Asian-Pacl/0 2.1 1.8+0.1 1.740.2 1.8+0.1 1.940.0 the partition approach that of the base-
Asian-Pacl/1 08 20400 18400 16400  1.440.0 line population.

Other/0 15 04200  04£00 05400  0.8£00

Other/1 03 10400  08+00 06400 05400

6 DISCUSSION

In this work we analyze subgroup robustness, particularly in the context of fairness without demo-
graphics or labels. Our goal is to recover a model that minimizes the risk of the worst-case partition
of the input data subject to a minimum size constraint, while we additionally constrain this model to
be Pareto efficient w.r.t. the low-risk population as well. This means that we are optimizing for the
worst unknown subgroup without causing unnecessary harm on the rest of the data. We show that
it is possible to protect high risk groups without explicit knowledge of their number or structure,
only the size of the smallest one, and that there is a minimum partition size under which the random
classifier is the only minimax option for cross-entropy and Brier score losses.

We propose BPF, an algorithm that provably converges to the Pareto minimax solution. Our results
on a variety of standard fairness datasets show that this approach reduces worst-case risk as expected,
and produces better models than competing methods for the low-risk population, thereby avoiding
unnecessary harm.

If a policymaker has a desired risk tradeoff instead of a target group size, we can search for the
smallest partition size achieving this tradeoff using the proposed BPF; this now guarantees that the
recovered model can satisfy this risk tradeoff for the worst possible partition up to size p, and for
any smaller partition size there exists a partition such that this tradeoff is violated.

Future work includes incorporating additional domain-specific constraints on the worst partition
and developing an algorithm that combines BPF with knowledge about some subgroups that must
be protected as well.



Under review as a conference paper at ICLR 2021

REFERENCES

Matias Barenstein. Propublica’s compas data revisited. arXiv preprint arXiv:1906.04711, 2019.
Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Calif. L. Rev., 104:671, 2016.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. fairml-
book.org, 2019. http://www.fairmlbook.org.

Dimitris Bertsimas, Vivek F Farias, and Nikolaos Trichakis. The price of fairness. Operations
Research, 59(1):17-31, 2011.

James P Boyle and Richard L Dykstra. A method for finding projections onto the intersection of
convex sets in hilbert spaces. In Advances in order restricted statistical inference, pp. 28—-47.
Springer, 1986.

Irene Chen, Fredrik D Johansson, and David Sontag. Why is my classifier discriminatory? In
Advances in Neural Information Processing Systems, pp. 3539-3550, 2018.

Jiahao Chen, Nathan Kallus, Xiaojie Mao, Geoffry Svacha, and Madeleine Udell. Fairness under
unawareness: Assessing disparity when protected class is unobserved. In Proceedings of the
Conference on Fairness, Accountability, and Transparency, pp. 339-348, 2019.

Robert S Chen, Brendan Lucier, Yaron Singer, and Vasilis Syrgkanis. Robust optimization for non-
convex objectives. In Advances in Neural Information Processing Systems, pp. 4705-4714, 2017.

Alexandra Chouldechova and Aaron Roth. The frontiers of fairness in machine learning. arXiv
preprint arXiv:1810.08810, 2018.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

John Duchi, Tatsunori Hashimoto, and Hongseok Namkoong. Distributionally robust losses for
latent covariate mixtures. arXiv preprint arXiv:2007.13982, 2020.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, pp. 214-226, 2012.

Marc N Elliott, Allen Fremont, Peter A Morrison, Philip Pantoja, and Nicole Lurie. A new method
for estimating race/ethnicity and associated disparities where administrative records lack self-
reported race/ethnicity. Health Services Research, 43(5p1):1722—1736, 2008.

Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29(1-2):79-103, 1999.

Arthur M Geoffrion. Proper efficiency and the theory of vector maximization. Journal of Mathe-
matical Analysis and Applications, 22(3):618-630, 1968.

Maya Gupta, Andrew Cotter, Mahdi Milani Fard, and Serena Wang. Proxy fairness. arXiv preprint
arXiv:1806.11212, 2018.

Sara Hajian, Francesco Bonchi, and Carlos Castillo. Algorithmic bias: From discrimination dis-
covery to fairness-aware data mining. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 2125-2126, 2016.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In
Advances in Neural Information Processing Systems, pp. 3315-3323, 2016.

Tatsunori B Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness without
demographics in repeated loss minimization. arXiv preprint arXiv:1806.08010, 2018.

Ursula Hébert-Johnson, Michael P Kim, Omer Reingold, and Guy N Rothblum. Calibration for the
(computationally-identifiable) masses. arXiv preprint arXiv:1711.08513,2017.

10



Under review as a conference paper at ICLR 2021

Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé III, Miro Dudik, and Hanna Wallach.
Improving fairness in machine learning systems: What do industry practitioners need? In Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1-16, 2019.

Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 3:160035, 2016.

Nathan Kallus, Xiaojie Mao, and Angela Zhou. Assessing algorithmic fairness with unobserved
protected class using data combination. arXiv preprint arXiv:1906.00285, 2019.

Louis Kaplow and Steven Shavell. The conflict between notions of fairness and the Pareto principle.
American Law and Economics Review, 1(1):63=77, 1999.

Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerryman-
dering: Auditing and learning for subgroup fairness. In International Conference on Machine
Learning, pp. 2564-2572, 2018.

Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang,
and Ed H Chi. Fairness without demographics through adversarially reweighted learning. arXiv
preprint arXiv:2006.13114, 2020.

Natalia Martinez, Martin Bertran, and Guillermo Sapiro. Minimax Pareto fairness: A multi objective
perspective. In International Conference on Machine Learning, 2020.

Andreu Mas-Colell, Michael Dennis Whinston, Jerry R Green, et al. Microeconomic Theory, vol-
ume 1. Oxford University Press New York, 1995.

Shira Mitchell, Eric Potash, Solon Barocas, Alexander D’ Amour, and Kristian Lum. Prediction-
based decisions and fairness: A catalogue of choices, assumptions, and definitions. arXiv preprint
arXiv:1811.07867, 2018.

John Rawls. Justice as Fairness: A Restatement. Harvard University Press, 2001.
John Rawls. A Theory of Justice. Harvard University Press, 2009.

Nimit Sohoni, Jared Dunnmon, Geiffrey Angus, Albert Gu, , and Chris Re. Addressing hidden
stratification: Fine-grained robustness in coarse-grained classification problems, 2020a. http:
//hazyresearch.stanford.edu/hidden-stratification, July2020.

Nimit S. Sohoni, Jared A. Dunnmon, Geoffrey Angus, Albert Gu, and Christopher Ré. No sub-
class left behind: Fine-grained robustness in coarse-grained classification problems. To Appear
in Neural Information Processing Systems, 2020b. http://stanford.edu/~nims/no_
subclass_left_behind.pdf.

Berk Ustun, Yang Liu, and David Parkes. Fairness without harm: Decoupled classifiers with prefer-
ence guarantees. In International Conference on Machine Learning, pp. 6373-6382, 2019.

Michael Veale and Reuben Binns. Fairer machine learning in the real world: Mitigating discrimina-
tion without collecting sensitive data. Big Data & Society, 4(2):2053951717743530, 2017.

Linda F. Wightman. LSAC National Longitudinal Bar Passage Study. LSAC Research Report Series.
1998.

Yan Zhang. Assessing fair lending risks using race/ethnicity proxies. Management Science, 64(1):
178-197, 2018.

11



