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ABSTRACT

Ethical, Interpretable/Explainable, and Responsible AI are an active area of re-
search and important social initiative. Vendors offer solutions. For instance,
Microsoft compiled a platform, Responsible AI. Within the context, challenges
of algorithmic fairness and trustworthiness of machine learning are paramount.
Furthermore, several authors argue that the emergence of algorithmically infused
societies necessitates innovative approaches to measuring feasible information, e.g.,
collecting data shall follow a trustworthy social theory. In this paper, we show that
this approach is heuristic at best.
We prove that, with no regards to data, fairness and trustworthiness are algorith-
mically undecidable for a basic machine learning task, the binary classification.
Therefore, even the approach based on not only improving but fully solving the
three usually assumed issues – the insufficient quality of measurements, the com-
plex consequences of (mis)measurements, and the limits of existing social theories
– is only heuristics. We show that, effectively, the fairness of a classifier is not
even a (version of bias-variance) trade-off inasmuch as it is a logical phenomenon.
Namely, we reveal a language L and an L−theory T for binary classification task
such that the very notion of loss is not expressible in the first-order logic formula
in L.

1 INTRODUCTION

Ethical, Interpretable/Explainable, and Responsible AI are an active area of research and important
social initiative. Vendors offer solutions. For instance, Microsoft compiled a platform, Responsible
AI. Within the context, challenges of algorithmic fairness and trustworthiness of machine learning
are paramount. Furthermore, several authors argue that the emergence of algorithmically infused
societies necessitates innovative approaches to measuring feasible information, e.g., collecting data
shall follow a trustworthy social theory [3]. Difficulties, associated with such approach, can be found
in [7]. Moreover, in this paper, we show that this approach is heuristic at best.

We prove that, with no regards to data, fairness and trustworthiness are algorithmically undecidable
for a binary classification task (cf. [4], [5]). Therefore, even the approach based on not only improving
but fully solving the three usually assumed issues – the insufficient quality of measurements, the
complex consequences of (mis)measurements, and the limits of existing social theories – is only
heuristic. We prove that, effectively, the fairness of a binary classifier is not even a trade-off (e.g., a
version of bias-variance/complexity etc.) inasmuch as it is a logical phenomenon. Namely, we reveal
a language L and L−theory T for binary classification task such that the very notion of loss is not
expressible in the first-order logic L-formula.

Note that the essence of a "mass view" approach is that unlike in a traditional machine learning
context, we are not making any assumptions on nature of a classifier loss, other than it should provide
a way to compare two (potentially different) classifiers. Under this very broad perspective, it turns
out that, in a natural model, the loss of a classifier is inexpressible as a first-order logic expression (cf.
Appendix for the definitions). Without loss of generality, it follows that any feasible definition of
fairness for machine learning classification task is undecidable. Indeed, one has to assume that two
classifiers have to be comparable in their performance characteristics in the first place. If the latter is
not expressible, then one cannot achieve a sensible conclusion on fairness. By the same token, since
all derived heuristics such as transparency, interpretability and trust, must include a notion of fairness,
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the undecidability result immediately generalizes to these concepts (thus complementing results of
[4]).

More specifically, we present an almost surely decidable model where the classifier loss is not
expressible. Thus, undecidability of a classifier loss is not necessarily associated with undecidability
of the model. However, if we utilize yet another view of binary classifiers over an infinite domain,
the class, viewed as a lower bounded lattice, is (first-order logic) undecidable.

Throughout the paper, we consider the natural generalization of the binary classifier for the infinite
domain.

Our goal is to introduce a purely logical view on loss for a binary classifier on an infinite domain. It
is achieved by introducing a general notion of classifier loss based on an observation that any natural
loss is a first-order formula in a suitable structure. The latter has a theory T represented by a tuple
〈L,M〉 where L is a language and M is model for L.

Next, we will show that the resulting first-order theory T admits an extension RGext on random
graph structure such that a notion that a graph has an equal number of connected and unconnected
nodes is not expressible in the RGext-first-order logic. The binary classifiers’ structure is isomorphic
(with probability 1 to T . Therefore, if a first-order sentence in one theory is deducible (i.e., can be
proved) in that theory, the corresponding sentence is deducible in another.

Then, for two given classifiers, assuming that the classifier loss is a first-order logic formula, C1 ≡
〈D,Lc1〉 and C2 ≡ 〈D,Lc2〉, we can construct a first-order expression Lc1 − Lc2 = 0 which
is equivalent to an expression that the two classifiers have the same number of connected and
unconnected nodes which leads to contradiction. This effectively means that any loss function is not
expressible in the RGext-first-order logic. The rest of the paper is dealing with the proof of these
statements. It is interesting to compare this with a general undecidability of identities for wide class
of functions in [1].

We conclude with discussion of losses expressible in second and higher logic theory and immediate
implications for adopting them on fairness and interpretability (the extended version of the paper
contains more information on each of these topics).

1.1 NOTATIONS AND DEFINITIONS

We will try to make this paper self-sufficient and provide all necessary references to the reader
who would like to invest more time into the mathematical foundations of machine learning and
interpretablity. We would need some information from model theory. We assume that the reader is
familiar with the concepts of domain, classifier, and loss as well as the standard body of statistics and
probability theory normally used in a supervised machine learning. Notations are natural; N denotes
the set of natural numbers, Z stands for integers, and R denotes reals. R+ would be positive reals. L
or l normally stands for a loss unless it is a space which is then defined explicitly. S ∼ D means a
sample from a distribution D; contextually, D can stand for a domain.
In general, we assume an infinite countable domain.
Traditionally, given a hypotheses space H and domain Z, loss l is a non-negative real function
l : H × Z → R+.

We denote LD(h) a standard expected loss of a binary classifier h ∈ H over domain X where
H is a hypotheses space, with respect to a probability distribution D; by definition: LD(h) =
Ez∼D[l0−1(h, z)], and, since for 0-1 loss Z ranges over pairs,

l0−1(h, (x, y)) =

{
0 if h(x) = y
1 if h(x) 6= y

.

We also need some definitions from model theory and logic. A filter α on the set of natural numbers
N is a collection of sets of natural numbers obeying the following axioms:
1) If E ⊂F ⊂N and E ∈α then F ∈α;
2) If E ∈α and F ∈α then E ∩F ∈α;
3) Empty set ∅ /∈ α.
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An ultrafilter α on the natural numbers is a filter which obeys an additional axiom:
If E ⊂N then exactly one E or N\E ∈α.
A non-principal ultrafilter α is an ultrafilter that obeys one additional axiom yet:
4) No finite set belongs to α.

It easy to see that non-principal ultrafilters exist. We can start with the filter of cofinite
(i.e., the complements of finite sets in N), and applying Zorn lemma [3] to embed the filter into
an ultrafilter. We call an ultrafilter principal if it is not non-principal. One can prove that every
non-principal ultrafilter is of the form {E ⊂ N|n ∈ E}, where n is a natural number.
One fundamental property of binary classifier µ : 2N → {0, 1}, if it maps σ-large sets to 1, and
σ-small sets to 0, is that it is a finitely additive probability measure. Moreover, every finitely additive
probability measure has this form.

We also are going to use an important tool from model theory that is called ultraproduct
∏

i∈I Li/U
where Li are some algebraic structures indexed by i ∈ I , and U is an ultrafilter.
Algebraic operations on the ultraproduct are defined the same way as in a Cartesian product of Li

and the ultraproduct is a quotient set with respect to relation � which is defined as follows: x � y iff
{i ∈ I|xi = yi} ∈ U .

Since we need some notions from lattice theory, we remind the fundamentals of it. Lattice is a
partially ordered set in which any two elements have a supremum and an infimum. Zl, l ∈ N is a
lattice (Zl,≤) if we set a ∧ b = inf{a, b} and a ∨ b = sup{a, b}.

Then Zl is an algebra and a lattice. For a lattice L, we put ↑ a = {b ∈ L|b ≥ a} and
↓ a = {b ∈ L|b ≤ a}.

If we fix the domain, then a multi-class classifier, as a structure, is defined (by the lattice isomorphism)
by the ordered set of values in Zl.
LD(A) denotes a standard 0-1 loss for a binary classifier A.

Finally, we need to touch decidability. Intuitively, it is the situation in first-order logic theory when
we can find an effective algorithm that decides whether a well-defined formula for the theory is true
(in particular, it does not loop indefinitely – the very reason why halting problem is undecidable).
The first-order logic is a natural setting for the context, because the second order (and, in general, a
higher order) logic only leads to difficulties in any formalization or contemporary understanding of
interpretability. The celebrated Gödel incompleteness theorem, for instance, deals with the second
order formulas.

These definitions are sufficient for our purposes. We need only point out that these funda-
mental notions normally are essential for a non-standard analysis. However, we deal with a standard
context herein and just use them in some proofs.

1.2 RANDOM GRAPH CLASSIFIERS

There is one interesting class of classifiers, similar in nature to binary classifiers, such that its first-
order theory is almost for sure decidable (in the sense of probability). This class is associated with
random graphs. We would call those the random (binary) classifiers.
The class is defined as follows. Assume that domain is enumerated (countable). Consider a graph
with vertex set N of all natural numbers. Pick a "random" binary classifier A which is the one that
decides on every scoring randomly, with probability 1

2 . 1. Let RG be the resulting structure.

To decide whether there is an edge between x and y (with x 6=y), we check values A(x) and A(y). If
they coincide, then, by definition, there is an edge, otherwise there is not. Being viewed as a structure,
the class of binary classifiers is a bounded lattice in case of a finite domain, and a left bounded lattice
in case of infinite domain.

1In fact, the very same proof works if, within the context, we assume a ratio p
q

where p and q are integer
numbers such that 0 ≤ p

q
≤ 1.
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The class of all graphs built this way forms the class of random graphs. We show next that all these
graphs are isomorphic (as graphs) with probability 1 (i.e., almost for sure). Namely, consider two
disjoint finite subsets of N , X and Y , with respected sizes n and m. Consider now an element x ∈ N
that is joined to every element of X and no element in Y ; we would call that a property P . Given
any vertex x, the probability it does not have the property P above is p = 1 − 2−(n+m). So, for
m different vertices, the probability that none of them has the desired property is pm. Clearly, this
would converge to zero if n is going to infinity. Thus, at least one x ∈ N will have the property, with
probability 1. Taking into account the fact that there are only countably many disjoint pairs (X,Y )
of finite sets in N× N, with probability 1, for each pair (X,Y ) we can find a vertex that x is joined
to every vertex in X and to no vertex in Y . Let P be that property.

Denote the resulting structure by RGext defined by the property P . Any binary classifier
C ≡ 〈D,Lc〉 may be viewed as an element in RG where each element of the domain is represented
by a pair of vertices in RG. Loss of the classifier C is defined accordingly and becomes a first-order
expression in the theory T ≡ L0Ext-theory where L0Ext is the extension of basic logical language
L0 extended with the property P .

From that point, we can simply repeat the arguments from [2], Chapter IV.23, pp.645-646 and deduce
that the first order theory of random graphs is almost surely decidable, so the first order logic theory
of binary classifiers, associated with random graphs, is almost surely decidable too.

In particular, we can consider the extension RGext for RG with additional property that with
probability 1, for every pair (A,B) of disjoint subsets in our domain, there is a vertex v such that v
joined to every vertex in A and no vertex in B.

Q.E.D.

Namely, we have the following

Proposition 1.1. The theory L0Ext of random graph classifiers RGext is almost surely decidable.

For completeness, we provide the proof based on an extension in the appendix.

2 MAIN RESULT

2.1 INEXPRESSIBILITY OF FAIRNESS

Let theory T be (as above) the L0Ext-theory of binary classifiers based on structure RGext. Despite
of the fact that the theory is almost surely decidable, once cannot use any first-order expression to
compare two binary classifiers. Namely, the following theorem holds:

Theorem 2.1. Two binary classifiers cannot be compared fairly using any first-order logic expression
in T .

Proof. Assume that the classifier loss is expressible in L0Ext-first-order logic of T . By Marker’s
theorem for almost sure theory of graphs (e.g., cf. [2], p. 646), the theory T obeys a zero-one law
which states that for any L0Ext-sentence φ the probability pN (φ) tends to zero or tends to 1 as
N → inf . On the other hand, one can see that the probability that a random graph contains r(Nr )
edges tends to 1/r as N tends to infinity for any integer r > 1.

Translating this to classifiers in RGExt, consider any non-trivial classifier. Its loss function then
would tend to one or zero as we enumerate the elements of domain. Thus, we witness a contradiction
with the fact that the limit is between zero and one. Q.E.D.

4



Under review as a conference paper at ICLR 2023

{1}

a

b c
{0}

Figure 1: Finite Lattice Diagram representation

3 UNDECIDABILITY

Theorem 3.1. Given a domain D, the class of binary classifiers over D (viewed as lower bounded
lattices) is (first-order logic) undecidable.2

Proof.
The main idea is to show that the class is not closed under ultraproducts (or Cartesian products). Then,
the class is not axiomatizable. As a consequence, being viewed as a structure, it is not decidable.
We first consider the case of finite domain. Strictly speaking, not every binary classifier, viewed as a
structure, is a lattice. However, if it is, the immediate observation is that, up to a lattice isomorphism,
such binary classifier is bounded. Namely, for a lattice L, a ∈ L consider set ↑ (a) = {b ∈ L|b ≥ a}.
A lattice homomorphism h : M → L is lower bounded if for any a ∈ L, set h−1(↑ (a)) is either
empty or has the least element. A lattice is lower bounded, if any homomorphism from a finitely
generated free lattice is lower bounded. Dual definitions are established for the upper bounded
lattices.

If lattice is lower and upper bounded, then it is called bounded. Any binary classifier is lower bounded
as a lattice if it is representable as a lattice. It is obvious for finite classifiers, since we can view
classifier as a lexicographically ordered sequence of pairs (xi, yi), i ∈ N and thus it contains 0 (the
lowest bound) . Given a finite domain, it also contains 1; any homomorphism preserves 0s and 1s.
For an infinite domain D, we assume it can be countably enumerated (thus, the order of the product
D × D is lexicographical). Then, any classifier on such domain is lower bounded, since D, as a
lattice, would contain 0.

Any finite lattice L can be identified as a binary classifier l : L× L → {0, 1} that is associated with
the lattice diagram in the following manner. The lattice is represented, up to isomorphism, by its
diagram which is a directed graph G = G(V,E) such that for every v ∈ V ⊂ L there is no x such
that a > x > c for vertices a and c with edge e(a, c) (covering property). The direction of the e is
pointing towards a smaller element. Then we simply set classifier l value to 1 for the pair (a, c). If a
pair (x, y) is not in the diagram, we set the value to zero. It is not difficult to check that the diagram
can be restored from the classifier only one way (cf. figure 1 for the process, l(a,c) →1 and l(c,a) →0).

2(Informally, there is no efficient algorithm that decides whether a well-formed formula in the first order logic
theory of binary classifiers is true. Therefore, if we try to find an "interpretable" explanation for a phenomenon
being explained by a model, then, in general, that explanation may not be possible to formulate in first order
logic terms. One may argue that this reduces the very notion of interpretability to heuristics).
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We need the following result from [6].

Theorem 3.2. There are finite lower bounded lattices Li, i ∈ I for Cauchy filter D such that∏
i∈I Li/D is not lower bounded.

The theorem is stated there for just bounded lattices; however, it is valid for lower bounded lattices as
well - for completeness, we present the proof in the appendix. To prove our result, theorem 3.1, we
only need to notice that, according to the theorem 3.2, the product is a lattice, but it is no longer a
binary classifier, that is, there are finite (lower bounded) binary classifiers such that their ultraproduct
is not a binary classifier.

Q.E.D.

4 CONCLUSION

An elementary class (or axiomatizable class) consists of all structures satisfying a fixed first-order
theory. There are a few limitations of expressiveness of elementary classes. Theorem 3.1 seems
to be a reason to move to the second-order logic; however, with higher expressiveness, and some
inheritance of the first-order logic properties, there are important negative effects, associated with
completeness and compactness theorems. More practical approach is to use the first-order logic.

Discussion One may ask a natural question whether the second-order and higher order logic is
more suitable for the modeling the machine learning tasks for formalization of fairness, because
the first-order logic has quantifiers’ scope "reduced" to elements, rather than sets. Clearly, binary
classification task is only useful tool if we can verify the model at the individual level (e.g., the target
"malignant/non-malignant" tumor in medicine). Moreover, we would like our formalism be as simple
as possible, that is, our expression of boolean target shall refer to individual prediction rather than
subset of those, because the problem of defining and selecting the subsets is likely (and, logically,
will be) more complex than our task in the first place, at least, for majority of practical problems. By
the same token, interpretability requires its scope to be at the individual elements.

Once more point is permissible here for computer science settings. The mass view approach is
fundamentally different from adopted (un)decidability patterns of computability theory (e.g., Rice
theorem about semantic properties of a program). It is a viewpoint inspired by model theory.

In addition, one important consideration is due to formal verification. Many modern verifiers and
theorem provers use a higher order logic since they employ type theory. However, the verification
and automatic proving are yet other research domains that are not being discussed in this paper.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1.1

Theorem A.1. RGext is almost surely decidable.

Proof. This is a completion of the proof sketched in the main text. We aim to construct an extension
for the first-order theory such that it is almost for sure decidable. In the main text, we proved that,
with probability 1, there is a countably many disjoint pairs (X,Y ) of finite sets, for every such pair
one can find x ∈ X that is joined to every vertex in X and to no vertex in B. That extension property
formalization is as follows:

(i) ∀x∀y x ∼ y → y ∼ x;
(ii) ∀x ¬(x ∼ x);
(iii) Φn,m for n,m ≥ 0

where Φn,m is the formula:

∀x1...xn ∀y1...ym ∧n
i=1 ∧m

j=1 xi 6= yj → ∃z((∧n
i=1xi ∼ z) ∧ (∧m

i=1¬(yi ∼ z)).

Consider the theory T for graph with the extension property (i)-(iii) holds for any pair of disjoint
finite set of vertices. By the argumentation above in the main text, with probability 1, random
classifiers are models of T .

Moreover, any two countable models of T are isomorphic. The isomorphism can be con-
structed as follows. Induction. Given model M1 and M2, and enumerations a0, a1, ... of vertices in
M1 and b0, b1, ... of vertices in M2, let set f(a0) = b0. For a1, if a1 is joined to a0, find a vertex
that is joined to b0, and in similar way, if not. These are property Φ1,0 and Φ0,1 correspondingly.
Selecting alternatively an image for the first ai that does not yet have an image, and preimage for the
first bj that does not yet have preimage, and a regular case of Φi,j , we continue by induction.
The theory T is complete. Furthermore, there is an algorithm that decides whether any formula or its
negation are true in very model of T . That is a simple corollary from the previous considerations. To
prove completeness, assume that the opposite is true. Then, by compactness theorem, there are two
countable models M1,M2 such that a formula is true in M1, but its negation is true in M2. This
would mean that there are two non-isomorphic models of T which is not the case. Similarly, to
prove that there is a deciding algorithm for T , for any formula, one would search the proofs for it or
its negation. By completeness theorem (Gödel, Henkin), syntactic and semantic consequence are
equivalent for first-order logic, so we will find eventually a proof for the formula or its negation.

To prove almost for sure decidability for random graphs, we only need to notice that T provides
the proof for a formula φ or its negation. The proofs are finite, so the proof can use only finitely
many statements Φn,m. Thus, there exists m ∈ N such that if M |= Φm,m, then M |= φ. As we saw
before, the probability of M |= Φm,m tends to 1 when m → 0, so is the probability of M |= φ. This
means that the first order theory of random graphs is almost surely decidable.
Q.E.D.

A.2 PROOF OF THEOREM 3.2

Proof.

That statement is the main result of [6]. Following the very construction of [6], we need only to build
an ascending chain of elements in the free lattice that its image under natural embedding saves the
order of elements.

Next, given a domain, we can identify classifier with an embedding into an inverse limit of finite
bounded lattices. More specifically, let X will be a finite set with at least free elements (that is not a
real restriction for binary classifier case, because logically multinomial classifier can be split into a
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sequence of binary ones), and let F (X) be a free lattice generated by X. It is known [8] that F (X)
embeds into an inverse limit of finite bounded lattices.

Specifically, there are finite bounded lattices, Li, i < ω, and surjective lattice homomorphisms
πij : Lj → Li, i ≤ j < ω such that πii = IdLi and πik = πijπjk for all i ≤ j ≤ k < ω,
and an embedding φ : F (X) →

∏
i<ω Li for which πiφ = πijπjφ with any i ≤ j < ω where

πk :
∏

i<ω Li → Lk is the canonical projection for any n < ω.
Fix a filter Φ over ω, e.g., the filter of all cofinite subsets of ω. Then the map
ξ : F (X) →

∏
i<ω Li/Φ; ξ : a → φ(a)/Φ is a lattice homomorphism, by definition. In

fact, it is a lattice embedding. Namely, suppose a 6= b in F (X), then we have πiφ(a) 6= πiφ(b)
for some i < ω. For the inverse limit, it means that πnφ(a) 6= πnφ(b) for all n ≥ i. Immediately,
ξ(a)/Φ 6= ξ(b)/Φ.
Next, consider t ∈ F (X) and an ascending chain {ai, i < ω} in F (X). Then
{πnφ(an)|n < ω}/Φ ≤ ξ(t) if and only if an ≤ t for all n < ω.
We will prove now that homomorphism ξ is not lower bounded. It is known (cf. [8], Example 1.24,
Whitman) that F (X) contains an infinite ascending chain {an|n < ω} which does not have a least
upper bound.
Consider a = (πnφ(an)|n < ω)/Φ . Since 1F (X) ∈ ξ−1(↑ a), it follows that the last set is non-empty.
Therefore, if we choose an arbitrary element t from the set, we have ξ(t) ≥↑ a. As we saw before, it
means we have t ≥ an for all n ≤ ω. Since t is not a least upper bound for the sequence {an|n < ω},
there exists t1 such that t > t1 ≥ an for all n < ω. As usual, it means that ξ(t1) ≥↑ a and
thus t1 ∈ ξ−1(↑ a). Hence the set ξ−1(↑ a) does not have a least element, i.e., ξ is not lower bounded.

Q.E.D.

One variation of the proof for binary classifiers is based on the following consideration. For finite and
countably infinite domains, binary classifier is a distributive lattice over N if we set {a ∨ b, a ∧ b} =
{a, b} ∀a, b. As is known, for very partial set (poset) C there exists a unique, up to isomorphism,
free completed distributed lattice L over C with embedding φ : C → L such that for every distributed
lattice M , and a monotone function f : C → M there exists a unique homomorphism fφ that the
following diagram is commutative:

C L

M M

ϕ

f fφ

id

This allows us to uniquely identify a classifier (as a distributive lattice) with a free distributed lattice
embedding; more precisely, with its image under the embedding φ. Since L is a free lattice generated
by C, it, in turn, embeds into inverse limit of free finite bounded lattices [6].

Next, it is sufficient to prove that there are finite lower bounded lattices the embedding above, that
are identified as binary classifiers, that for a non-principal ultrafilter D (e.g., ω), the ultraproduct∏

i∈I Li/D is not lower bounded.
Then, we can find an infinite chain in the embedding directly, and the rest of the proof is as above.

A.3 FORMAL DEFINITION FOR LANGUAGE L

Let L be a language (an extension of a basic formal logical language, L0).

Definition The set of L−terms is the smallest set Lt such that contains all constant symbols of L,
all variables, and if t1, t2, ..., tn are in Lt then for any n-ary function symbol f , f(t1, t2, ..., tn) is
also in Lt. Set La of atomic formulas are represented by the properties:
(1) if t1 and t2 are terms then t1 = t2 is in La, and
(2) the corresponding n-ary function symbols are also in La.
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In other words, the set of all formulas in L (expressions, sentences - herein, we use these interchange-
ably) is the smallest set containing all atomic formulas and closed under logical connectives ∨, ∧, ¬,
→, ↔, quantifiers ∃, ∀, equality symbol ” = ”, parenthesis ”(” and ”)”, and variables.
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