Delivering Fairly in the Gig Economy

Hadi Hosseini' and Simon Schierreich?

'The Pennsylvania State University
2Czech Technical University in Prague
hadi @psu.edu, schiesim@fit.cvut.cz

Abstract

Distributing services, goods, and tasks in the gig
economy heavily relies upon on-demand workers
(aka agents), leading to new challenges varying
from logistics optimization to the ethical treatment
of gig workers. We focus on fair and efficient dis-
tribution of delivery tasks—placed on the vertices
of a graph—among a fixed set of agents. We con-
sider the fairness notion of minimax share (MMS),
which aims to minimize the maximum (submodu-
lar) cost among agents and is particularly appeal-
ing in applications without monetary transfers. We
propose a novel efficiency notion—namely, non-
wastefulness—that is desirable in a wide range of
scenarios and, more importantly, does not suffer
from computational barriers. Specifically, given
a distribution of tasks, we can, in polynomial
time, i) verify whether the distribution is non-
wasteful and ii) turn it into an equivalent non-
wasteful distribution. Moreover, we investigate
several fixed-parameter tractable and polynomial-
time algorithms and paint a complete picture of the
(parameterized) complexity of finding fair and effi-
cient distributions of tasks with respect to both the
structure of the topology and natural restrictions of
the input. Finally, we highlight how our findings
shed light on computational aspects of other well-
studied fairness notions, such as envy-freeness and
its relaxations.

1 Introduction

Distributing services, goods, and tasks in today’s economy in-
creasingly relies upon on-demand gig workers. In particular,
many e-commerce platforms and retail stores utilize freelance
workers (in addition to their permanent employees) to dis-
tribute goods in an efficient manner. Naturally, this so-called
‘gig economy’ involves many workers (aka agents), leading
to new challenges from logistical and ethical perspectives.
While the logistical aspect of this problem has been stud-
ied from an optimization perspective [Kleinberg er al., 2001;
Toth and Vigo, 2002; Pioro, 2007; Pollner et al., 2022;
Knight et al., 2024], little attention has been given to the fair
treatment of gig workers.

We focus on the distribution of delivery tasks from a ware-
house (the hub) that are placed on the vertices of a graph
and are connected through an edge (a route) between them.
The goal is then to distribute these tasks among a fixed set of
agents while adhering to given well-defined notions of fair-
ness and economic efficiency.

A substantial subset of these problems either excludes
monetary transfers entirely (e.g., charity organizations) or
involves only fixed-salary labor arrangements (e.g., postal
service workers). Developing fair algorithms for such sce-
narios has sparked interest in designing algorithms with-
out money [Procaccia and Tennenholtz, 2013; Ashlagi and
Shi, 2014; Narasimhan et al., 2016; Balseiro et al., 2019;
Padala and Gujar, 2021] and are notably more challenging
compared to those that allow payment-based compensations
(i.e., monetary transfers) based on specific tasks [Nisan and
Ronen, 1999]. Motivated by this, we primarily focus on a
fairness notion of minimax share (MMS), which aims to guar-
antee that no agent incurs a (submodular) cost greater than
what they would receive under an (almost) equal distribution.
While MMS allocations are guaranteed to exist and are com-
patible with the economic notion of Pareto optimality (PO),
computing such allocations has been shown to be computa-
tionally intractable [Hosseini et al., 2025].

1.1 Our Contribution

We generalize the model from the setting where the traversal
of each edge costs the same to the weighted setting, where the
cost of traversing edge can differ. This significantly extends
the applicability of the model, as it allows us to capture a
broader variety of real-life instances.

Non-Wasteful Allocations. We introduce a new efficiency
notion called non-wastefulness, which is partly inspired by
similar notions in the literature on mechanism design for
stable matching [Goto er al., 2016, Kamada and Kojima,
2017; Wu and Roth, 2018; Aziz and Klaus, 2019] and auc-
tions [Kawasaki et al., 2020], and even fair division [Bei
et al., 2023; Halpern and Shah, 2019]; however, in these
works, non-wastefulness requires that all items are allocated
to agents with positive utilities from them. Intuitively, in our
context, non-wastefulness states that no delivery order can be
reassigned to a different agent so that the original agent is
strictly better off and the new worker is not worse off. This
fundamental efficiency axiom prevents avoidable duplicate



journeys—an obvious choice by delivery agents. Moreover,
in contrast to Pareto optimality, it can be verified whether a
given allocation is non-wasteful in polynomial time. Addi-
tionally, in polynomial-time, any distribution can be turned
into a non-wasteful one where no agent is worse off. Finally,
in Section 4, we formally settle the connection between non-
wastefulness and the fairness notions of MMS.

Algorithms for MMS and Non-wasteful Allocations. Our
main technical contribution is providing a complete com-
plexity landscape of finding MMS and non-wasteful alloca-
tions under various natural parameters. In doing so, we paint
a clear dichotomy between tractable and intractable cases.
Specifically, in Section 5, we show that if the number of junc-
tions or dead-ends of the topology is bounded, then the prob-
lem can be solved efficiently in FPT time, even for weighted
instances. In Section 6, we turn our attention to the pa-
rameterization by the number of orders and the number of
agents, both parameters that are expected to be small in prac-
tice. While FPT algorithm for the former is possible even
for weighted instances, for the latter, a tractable algorithm is
not possible already for two agents. Also, we close an open
problem of Hosseini er al. [2025] by showing that their XP
algorithm for the unweighted case and parameterization by
the number of agents is essentially optimal.

The Impact of Topology Structure. Section 7 is then de-
voted to different restrictions of the topology. The most no-
table result here is the (in)tractability dichotomy based on the
k-path vertex cover, where we prove the existence of FPT
algorithms for any weighted instance and £ < 3, and in-
tractability for unweighted instances with £ > 4. Along the
way, we identify several polynomial-time algorithms for cer-
tain graph families, such as caterpillar graphs, and additional
hardness results, such as for unweighted topologies, which
are in the distance one to the disjoint union of paths.

For the full version containing all the missing details and
additional results, see [Hosseini and Schierreich, 2025].

1.2 Related Work

Fair division of indivisible items is one of the most active
areas at the intersection of economics and computer sci-
ence [Bouveret et al., 2016; Amanatidis et al., 2023]. Dif-
ferent fairness notions are studied in this area, with MMS
being one of the prominent ones [Amanatidis et al., 2023;
Nguyen and Rothe, 2023]. A relevant literature mostly fo-
cus on computational aspects [Bouveret and Lemaitre, 2016;
Heinen er al., 2018; Nguyen and Rothe, 2023] and existence
guarantees [Kurokawa et al., 2018], with special focus on
approximations of MMS [Barman and Krishnamurthy, 2020;
Xiao et al., 2023; Akrami et al., 2023; Chekuri et al., 2024].
Closest to our work are recent papers of Li et al. [2023a]
and Wang and Li [2024], which also study submodular costs;
however, they do not assume a graph encoding the costs.
Several works also explored fair division on
graphs [Christodoulou et al., 2023; Bouveret et al., 2019;
Bredereck et al., 2022; Eiben et al., 2023;
Bilo et al., 2022; Madathil, 2023; Bouveret et al., 2017;
Truszczynski and Lonc, 2020; Li ef al., 2023b]. The closest
model to ours is the one where we have a graph over items,

each agent has certain utility for every item, and the goal
is not only to find a fair allocation, but each bundle must
additionally form a disjoint and connected sub-graphs.
Finally, there are multiple works exploring fairness in dif-
ferent gig economy contexts, including food delivery [Gupta
et al., 2022; Nair et al., 2022] and ride-hailing platforms [Es-
maeili et al., 2023; Sanchez et al., 2022]. Nevertheless, these
papers mostly focus on experiments and neglect the theoreti-
cal study, and the models studied therein are very different.

2 Preliminaries

We use N to denote the set of positive integers. For an integer
i€ N, weset[i] ={1,2,...,i} and [i]o = [{] U {0}. For
notations regarding computational complexity theory (classic
and parameterized), we follow the monographs of Arora and
Barak [2009] and Cygan et al. [2015], respectively.

Distribution of Delivery Orders. In distribution of de-
livery orders, we are given a topology, which is an edge-
weighted tree G = (V, E,w) rooted in a vertex h € V, called
a hub, and a set of agents N = {1,...,n}. The vertices
in V' \ {h} are called orders. By m, we denote the number
of orders in the given instance. The goal is to find an al-
location w: V' '\ {h} — N. For the sake of simplicity, we
denote by 7; the set of orders allocated to an agent ¢; that is,
m = {v € V\{h} | n(v) = i}. Moreover, we say that m;
is agent i’s bundle and that an order v € ; is serviced by
an agent ¢ € N. By II, we denote the set of all possible
allocations. Formally, an instance of our problem is a triple
Z = (N, G, h). We say that an instance Z is unweighted if
the weights of all edges are the same.

The cost of servicing an order v € V \ {h}, de-
noted cost(v), is equal to the length of the shortest path be-
tween h and v. A cost for servicing a set S C V' \ {h} is
equal to the length of a shortest walk starting in &, visiting all
orders of S, and ending in h, divided by two. Observe that
such a walk may also visit some orders that are not in S. It is
apparent that the cost function is submodular and identical.

We use L to denote the number of leaves of the topology G.
For a vertex v € V, G" denotes the sub-tree of G rooted in
vertex v, and, for aset S C V', we use Wy to denote the set of
all shortest paths with one end in & and a second end in some
vertex of S. For graph-theoretical notation not defined here,
we follow the monograph of Diestel [2017].

Fairness. We consider minimax share guarantee (MMS) as
a desired fairness notion. This notion can be seen as a gener-
alization of the famous cake-cutting mechanism and requires
that the cost of each agent is, at most, the cost of the worst
bundle in the most positive allocation. Formally, the notion is
defined as follows.

Definition 1. An MMS-share of an instance L of fair distri-
bution of delivery items is defined as

MMS-share(Z) = min max cost(7;).
well ien]

We say that an allocation  is minimax share (MMS), if for
every agent i € N, it holds that cost(m;) < MMS-share(Z).

Observe that since the cost functions are identical, we de-
fine the MMS-share for the whole instance and not separately
for each agent.
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Figure 1: An illustration of non-wastefulness. On the top, we depict
an allocation that is not non-wasteful: the red (square) agent services
the order of the top branch even though it is not servicing any leaf
of this sub-tree. On the bottom, we depict a non-wasteful allocation
for the same instance. Observe that in this case, the non-wasteful
allocation even strictly improved the cost for the red agent.

Efficiency. We consider several notions of economic effi-
ciency. The most important for us is the Pareto optimality
(PO), which, informally, requires there is no other alloca-
tion 7’ such that no agent is worse in 7’ and at least one agent
is strictly better off in 7’.

Definition 2. An allocation  is Pareto optimal (PO), if there
is no allocation @' such that for every i € N cost(m;) >
cost(}) and for at least one agent the inequality is strict.

Sometimes, we also consider utilitarian and egalitarian op-
timal allocations. In the former, we require that the sum of the
costs of all bundles be minimized, while in the latter, we min-
imize the cost of the most expensive bundle. We defer their
formal definitions to the full version of the paper [Hosseini et
al., 2025].

3 Non-wasteful Allocations

In this setting, some economic efficiency notions, such as util-
itarian optimality, may not be generally compatible with fair-
ness. Moreover, computing an MMS allocation along with
Pareto optimality is computationally hard [Hosseini ef al.,
2025]. Thus, we propose a weaker efficiency notion of non-
wastefulness. Informally, a non-wasteful allocation requires
that no agent 7 should be pushed to service an extra order if
assigning this order to another agent j reduces the cost of ¢’s
bundle without increasing the cost of j’s bundle. Formally,
we define our efficiency notion as follows; for an illustration
of the definition, we refer the reader to Figure 1.

Definition 3. An allocation 7 is non-wasteful if there is no
pair of distinct agents i,j € N and an order v € ; such that
cost(m; \ {v}) < cost(m;) and cost(m; U {v}) < cost(m;).

Non-wastefulness can be equivalently defined using more
graph-theoretical terms as follows. The latter definition is
more suitable for our algorithmic results.

Definition 4. An allocation w is non-wasteful if for every or-
der v € V' \ {h} it holds that if an agent i € N services v,
then i also services some leaf £ € leaves(GV).

It is straightforward to see that, in general, non-wasteful al-
locations are guaranteed to exist. In particular, if we take 7 so
that it allocates all orders to a single agent, then the condition
from Definition 4 is satisfied for every internal vertex. Equiv-
alently, in the spirit of the former definition, one can observe
that if we reallocate an order from its current bundle to a bun-
dle of some other agent ¢ (recall that such a bundle is empty
according to the definition of 7), we necessarily increase the
cost of ¢’s bundle. Hence, we obtain the following.

Proposition 1. A non-wasteful allocation is guaranteed to
exist and can be found in linear time.

Our first result shows that we can decide in polyno-
mial time whether a given allocation is non-wasteful or
not. This stands in direct contrast with Pareto optimality,
which, under the standard theoretical assumptions, cannot
admit a polynomial-time algorithm for its associated veri-
fication problem [de Keijzer er al., 2009], and makes non-
wastefulness arguably one of the fundamental axioms each
distribution of delivery orders should satisfy, as agents can
check this property basically in hand without the need of ex-
tensive computational resources.

The results established in the remainder of this sec-
tion serve as stepping stones for multiple subsequent sec-
tions, where we investigate the algorithmic aspects of non-
wastefulness combined with different fairness notions. A
naive procedure for verification of non-wastefulness just, for
every internal vertex v, checks whether at least one of the
leaves in the sub-tree rooted in v is serviced by the agent ser-
vicing v.

Theorem 1. There is an algorithm that, given an instance T
and an allocation T, decides whether 7 is a non-wasteful al-
location in O (m2) time.

The next important property of non-wastefulness is that,
given an allocation 7, we can efficiently convert it to a non-
wasteful allocation that does not differ from 7 very signifi-
cantly and while weakly improving the cost for agents. This
result is appealing from the practical perspective, as it can
be applied to any existing allocation of delivery tasks with
negligible (polynomial) computational overhead. This clearly
indicates that non-wastefulness can be very easily used as a
layer on top of the current approaches (both algorithmic and
manual) for the distribution of delivery tasks without affect-
ing its computability.

Theorem 2. There is a linear-time algorithm that, given an
allocation T, returns a non-wasteful allocation 7' such that
m; N leaves(G) = m, N leaves(G) and cost(w}) < cost(m;)
for every © € N. In other words, in the new non-wasteful
allocation ', the set of leaves serviced by an agent i € N
remains the same as in .

4 MMS and Non-wasteful Allocations

If we are given an MMS allocation and apply the algorithm
from Theorem 2, we obtain a non-wasteful allocation such



that the cost of no bundle is increased. Therefore, the new
allocation is necessarily both MMS and non-wasteful.

Proposition 2. Every MMS allocation can be turned into an
MMS and non-wasteful allocation in linear time.

It follows from Proposition 2 that finding MMS and non-
wasteful allocations is, from the computational complexity
perspective, equivalent to finding an MMS allocation. There-
fore, by the result of Hosseini et al. [2025], finding MMS and
non-wasteful allocation is also computationally intractable,
even if the instance is unweighted.

Naturally, the hardness from Hosseini et al. [2025] car-
ries over to the more general weighted case, which raises
the question of whether there are special topology structures
or parameters for which the problem admits tractable algo-
rithms.

In the remainder of this paper, we provide a detailed anal-
ysis of the problem’s complexity, taking into account both re-
strictions of the topology and other natural restrictions of the
input. Notably, we present the first tractable algorithms for
the setting of computing fair and efficient distribution of de-
livery orders and, in contrast to [Hosseini et al., 2025], some
of our positive results also apply to weighted instances, ex-
tensively broadening their practical appeal.

Before we dive deep into our results on various topologies,
we show several additional auxiliary lemmas that help us sim-
plify the proofs of the following subsections.

First, we show that finding MMS (and non-wasteful) allo-
cation is as hard as deciding whether the MMS-share of an
instance is at most a given integer ¢ € N. This follows from
the fact that the cost of the most costly bundle in all MMS
allocations is the same.

Lemma 1. Let § be a family of instances such that it is NP-
hard to decide whether the MMS-share of an instance from §
is at most a given ¢ € N. Then, unless P = NP, there is no
polynomial time algorithm that finds MMS allocation for all
instances from §.

The consequence of Lemma 1 is that we can focus only
on the complexity of deciding the MMS-share, as the impos-
sibility of a tractable algorithm for finding MMS and non-
wasteful allocations follows directly from this lemma and
Proposition 2.

Next, we show that one can freely assume that the hub is
located on some internal vertex v € V(G). If this is not the
case, then we can move the hub to the single neighbor of the
leaf ¢ = h and remove ¢ from the instance while preserving
the solution of the instance.

Lemma 2. Let T = (N,G = (V, E), h) be an instance of
fair distribution of delivery orders such that the hub h is a
leaf of G and J be an instance with h removed and with
the hub being h’s original child v € children(h); that is,
J = (N, (V\{h}, E),v). Then, it holds that

MMS-share(Z) = MMS-share(J) + w({h, v}).

Also, by combining the negative result of Hosseini et
al. [2025, Theorem 1] with Lemma 2, we directly obtain that
the intractability of our problem is not caused by a large num-
ber of possible routes directly leaving the hub.

Algorithm 1 A dynamic programming algorithm for the
computation of an MMS and non-wasteful allocation on in-
stances with a small number of dead-ends.
Input: A problem instance Z = (G, h, N).
Output: MMS-share(Z).

1: return legxlfrels(G) SOLVEREC(n, leaves(G) \ @, Q)

2: function SOLVEREC(%, P, Q)

3: ifi = 1and T[i, P,Q] = undef then

4: if P = () then

5: | T[, P,Q] + cost(Q)

6: else

7: | T[i, P,Q] + >

8: else if T[i, P, Q] = undef then

9: if PN Q = () then

10: x < min SOLVEREC(i — 1, P\ P', P’)
P/CP

11: T[¢, P, Q] + max{z, cost(Q)}

12: else

13: | T, PQ) 4+ o0

14: return T[i, P, Q)]

Corollary 1. Unless P = NP, there is no polynomial-time al-
gorithm that finds an MMS and non-wasteful allocation, even
if the instance is unweighted and the degree of the hub is one.

5 Small Number of Dead-ends or Junctions

We start our algorithmic journey with two efficient algo-
rithms: one for topologies where the number of dead-ends
(leaves) is small and one for topologies where the number of
junctions (internal vertices) is small. Note that we need to
study them separately as none is bounded by another. To see
this, assume a star graph with one junction and an arbitrar-
ily large number of dead-ends and, in the opposite direction,
a simple path graph with exactly two dead-ends and an arbi-
trary number of junctions.

We start with an FPT algorithm for the former parameter,
that is, the number of leaves L. The algorithm is based on the
technique of dynamic programming.

Theorem 3. When parameterized by the number of leaves L,
an MMS and non-wasteful allocation can be found in FPT
time, even if the instance is weighted.

Proof Sketch. We prove the result by giving an algorithm run-
ning in 29 . (m 4 n)®™) time. The algorithm is based
on a dynamic programming approach, and, maybe surpris-
ingly, it does not exploit the topology’s structure, as is com-
mon for such algorithms, but rather tries to guess for each
agent the set of leaves he or she is servicing in an optimal
solution. The crucial observation here is that for MMS and
non-wastefulness, the agents are interested only in their own
bundles. Therefore, we do not need to store the whole partial
allocation; rather, we need only the bundle of the currently
processed agent and the list of all already allocated orders.

More formally, the core of the algorithm is a dynamic pro-
gramming table T[i, P, Q], where

* 7 € N is the last processed agent,



* P C leaves(G) is a subset of leaves allocated to agents
1,...,s—1,and

* @ Cleaves(G) \ P is a bundle of agent ¢,

and in each cell of T[i, P,Q], we store the minimum of
the maximum-cost bundle over all partial allocations, where
leaves of () are assigned to agent ¢, leaves of P are distributed
between agents 1, ...,7— 1, and leaves of V' \ {h} \ (PUQ)
are unassigned. The computation is then defined as of Al-
gorithm 1. Note that, for the sake of exposition, the code
presented computes just the optimal cost. To extend the algo-
rithm so that it also finds an MMS and non-wasteful alloca-
tion, we store in each cell a pair (g, 7), where ¢ is the mini-
mum cost and 7 is a partial allocation achieving this cost.
The number of cells of the dynamic programming table is
O (n oL QL) € 20@) . no(l), and each cell is computed
exactly once. The most time-consuming operations of the al-
gorithm are lines 1 and 10, where we, at worst, try all possible
subsets of leaves. That is, the overall running time of the al-
gorithm is 29%) . (n 4 m)®™M) as promised. Note that we
made no assumptions about the edge weights. O

The structural counterpart of the number of leaves is the
number of internal vertices. Again, we show that under
this parameterization, our problem is in the complexity class
FPT. However, this algorithm is completely different from
the previous one and combines an insight into the structure of
MMS and non-wasteful solutions with careful guessing and
ILP formulation of the carefully designed subproblem.

Theorem 4. When the instance is parameterized by the num-
ber of internal vertices k and the number of different edge

weights 1), an MMS and non-wasteful allocation can be found
in FPT time.

Proof Sketch. Our algorithm combines several ingredients.
First, we show a structural lemma that allows us to restrict
the number of important agents in terms of the number of in-
ternal vertices. Then, for these important agents, we guess
their bundles in an optimal solution. Finally, for each guess,
we design an integer linear program (ILP) that helps us verify
whether our guess is indeed a solution. For the sake of expo-
sition, we show the proof for the unweighted instances; the
generalization to instances with a bounded number of differ-
ent weights is provided in the supplementary material.

Let = be an equivalence relation over the set of leaves such
that for a pair £,¢ € leaves(G) it holds that ¢ = ¢’ if and
only of parent(¢) = parent(¢’). Observe that the relation
partitions the leaves into k equivalence classes; we denote
them 77, ...,T. In the following lemma, we show that for
each allocation T, there exists an allocation 7’ where no agent
is worse off and which possesses a nice structure.

Lemma 3. Let w be an allocation. There always exists a
nice allocation @' such that cost(n}) < cost(m;) for every
i € N. An allocation is ' is nice if for each pair of distinct
agents i,j € N there exists at most one type t € [k| so that
|mi N T3 > 0 and |7 N Ti| > 0.

The previous lemma implies that there is always an alloca-
tion, namely the nice one, where most agents service leaves of

exactly one type. To see this, assume that a nice allocation 7

exists with (5) +1 agents servicing at least two different types
of leaves. Then, by the Pigeonhole principle, there is neces-
sarily a pair of agents ¢ and j both servicing at least one leaf
of some T; and Ty with ¢ # ¢/, which contradicts that 7 is
nice. Consequently, at most (’;) agents service leaves of mul-
tiple different types, and all other agents services leaves of
exactly one type.

In the next phase of the algorithm, we first guess the num-
ber n < min{ (g) ,n} of important agents, and then for each
of agents i € [n], we guess the structure of their bundle.
Specifically, for each agent ¢ € [n], the bundle structure is a
subset L; C [k], where t € L; represents that, in a solution T,
the agent ¢ services at least one leaf of type t. By Lemma 3,
we can assume that all remaining agents j € [n + 1,n] are
servicing exactly one type of leaves, so we do not need to
guess their structure.

To verify whether our guess is correct, we use integer linear
programming formulation of the problem. Before introduc-
ing the problem’s ILP encoding, we guess the MMS-share ¢
of the instance. Note that since the instance is unweighted,
there is only a linear number of possible values of ¢, and we
can try all of them in increasing order to obtain the minimum
possible q.

In the formulation, we have a non-negative integer vari-
able x! for every i € [n] and every t € |T;| representing
the number of additional leaves of type ¢ the agent 7 services.
Additionally, we have k variables y, ..., y, where each y;
represents the number of agents servicing only the leaves of
type T;. The constraints of the program are as follows (we
use d; = dist(parent(73), h)).

Vi e [n): d@i+l+d)<qg (1)
teL;
Vvt € [k]: S @Dty (g—d) =T @

1€[n]: t€L;

Ymtn<n 3

te (k]

The constraints (1) ensure that the cost of no bundle
exceeds the guessed value of the MMS-share. The con-
straints (2) then secure that all orders are serviced. Finally,
due to the constraint (3), the number of agents is correct.
Also, observe that we do not use any objective function, as we
are only interested in the feasibility of our program. However,
we could exploit the objective function to, e.g., find MMS and
non-wasteful allocation that minimizes the sum of costs.

For the running time, observe that the number of variables
of the program is n - k + k € O (k* - k+k) € O(k?).

Therefore, the program can be solved in time kO(K) o)

by the result of Lenstra Jr. [1983]. There are 20(%") differ-
ent guesses we need to verify, and therefore, the overall run-

ning time of the algorithm is 90(K*) . 9O(K logk) . 1, 0(1) ¢
9O(k* log k) | m©P®) | which is indeed in FPT. O

To finalize the complexity picture with respect to the num-
ber of internal vertices, in our next result, we show that



the parameter the number of different weights cannot be
dropped while keeping the problem tractable; in particular,
we show that if the number of edge-weights is not bounded,
then an efficient algorithm cannot exist already for topolo-
gies with a single internal vertex. The reduction is from the
3-PARTITION problem [Garey and Johnson, 1975].

Theorem 5. Unless P = NP, there is no polynomial-time al-
gorithm that finds an MMS and non-wasteful allocation, even
if G is a weighted star and the weights are encoded in unary.

6 Small Number of Agents or Orders

In real-life instances, especially those related to applications
such as charity work, it is reasonable to assume that the num-
ber of orders or the number of agents is relatively small.
Therefore, in this section, we focus on these two parameteri-
zations and provide a complete dichotomy between tractable
and intractable cases.

First, assume that our instance possesses a bounded num-
ber of orders m. Then, the topology has at most m leaves,
and therefore, we can directly use the FPT algorithm from
Theorem 3 and efficiently solve even weighted instances.

Corollary 2. When parameterized by the number of or-
ders m, an MMS and non-wasteful allocation can be found
in FPT time, even if the instance is weighted.

A more interesting restriction from both the practical
and theoretical perspective is when the number of agents
is bounded. Our next result rules out the existence of a
polynomial-time algorithm already for instances with two
agents and uses a very simple topology. The reduction is
from a suitable variant of the EQUITABLE PARTITION prob-
lem [Deligkas et al., 2024].

Theorem 6. Unless P = NP, there is no polynomial-time al-
gorithm that finds an MMS and non-wasteful allocation, even
if G is a weighted star and |[N| = 2.

For unweighted instances, though, Hosseini et al. [2025,
Theorem 5] introduced an XP algorithm capable of finding an
MMS allocation. That is, if the instance is unweighted, then
for every constant number of agents, there is an algorithm
that finds an MMS and non-wasteful allocation in polynomial
time. Their result raises the question of whether this param-
eterization admits a fixed-parameter tractable algorithm. We
answer this question negatively by showing that, under the
standard theoretical assumptions, FPT algorithm is not pos-
sible, and therefore, the algorithm of Hosseini ef al. [2025]
is basically optimal. Moreover, the topology created in the
following hardness proof is so that if we remove a single ver-
tex, we obtain a disjoint union of paths. This time, we reduce
from UNARY BIN PACKING parameterized by the number of
bins [Jansen et al., 2013].

Theorem 7. Unless FPT = W[1] there is no FPT algo-
rithm with respect to the number of agents |N| that finds an
MMS and non-wasteful allocation, even if the instance is un-
weighted and the distance to disjoint paths of G is one.

7 Restricted Topologies

In this section, we take a closer look at the computational
(in)tractability of fair distribution of delivery orders via dif-

ferent restrictions of the topology. Apart from the theoretical
significance of such an approach [Igarashi and Zwicker, 2024,
Zhou et al., 2024; Schierreich, 2024], the study is also driven
by a practical appeal. It arises in multiple problems involv-
ing maps or city topologies that the underlying graph model
usually possesses certain structural properties that can be ex-
ploited to design efficient algorithms for problems that are
computationally intractable in general (see, e.g., [Elkind et
al., 2020; Agarwal et al., 2021; Knop and Schierreich, 2023]
for a few examples of such studies).

7.1 Star-Like Topologies

Topologies isomorphic to stars are particularly interesting for
applications where, after processing each order, an agent must
return to the hub. One such example is moving companies,
where loading a vehicle with more than one order at a time is
usually physically impossible.

In contrast to the previous intractability for weighted in-
stances, the following result shows that if G is an unweighted
star, then MMS and non-wasteful allocation can be found ef-
ficiently.

Proposition 3. If G is a star and the input instance is un-
weighted, an MMS and non-wasteful allocation can be found
in linear time.

The previous positive results naturally cannot be general-
ized to the weighted setting as of Theorem 6 already for in-
stances with two agents. However, the hardness in Theorem 6
heavily relies on the fact that the weights of the edges are ex-
ponential in the number of orders. This is not a very natural
assumption for real-life instances. In practical instances, it
is more likely that the weights will be relatively small com-
pared to the number of orders. Fortunately, we show that, for
such instances, an efficient algorithm exists for any constant
number of agents. The algorithm uses as a subprocedure the
MULTI-WAY NUMBER PARTITION problem, where the goal
is to partition a set of numbers A into subsets Ay, ..., Ay so
that max;e(x) D ,c 4, @ is minimized. This problem is known
to admit a pseudo-polynomial time algorithm [Korf, 2009].

Theorem 8. For every constant ¢ € N, if G is a weighted
star and |N| = ¢, an MMS and non-wasteful allocation can
be found in pseudo-polynomial time.

7.2 Bounded-Depth Topologies

Stars rooted in their center are rather shallow trees; in par-
ticular, they are the only family of trees of depth one. It is
natural to ask whether the previous algorithms can be gener-
alized to trees of higher depth. In the following result, we
show that this is not the case. In fact, our negative result is
even stronger and shows that we cannot hope for a tractable
algorithm already for unweighted instances of depth two and
with diameter four.

Theorem 9. Unless P = NP, there is no polynomial-time al-
gorithm that finds an MMS and non-wasteful allocation, even
if the instance is unweighted, the depth of G is two, the diam-
eter of G is four, and the 4-path vertex cover number of G is
one.



The structural parameter 4-path vertex cover mentioned in
the previous result can be seen as the minimum number of
vertices we need to remove from the topology to obtain a dis-
joint union of stars. That is, topologies with bounded 4-path
vertex cover are generalizations of stars and apply to an even
wider variety of real-life instances.

In contrast to the previous hardness result, we show that
if the problem is parameterized by the 3-path vertex cover
number of the topology, there exists an FPT algorithm. A
set of vertices C' is called the 3-path vertex cover (3-PVC)
if the graph G’ = (V \ C, E) is a graph of maximum de-
gree one. The size of the smallest possible 3-PVC is then
called the 3-path vertex cover number or dissociation num-
ber of G [Papadimitriou and Yannakakis, 1982]. This param-
eter, albeit less common, has been used to obtain tractable
algorithms in several areas of artificial intelligence and mul-
tiagent systems [Xiao et al., 2017; Griittemeier et al., 2021;
Knop et al., 2022; Griittemeier and Komusiewicz, 2022], and
is also a generalization of the well-known vertex cover; if
we remove vertex cover vertices, we obtain a graph of maxi-
mum degree zero. It is worth mentioning that a minimum size
3-PVC of a tree can be found in polynomial time [Papadim-
itriou and Yannakakis, 1982]. Therefore, any algorithm for
the fair division of delivery orders can first check whether the
topology possesses bounded 3-PVC and, if yes, employ our
algorithm.

Theorem 10. If the instance is parameterized by the 3-path
vertex cover number ¥ and the number of different weights 1,
combined, an MMS and non-wasteful allocation can be found

in FPT time.

The algorithm from Theorem 10 uses as the sub-procedure
the FPT algorithm for the parameterization by the number
of internal vertices and the number of different edge-weights.
In fact, we show that any instance with 3-pvc ¥ and v dif-
ferent edge-weights can be transformed to an equivalent in-
stance with O (2¢) internal vertices and O (?) different
edge-weights. Such a reduced instance can then be directly
solved in FPT time by the algorithm from Theorem 4.

7.3 Topologies with Central Path

When the topology is a simple path, we can find an MMS
and non-wasteful allocation in polynomial time: just allocate
each leaf to a different agent. Moreover, this approach works
even if the instance is weighted.

Proposition 4. If G is a path, an MMS and non-wasteful al-
location can be found in linear time, even if the instance is
weighted.

Therefore, the following set of results explores the com-
plexity picture for instances that are not far from being paths.
More specifically, we focus on topologies where all vertices
are at a limited distance from a central path. Such topologies
may appear in practice very naturally, e.g., in instances where
the central path is a highway, and the other vertices represent
smaller towns along this highway.

Unfortunately, by the intractability results for weighted
stars (cf. Theorem 5), we cannot expect any tractable algo-
rithms for topologies with distance to the central path greater

or equal to one. Nonetheless, focusing on unweighted in-
stances, we give a polynomial time algorithm for graphs
where each vertex is at a distance at most one from the central
path; such graphs are commonly known as caterpillar trees.

Theorem 11. If G is a caterpillar tree and the instance is un-
weighted, an MMS and non-wasteful allocation can be found
in polynomial time.

Proof Sketch. The crucial part of the algorithm is a sub-
procedure that, for a given g, returns an allocation 7 such that
the maximum over all bundle costs is ¢, if such an allocation
exists. The sub-procedure is based on the sequential elim-
ination of agents to whom we greedily assign the leaves at
the largest distance from the hub h. The algorithm then sim-
ply tries all ¢ € [m] in increasing order and terminates once it
reaches ¢ for which the sub-procedure returns a partition. [

The natural subsequent question is whether we can gener-
alize the algorithm from the previous section to larger dis-
tances from the central path. It turns out that, without further
restriction, this is not the case. In fact, the topology used
in the proof of Theorem 9 has all vertices at a distance at
most two from the central path, and the created instance is
unweighted.

Corollary 3. Unless P = NP, there is no polynomial time al-
gorithm that finds an MMS and non-wasteful allocation, even
if all vertices are at a distance at most two from the central
path, the central path consists of a single vertex, and the in-
stance is unweighted.

8 Concluding Remarks

Our work extends the fair delivery problem to settings with
weighted edges, proposes non-wastefulness as an efficiency
concept, and provides a comprehensive landscape on de-
signing tractable algorithms. We believe that our fixed-
parameter and polynomial-time algorithms for computing
MMS and non-wasteful allocations may give insights into
further strengthening the efficiency notions, e.g., to PO.

Naturally, fair division of delivery orders can extend be-
yond tree topologies. However, in the presence of cycles,
the properties of the model become much more complicated.
First, if we allow for arbitrary graphs, already computing
the shortest walk needed to service each bundle is compu-
tationally intractable, as it requires solving a variant of the
travelling salesperson problem [Schierreich and Suchy, 2022;
Blazej et al., 2022].

One promising research direction is to study our model
in a more dynamic environment. First, one can study the
model with temporal trees, where some of the edges are not
available in every time-step [Schierreich, 2023; Holme and
Saramiki, 2019]. A different approach is to study the re-
peated or temporal distribution of orders, where we are inter-
ested in the allocation of (possibly different) orders on each
day for a period of days and the goal is to achieve certain fair-
ness guarantees a) for each day and b) for the entire period of
time [Cookson et al., 2025; Igarashi et al., 2024].
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