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Abstract001

In the field of economics, analyzing market002
news for commodities like oil is crucial for003
forecasting trends and making informed deci-004
sions. The sheer volume of news data requires005
efficient methods for sentiment analysis. This006
thesis explores the use of language models for007
sentiment analysis within the oil commodity008
market, focusing on extracting information re-009
lated to price, supply, and demand dynamics010
from daily news. The study investigates the ef-011
ficacy of zero-shot and few-shot learning, along012
with the use of adapters for continuous train-013
ing, in both small and large language models.014
It is hypothesized that few-shot prompt engi-015
neering offers a cost-effective and efficient so-016
lution for sentiment analysis in this context.017
The research examines the performance of vari-018
ous models, including those trained on domain-019
specific datasets and those continuously trained020
with adapters. The findings contribute to de-021
veloping more accurate and efficient tools for022
economic analysis and forecasting, while also023
considering the environmental impact of differ-024
ent techniques.025

1 Introduction026

The rapid advancement of Domain-Specific Artifi-027

cial Intelligence (DSAI) models has revolutionized028

complex tasks like economic analysis(Leck, 2022;029

Liu et al., 2020), promising unprecedented accu-030

racy and efficiency. However, critical gap exists031

in the evaluation of these powerful models. Al-032

though research focuses primarily on the method-033

ological efficacy of training and fine-tuning DSAI,034

the crucial perspectives of computational cost and035

energy consumption are often overlooked. This036

omission hinders the development of truly sustain-037

able and scalable DSAI solutions, potentially lead-038

ing to resource-intensive deployments that are nei-039

ther economically nor environmentally viable.040

To address this challenge, this research inves-041

tigates the application of language models to the042

domain of economics, focusing on a multi-faceted 043

evaluation framework that encompasses not only 044

accuracy but also the computational and energy 045

costs in a scenario where only a small labeled data 046

exists. Domain specific data labeling requires sub- 047

ject matter expertise often at considerable cost. Tra- 048

ditionally, smaller models employing fine-tuning 049

techniques have been favored for such tasks. How- 050

ever, the advent of larger language models (LLMs) 051

has opened up new possibilities, particularly in 052

scenarios with limited labeled data. This study ex- 053

plores the efficacy of these emerging paradigms, 054

focusing on the potential of prompt engineering in 055

LLMs to achieve comparable or superior perfor- 056

mance with smaller models (SMLs). 057

This paper contrasts two distinct approaches. 058

First, it investigates the performance of SMLs, such 059

as RoBERTa-Base and RoBERTa-Large (Conneau 060

et al., 2019), pre-trained on economic domain- 061

specific datasets and enhanced with Quantized 062

Low-Rank Adaptation (QLoRA) adapters (Hu 063

et al., 2021; Dettmers et al., 2023) for supple- 064

mentary task-specific training. Second, it explores 065

the application of prompt engineering techniques, 066

including zero-shot and few-shot prompting, in 067

Llama3 (Dubey and et al., 2024) and MistralAI 068

(Jiang et al., 2023) LLMs. In both cases, the mod- 069

els are specifically guided to activate economics- 070

specific knowledge, ensuring domain relevance. 071

For the few-shot approach, a limited number of 072

examples are incorporated into the prompt to pro- 073

vide contextual guidance, while a system string is 074

employed to prioritize the activation of relevant 075

economic principles. 076

The central hypothesis underpinning this re- 077

search posits that few-shot prompt engineering, em- 078

ployed within the framework of LLMs, presents 079

a cost-effective and environmentally sustainable 080

solution for sentiment analysis within commod- 081

ity markets. This approach is hypothesized to at- 082

tain performance levels that are either comparable 083
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to or surpassing those of fine-tuned SML models.084

The sentiment analysis focuses on three distinct085

categories pertinent to oil markets: price, supply,086

and demand. Each sentiment category is evaluated087

wherein "Positive" denotes a projected increase088

in the respective category, "Negative" signifies a089

projected decrease, and "Neutral" indicates an ex-090

pectation of stasis or maintenance of the status091

quo. Specifically, within the context of oil markets,092

a positive sentiment regarding price forecasts an093

increase in oil prices, a negative sentiment concern-094

ing supply anticipates a reduction in oil availability,095

and a neutral sentiment towards demand suggests a096

stable level of oil consumption.097

Rigorous evaluation of the performance and re-098

source consumption of various language models099

provides valuable insights for developing more ac-100

curate, efficient, and sustainable tools for economic101

analysis and forecasting the economic dynamics102

of natural resources. The research contributes to a103

deeper understanding of how DSAI can be lever-104

aged to enhance both the accuracy and the sus-105

tainability of economic insights. This, in turn,106

will empower stakeholders to make better-informed107

choices in a rapidly evolving economic landscape.108

2 Review109

A common approach to creating a domain-specific110

expert is fine-tuning the layers of the Pre-trained111

Language Models (PLM) and then adding one or112

two output layers, known as prediction heads (Wolf113

et al., 2020). Typically, these are feed-forward lay-114

ers for classification. The bulk of the computation115

is applied to fine-tuning the language model to pro-116

duce the desired representation of the input(Min117

et al., 2021). For BERT(Devlin et al., 2018) se-118

quence classification tasks, suggestions are to fine-119

tune the representation of the special [CLS] token120

and follow with a single feed-forward layer that121

classifies it as one of the task labels. It is common122

practice to temporarily freeze the language model123

layers while initially training the feed-forward lay-124

ers and then unfreeze the language model gradu-125

ally for additional fine-tuning(Howard and Ruder,126

2018; Yang et al., 2019), there are fewer benefits127

to training the feed-forward layer alone. An al-128

ternative strategy is to fine-tune a separate small129

network of the Natural Language Processing(NLP)130

model and select only a few weights of the model131

to keep. When using adapters, such as LoRA(Hu132

et al., 2021), only the weights of the adapter are fine133

tuned. Multiple adapters could be fine-tuned, each 134

targeting and using the same frozen NLP model for 135

each fine-tuned adapter. 136

Large Language Models (LLMs) demand sub- 137

stantial video random memory(VRAM) resources, 138

making memory-efficient fine-tuning and continu- 139

ous training techniques essential. Quantized LoRA 140

(QLoRA) (Dettmers et al., 2023) addresses this 141

challenge by enabling the training and adaptation 142

of LLMs using quantized representations. During 143

training, gradients are back-propagated (Rumelhart 144

et al., 1986) through the quantized weights to up- 145

date the model (Dettmers et al., 2023). QLoRA 146

further enhances efficiency through double quan- 147

tization by quantizing the quantization constants 148

themselves, achieving additional memory savings 149

of approximately 0.37 bits per parameter (Dettmers 150

et al., 2023). By combining these quantization 151

strategies, the model can be effectively reduced and 152

converted to a 4-bit representation of the models 153

weights, facilitating adapter-based training and fine- 154

tuning. Furthermore, QLoRA introduces Paged Op- 155

timizers, a mechanism designed to mitigate mem- 156

ory spikes that occur during gradient checkpoint- 157

ing. This innovation prevents out-of-memory er- 158

rors, which have historically hindered large model 159

fine-tuning on single machines. 160

Prompting or Prompt Engineering refers to 161

adding natural language text, often short phrases, 162

to the input and output to encourage pre-trained 163

models to perform specific tasks(Yuan et al., 2021). 164

Zero-shot learning employs a pre-trained lan- 165

guage model to perform a task without any further 166

training or fine-tuning(Brown et al., 2020). The 167

prompt gives only the question and context string 168

or "system string" that is sent to the conversational 169

model. Prompts also promote a better alignment 170

of the new task formulation with the pre-training 171

objective, leading to better use of knowledge cap- 172

tured in pre-training. The closer match in pretrain- 173

ing objectives facilitates a Few-Shot Learning ap- 174

proach(Liu et al., 2021), especially for tasks with 175

small training datasets. A good prompt can be 176

worth hundreds of labelled data points(Sanh et al., 177

2021). Few-Shot learning refers to a setting where 178

the model is given one or few examples within the 179

prompt for the task at inference time as condition- 180

ing(Alec et al., 2019), but no model weights are 181

updated(Brown et al., 2020). This method employs 182

in-context learning, providing the language model 183

with K instances of context-completion pairs, con- 184

cluding with the target question for evaluation and 185
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subsequent answer generation. Few-shot learning186

results in a major reduction in the need for task-187

specific data(Brown et al., 2020). Compared to188

an approach based solely on questioning, the abil-189

ity of few-shot to improve classification even in190

the presence of misclassified examples, highlights191

the influence of four key factors on few-shot (Min192

et al., 2022): the input label mapping, the input text193

distribution, the label space, and the format of the194

examples.195

Prompts can be used for specific tasks of inter-196

est, such as sentiment analysis and directly used197

in a zero-shot, unsupervised setting; or in fully su-198

pervised or few-shot settings where all or part of199

the specific-task training data is available. A fixed200

template-style prompt can perform tuning of the201

PLM. This method has consistently been shown202

to improve performance over fine-tuning which re-203

duces the cost of computation and is a key factor204

to help reduce the environmental footprint when205

using AI.206

3 Setup207

3.1 Datasets208

This section describes the creation of the two data209

sets. Separate datasets are used for model pre-210

training and fine-tuning.211

For pre-training, the Economic Abstracts (EA)212

dataset is comprised of 2.8 million abstracts of213

published Economic papers from 1900 to 2022,214

compiled from three repositories. The Research215

Papers in Economics (RePEc) repository abstracts216

were copied using RSync and then filtered to re-217

move duplicate abstracts. Non-English abstracts218

were assessed using the Python lang-detect library219

and then removed from the dataset. Abstracts220

from the National Bureau of Economic Research221

(NBER) and the American Economic Association222

(AEA) repository were scraped using the Python li-223

braries Mechanize and BeautifulSoup. All abstracts224

from this repository are in English. Abstracts from225

NBER and AEA were compared to those from226

RePEc to remove duplicates from the dataset. The227

combined dataset results in 2.8 million unique En-228

glish abstracts.229

The Oil Markets (OM) dataset is used to fine-230

tune the sentiment analysis of the different models.231

All source information comes from news articles232

in "The Oil Bulletin." From the gathered articles,233

1000 paragraphs were randomly chosen split into234

500 for training and 500 for evaluation. Economic235

Label Total Count
Relevant 300
Not Relevant 200
Prices Positive 25
Prices Negative 32
Prices Neutral 243
Supply Positive 60
Supply Negative 52
Supply Neutral 188
Demand Positive 16
Demand Negative 22
Demand Neutral 262

Table 1: The number of paragraphs containing the spec-
ified labels in the Oil Markets Data set. One sentence
can contain multiple labels from Supply, Demand and
Prices. If Not Relevant, then it is its only label. Each
number is the total count of the label in the 500 sentence
training dataset.

experts from Canada’s central bank labeled the 236

dataset. The economists provided hierarchical la- 237

bels for these sampled paragraphs. At the first level, 238

paragraphs were labeled "Relevant" or "Not Rel- 239

evant" to oil commodities. The next level subset 240

"Relevant" paragraphs into one or more combina- 241

tions of {"Prices", "Supply","Demand"} × {"Posi- 242

tive", "Neutral", "Negative,"}. Table 1 shows the 243

counts of the labeled dataset categories. One sen- 244

tence can be tagged with multiple labels because 245

of the independence of prices, demand, and supply. 246

3.2 Zero Shot Learning 247

This study employs a zero-shot learning approach 248

to evaluate the performance of two prominent lan- 249

guage models, FinBERT and RoBERTa-Large, in 250

establishing a baseline for the sentiment analysis 251

of oil market articles. The objective is to assess the 252

inherent capacity of these models to generalize to 253

unseen data and tasks, thereby providing a bench- 254

mark for future research in this area. The energy 255

cost for zero shot learning is the Tesla V3 GPU 256

with 16GB of memory required for inference. 257

This study further extends the zero-shot learn- 258

ing paradigm to Mistral and LLama LLMs. To 259

obtain economically relevant insights, we employ 260

engineered prompts designed in consultation with 261

economists. These prompts are structured to extract 262

information pertaining to the impact of news arti- 263

cles on oil markets, specifically focusing on price, 264

demand, and supply dynamics. The energy cost in 265

this case is the inference cost using a A100GPU 266
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with 80GB of video memory.267

To ensure accurate interpretation and response268

formatting, the GPT-4 engine was instrumental in269

developing the system message. This initial prompt270

gauges the relevance of an article to the oil market,271

effectively filtering out irrelevant information and272

streamlining the analysis. Articles deemed relevant273

are then subjected to three further prompts, each de-274

signed to assess the sentiment within each of price,275

demand, and supply categories. This structured276

approach allows for a granular analysis of market277

sentiment.278

Outputs generated by these LLMs are evaluated279

against a validation set annotated by economists280

using the same labels as the training set for OM281

dataset. This comparative analysis will provide282

insights into the efficacy of LLMs in zero-shot eco-283

nomic analysis. The specific LLMs and SLMs em-284

ployed for this zero-shot learning task are detailed285

in Table 2286

3.3 Training Methodologies287

This section details the training procedures em-288

ployed to develop LoRA adapters for both289

RoBERTa-Large and Mistral-7B models to en-290

hance their sentiment analysis within the oil market291

domain. Furthermore, we discuss the energy con-292

sumption associated with each training phase.293

3.3.1 Adapter Training for RoBERTa-Large294

and Mistral-7B295

To further refine the models’ understanding of eco-296

nomic language for sentiment analysis in the con-297

text of oil market news, we employed LoRA (Hu298

et al., 2021) to train adapters for both Mistral-7B299

(Jiang et al., 2023) and RoBERTa-Large (Conneau300

et al., 2019). The EA dataset was used to im-301

part domain-specific knowledge to these adapters.302

To mitigate the computational demands of LoRA,303

we incorporated quantization techniques (Dettmers304

et al., 2023), thereby reducing memory require-305

ments and enabling training on the available hard-306

ware. This quantization also reduced the energy307

required compared to full fine-tuning.308

Table 3 provides a detailed summary of the train-309

ing hyper-parameters, including the specific low-310

rank matrices employed for each model. Notably,311

two RoBERTa-Large adapters were trained with312

distinct r-values (8 and 32) to investigate the rela-313

tionship between adapter capacity and performance.314

The training durations for these adapters were 182315

and 185 hours, respectively, which, assuming a316

similar 300 Wh power draw as pre-training, cor- 317

respond to estimated energy consumption of 54.6 318

kWh and 55.5 kWh, respectively. 319

3.3.2 Adapter Integration and Model 320

Evaluation 321

Following training, the adapters were integrated 322

into their corresponding base models. For 323

RoBERTa-Large, the adapter was incorporated into 324

the pre-existing sentiment analysis model to aug- 325

ment its economic language comprehension. For 326

Mistral-7B, the adapter was merged with the base 327

model, enabling prompt-based interaction and al- 328

lowing the model to process and respond to natural 329

language prompts. This adapter enhanced Mistral- 330

7B model, referred to as EconMistral AI, was eval- 331

uated using the same prompts employed in the zero- 332

shot and few-shot learning experiments, ensuring 333

consistency across evaluation methodologies. The 334

training of EconMistral AI took 370 hours, corre- 335

sponding to an estimated energy consumption of 336

111 kWh, again assuming a 300W power draw. 337

3.4 Fine-Tuning & Few-Shot 338

In conjunction with fine-tuning(Min et al., 2021) 339

the SLMs, we explore the effectiveness of few- 340

shot(Brown et al., 2020; Alec et al., 2019), learning 341

employing LLMs. We utilize prompt engineering 342

techniques to construct prompts that incorporate 343

a single example of each sentiment label for each 344

classification level. For the relevance classification 345

stage, the prompt includes randomly selected exam- 346

ples of both "Relevant" and "Not Relevant" articles 347

from the OM dataset. If an article is classified as 348

relevant, three distinct prompts are subsequently 349

activated. Each of these prompts contains examples 350

of "Positive," "Negative," and "Neutral" sentiments 351

specific to Price, Supply, and Demand. This few- 352

shot learning approach is evaluated using Llama 353

3.1, Mistral AI, and EconMistral, with a tempera- 354

ture setting of 1 and a maximum output token limit 355

of 1000. 356

Table 4 details the 5 fine-tuned models used in 357

this study, all trained on the OM dataset. The 358

LoRA-trained RoBERTa-Large models, which is 359

trained on the EA dataset and further trained on the 360

OM dataset, is referred to as EconRoBERTa. For 361

the LLMs, fine-tuning was implemented on a sin- 362

gle model using the QLoRA technique (Dettmers 363

et al., 2023) to mitigate GPU memory constraints, 364

and hierarchical prompts were used during the fine- 365

tuning process. To establish performance baselines, 366
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Name Parameters(Millions) temperature Max Return Tokens
Llama3.1 8,000 1 1000
Mistral AI-v.02 7,600 1 1000
FinBERT 355 N/A N/A
RoBERTa 355 N/A N/A

Table 2: Zero Shot learning engines

Model Epochs Learning Rate Rank (r) Compute Time (Hours) kWh
RoBERTa-Large 3 1e-4 32 182 54.6
RoBERTa-Large 3 1e-4 8 185 55.5
MistralAI-7B 3 1e-4 8 370 111

Table 3: Adapter Trained LoRAs, Hyperparamaters

we also fine-tuned RoBERTa-Large (Conneau et al.,367

2019) and FinBERT (Liu et al., 2020) as non-LLM368

benchmarks, while zero-shot results were used to369

benchmark LLM performance. The fine-tuning370

process demonstrated high energy efficiency, con-371

suming less than 300 Wh of energy, equivalent to372

under one hour of computation on one A100 GPU.373

3.5 Evaluation Dataset374

Model performance is evaluated using accuracy in375

Table 5 and F1 score vs energy consumption in Fig-376

ure 1 based on the 500 evaluation paragraphs from377

OM. The master labeling dataset were labeled by378

the same experts who created training OM dataset.379

4 Results380

4.1 Baseline Model and Continued Training381

The RoBERTa-Large model establishes a robust382

baseline for the study, exhibiting a high degree of383

precision in the initial task of relevance labeling.384

However, its performance falters when extended to385

the more complex task of downstream label predic-386

tion, highlighting a limitation in its generalizability.387

Subsequent models developed through the contin-388

ued training of RoBERTa largely fail to surpass389

this baseline performance, indicating diminishing390

returns from further training. A notable exception391

to this trend is the EconRoBERTa-Large-R8 model,392

which demonstrates a marked improvement specifi-393

cally in the domain of downstream label prediction.394

This anomaly underscores the potential for targeted395

model enhancements to yield significant perfor-396

mance gains in specific tasks, even when broader397

continued training approaches prove ineffective.398

Nevertheless, the broader context of these find-399

ings necessitates a critical evaluation of the trade-400

offs between performance optimization and re- 401

source expenditure. The observed marginal gains 402

achieved through continued training, including the 403

development of EconRoBERTa-Large-R8, must be 404

weighed against the substantial environmental and 405

computational costs associated with such endeav- 406

ors, consuming an addittional 185 kWh of GPU 407

resources. The relatively modest improvements 408

across most models suggest that, in many cases, 409

the resource investment may not be justified by the 410

resulting performance enhancements. This high- 411

lights the increasing importance of considering the 412

efficiency and sustainability of model development 413

alongside traditional performance metrics in the 414

field of natural language processing. 415

4.2 Model Performance 416

Table 5 presents a comparative analysis of the ac- 417

curacy of various models in assigning sentiment 418

labels to text related to oil markets. The models 419

were evaluated on their ability to classify both the 420

relevance of a given text to the oil market and the 421

sentiment expressed regarding prices, supply, and 422

demand. Accuracy, in this context, represents the 423

proportion of correctly assigned labels to the 500 of 424

the evaluated instances within the OM evaluation 425

dataset, which served as the ground truth. 426

To illustrate the interpretation of the table, con- 427

sider the performance of the Mistral AI models. 428

The "Mistral AI Few Shot" model achieved a Rel- 429

evance accuracy of 80.4%, indicating that it cor- 430

rectly identified texts relevant to the oil market in 431

approximately four out of five instances. Further- 432

more, when focusing on texts deemed relevant to 433

oil, this model demonstrated a 67.4% accuracy in 434

correctly classifying sentiment related to oil prices. 435

Similar interpretations apply to the "Supply" and 436

5



Model Epochs Learning Rate R-value
EconRoBERTa-Large 3 1e− 4 32
EconRoBERTa-Large 3 1e− 4 8
RoBERTa-Large 3 1e− 4 8
EconRoBERTapre 3 1e− 4 8
FinBERT 3 1e− 4 8

Table 4: Fine-tuned Models. The EconRoBERTa Models refer to the ones that received pre-training and continuous
training.

"Demand" columns, where the model achieved ac-437

curacies of 65% and 63.4%, respectively. Com-438

paring these figures to the "Mistral AI Zero Shot"439

model, we observe a slight improvement in rele-440

vance detection and supply sentiment classification441

when using a few-shot approach, while price and442

demand sentiment classification accuracy remained443

relatively consistent. These nuances highlight the444

impact of different prompting techniques on model445

performance across various facets of oil market sen-446

timent analysis. Analogous interpretations can be447

applied to analyze the performance of the "Econ-448

Mistral" variants and other models listed in the449

table.450

5 Discussion451

Large Language Models (LLMs) have exhibited452

remarkable capabilities across a variety of natu-453

ral language processing tasks, particularly when454

augmented by techniques such as zero-shot and455

few-shot learning. This is exemplified in the com-456

parative analysis of the EconMistral model, a Mis-457

tral AI model fine-tuned with a Low-Rank Adapta-458

tion (LoRA) adapter, and the standard Mistral AI459

model (version 0.2-Instruct). Both models demon-460

strate comparable performance gains when employ-461

ing zero-shot prompts, suggesting that the LoRA462

adaptation, in this specific scenario, fails to con-463

fer a discernible advantage. This finding raises464

questions regarding the cost-effectiveness of the465

LoRA adapter, given the substantial computational466

resources required for its training, specifically the467

estimated 111 kWhs use of energy. The investment468

of such resources appears unjustified when the re-469

sulting performance improvement is negligible in470

the zero-shot learning context.471

Furthermore, while the application of few-shot472

prompts does lead to observable improvements473

in the accuracy of relevance labeling, these gains474

do not significantly translate into enhanced down-475

stream label prediction performance. This limited476

impact suggests a potential deficiency in the current 477

methodology for selecting exemplars for few-shot 478

learning. Specifically, the reliance on a uniform set 479

of examples across different articles, irrespective 480

of their thematic nuances or specific content, may 481

be hindering the effectiveness of the approach. It is, 482

therefore, plausible that a more nuanced strategy 483

for exemplar selection, potentially one that dynam- 484

ically tailors the examples to the specific context of 485

the article being analyzed, is required to unlock the 486

full potential of few-shot learning for downstream 487

label prediction tasks. Future research should thus 488

focus on investigating context-aware exemplar se- 489

lection strategies to optimize the performance of 490

LLMs in such applications. 491

5.1 LLM Performance and Prompt 492

Engineering 493

The efficacy of large language models (LLMs) in 494

specialized tasks, such as commodity sentiment 495

analysis, is demonstrably influenced by the under- 496

lying engine architecture. A comparative analysis 497

reveals that the Llama3.1 engine exhibits a lower 498

degree of accuracy relative to the Mistral AI engine. 499

This discrepancy in performance can likely be at- 500

tributed to fundamental differences in the training 501

methodologies and information retrieval mecha- 502

nisms employed by each engine. The implication 503

is that the inherent biases and strengths developed 504

during the training process manifest as varying pro- 505

ficiencies in handling specific types of input and 506

generating appropriate outputs. 507

Consequently, prompts that are finely tuned and 508

highly effective for one engine may not yield equiv- 509

alent results when applied directly to another. This 510

observation underscores the critical role of prompt 511

engineering as a pivotal technique in optimizing 512

the performance of LLMs for specific applications. 513

Tailoring prompts to the unique characteristics of a 514

given engine, taking into account its training data, 515

architecture, and retrieval mechanisms, is essen- 516

tial for maximizing accuracy and achieving desired 517
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Model Relevance Prices Supply Demand
Mistral AI Zero Shot 76.9% 67.6% 63.6% 65.6%
Mistral AI Few Shot 80.4% 67.4% 65% 63.4%
EconMistral Zero Shot 75.3% 62.3% 60.1% 61.1%
EconMistral Few Shot 79.8% 68% 64.2% 65.6%
Llama3.1 Zero shot 60% 42.3% 45.7% 41.5%
Llama3.1 Few shot 63% 49% 43.9% 48.6%
EconRoBERTa-Large-R32 48.3% 6.1% 21.9% 3.8%
EconRoBERTa-Large-R8 60.3% 31.6% 21.5% 35.8%
FinBert 60.3% 30.5% 21.1% 33%
RoBERTa-Large (baseline) 73.5% 28.1% 19.2% 32.2%

Table 5: Accuracy table for each of the models evaluated on the 500 OM labeled dataset for evaluation. Each
percentage represent the accuracy for the proper tested label.
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Figure 1: Llama3.1 and FinBert use roughly the same amount of energy with a difference of less than one Kwh.

outcomes. In the context of commodity sentiment518

analysis, these findings highlight the necessity of a519

nuanced, engine-aware approach to prompt design520

in order to fully leverage the capabilities of differ-521

ent LLMs and achieve optimal performance across522

diverse model architectures.523

One of the key findings of this study is the sub-524

stantial compute time and environmental impact525

associated with continuous training of both small526

and large language models. Observed performance527

gains, when present, proved negligible compared to528

less computationally expensive techniques. These529

findings underscore the critical need for energy-530

efficient training methodologies to mitigate the en-531

vironmental and financial footprint associated with532

these computationally demanding processes.533

The limitations in the performance of smaller534

language models when applied to the complex task535

of sentiment analysis in the commodity market. 536

These models, even when fine-tuned with a small 537

number of expert-labeled datasets, struggled to 538

achieve adequate accuracy in predicting market sen- 539

timent. The financial and time burden associated 540

with dataset augmentation presents a significant 541

obstacle to this avenue of inquiry. 542

Large language models, especially when op- 543

timized through prompt engineering techniques, 544

demonstrated superior performance in sentiment 545

analysis. Few-shot learning emerged as a particu- 546

larly promising approach, offering a cost-effective 547

and efficient solution for sentiment analysis in this 548

context. 549

This research is of significant value for 550

economists specializing in the study of oil mar- 551

kets. Using the daily aggregate of news sentiment, 552

generated by the few-shot models, they can gain 553
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a deeper understanding of past market trends and554

dynamics.555

Future research should further explore the po-556

tential of techniques such as Adaptive Few Shot557

prompting and the use of Agentic knowledge558

graphs to improve the accuracy and robustness of559

sentiment analysis in commodity markets.560

6 Limitations561

Replication of this work necessitates utilization of562

the Azure Cloud platform for training the LoRA563

adapters and fine tuning wihtout a full refactor of564

the code. The economic abstracts were sourced565

exclusively from publicly available articles within566

the RePEc repository; while duplicate entries were567

largely eliminated, comprehensive verification of568

data uniqueness was not performed. Access to the569

proprietary, expert-annotated oil markets dataset,570

integral to this research, requires a specific license571

for the oil bulletin. Consequently, full reproduc-572

tion would require the creation of a comparable573

dataset, comprising oil market data annotated by574

domain experts, correlated with publicly accessible575

economic publications.576

While the master evaluation dataset was labeled577

by domain experts, the process was facilitated by578

startng from the Zero-Shot Learning results from579

MistralAI(Jiang et al., 2023) and then corrected580

by experts. This may add a bias when deciding if581

the label is correct, but is required to speed up the582

process.583

7 Impact Statement584

This paper aims to advance the field of Machine585

Learning while prioritizing responsible stewardship586

of environmental resources. The work specifically587

addresses the societal and environmental implica-588

tions of high computational costs associated with589

certain machine learning tasks, using sentiment590

analysis as a case study. A key finding suggests that591

smaller datasets, coupled with existing generative592

AI models below 10 billion parameters, can offer593

a more environmentally sustainable approach to594

leveraging artificial intelligence technologies. This595

method potentially mitigates the significant energy596

consumption and carbon footprint associated with597

training and deploying large-scale models, thereby598

offering a path towards democratizing access to AI599

while minimizing its negative environmental im-600

pact. The research therefore not only contributes to601

the technical advancement of the field but also em-602

phasizes the importance of considering the broader 603

societal and environmental consequences of emerg- 604

ing AI applications. 605
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