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Abstract

In the field of economics, analyzing market
news for commodities like oil is crucial for
forecasting trends and making informed deci-
sions. The sheer volume of news data requires
efficient methods for sentiment analysis. This
thesis explores the use of language models for
sentiment analysis within the oil commodity
market, focusing on extracting information re-
lated to price, supply, and demand dynamics
from daily news. The study investigates the ef-
ficacy of zero-shot and few-shot learning, along
with the use of adapters for continuous train-
ing, in both small and large language models.
It is hypothesized that few-shot prompt engi-
neering offers a cost-effective and efficient so-
Iution for sentiment analysis in this context.
The research examines the performance of vari-
ous models, including those trained on domain-
specific datasets and those continuously trained
with adapters. The findings contribute to de-
veloping more accurate and efficient tools for
economic analysis and forecasting, while also
considering the environmental impact of differ-
ent techniques.

1 Introduction

The rapid advancement of Domain-Specific Artifi-
cial Intelligence (DSAI) models has revolutionized
complex tasks like economic analysis(Leck, 2022;
Liu et al., 2020), promising unprecedented accu-
racy and efficiency. However, critical gap exists
in the evaluation of these powerful models. Al-
though research focuses primarily on the method-
ological efficacy of training and fine-tuning DSAI,
the crucial perspectives of computational cost and
energy consumption are often overlooked. This
omission hinders the development of truly sustain-
able and scalable DSAI solutions, potentially lead-
ing to resource-intensive deployments that are nei-
ther economically nor environmentally viable.

To address this challenge, this research inves-
tigates the application of language models to the

domain of economics, focusing on a multi-faceted
evaluation framework that encompasses not only
accuracy but also the computational and energy
costs in a scenario where only a small labeled data
exists. Domain specific data labeling requires sub-
ject matter expertise often at considerable cost. Tra-
ditionally, smaller models employing fine-tuning
techniques have been favored for such tasks. How-
ever, the advent of larger language models (LLMs)
has opened up new possibilities, particularly in
scenarios with limited labeled data. This study ex-
plores the efficacy of these emerging paradigms,
focusing on the potential of prompt engineering in
LLMs to achieve comparable or superior perfor-
mance with smaller models (SMLs).

This paper contrasts two distinct approaches.
First, it investigates the performance of SMLs, such
as RoBERTa-Base and RoBERTa-Large (Conneau
et al., 2019), pre-trained on economic domain-
specific datasets and enhanced with Quantized
Low-Rank Adaptation (QLoRA) adapters (Hu
et al., 2021; Dettmers et al., 2023) for supple-
mentary task-specific training. Second, it explores
the application of prompt engineering techniques,
including zero-shot and few-shot prompting, in
Llama3 (Dubey and et al., 2024) and Mistral Al
(Jiang et al., 2023) LLMs. In both cases, the mod-
els are specifically guided to activate economics-
specific knowledge, ensuring domain relevance.
For the few-shot approach, a limited number of
examples are incorporated into the prompt to pro-
vide contextual guidance, while a system string is
employed to prioritize the activation of relevant
economic principles.

The central hypothesis underpinning this re-
search posits that few-shot prompt engineering, em-
ployed within the framework of LLMs, presents
a cost-effective and environmentally sustainable
solution for sentiment analysis within commod-
ity markets. This approach is hypothesized to at-
tain performance levels that are either comparable



to or surpassing those of fine-tuned SML models.
The sentiment analysis focuses on three distinct
categories pertinent to oil markets: price, supply,
and demand. Each sentiment category is evaluated
wherein "Positive" denotes a projected increase
in the respective category, "Negative" signifies a
projected decrease, and "Neutral" indicates an ex-
pectation of stasis or maintenance of the status
quo. Specifically, within the context of oil markets,
a positive sentiment regarding price forecasts an
increase in oil prices, a negative sentiment concern-
ing supply anticipates a reduction in oil availability,
and a neutral sentiment towards demand suggests a
stable level of oil consumption.

Rigorous evaluation of the performance and re-
source consumption of various language models
provides valuable insights for developing more ac-
curate, efficient, and sustainable tools for economic
analysis and forecasting the economic dynamics
of natural resources. The research contributes to a
deeper understanding of how DSAI can be lever-
aged to enhance both the accuracy and the sus-
tainability of economic insights. This, in turn,
will empower stakeholders to make better-informed
choices in a rapidly evolving economic landscape.

2 Review

A common approach to creating a domain-specific
expert is fine-tuning the layers of the Pre-trained
Language Models (PLM) and then adding one or
two output layers, known as prediction heads (Wolf
et al., 2020). Typically, these are feed-forward lay-
ers for classification. The bulk of the computation
is applied to fine-tuning the language model to pro-
duce the desired representation of the input(Min
et al., 2021). For BERT(Devlin et al., 2018) se-
quence classification tasks, suggestions are to fine-
tune the representation of the special [C'LS] token
and follow with a single feed-forward layer that
classifies it as one of the task labels. It is common
practice to temporarily freeze the language model
layers while initially training the feed-forward lay-
ers and then unfreeze the language model gradu-
ally for additional fine-tuning(Howard and Ruder,
2018; Yang et al., 2019), there are fewer benefits
to training the feed-forward layer alone. An al-
ternative strategy is to fine-tune a separate small
network of the Natural Language Processing(NLP)
model and select only a few weights of the model
to keep. When using adapters, such as LoORA(Hu
etal., 2021), only the weights of the adapter are fine

tuned. Multiple adapters could be fine-tuned, each
targeting and using the same frozen NLP model for
each fine-tuned adapter.

Large Language Models (LLMs) demand sub-
stantial video random memory(VRAM) resources,
making memory-efficient fine-tuning and continu-
ous training techniques essential. Quantized LoRA
(QLoRA) (Dettmers et al., 2023) addresses this
challenge by enabling the training and adaptation
of LLMs using quantized representations. During
training, gradients are back-propagated (Rumelhart
et al., 1986) through the quantized weights to up-
date the model (Dettmers et al., 2023). QLoRA
further enhances efficiency through double quan-
tization by quantizing the quantization constants
themselves, achieving additional memory savings
of approximately 0.37 bits per parameter (Dettmers
et al., 2023). By combining these quantization
strategies, the model can be effectively reduced and
converted to a 4-bit representation of the models
weights, facilitating adapter-based training and fine-
tuning. Furthermore, QLoRA introduces Paged Op-
timizers, a mechanism designed to mitigate mem-
ory spikes that occur during gradient checkpoint-
ing. This innovation prevents out-of-memory er-
rors, which have historically hindered large model
fine-tuning on single machines.

Prompting or Prompt Engineering refers to
adding natural language text, often short phrases,
to the input and output to encourage pre-trained
models to perform specific tasks(Yuan et al., 2021).
Zero-shot learning employs a pre-trained lan-
guage model to perform a task without any further
training or fine-tuning(Brown et al., 2020). The
prompt gives only the question and context string
or "system string" that is sent to the conversational
model. Prompts also promote a better alignment
of the new task formulation with the pre-training
objective, leading to better use of knowledge cap-
tured in pre-training. The closer match in pretrain-
ing objectives facilitates a Few-Shot Learning ap-
proach(Liu et al., 2021), especially for tasks with
small training datasets. A good prompt can be
worth hundreds of labelled data points(Sanh et al.,
2021). Few-Shot learning refers to a setting where
the model is given one or few examples within the
prompt for the task at inference time as condition-
ing(Alec et al., 2019), but no model weights are
updated(Brown et al., 2020). This method employs
in-context learning, providing the language model
with K instances of context-completion pairs, con-
cluding with the target question for evaluation and



subsequent answer generation. Few-shot learning
results in a major reduction in the need for task-
specific data(Brown et al., 2020). Compared to
an approach based solely on questioning, the abil-
ity of few-shot to improve classification even in
the presence of misclassified examples, highlights
the influence of four key factors on few-shot (Min
et al., 2022): the input label mapping, the input text
distribution, the label space, and the format of the
examples.

Prompts can be used for specific tasks of inter-
est, such as sentiment analysis and directly used
in a zero-shot, unsupervised setting; or in fully su-
pervised or few-shot settings where all or part of
the specific-task training data is available. A fixed
template-style prompt can perform tuning of the
PLM. This method has consistently been shown
to improve performance over fine-tuning which re-
duces the cost of computation and is a key factor
to help reduce the environmental footprint when
using Al

3 Setup

3.1 Datasets

This section describes the creation of the two data
sets. Separate datasets are used for model pre-
training and fine-tuning.

For pre-training, the Economic Abstracts (EA)
dataset is comprised of 2.8 million abstracts of
published Economic papers from 1900 to 2022,
compiled from three repositories. The Research
Papers in Economics (RePEc) repository abstracts
were copied using RSync and then filtered to re-
move duplicate abstracts. Non-English abstracts
were assessed using the Python lang-detect library
and then removed from the dataset. Abstracts
from the National Bureau of Economic Research
(NBER) and the American Economic Association
(AEA) repository were scraped using the Python li-
braries Mechanize and BeautifulSoup. All abstracts
from this repository are in English. Abstracts from
NBER and AEA were compared to those from
RePEc to remove duplicates from the dataset. The
combined dataset results in 2.8 million unique En-
glish abstracts.

The Oil Markets (OM) dataset is used to fine-
tune the sentiment analysis of the different models.
All source information comes from news articles
in "The Oil Bulletin." From the gathered articles,
1000 paragraphs were randomly chosen split into
500 for training and 500 for evaluation. Economic

Label Total Count
Relevant 300
Not Relevant 200
Prices Positive 25
Prices Negative 32
Prices Neutral 243
Supply Positive 60
Supply Negative 52
Supply Neutral 188
Demand Positive 16
Demand Negative 22
Demand Neutral 262

Table 1: The number of paragraphs containing the spec-
ified labels in the Oil Markets Data set. One sentence
can contain multiple labels from Supply, Demand and
Prices. If Not Relevant, then it is its only label. Each
number is the total count of the label in the 500 sentence
training dataset.

experts from Canada’s central bank labeled the
dataset. The economists provided hierarchical la-
bels for these sampled paragraphs. At the first level,
paragraphs were labeled "Relevant" or "Not Rel-
evant" to oil commodities. The next level subset
"Relevant" paragraphs into one or more combina-
tions of {"Prices", "Supply","Demand"} x {"Posi-
tive", "Neutral", "Negative,"}. Table 1 shows the
counts of the labeled dataset categories. One sen-
tence can be tagged with multiple labels because
of the independence of prices, demand, and supply.

3.2 Zero Shot Learning

This study employs a zero-shot learning approach
to evaluate the performance of two prominent lan-
guage models, FinBERT and RoBERTa-Large, in
establishing a baseline for the sentiment analysis
of oil market articles. The objective is to assess the
inherent capacity of these models to generalize to
unseen data and tasks, thereby providing a bench-
mark for future research in this area. The energy
cost for zero shot learning is the Tesla V3 GPU
with 16GB of memory required for inference.
This study further extends the zero-shot learn-
ing paradigm to Mistral and LLama LLMs. To
obtain economically relevant insights, we employ
engineered prompts designed in consultation with
economists. These prompts are structured to extract
information pertaining to the impact of news arti-
cles on oil markets, specifically focusing on price,
demand, and supply dynamics. The energy cost in
this case is the inference cost using a A100GPU



with 80GB of video memory.

To ensure accurate interpretation and response
formatting, the GPT-4 engine was instrumental in
developing the system message. This initial prompt
gauges the relevance of an article to the oil market,
effectively filtering out irrelevant information and
streamlining the analysis. Articles deemed relevant
are then subjected to three further prompts, each de-
signed to assess the sentiment within each of price,
demand, and supply categories. This structured
approach allows for a granular analysis of market
sentiment.

Outputs generated by these LL.Ms are evaluated
against a validation set annotated by economists
using the same labels as the training set for OM
dataset. This comparative analysis will provide
insights into the efficacy of LLMs in zero-shot eco-
nomic analysis. The specific LLMs and SLMs em-
ployed for this zero-shot learning task are detailed
in Table 2

3.3 Training Methodologies

This section details the training procedures em-
ployed to develop LoRA adapters for both
RoBERTa-Large and Mistral-7B models to en-
hance their sentiment analysis within the oil market
domain. Furthermore, we discuss the energy con-
sumption associated with each training phase.

3.3.1 Adapter Training for RoBERTa-Large
and Mistral-7B

To further refine the models’ understanding of eco-
nomic language for sentiment analysis in the con-
text of oil market news, we employed LoRA (Hu
et al., 2021) to train adapters for both Mistral-7B
(Jiang et al., 2023) and RoBERTa-Large (Conneau
et al., 2019). The EA dataset was used to im-
part domain-specific knowledge to these adapters.
To mitigate the computational demands of LoRA,
we incorporated quantization techniques (Dettmers
et al., 2023), thereby reducing memory require-
ments and enabling training on the available hard-
ware. This quantization also reduced the energy
required compared to full fine-tuning.

Table 3 provides a detailed summary of the train-
ing hyper-parameters, including the specific low-
rank matrices employed for each model. Notably,
two RoBERTa-Large adapters were trained with
distinct r-values (8 and 32) to investigate the rela-
tionship between adapter capacity and performance.
The training durations for these adapters were 182
and 185 hours, respectively, which, assuming a

similar 300 Wh power draw as pre-training, cor-
respond to estimated energy consumption of 54.6
kWh and 55.5 kWh, respectively.

3.3.2 Adapter Integration and Model
Evaluation

Following training, the adapters were integrated
into their corresponding base models.  For
RoBERTa-Large, the adapter was incorporated into
the pre-existing sentiment analysis model to aug-
ment its economic language comprehension. For
Mistral-7B, the adapter was merged with the base
model, enabling prompt-based interaction and al-
lowing the model to process and respond to natural
language prompts. This adapter enhanced Mistral-
7B model, referred to as EconMistral Al, was eval-
uated using the same prompts employed in the zero-
shot and few-shot learning experiments, ensuring
consistency across evaluation methodologies. The
training of EconMistral Al took 370 hours, corre-
sponding to an estimated energy consumption of
111 kWh, again assuming a 300W power draw.

3.4 Fine-Tuning & Few-Shot

In conjunction with fine-tuning(Min et al., 2021)
the SLMs, we explore the effectiveness of few-
shot(Brown et al., 2020; Alec et al., 2019), learning
employing LLMs. We utilize prompt engineering
techniques to construct prompts that incorporate
a single example of each sentiment label for each
classification level. For the relevance classification
stage, the prompt includes randomly selected exam-
ples of both "Relevant" and "Not Relevant" articles
from the OM dataset. If an article is classified as
relevant, three distinct prompts are subsequently
activated. Each of these prompts contains examples
of "Positive," "Negative," and "Neutral" sentiments
specific to Price, Supply, and Demand. This few-
shot learning approach is evaluated using Llama
3.1, Mistral Al, and EconMistral, with a tempera-
ture setting of 1 and a maximum output token limit
of 1000.

Table 4 details the 5 fine-tuned models used in
this study, all trained on the OM dataset. The
LoRA-trained RoOBERTa-Large models, which is
trained on the EA dataset and further trained on the
OM dataset, is referred to as EconRoBERTa. For
the LLMs, fine-tuning was implemented on a sin-
gle model using the QLoRA technique (Dettmers
et al., 2023) to mitigate GPU memory constraints,
and hierarchical prompts were used during the fine-
tuning process. To establish performance baselines,



Name Parameters(Millions) temperature Max Return Tokens

Llama3.1 8,000 1 1000

Mistral Al-v.02 7,600 1 1000

FinBERT 355 N/A N/A

RoBERTa 355 N/A N/A

Table 2: Zero Shot learning engines

Model Epochs Learning Rate Rank (r) Compute Time (Hours) kWh
RoBERTa-Large 3 le-4 32 182 54.6
RoBERTa-Large 3 le-4 8 185 55.5
MistralAI-7B 3 le-4 8 370 111

Table 3: Adapter Trained LoRAs, Hyperparamaters

we also fine-tuned RoBERTa-Large (Conneau et al.,
2019) and FinBERT (Liu et al., 2020) as non-LLM
benchmarks, while zero-shot results were used to
benchmark LLM performance. The fine-tuning
process demonstrated high energy efficiency, con-
suming less than 300 Wh of energy, equivalent to
under one hour of computation on one A100 GPU.

3.5 Evaluation Dataset

Model performance is evaluated using accuracy in
Table 5 and F1 score vs energy consumption in Fig-
ure 1 based on the 500 evaluation paragraphs from
OM. The master labeling dataset were labeled by
the same experts who created training OM dataset.

4 Results

4.1 Baseline Model and Continued Training

The RoBERTa-Large model establishes a robust
baseline for the study, exhibiting a high degree of
precision in the initial task of relevance labeling.
However, its performance falters when extended to
the more complex task of downstream label predic-
tion, highlighting a limitation in its generalizability.
Subsequent models developed through the contin-
ued training of ROBERTa largely fail to surpass
this baseline performance, indicating diminishing
returns from further training. A notable exception
to this trend is the EconRoBERTa-Large-R8 model,
which demonstrates a marked improvement specifi-
cally in the domain of downstream label prediction.
This anomaly underscores the potential for targeted
model enhancements to yield significant perfor-
mance gains in specific tasks, even when broader
continued training approaches prove ineffective.
Nevertheless, the broader context of these find-
ings necessitates a critical evaluation of the trade-

offs between performance optimization and re-
source expenditure. The observed marginal gains
achieved through continued training, including the
development of EconRoBERTa-Large-R8, must be
weighed against the substantial environmental and
computational costs associated with such endeav-
ors, consuming an addittional 185 kWh of GPU
resources. The relatively modest improvements
across most models suggest that, in many cases,
the resource investment may not be justified by the
resulting performance enhancements. This high-
lights the increasing importance of considering the
efficiency and sustainability of model development
alongside traditional performance metrics in the
field of natural language processing.

4.2 Model Performance

Table 5 presents a comparative analysis of the ac-
curacy of various models in assigning sentiment
labels to text related to oil markets. The models
were evaluated on their ability to classify both the
relevance of a given text to the oil market and the
sentiment expressed regarding prices, supply, and
demand. Accuracy, in this context, represents the
proportion of correctly assigned labels to the 500 of
the evaluated instances within the OM evaluation
dataset, which served as the ground truth.

To illustrate the interpretation of the table, con-
sider the performance of the Mistral AI models.
The "Mistral Al Few Shot" model achieved a Rel-
evance accuracy of 80.4%, indicating that it cor-
rectly identified texts relevant to the oil market in
approximately four out of five instances. Further-
more, when focusing on texts deemed relevant to
oil, this model demonstrated a 67.4% accuracy in
correctly classifying sentiment related to oil prices.
Similar interpretations apply to the "Supply" and



Model Epochs Learning Rate R-value
EconRoBERTa-Large 3 le —4 32
EconRoBERTa-Large 3 le—4 8
RoBERTa-Large 3 le—4 8
EconRoBERT apye 3 le—4 8
FinBERT 3 le—4 8

Table 4: Fine-tuned Models. The EconRoBERTa Models refer to the ones that received pre-training and continuous

training.

"Demand" columns, where the model achieved ac-
curacies of 65% and 63.4%, respectively. Com-
paring these figures to the "Mistral AI Zero Shot"
model, we observe a slight improvement in rele-
vance detection and supply sentiment classification
when using a few-shot approach, while price and
demand sentiment classification accuracy remained
relatively consistent. These nuances highlight the
impact of different prompting techniques on model
performance across various facets of oil market sen-
timent analysis. Analogous interpretations can be
applied to analyze the performance of the "Econ-
Mistral" variants and other models listed in the
table.

5 Discussion

Large Language Models (LLMs) have exhibited
remarkable capabilities across a variety of natu-
ral language processing tasks, particularly when
augmented by techniques such as zero-shot and
few-shot learning. This is exemplified in the com-
parative analysis of the EconMistral model, a Mis-
tral Al model fine-tuned with a Low-Rank Adapta-
tion (LoRA) adapter, and the standard Mistral Al
model (version 0.2-Instruct). Both models demon-
strate comparable performance gains when employ-
ing zero-shot prompts, suggesting that the LoRA
adaptation, in this specific scenario, fails to con-
fer a discernible advantage. This finding raises
questions regarding the cost-effectiveness of the
LoRA adapter, given the substantial computational
resources required for its training, specifically the
estimated 111 kWhs use of energy. The investment
of such resources appears unjustified when the re-
sulting performance improvement is negligible in
the zero-shot learning context.

Furthermore, while the application of few-shot
prompts does lead to observable improvements
in the accuracy of relevance labeling, these gains
do not significantly translate into enhanced down-
stream label prediction performance. This limited

impact suggests a potential deficiency in the current
methodology for selecting exemplars for few-shot
learning. Specifically, the reliance on a uniform set
of examples across different articles, irrespective
of their thematic nuances or specific content, may
be hindering the effectiveness of the approach. It s,
therefore, plausible that a more nuanced strategy
for exemplar selection, potentially one that dynam-
ically tailors the examples to the specific context of
the article being analyzed, is required to unlock the
full potential of few-shot learning for downstream
label prediction tasks. Future research should thus
focus on investigating context-aware exemplar se-
lection strategies to optimize the performance of
LLMs in such applications.

5.1 LLM Performance and Prompt
Engineering

The efficacy of large language models (LLMs) in
specialized tasks, such as commodity sentiment
analysis, is demonstrably influenced by the under-
lying engine architecture. A comparative analysis
reveals that the Llama3.1 engine exhibits a lower
degree of accuracy relative to the Mistral Al engine.
This discrepancy in performance can likely be at-
tributed to fundamental differences in the training
methodologies and information retrieval mecha-
nisms employed by each engine. The implication
is that the inherent biases and strengths developed
during the training process manifest as varying pro-
ficiencies in handling specific types of input and
generating appropriate outputs.

Consequently, prompts that are finely tuned and
highly effective for one engine may not yield equiv-
alent results when applied directly to another. This
observation underscores the critical role of prompt
engineering as a pivotal technique in optimizing
the performance of LLMs for specific applications.
Tailoring prompts to the unique characteristics of a
given engine, taking into account its training data,
architecture, and retrieval mechanisms, is essen-
tial for maximizing accuracy and achieving desired



Model Relevance Prices Supply Demand
Mistral Al Zero Shot 76.9% 67.6% 63.6%  65.6%
Mistral Al Few Shot 80.4% 67.4%  65% 63.4%
EconMistral Zero Shot 75.3% 623% 60.1% 61.1%
EconMistral Few Shot 79.8% 68% 642%  65.6%
Llama3.1 Zero shot 60% 423% 457%  41.5%
Llama3.1 Few shot 63% 49%  43.9%  48.6%
EconRoBERTa-Large-R32 48.3% 6.1% 21.9% 3.8%
EconRoBERTa-Large-R8 60.3% 31.6% 21.5%  35.8%
FinBert 60.3% 30.5% 21.1% 33%
RoBERTa-Large (baseline) 73.5% 281% 192%  32.2%

Table 5: Accuracy table for each of the models evaluated on the 500 OM labeled dataset for evaluation. Each
percentage represent the accuracy for the proper tested label.

Energy vs F1 Score for Relevancy
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Figure 1: Llama3.1 and FinBert use roughly the same amount of energy with a difference of less than one Kwh.

outcomes. In the context of commodity sentiment
analysis, these findings highlight the necessity of a
nuanced, engine-aware approach to prompt design
in order to fully leverage the capabilities of differ-
ent LLMs and achieve optimal performance across
diverse model architectures.

One of the key findings of this study is the sub-
stantial compute time and environmental impact
associated with continuous training of both small
and large language models. Observed performance
gains, when present, proved negligible compared to
less computationally expensive techniques. These
findings underscore the critical need for energy-
efficient training methodologies to mitigate the en-
vironmental and financial footprint associated with
these computationally demanding processes.

The limitations in the performance of smaller
language models when applied to the complex task

of sentiment analysis in the commodity market.
These models, even when fine-tuned with a small
number of expert-labeled datasets, struggled to
achieve adequate accuracy in predicting market sen-
timent. The financial and time burden associated
with dataset augmentation presents a significant
obstacle to this avenue of inquiry.

Large language models, especially when op-
timized through prompt engineering techniques,
demonstrated superior performance in sentiment
analysis. Few-shot learning emerged as a particu-
larly promising approach, offering a cost-effective
and efficient solution for sentiment analysis in this
context.

This research is of significant value for
economists specializing in the study of oil mar-
kets. Using the daily aggregate of news sentiment,
generated by the few-shot models, they can gain



a deeper understanding of past market trends and
dynamics.

Future research should further explore the po-
tential of techniques such as Adaptive Few Shot
prompting and the use of Agentic knowledge
graphs to improve the accuracy and robustness of
sentiment analysis in commodity markets.

6 Limitations

Replication of this work necessitates utilization of
the Azure Cloud platform for training the LoRA
adapters and fine tuning wihtout a full refactor of
the code. The economic abstracts were sourced
exclusively from publicly available articles within
the RePEc repository; while duplicate entries were
largely eliminated, comprehensive verification of
data uniqueness was not performed. Access to the
proprietary, expert-annotated oil markets dataset,
integral to this research, requires a specific license
for the oil bulletin. Consequently, full reproduc-
tion would require the creation of a comparable
dataset, comprising oil market data annotated by
domain experts, correlated with publicly accessible
economic publications.

While the master evaluation dataset was labeled
by domain experts, the process was facilitated by
startng from the Zero-Shot Learning results from
MistralAl(Jiang et al., 2023) and then corrected
by experts. This may add a bias when deciding if
the label is correct, but is required to speed up the
process.

7 Impact Statement

This paper aims to advance the field of Machine
Learning while prioritizing responsible stewardship
of environmental resources. The work specifically
addresses the societal and environmental implica-
tions of high computational costs associated with
certain machine learning tasks, using sentiment
analysis as a case study. A key finding suggests that
smaller datasets, coupled with existing generative
Al models below 10 billion parameters, can offer
a more environmentally sustainable approach to
leveraging artificial intelligence technologies. This
method potentially mitigates the significant energy
consumption and carbon footprint associated with
training and deploying large-scale models, thereby
offering a path towards democratizing access to Al
while minimizing its negative environmental im-
pact. The research therefore not only contributes to
the technical advancement of the field but also em-

phasizes the importance of considering the broader
societal and environmental consequences of emerg-
ing Al applications.

References

Radford Alec, Wu Jeffrey, Child Rewon, Luan David,
Amodei Dario, and Sutskever Ilya. 2019. Language
models are unsupervised multitask learners | en-
hanced reader. OpenAl Blog, 1.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 2020-December.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized 1lms.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Abhimanyu Dubey and et al. 2024. The llama 3 herd of
models.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
volume 1.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Sebastian Leck. 2022. Macroeconomics, The Canadian
Encyclopedia. Historica Canada.


https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1911.02116
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/p18-1031
https://doi.org/10.18653/v1/p18-1031
https://doi.org/10.18653/v1/p18-1031

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021. P-
tuning v2: Prompt tuning can be comparable to fine-
tuning universally across scales and tasks.

Zhuang Liu, Degen Huang, Kaiyu Huang, Zhuang Li,
and Jun Zhao. 2020. Finbert: A pre-trained finan-
cial language representation model for financial text
mining. volume 2021-January.

Bonan Min, Hayley Ross, Elior Sulem, Amir
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Illana Heinz, and Dan Roth. 2021. Re-
cent advances in natural language processing via
large pre-trained language models: A survey.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work?

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1986. Learning representations by back-
propagating errors. Nature, 323.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla,
Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang,
Han Wang, Matteo Manica, Sheng Shen, Zheng Xin
Yong, Harshit Pandey, Rachel Bawden, Thomas
Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma,
Andrea Santilli, Thibault Fevry, Jason Alan Fries,
Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. 2021. Multi-
task prompted training enables zero-shot task gener-
alization.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick Von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
EMNLP 2020 - Conference on Empirical Methods in
Natural Language Processing, Proceedings of Sys-
tems Demonstrations.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun
Shi, Zihang Jiang, Francis E.H. Tay, Jiashi Feng, and
Shuicheng Yan. 2021. Tokens-to-token vit: Training
vision transformers from scratch on imagenet. In
Proceedings of the IEEE International Conference
on Computer Vision.


https://doi.org/10.24963/ijcai.2020/622
https://doi.org/10.24963/ijcai.2020/622
https://doi.org/10.24963/ijcai.2020/622
https://doi.org/10.24963/ijcai.2020/622
https://doi.org/10.24963/ijcai.2020/622
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1109/ICCV48922.2021.00060
https://doi.org/10.1109/ICCV48922.2021.00060
https://doi.org/10.1109/ICCV48922.2021.00060

	Introduction
	Review
	Setup
	Datasets
	Zero Shot Learning
	Training Methodologies
	Adapter Training for RoBERTa-Large and Mistral-7B
	Adapter Integration and Model Evaluation

	Fine-Tuning & Few-Shot
	Evaluation Dataset

	Results
	Baseline Model and Continued Training
	Model Performance

	Discussion
	LLM Performance and Prompt Engineering

	Limitations
	Impact Statement

