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ABSTRACT

Robust asset allocation is a key challenge in quantitative finance, where deep-
learning forecasters often fail due to objective mismatch and error amplification.
We introduce the Signature-Informed Transformer (SIT), a novel framework that
learns end-to-end allocation policies by directly optimizing a risk-aware financial
objective. SIT’s core innovations include path signatures for a rich geometric
representation of asset dynamics and a signature-augmented attention mechanism
embedding financial inductive biases, like lead-lag effects, into the model. Eval-
uated on daily S&P 100 equity data, SIT decisively outperforms traditional and
deep-learning baselines, especially when compared to predict-then-optimize mod-
els. These results indicate that portfolio-aware objectives and geometry-aware
inductive biases are essential for risk-aware capital allocation in machine-learning
systems. The code is available at: https://anonymous.4open.science/r/Signature-
Informed-Transformer-For-Asset-Allocation-DB88

1 INTRODUCTION

A central challenge in modern quantitative finance is strategic asset allocation: the dynamic construc-
tion of portfolios that are robust to the complex, non-linear behavior of financial markets (Markowitz,
1952). While foundational theories provided a basis for optimization, their assumptions of static
correlations and normally distributed returns are often not adequate for navigating the non-stationary
and path-dependent nature of today’s markets (Cont, 2001; Fama, 1970). Deep learning offers a
powerful toolkit to address these complexities, yet developing policies that yield stable, real-world
performance remains a formidable task.

The predominant deep learning paradigm for

this problem, illustrated in Figure 1, is a decou- (1) Lacks Financial (2) Objective N\
pled, two-stage pipeline: a forecasting model [ Inductive Bias I Mismatch ]
first predicts asset returns, and these predictions TSLA @{g
are then fed into a downstream portfolio opti- ]:X[;f |:> MsELD
mizer (Moody & Saffell, 2001). This approach Forecasting *

has drawbacks and suffers from two critical is- Models @y Error — poregoio
sues. First, the forecasting models typically em- R AnPHREtON Optimization
ployed are general-purpose architectures. They \_ i Asset Allocation | — )

lack the financial inductive biases necessary to
model the idiosyncratic structures of financial
markets, such as the intricate lead-lag relation-
ships between assets. Without a model architec-
ture that explicitly reflects market dynamics, such models struggle to distinguish genuine signals
from noise. Second, and more critically, this pipeline creates an objective mismatch that leads to error
amplification. The forecaster is trained to minimize a statistical metric like the Mean Squared Error
(MSE), i.e. the average squared difference between estimated and actual values. This objective is
agnostic to the downstream task of portfolio construction, where even minuscule prediction errors can
be magnified by the optimizer into volatile and impractical portfolio weights. Furthermore, an MSE
objective implicitly incentivizes the model to favor assets that are easier to predict, potentially not
considering harder-to-predict assets with larger estimation errors and distorting the final allocation.
We argue that a robust solution requires moving beyond this fragile pipeline. The challenge is to
develop a unified policy that learns an end-to-end mapping from market data directly to portfolio

Figure 1: A depiction of flawed deep learning
strategies for asset allocation.
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weights while being architecturally designed to model the known geometric properties of financial
time series (Buehler et al., 2019; Hwang et al., 2025a).

To this end, we introduce the Signature-informed Transformer (SIT), a deep learning framework
designed to learn robust, multi-asset allocation policies by directly addressing these challenges. SIT’s
contributions are unified within a synergistic architecture built on three pillars:

1. Path-wise Feature Representation: To better capture the complex dynamics of assets, the
model generates features from each asset’s price history using Rough Path Signatures. This
technique offers a principled summary of a path’s shape, encoding its trends and oscillations
to provide a richer basis for decision-making (Lyons, 1998; Lyons & McLeod, 2022).

2. Signature-Augmented Attention: For modeling dependencies between assets, the model
introduces a novel attention mechanism. It enhances attention scores with a term derived
from the signature of asset pairs, which represents a robust measure of their lead-lag
relationships (Bonnier et al., 2019). This allows the model to allocate attention based on
geometric interactions, a crucial inductive bias for this problem.

3. Decision Alignment: To align the training process with the goal, the model is optimized
directly for the quality of the portfolio allocation. Instead of aiming for statistical forecasting
accuracy, its parameters are trained to minimize the Conditional Value-at-Risk (CVaR) of
the portfolio’s loss distribution, bridging the gap often found in two-stage pipelines.

2 METHODOLOGY

This section introduces the Signature-Informed Transformer (SIT), a novel approach to risk-aware
portfolio allocation (Figure 2). All relevant literature can be found in the Appendix A. After a
brief overview of the problem and path signatures, we detail the model’s core components: (i) a
unified embedding for signature, calendar, and asset features; (ii) a Signature-Informed Self-Attention
mechanism that leverages cross-asset relations; and (iii) a CVaR-minimization training strategy for
robustness to tail risk.
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Figure 2: Overview of the Signature-Informed Transformer (SIT) architecture.

2.1 PRELIMINARIES

Notations. Let0 =t < t; < --- < t, = T denote a sequence of discrete times over the
horizon [0, T]. We consider d assets traded in a financial market, with price S/ (w) referring to
the value of asset j € {1,...,d} at time ¢; under a particular market scenario w € Q. The set
encapsulates all possible market paths. For convenience, we define the continuous-time vector process
Su(w) = (St(w),...,S%w)) € R? understanding that its values at discrete times {t;} coincide
with the observed data {S;, }. In practice, S,, on each interval [¢;, t;1] can be reconstructed by an
appropriate interpolation. A parametric asset allocation strategy is denoted by 6 € O, where © is the
set of all feasible parameter configurations. At each decision time ¢;, the policy outputs a sequence of

long-only, fully invested portfolio weight vectors for the next K periods, {wgc) (O} | c RY, with
ijl wgc)’] (#) = 1 for each k. We parameterize each Wgc) via a softmax over the k-step-ahead
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predicted returns, Wl(f) 0) = softmax(ﬂgf) (0)/7), where [Ltl;K(H) € RE*4 stacks the predictions

fork =1,..., K. Our objective is to learn # so as to maximize cumulative trading gains, subject to
uncertainty in market behavior.

A key ingredient in our framework is the use of path signatures to capture high-order variations and
cross-asset interactions in price trajectories. For a continuous path X : [s, ] — R, the signature
Sig(X{s,,) lies in the tensor algebra ®5° (R?)®*. When truncated at level M, it becomes a finite-

dimensional vector denoted as Sig™ (Xsy) = (1, f; dXy, f; [ dX, ® dX,,...). In our financial
context, X corresponds to the price process S;. First-order signature terms capture net increments
for each asset, while second-order terms encode signed areas, revealing non-trivial correlations and
lead-lag effects. For clarity, the key notations are provided in Appendix B.

Proposition 2.1 (Strict Lead-Lag Implies Positive Second-Order Signature (cf. Chevyrev & Kormil-
itzin (2016))). Let X; = (X}, X?) for t € [0,T] satisfy a strict lead-lag structure of Definition C.1.
Then the second-level signature cross-term

T T
A(X) = / X}dX} - / X7dXx} (1
0 0
is strictly positive. In particular, A(X) > 0.

Proof. See Appendix C.2. O

Problem Formulation. We frame the task as a sequential decision-making problem under un-
certainty. At each decision point ¢;, the objective is to construct portfolios of d assets for each
of the next K periods [t;, t;y1],-- ., [ti+k—1,ti+k]. The information set available at time ¢;, de-
noted F;,, comprises three components: (i) for each asset j, a sequence of truncated path sig-

natures {SigM(S[J%FHM_}LHWHC])},{?[=1 over a lookback window of H time steps (ii) pairwise
cross-signatures Sig™ ((S7, SY)(t;_ .t,)) for all asset pairs (4, [), capturing lead-lag relationships over
the entire window and (iii) a sequence of deterministic calendar feature vectors {v;, ., } I, where
v; € RY. Our model, parameterized by 6 € ©, learns a mapping

9o Foor— i (0), " (0) € RFX, 6
which yields k-step-ahead expected returns for £ = 1, ..., K. Portfolio weights for step k are then
obtained via W,Ef) 0) = softmax(ﬂ,(f)(ﬂ) /7) € R%, ensuring a long-only, fully invested allocation
at each future step. Note that ,a%;K is not trained with a prediction loss. It acts as the logits of
the allocation layer, and gradients flow only from the portfolio objective below. Let ry,,, be the
vector of realized asset returns over [t;1+x—1,%;+%], and define the corresponding portfolio loss

Lg‘lk (6,) = f(wgf) (6)) "r¢,,, (w). The parameters 6§ are optimized by minimizing the expected
Conditional Value-at-Risk (CVaR) of the K -step loss sequence within a scenario:
. (k) K
min E,p[CVaRa({Li], () }e=1)]- 3)

A core assumption of this framework is that the complex, path-dependent market dynamics relevant
for forecasting returns are effectively encoded within the signature features.

2.2 SIGNATURE-INFORMED TRANSFORMER (SIT)

Signature Embeddings. At a given decision time ¢;, the initial representation for each asset j
and lookback slice k € {1,..., H} is constructed by fusing three distinct information sources.
First, the truncated path signature of the asset’s price history over the slice’s interval, s ; =
SigM (S[jti_HM_h tiomen)) € R%k, is projected into the model’s hidden space R using a linear
layer to form a path embedding e r ;. Second, the vector of calendar features for that slice,

Vi gn € R, is projected to create a time embedding egye 1 € Rt which is shared across all
assets for slice k. Third, to encode unique, time-invariant characteristics, each asset j € {1,...,d} is

assigned a learnable embedding vector eissel € Rdmee These three embeddings are concatenated and
passed through a final linear projection to produce the input token x, ; for the first Transformer layer:

j imode
Xk,j = Woroj[€sig k. © €date,k © €qge] € R™™ @)



Under review as a conference paper at ICLR 2026

where @ denotes concatenation. The resulting input tensor for time ¢;, of shape H X d X duodels
encapsulates pathwise, temporal, and asset-specific information.

Signature-Informed Self-Attention. The core of the model’s cross-asset reasoning lies in a novel
attention mechanism that operates along the asset dimension, following a standard causal self-
attention pass along the temporal dimension within each factorized layer. This Signature-Informed
Self-Attention dynamically modifies the attention scores between pairs of assets based on their
explicit relational features encoded by path signatures. Let the output of the temporal attention and
its subsequent feed-forward network for a given layer be denoted by the tensor X’ € RH X d>dmos
For each time slice k € {1,..., H}, we have a set of d asset vectors {x} ;,...,X}, 4}, where each

X}, ;€ Rmoeel | The asset-wise attention treats the time dimension as a batch dimension, processing
H independent attention calculations.

The mechanism is built upon a standard multi-head self-attention framework with N heads. For

a given time slice k, the collection of asset vectors X, = (X}, ;,...,X} 4) | € R4*dmwl g linearly
projected to generate queries, keys, and values:
Qi = X[ W € R s ©)
K = X Wg € RX (6)
V= X;WV € R4*dmotel (7

where Wo, Wi, Wy € Refmosa X dmoael are Jearnable weight matrices. These are then reshaped for
multi-head computation, yielding per-head tensors Qy n, Ky n, Vi p € R for each head h €
{1,...,Ng}, where dj, = d]"\‘,—; The innovation lies in the computation of an additive bias term.

This bias is a function of both pairwise relational characteristics and current asset states. The first
component uses the cross-signature feature over the entire lookback window [t;_pr, t;]. For each pair
of assets (j, 1), we denote the vector representation of this feature as c; ;; € R%wssi, These features,
encoding relational information for the pair (7, ), are projected into a specialized embedding space
using a dedicated MLP, denoted MLPg, to produce a tensor of relational embeddings, ,61-’ INE
Bi i =MLPg(c; ;) € RN#xds ®)

Here, dg is the bias embedding dimensionality, and a separate embedding is learned for each attention
head. The second component introduces dynamism. The query asset’s representation from the
temporal stage, X}, ;» s used to generate a dynamic query vector via another MLP,

q)’) = MLP, (x} ;) € RV7 < ©

This vector qiy; represents the informational need of asset j at slice k. The dynamic attention bias,
bk n,j,1, for each head h, query asset j, and key asset [ at time slice k, is computed via an inner
product:

brengr = () ns (Biy)n) (10)

where (-);, denotes the vector for head h. This forms a complete bias matrix B, € RV#xdxd for
each time slice k. This allows the model to selectively amplify or suppress attention based on whether
a signature-encoded relationship is pertinent to the query asset’s current state.

This dynamic bias matrix is scaled by a learnable, strictly positive scalar gate, v > 0 (parameterized
as v = softplus(¥)), which controls the overall magnitude of the signature-based influence. The final
attention logits are:

QriKj )
Vi

The attention weights, oy, 5, € R?*4  are obtained by applying the softmax function row-wise. The
output for each head is computed by multiplying the attention weights with the value matrix.

Logits;, , = + 9By € RX4 (11)
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Theorem 2.2 (Positive directional derivative of attention weight). Assume d > 2, v > 0, and fix
(k,h,j,1). Let the query vector (qiyjn)h € R satisfy ||(q2yjn)h||2 > 0. For

(Qk,hK;crh)j,m dvn eZim
Zjim = ———=—— V(A )ns Bijmn)s  Gm = =g (12)

vy, Zg:1 e
assume 0 < aj; < 1. Then the directional derivative of cj | with respect to 3, ; , in the direction

(qz?’jn ), equals

Dby 00 =1 05a(1 = 05) [ (@)l > 0. (13)

Proof. See Appendix C.3. O

Intuitively, when a relational signature is aligned with a query asset’s current informational need,
strengthening that signature should raise the model’s attention to the counterpart. Formally, Theorem
2.2 shows that, for fixed v > 0, the directional derivative of a;; with respect to (3, ;;)n along

d L s d
(ay.’;")n is strictly positive, i.e., ngﬁ%?)hajyl =vaj(1— aj,l)H(qk?,jn)hH% > 0. By contrast, the
. . oa;
effect of increasing the gate +y itself on «; ; depends on alignment relative to other keys: 8j L.
Y

d
ajil bji— Z &jm bj.m |, where b, = <(q2f'j“)h, (Bi,j.m)n)- Thus, v > 0 scales the influence
m=1

of signature alignment, i.e. attention to pairs with above-average alignment increases as y grows,
while attention to below-average alignment decreases.

Finally, the outputs from all heads are concatenated and passed through a final linear projection W,
followed by a residual connection and layer normalization:

Head,, , = softmax(w +vBgn)V (14)
kb = . YBrn)Vi,n

Oy, = Concat(Heady 1, . .., Heady n,, ) Wo (15)

1= LayerNorm(X}, + Dropout(Oy)) (16)

The resulting collection {X/} }Z  is the output of the Signature-Informed Self-Attention block.

Training Strategy The model is trained end-to-end to optimize portfolio performance under
a risk-aware objective. The final output tensor from the Transformer stack, X" € R XX dmoer
summarizes pathwise and cross-asset information over the lookback window. An output head
maps this representation at decision time ¢; to K -step-ahead return predictions: a linear projection

(optionally preceded by pooling over the H slices or using the last slice) produces [l,th € RExd,

For each forecast step k € {1, ..., K}, the predicted returns ﬂgf) € R? are converted into long-only
portfolio weights via wgc) = softmax(ﬂgf) /7), where 7 > 0 controls allocation concentration.

Let ry, , denote the realized asset-return vector over [tixk—1,ti+k]- The step-k portfolio loss is
")

tion (Ou) = —(wgf) (6)) "ry,,, (w). The overall objective is formally stated as:

min Eop[CVaRa({L™ (0.) )], (17)

No auxiliary prediction losses are used. Eq. (17) is the sole training signal, avoiding the objective-
mismatch issues discussed in Section ??. For each scenario w, the inner CVaR,, is taken over the
intra-scenario empirical distribution. The following derivation shows the dual form and its empirical
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counterpart used for optimization:

L(0) = Eunop[CVaRa ({L0(0,) }21)] (18)
1 K
— ; (k) —
= Eevolmin(v + =y 2 (L0.) 1)) (19)
1l 1 & .
N z; glé%(ui + m ;(L (0w;) —vi)™). (20)
i= =1

To incorporate risk aversion, we made the choice in Eq. (18) to minimizing the expected CVaR
of the intra-scenario loss distribution, which is the objective in (17). Eq. (19) leverages the
dual representation of CVaR (Rockafellar et al., 2000) under the confidence-level convention:
CVaR,(Z) = min,er(v + 2= E[(Z — v)™]) with tail mass 1 — «. Thus v, equals the a—quantile
(VaR,,) of the intra—scenario loss distribution. Finally, Eq. (20) presents the empirical objective
function used in training, where the expectation E,,.p is approximated by an average over a batch of
N scenarios {w; })¥,. For each scenario w;, the optimal #; is the empirical a—quantile of its losses

{L8) (0w )}

3 EXPERIMENT

3.1 IMPLEMENTATION DETAILS

Dataset Experiments used three portfolios of 30, 40, and 50 S&P 100 companies. We also selected
two additional portfolios of 10 and 20 assets from the DOW30 to validate performance against a
different index composition, which is often characterized as more concentrated. Furthermore, to
evaluate robustness across different market dynamics, we included two portfolios consisting of 50
and 100 assets from the CSI 300 index. The daily price data was sourced from Wharton Research
Data Services (WRDS). The data was partitioned chronologically into distinct training, validation,
and test periods. The training set spans from January 1, 2000, to December 31, 2016. The validation
set from January 1, 2017, to December 31, 2019 and the test set from January 1, 2020, to December
27, 2024. This split covers multiple market regimes, including the recent volatility.

Baseline Models The performance of our proposed model, SIT, is compared against a comprehen-
sive suite of benchmarks spanning traditional and deep learning approaches. Traditional baselines
include Equally Weighted Portfolio (EWP) (DeMiguel et al., 2009), Global Minimum Variance
(GMY) (Clarke et al., 2011; Markowitz, 1952), Conditional Value-at-Risk (CVaR) (Rockafellar
et al., 2000) and Hierarchical Risk Parity (HRP) (Lopez de Prado, 2016). The portfolio optimization
strategy forms the second stage of our deep learning-based comparisons, which use predictions from
various state-of-the-art time-series forecasting models as input. These forecasters include deep learn-
ing models such as Autoformer (Wu et al., 2021), DLinear (Zeng et al., 2023) FEDformer (Zhou
et al., 2022), PatchTST (Nie et al., 2022), iTransformer (Liu et al., 2023), Non-stationary Trans-
formers (NSformer) (Liu et al., 2022), TimesNet (Wu et al., 2022) and RFormer (Moreno-Pino
et al., 2024). Details of the parameter search space are provided in Appendix D.

Evaluation Metrics The strategies were evaluated using four standard financial metrics, assuming
a zero risk-free rate. Risk-adjusted performance was measured by the Sharpe Ratio, which accounts
for total volatility, and the Sortino Ratio, a refinement that isolates downside risk by considering
only downside deviation; higher values are superior for both. Overall growth was tracked by the
Final Wealth Factor (the ratio of final to initial value), while the Maximum Drawdown quantified
the largest peak-to-trough percentage decline, with a lower value being preferable.

3.2 CAN SIT DELIVER SUPERIOR RISK-ADJUSTED PERFORMANCE?

We evaluate the out-of-sample portfolio management efficacy of our proposed model: SIT. The
comprehensive performance metrics, including risk-adjusted returns and downside risk, are presented
for the 40- and 50-asset universes (see Appendix G for the 30-asset universe experiment). Our
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analysis underscores that the quality of asset allocation, rather than raw predictive accuracy, is the
decisive factor for success, a central tenet of our work. The empirical results, summarized in Table 1,
demonstrate that SIT consistently and significantly outperforms all baseline models across the primary
metrics of risk-adjusted return and wealth generation. In the 40-asset universe, for instance, SIT
achieves a Sharpe Ratio of 0.6717 and a Sortino Ratio of 0.8232, decisively surpassing the next-best
traditional baseline EWP and all deep learning counterparts. This translates into superior capital
growth, with SIT yielding a Final Wealth Factor of 1.7903, the highest among all tested strategies.

Panel A. Asset 40 Universe (S&P100)

Models Sharpe Ratio (1) Sortino Ratio (1)  Maximum Drawdown (|)  Final Wealth Factor (1)
CVaR 0.1531 0.2001 0.3516 1.0569
EW 0.5759 0.7153 0.3688 1.6439
GMV 0.4148 0.5337 0.2743 1.3258
HRP 0.4958 0.6171 0.3185 1.4561
Autoformer 0.2499 + 0.1405  0.3423 + 0.1980 0.3812 4 0.0480 1.1809 + 0.2403

DLinear 0.3167 £ 0.1326
FEDformer 0.4006 £ 0.2317
iTransformer  0.3157 £ 0.0749
NSformer 0.4074 £ 0.1151
PatchTST 0.3286 + 0.2021
TimesNet 0.3568 £+ 0.0782
RFormer 0.4901 + 0.1437
SIT (Ours) 0.6717 + 0.0628

0.4513 £ 0.2005
0.5540 £ 0.3192
0.4233 £ 0.0943
0.5820 £ 0.1655
0.4540 £ 0.2818
0.4959 £ 0.1019
0.6308 + 0.1828
0.8232 + 0.0792

0.3621 £ 0.0407
0.3647 £+ 0.0167
0.4136 £ 0.0326
0.4475 £ 0.0672
0.4523 £ 0.0838
0.4704 £ 0.0701
0.3415 £ 0.0482
0.3611 4 0.0037

1.2915 £+ 0.2133
1.5198 £ 0.5703
1.2860 £ 0.0147
1.5129 £+ 0.3010
1.3409 £ 0.3886
1.3765 £ 0.1729
1.5387 + 0.2353
1.7903 + 0.1023

Panel B. Asset 50 Universe (S&P100)

Models Sharpe Ratio (1) Sortino Ratio (1)  Maximum Drawdown (/)  Final Wealth Factor (1)
CVaR 0.2165 0.2858 0.3086 1.1170
EW 0.6008 0.7399 0.3604 1.6683
GMV 0.3947 0.4992 0.2678 1.2845
HRP 0.4637 0.5620 0.3258 1.4021
Autoformer 0.3899 £ 0.1985  0.5321 £ 0.2870 0.4356 4+ 0.1256 1.4697 £ 0.4573
DLinear 0.2540 £ 0.1215  0.3557 + 0.1828 0.3716 £+ 0.0193 1.1883 £ 0.1979
FEDformer 0.4318 £0.0692  0.6039 + 0.1097 0.4039 4+ 0.1143 1.5286 + 0.1508
iTransformer  0.5162 £+ 0.1367  0.6761 + 0.1770 0.4542 4+ 0.0239 1.7910 £ 0.3722
NSformer 0.5238 £ 0.0694  0.7105 £ 0.1033 0.4992 £ 0.0975 1.8138 + 0.1922
PatchTST 0.3821 £ 0.1871 0.5134 £+ 0.2635 0.4255 +0.1533 1.4411 £ 0.3814
TimesNet 0.3050 + 0.3439  0.4296 + 0.4864 0.5181 4+ 0.1404 1.3737 + 0.8857
RFormer 0.5315 £ 0.2519  0.6671 + 0.3255 0.5202 4 0.0555 1.8014 + 0.6303
SIT (Ours) 0.7715 £ 0.0627  0.9743 £ 0.0998 0.3271 £ 0.0094 1.9215 + 0.1792

Table 1: Portfolio performance of SIT versus baselines across 40- and 50-asset universes. The best,
second-best, and third-best results for each metric are highlighted in red, blue, and bold, respectively.

The primary contribution of SIT becomes evident when contrasted with the predict-then-optimize
models. These models, which rely on minimizing statistical forecasting error, exhibit poor and
highly unstable portfolio performance. Many fail to outperform even simple heuristics. Their high
standard deviations across runs underscore the problem of error amplification, where small prediction
inaccuracies are magnified by the downstream optimizer into fragile, impractical allocations. This
finding empirically validates our core hypothesis. Optimizing for prediction is not a valid proxy for
optimizing for allocation quality. In addition to its inductive biases designed for financial assets,
SIT’s decision-focused approach directly minimizes the portfolio’s CVaR, fundamentally aligning
the model’s objective with the financial goal and thereby avoiding this critical pitfall. Furthermore,
SIT demonstrates a superior risk-return profile compared to traditional quantitative strategies. While
risk-minimizing models like Global Minimum Variance (GMV) achieve low Maximum Drawdown
(MDD) (e.g., 0.2743 in the 40-asset case), they do so at the cost of substantially lower returns
(Sharpe Ratio of 0.4148). SIT, conversely, maintains a competitive MDD (0.3611) while delivering
significantly higher returns. For the results on the DOW30 and SCI300, please refer to Appendix G.

3.3 MODULE-LEVEL CONTRIBUTION EXPERIMENTS

To dissect the contribution of each architectural pillar of the Signature-informed Transformer
(SIT), we conduct a comprehensive ablation study. For this analysis, each ablated variant is created
by independently removing a single key component from the full SIT model, while all other hyper-
parameters are held constant. This module-drop protocol allows for a precise evaluation of each
component’s marginal contribution. The variants evaluated are: (i) w/o CVaR, which replaces the
Conditional Value-at-Risk objective with a risk-neutral objective of maximizing mean returns (ii) w/o
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Asset Attn, which disables the entire Signature-Informed Self-Attention mechanism across assets
(iii) w/o Financial Bias, which removes the signature-derived bias term from the attention scores,
reverting to a standard self-attention mechanism and (iv) w/o Gate -, which removes the learnable
gate y that scales the financial bias.

Panel A. Asset 40 Universe

The results, summarized in Table 2, underscore Models Sharpe  Sortino MDD Wealth

: : : SIT (Ours) 06717 08232 036l  1.7903
the imp o _rtance of eac_h design ¢ }.10108' The w/o CVaR 0.5691¢  0.7057° 03695  1.6409°
most critical element is the decision-focused wio Asset Attn 0.5284°  0.6576° 033420  1.5381¢

approach' When the Conditional Value-at-Risk w/o Financial Bias  0.6045° 0.7590° 0.3431¢ 1.6801¢
. . . /o Gat 05251 0.6489°  0.3470"  1.5470°

(CVaR) loss is replaced with a standard risk- whoDaey

neutral objective (w/o CVaR), the Sharpe Ra-  ~Panel B. Asser 30 Universe

tio on the 40-asset universe falls from 0.6717 SIl\’llf(dedS ) (5)11737111’; zogr;i:;’ é\’;‘;% ‘17";;1;‘51
. . . urs 8 5 .. .

t0.0.5.691. Th}s demonstrates that d1r.ect opti- wio CVaR 05923¢  0.7294° 036060  1.6622°

mization for risk-adjusted outcomes is essen- wio Asset Aun  0.6268°  0.7650° 03298 16562

w/o Financial Bias ~ 0.6047¢  0.7545° 0.3224 1.6260°

tial for producing stable allocations that are re- wio Gate 0.3831¢  07138° 03305  15945¢

silient to tail events. The components of the
Signature-Informed Self-Attention mechanism Table 2: Ablation study of SIT’s core compo-
prove equally vital. Removing the asset-wise at- nents.Superscripts b and ¢ indicate statistical sig-
tention layer entirely (w/o Asset Attn) severely nificance at p < 0.05 and p < 0.001 in paired tests
reduces the model’s ability to reason about port- against SIT (Ours).

folio structure, causing a steep performance drop (Sharpe of 0.5284). Furthermore, removing just the
signature-based inductive bias (w/o Financial Bias), i.e. reverting to a standard attention mechanism,
still leads to significant degradation (Sharpe of 0.6045). This confirms that injecting principled
geometric knowledge of lead-lag structures (Theorem 2.1) is more effective than forcing the model to
learn these relationships from scratch. Finally, removing the learnable gate v (w/o Gate +) is highly
detrimental (Sharpe of 0.5251), highlighting that the model must learn to dynamically modulate the
influence of these financial priors (Theorem 2.2) to adapt to changing market regimes.

3.4 ARE SIGNATURES EFFECTIVE AT DRIVING ATTENTION?

SIT perturbs asset-axis attention logits by an additive, signature-induced bias, Logits; ;, =

-
L\/%kh +9Bry € R¥*4 where B ,n aggregates the alignment equation (10) between the query’s

informational need and the cross-signature embedding. Theorem 2.2 predicts that increasing this
alignment in the query direction strictly raises attention weight on the corresponding key when v > 0.
Coupled with Theorem 2.1, which links persistent lead—lag to non zero second-order signatures, the
method suggests a testable implication. Consequently, assets whose signatures are stronger should
systematically attract more inbound attention. We formalize this implication by defining, at each

.. . . H N d
decision time t, a per-asset signature-strength score s; ; = ﬁHd Zk:l Zhjl m:l(Bk,h)m,j

L . H N d
and the corresponding inbound-attention share a; ; = m Dbt Do > 1 Ok hym—sj. W

then compute the Pearson correlation between {s; ;}9_, and ({a, ;}9_,) at each ¢ and examine the
distribution of these correlations across the test horizon.

In Figure 3, the distribution
=== mean=0.540 --- mean=0611 is right-skewed with means of
0.540 for the 40-asset universe
and 0.611 for the 50-asset uni-
verse, indicating that stronger
signature signals are associated
with higher inbound attention
mass. The heavy right tail
shows frequent periods in which
attention concentrates on assets
Figure 3: Distribution of correlations between signature strength whose signature-derived rela-
and attention weights. tions are most salient, while the

paucity of negative correlations
rules out a degeneracy in which the bias is ignored by the attention mechanism. These empirical
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patterns directly instantiate the monotonicity predicted by Theorem 2.2. So, as alignment by, 5, ; ;
strengthens, the induced change in «v;; is positive, and the learned y scales this effect without flipping
its sign.

The financial significance of this correlation is twofold. First, B is not a static embedding. This

couples dynamic queries qzy’; with cross-signatures 3, ; ;. Hence, the correlation becomes most
apparent when the model routes information toward assets whose relational signatures are currently
informative. Second, because SIT is trained solely through the portfolio-level CVaR,, loss, the
learned attention must improve tail-aware allocations rather than just forecast error. The observed
right-skew therefore indicates that signatures are not merely present but actively utilized to amplify
risk-relevant dependencies. In Appendix , Figure 7 overlays the learned gate + on portfolio
drawdowns. We observe that higher values of v tend to cluster during volatile episodes. This suggests
that SIT increases the weight of signature-based priors precisely when cross-asset relations are most
informative and prediction noise is elevated. We therefore conjecture that this financial bias offers
a plausible explanation for the results in Table 1. Specifically, it allows SIT to achieve the high
risk-adjusted returns while maintaining a robust diversification profile comparable to the EWP.

3.5 WHY PREDICTION-FOCUSED MODELS FAIL FINANCIAL OBJECTIVES?

Across all eight forecasting models, pre-
diction alone does not translate into supe-
rior trading performance. As illustrated
in Figure 4, which reports out-of-sample
Sharpe ratios after CVaR optimization, the
decision-focused learning (blue) consis-
tently dominates the prediction-only ap-
proach (gray) across both the 40- and
50-asset universes. Moreover, as ob-
served in Figure 1, the gap widens in the
50-asset universe, indicating that higher di-
mensionality amplifies the failure of the
predict-then-optimize pipeline.

The failure of MSE-based approaches
stems from the objective mismatch. See
Appendix F for details on the two-stage

implementation. Prediction-focused train- - Figyre 4: Out-of-sample Sharpe ratios after CVaR port-

ing optimizes a surrogate thatis misaligned  folio optimization on 40- and 50-asset S&P100 uni-
with the financial goal. Therefore, predic- yerges.

tion losses weight all errors equally and are

blind to the downstream mapping from forecasts to actions. A model that is optimal for Lpeq need not
be even approximately optimal for CVaR. Consequently, tiny cross-sectional ranking errors induced
by MSE training can be amplified by the optimizer, effectively flipping the identity of the largest
weights. The evidence in Figure 4 and the mechanisms above explain why predict-then-optimize
pipelines produce low and unstable Sharpe despite competitive Lyeq. By differentiating through the
portfolio layer and optimizing the risk metric of interest, decision-focused learning reshapes the logits
so that only forecast features that improve allocation under constraints and tails are amplified. This
alignment both raises risk-adjusted returns and tightens variability across runs, which we observe
consistently across backbones and universes. We believe that aligning the training objective with the
financial objective is necessary for turning predictive signals into reliable portfolios.
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3.6 SENSITIVITY TO TRANSACTION COSTS AND ALLOCATION CONCENTRATION T

We examine how proportional trading frictions and allocation concentration affect SIT. The concen-

tration parameter 7 > 0 is the softmax temperature in the allocation layer, wt(k) = softmax( ﬂgk) /7).
Smaller 7 concentrates capital, larger 7 spreads it. We sweep 7 € {0.8, ..., 1.4}. Transaction costs
are one-way proportional fees of ¢ € 0, 5, 10 basis points (1 basis points = 10~%) per dollar traded.
All other settings follow the main evaluation: long-only, fully invested, monthly (k-step) rebalancing
on the 40- and 50-asset universes, and a zero risk-free rate for all risk-adjusted metrics.
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Figure 5 reports mean (+ std) Sharpe ratios for every (7, ¢) pair, with the 40-asset universe on the
left and 50-asset on the right. Two patterns are stable across universes. First, performance peaks at
moderate dispersion, near 7 = 1.3. Second, frictions compress Sharpe roughly linearly over this
range: moving from 0 to 10 bps reduces Sharpe by about 0.03-0.04 at the optimum.

Universe: 40 Assets Universe: 50 Assets

0.619 0.561 0.612 0.615 0.618 0.515 0.532 0.543 0.615 0.593 0.771 0.763
(£0.159) (+0.142) (+0.056) (+0.040) (+0.130) (+0.077) (+0.080) (£0.072) (+0.073) (£0.122) (£0.063) (+0.087)

0.598 0.542 0.593 0.598 0.598 0.614 0.501 0.519 0.529 0.598 0.577 0.754 0.747 0.65
(£0.159)  (+0.140) ~ (£0.051)  (+0.036)  (+0.126) (£0.091) (£0.076)  (£0.079)  (£0.071) = (£0.076)  (+0.124) REEINLL)RENEINL:F)) 0.60

Transaction Cost (bps)
Mean Sharpe Ratio

0.578 0.575 0.580 0.579 0.598 0.486  0.505 0.515 = 0.581 0.561 RN AykcI RN Akl
(£0.158) 0.13 (£0.047)  (£0.031)  (+0.122) (£0.087) (£0.074)  (x0.078)  (*0.070) = (£0.079)  (£0.127) WNEINE)RENENeY:)]

1.0 11 12 . . . . 1.0 11 1.2 13 14

Allocation Concentration Allocation Concentration

Figure 5: Sharpe ratio sensitivity to transaction costs and allocation concentration (7). Values are
mean (£ std). Left: 40 assets Right: 50 assets.

Trading costs predictably erode realized performance, yet the impact is mitigated when allocations
avoid both extreme concentration (small 7) and excessive diffusion (very large 7). The interior
optimum near 7 =~ 1.3 indicates that SIT’s gains arise from robust allocation—balancing diversifi-
cation with conviction rather than from raw prediction accuracy alone. The cost penalty is slightly
smaller at the optimum in the 40-asset case (drop 0.034) than for concentrated settings such as
7 € {0.8,0.9} (drops 0.039-0.041), whereas in the 50-asset universe the smallest penalty occurs
at more concentrated 7 (e.g., 7 = 0.9 drops 0.027). This non-linearity suggests that the turnover
induced by spreading capital interacts with cross-sectional breadth. With fewer assets, moderate
diversification can temper trading; with more assets, broader participation slightly increases cost
sensitivity.

Also, as shown in Figure 6,

_ 30 ~® HHI _ 357 - HuI increasing the softmax tem-
= ~~ Entropy 3 3.0 ~# Entropy .
3 25 3 perature 7T monotonically re-
@ 2 2.5 .
£ 20 g0 duces cross-sectional concentra-
£ 15 = tion and increases diversifica-
£ E . .
£ 10 2104 tion. Herfindahl-Hirschman In-
2 g X
5os — . 5 o5 A dex HHI(w) = _ w? declines,
0.0 4 004 __ d 0 . . N i o
o ok th i ik 1% o 0% o ko i ik 15 2w While Shannon entropy H(w) =
Temperature 7 Temperature = — Z] TU]‘ log u’j TI1Ses. FO]‘ any

fixed 7, the 50-asset universe
achieves lower HHI and higher
‘H than the 40-asset universe, in-
dicating a more diffuse allocation when the investable set is broader. These diagnostics provide
an interpretable, one-to-one control of concentration through 7, useful when desk policies cap the
effective number of active lines or impose minimum diversification.

Figure 6: Impact of softmax temperature 7 on portfolio diversifi-
cation metrics.

4 CONCLUSION

This work argues that effective quantitative portfolio management requires robust allocation policies,
not just optimizing prediction accuracy. We introduce the Signature-informed Transformer (SIT), a
novel framework using path signatures for rich feature representation, a signature-augmented attention
mechanism for financial biases like lead-lag effects, and a training objective that directly minimizes
portfolio Conditional Value-at-Risk. Our empirical results show that SIT decisively outperforms
baselines, which often are harmed by objective mismatch and error amplification. SIT’s performance
remains superior under realistic transaction costs, underscoring the importance of its calibrated,
signature-based architecture. While tested on U.S. equity data, this framework could be extended to
higher-frequency, global, multi-asset markets. Ultimately, SIT provides a blueprint for ML systems
to progress from forecasting towards a more end-to-end, risk-aware capital allocation.
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A APPENDIX. RELATED WORKS

Deep Learning in Asset Allocation The application of deep learning in quantitative trading has
largely bifurcated into two distinct paradigms. The first, the classic Predict Focused Learning
(PFL) pipeline, focuses on developing return-prediction models. In this stream of research, complex
architectures map market data to future price movements. For instance, Transformers have been
adapted to capture temporal dependencies in asset prices for return forecasting (Fischer & Krauss,
2018; Yoo et al., 2021; Lim et al., 2021). Some models employ Graph Neural Networks (GNNs) to
explicitly model inter-asset relationships, such as sector correlations, to improve prediction accuracy
(Xu et al., 2021; Duan et al., 2025). Despite their architectural novelty, these methods inherit
the fundamental flaws of a decoupled approach (Lee et al., 2024b). They suffer from objective
mismatch, as optimizing for prediction error (e.g., Mean Squared Error) does not guarantee profitable
portfolio construction, and are susceptible to error amplification, where small prediction inaccuracies
lead to drastically suboptimal and unstable allocations (Chung et al., 2022). A more promising
direction, which we term Decision Focused Learning (DFL), seeks to overcome these limitations
by training policies end-to-end. These models learn a direct mapping from market state to portfolio
allocations, optimizing a true financial objective like a risk-adjusted return metric. Foundational work
demonstrated how to embed financial operators, such as portfolio value and Sharpe ratio, within a
deep network, making the entire strategy differentiable and trainable via gradient descent (Buehler
et al., 2019; Zhang et al., 2020; Costa & Iyengar, 2023). Recent research has increasingly emphasized
embedding practical portfolio constraints into the model training phase. Typical examples include
prohibiting short selling, ensuring full investment (i.e., portfolio weights sum to one), and placing
upper or lower bounds on individual asset allocations, all of which are incorporated directly into the
model architecture or loss function (Lee et al., 2024a; Hwang et al., 2025a). While these end-to-end
frameworks efficiently align the model’s training objective with financial goals, they often fall short in
explicitly guiding the model to learn and utilize the diverse information present in multi-asset settings.
This leaves a critical research gap. These models lack a strong financial inductive bias to explicitly
represent the non-linear, path-dependent nature of price series and the geometric, time-local lead-lag
relationships between assets. In our implementation, the predicted returns [ serve only as internal
logits for a differentiable allocation layer. All parameters are trained end-to-end solely through
the portfolio-level CVaR objective, not a pointwise prediction loss, aligning with decision-focused
learning. Our work addresses this gap by integrating the mathematical theory of path signatures
directly into a transformer’s attention mechanism, creating an optimization-aware model that is
architecturally designed to understand the underlying geometry of market dynamics. See (Lee et al.,
2024b; Hwang et al., 2025b) for more detailed review of asset allocations

Transformer-Based Time Series Forecasting The success of the Transformer architecture in
natural language processing has inspired its widespread adoption for time series forecasting. The core
innovation, the self-attention mechanism, allows these models to dynamically weigh the importance
of all past time steps when predicting future values, enabling them to capture complex, long-range
dependencies without the sequential processing limitations of recurrent neural networks(Vaswani
et al., 2017; Li et al., 2019). To extend the receptive field without incurring the quadratic cost
of full attention, a stream of variants introduce sparsity or hierarchical structure. For example,
LogSparse(Li et al., 2019), ProbSparse(Zhou et al., 2021) and related kernels discard low-magnitude
query—key interactions to achieve O(L log L) complexity while retaining global context. From a more
fundamental time series data perspective, Autoformer(Wu et al., 2021), FEDformer(Zhou et al., 2022)
and ETSformer(Woo et al., 2022) decompose signals into trend—seasonality (or frequency-domain)
components so that long-horizon patterns can be modeled additively and multiplicatively with reduced
error accumulation. More recent PatchTST(Nie et al., 2022) and TimesNet(Wu et al., 2022) patch
neighboring observations or convolve multi-scale windows before attention, embedding stronger
inductive biases for periodicity and aliasing control. While these innovations alleviate the long-range
dependency bottleneck, they remain largely data-agnostic. When applied to financial series they
struggle with regime-dependent non-stationary, heavy-tailed noise, and asynchronous cross-asset
lead-lag effects, causing attention scores to lock onto transient outliers and degrading out-of-sample
robustness (Cartea et al., 2023; Cont, 2001; Miori & Cucuringu, 2022). Our approach departs
from this paradigm by embedding each asset’s path in a Rough Path Signature space that is stable
under time-reparameterization and robust to micro-structure noise, and by augmenting the attention
logits with second-order cross-signature terms that encode the signed-area geometry underpinning
lead—lag dynamics. Coupled with scenario-based optimization to hedge against structural breaks, SIT
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addresses both the generic long-range dependency problem and the finance-specific pathologies that
limit existing Transformer forecasters.

Path Signatures in Time Series and Finance The path signature, originating from Rough Path
Theory, offers a non-parametric and faithful representation of streamed data by summarizing the
geometry of a path as a sequence of iterated integrals (Lyons, 1998). A key property is its universality:
any continuous function on the space of paths can be arbitrarily well-approximated by a linear function
of the signature’s terms, making it a powerful basis for feature extraction (Chevyrev & Kormilitzin,
2016). In practice, the signature is truncated at a finite order M, yielding a vector Sig" (X) that
is robust to irregular sampling due to its invariance to time reparameterization. However, this
truncation introduces a trade-off, as the feature dimension grows exponentially with the order M
and polynomially with the path dimension d, posing a significant computational burden. This
challenge has motivated alternatives like signature kernels, which compute inner products in the high-
dimensional feature space implicitly, avoiding explicit feature construction (Kirdly & Oberhauser,
2019). In machine learning, signatures provide a potent inductive bias for modeling systems with
path-dependent memory. The most direct application involves using truncated signatures as static
input features for standard models (Gyurké et al., 2013). More sophisticated integrations are found in
continuous-time models like Neural Controlled Differential Equations (CDEs), which learn a vector
field that is controlled by the input path, effectively modeling the system’s response to a driving
signal (Kidger et al., 2020). For finance, a crucial insight arises from the signature’s geometry: the
second-order terms of a joint signature over two asset paths precisely encode their signed area, a direct
and robust measure of their temporal lead-lag relationship (Lyons & McLeod, 2022). This property
has been successfully leveraged to build kernels for detecting asymmetric dependencies between
financial instruments, offering a principled alternative to traditional correlation measures (Bonnier
et al., 2019). Recent advancements extend this to attention mechanisms. the Rough Transformer
(Moreno-Pino et al., 2024) introduces multi-view signature attention to operate directly on continuous-
time representations. Also, applications to finance span volatility/return modeling, derivatives, and
market microstructure. Early studies extracted signature coordinates to forecast realized volatility and
to detect temporal asymmetries (Gyurko et al., 2013). In options, signatures parameterize no-arbitrage
dynamics and enable data-driven pricing/hedging (Arribas et al., 2020), including transformer-style
encoders fed with log/signatures (Tong et al., 2023). A crucial geometric motif is the second-order
signed area,

A(XE X)) = /Xi dx’ —/Xj axt, (21)

which encodes temporal asymmetry and lead—lag; signature kernels exploit this to compare pairs or
small baskets of assets (Chevyrev & Kormilitzin, 2016; Kirdly & Oberhauser, 2019). Our architecture
operationalization this motif at scale: SIT injects cross-asset signature information as a dynamic,
query-conditioned bias inside attention, so that pairwise signed-area evidence modulates which
assets attend to which others at each decision point (cf. Theorem 2.1). While signatures mitigate
non-stationarity and encode higher-order interactions, they incur truncation bias and can suffer from
a curse of dimensionality as either degree M or the number of assets grows; kernelization trades
feature savings for quadratic kernel costs (Salvi et al., 2021; Bonnier et al., 2019). Compared with
state-space or transformer baselines, signatures offer complementary bias—geometric invariances and
lead-lag structure—rather than longer receptive fields alone. Prior signature-based works typically (i)
use signatures as fixed inputs or kernels outside the attention mechanism and (ii) optimize predictive
losses, not portfolio objectives (Gyurko et al., 2013; Tong et al., 2023; Bonnier et al., 2019). SIT
differs by coupling signature-augmented, cross-asset attention with end-to-end CVaR optimization
for long-only, fully-invested portfolios, aligning representation, interaction, and objective (Buehler
etal., 2019).

B APPENDIX. NOTATION

For clarity and ease of reference, Table 3 provides a comprehensive summary of the key notations
used throughout this paper.
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Symbol Description Type / Dimension

R Set of real numbers —

E[] Expectation operator —

0=ty <---<t, =T Discrete decision times Scalars

d Number of tradable assets eN

S; Price of asset j at time ¢; Scalar

Su Price vector (S},...,S9) € R4

Q Set of market scenarios (price paths) Sample space

0co Trainable parameters / parameter space Vector / set

H Look-back window length (time steps) eN

K Forecasting window length (time steps) eN

M Signature truncation level eN

Sig" (X(s,7) Truncated signature of path X up to level M € Rsie

CVaR,,(+) Conditional Value-at-Risk at level « Scalar

Sk.j Signature vector for slice k, asset j € Rsie

Vi Calendar/feature vector at time ¢ e RF

€ ot Learnable embedding of asset j € R¥model

Xk,j Input token for slice k, asset j € R¥model

QK V Query, key, value matrices (per slice) € R4Xdmodel

Biji Cross-signature embedding for pair (7, 1) € RNmxds

qiy’; Dynamic query bias for asset j, slice k € RNm xds
Positive gate for signature bias € Rso

{wgf)},{.;l Future portfolio weights at ¢; (long-only) Eache R, S w=1

{re,, ey Realized returns for steps 1: K Each € R¢

{Lgf)k M Portfolio losses for steps 1: K Each scalar
ﬂ% Predicted k-step-ahead returns for k = 1,..., K

T Softmax temperature (Allocation Concentration) € Ry

€ RK per asset; stacked as € RExd

Table 3: Summary of the principal notation used throughout the paper.

C APPENDIX. MATHEMATICAL PROOFS

Definition C.1. (Strict Lead-Lag Structure) Let X; = (X}, X?) be a continuous path of bounded
variation on [0, T'|. We say it possesses a strict lead-lag structure if there exist an integer N > 1 and
a partition 0 = ¢y < t; < --- < toy = T of the interval [0, T'] such that the following conditions
hold:

(i) Foreach k € {0,1,..., N}, the coordinates coincide at the even-indexed partition points:

X}, = X2 . Let this common value be denoted by Sj.

(ii) Foreach k € {1,2,...,N}:

* On [top—2, tap—1] (the k-th lead interval), X} varies to satisfy X}
remains constant at Sy_1.

* On [tor_1,tag] (the k-th lag interval), th remains constant at .Sy, while Xt2 varies to
satisfy X7 = Sj.

= Sk, while X7}

(iii) Foreach k € {1,2,..., N}, the change between synchronization points is non-zero, i.e.,

Sk # Sk-1-

Theorem C.2. (Strict Lead-Lag Implies Positive Second-Order Signature) Let X; = (X}, X?) for
t € [0,T] satisfy the strict lead-lag structure of Definition C.1. Then the second-level signature
cross-term

T T
AX) = / X}dX? - / XPdx} (22)
0 0
>0

is strictly positive. In particular, A(X)
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Proof. Let X; = (X}, X?):e[0,7) be a path of bounded variation with the strict lead-lag structure of
Definition C.1. By this structure, there exists a partition 0 = ¢y < t1 < --- < tony = T such that
on each interval [tog_o, tor—1] only X ! varies (while X2 remains constant), and on the following
interval [tog_1, tox] only X 2 varies (while X! is constant). Moreover, at the synchronization times
to1 both coordinates coincide, and no increment is zero.

Recall from Definition C.1 the common values at the synchronization points:
Sp—1=X},, , =X} and S, =X, =X}

tok—2 top—2 tok tok "

(23)

Then Sy # Sk_1 by strictness. Let AS), := S — Si_1. By construction, on [tog_2, tar—1] (the
k-th lead step) X! varies from Sy_; to Sy, while X2 stays at S,_1; on [tax_1, t2x] (the lag step) X*
remains Sj, while X2 moves from Sj,_1 to Sj.

Now we compute the cross-integral:

T T
A(X) = / X}dX? - / X7dXx;}. (24)
0 0
Using the piecewise structure, we have for each k:
S e 2
X;dX; = X;dX; (since dX; = 0 on [tar_2,tor—1]) (25)
tor—2 tok—1
=S [Xtik — Xf%_l} (since X} = Sy, is constant on [tor_1, tax]) (26)
= SpASk. 27
Similarly,
tor tor—1
XPdX} = / X2dXx}! (since dX} = 0 on [tag_1, tax]) (28)
tok—2 tok—2
=511 [th%_l - X}%_Q (since X? = Sj,_; is constant on [tog o, top_1])
(29)
= Sk_1ASy. (30)
Summing over £k = 1 to IV and subtracting:
N
A(X) = (SkAS), — Sp_1AS}) (31)
k=1
N
k=1
N
= Z(ASk)Q. (33)

B
Il
_

Thus A(X) = Zgzl(ASkP. Since Sy, # Si_1 for each k by condition (iii), we have AS), # 0, so
each term (ASy)? is strictly positive. Therefore, the sum .A(X) is strictly positive. O

Theorem C.3 (Positive directional derivative of attention weight). Assume d > 2, v > 0, and fix

(k,h,4,1). Let the query vector (qz’yjn)h € R% satisfy ||(q2yjn)h||2 > 0. For

(Qrn Ky 1) jm d
Zjm = ————=—— + V(G Bijm)n)s,  Gm = =g
J,m \/@ k,j 1,7,Mm J,m Zle eZir

assume 0 < aj; < 1. Then the directional derivative of o with respect to 3, ; ; in the direction

(qzyjrl )n equals

ezj,m

DB i =501 = i) (@3 > 0. -

17
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Proof. For a fixed time slice k and head h, the attention weight oy, 1, j—; is the I-th component of the
softmax function applied to the j-th row of the logits matrix. Let z; ,,, be the logit for query asset j
and key asset m € {1,...,d}.

. _(Qk,hK;h)jM_’_,yb ‘
J,m \/@ k,h,j,m

The bias term by, 5, ;; is given by the inner product by 5 j; = ((qi%;)h, (Bi,j1)n)- The attention
weight is:

(35)

exp(z;,1)
Qk,h,j—1 = d—] (36)
ZTYL:l eXp(ijm)
We wish to compute the directional derivative of a5, j—; With respect to the vector (5,»7 J. 1 )n in the

direction of u = (Qiy;)h, which is defined as Dy i1 = (V(g, ROk il u).
First, we find the gradient of o, , ;. By the chain rule,
A\ Qi Z Doy —khinly Z; 37
(ﬁi%z)h k,h,j—1 = Oz (ﬁ7jz)h 7,m
j m

The relational embedding (3; g .)n only appears in the bias term by, 5, j ;, and thus only affects the
logit z;;. For any m # [, V(ﬁ OnZj,m = 0. Therefore, the sum collapses to a single term:

Oay, 1. i
v('@i‘j,l)hak’h’j_)l - ('l;jzh-7j_>lv(5i,j,z)hzj,l (38)
3l

Ok 1, j 1

The derivative of the softmax function is —5-* = = = o n,j—1(1 — g p,j—i1). The gradient of the
3>

logit z;,; with respect to (3; ; ;)n is:

v _v (Qk,hK;gr,h)jJ dyn dyn 39
@000 = VB | g F Ak Bigan) | =aldegn (9

Substituting these back, we get the gradient of the attention weight:

V(B0 Ot =7 Qo jost (1= @ ngt) - (g (40)
Now, we compute the directional derivative:
D(qt;cy’nj)hak,h,jw = (v aknji(l — ki) (qkj)ha (qiyz’) ) (4D)
=7 Oék,h,j—>z(1 - Oék,h,j—ﬂ) : <(Q2y;)h7 (q:y;) ) (42)
=7 arnjot(1 = akn o) (@ Dal (43)

By assumption, v > 0. The attention weight satisfies 0 < oy, j—; < 1 (for any non-degenerate
case with at least two assets), so the term g, j—(1 — @, j—1) 1S strictly positive. By assumption,
(q‘,iy;‘)h # 0, so its squared norm ||(qiy;) ||? is also strictly positive. The product of three strictly

positive terms is strictly positive, which concludes the proof.

O
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D APPENDIX. IMPLEMENTATION DETAILS

To ensure a fair and robust comparison, we perform an extensive hyperparameter search for our
proposed SIT model and all baseline models. For each model, we conduct a comprehensive grid
search to identify the optimal set of hyperparameters from the search space defined in Table 4. The
combination of parameters yielding the best performance on the validation set was selected for the
final evaluation on the test set. For all models and experiments, we maintain a consistent set of
general training parameters: the Adam optimizer with a learning rate of 103, a batch size of 64, a
dropout rate of 0.1. We train all models for a maximum of 100 epochs, utilizing an early stopping
mechanism with a patience of 10 epochs to prevent overfitting.

Panel A. General Time Series Forecasting Models

Parameter

Values

D_MODELS
D_FFS
E_LAYERS_LIST
N_HEADS_LIST

32, 64, 128, 256
32, 64, 128, 256
1,2

2,4,8

Panel B. Nonstationary Transformer (NSformer)

Parameter Values
D_MODELS 32, 64, 128, 256
D_FFS 32, 64, 128, 256
E_LAYERS_LIST 1,2
N_HEADS_LIST 2,4,8
P_HIDDEN 64, 128, 256
P_LAYER 1,2

Panel C. TimesNet

Parameter Values
D_MODELS 32, 64, 128, 256
D_FFS 32, 64, 128, 256
E_LAYERS_LIST 1,2
N_HEADS_LIST 2,4,8

TOP_K 3,5,7

Panel D. RFormer

Parameter Values
Embedding_Dim 8,16, 32
E_LAYERS_LIST 1,2
N_HEADS_LIST 2,4,8
Sig_Level 2,3

Panel E. SIT (Ours)

Parameter Values
D_MODELS 8, 16, 32, 64
D_FFS 8, 16, 32, 64
E_LAYERS_LIST 1,2
N_HEADS_LIST 2,4,8
Sig_Level 2

HIDDEN_C 8,16, 32

Table 4: The hyperparameter search space for the models used in this study. Each panel shows the
parameters and their range of values assigned to a specific model or model group.
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E APPENDIX. WHY WE CHOOSE CVAR?

1. MODEL AND DEFINITIONS

Let S = {1,..., N} be a finite state space for an integer N > 2. Let ‘i3 be a probability measure on
S assigning a probability ps = PB({s}) > 0 to each state s € S, with Zivzl ps = 1. We designate
state s = 1 as the unique crash state, with probability p; = ¢ € (0, 1).

We consider two portfolios, a primary portfolio (PF) and a hedged portfolio (HF), with associated
losses given by the random variables X and Y, respectively. We denote their specific loss values in
state s by X and Y. We impose two structural assumptions on these portfolios:

1. Crash State Exceptionalism: The loss of the PF portfolio in the crash state is strictly
greater than its loss in any non-crash state. That is, X; > X forall s € {2,...,N}.

2. Strict State-wise Dominance: The HF portfolio is strictly less risky than the PF portfolio
in every state. Thatis, Y; < X, forall s € S.

For a loss variable Z and a confidence level p € (0, 1), the Value-at-Risk is the p—quantile
VaR,(Z) =inf{z e R | P(Z < z) > p}. (44)

The Conditional Value-at-Risk (CVaR), also known as Expected Shortfall, at level « € (0,1)
averages the upper tail of mass 1 — a:

e 1
CVaR,(2) = T o VaR,(Z)dp = mei]g{l/ + 1

-, -«

E[(Z - v)*] } (45)

(03

We define the risk gap between the two portfolios at level « as
A, = CVaR,(X) — CVaR,(Y). (46)

Theorem E.1 (HF dominates PF in CVaR). Ler « € (0, 1) satisfy 1 —a < q (equivalently, « > 1—q).
For any portfolios PF and HF satisfying the assumptions above, the risk gap is strictly positive and
bounded below by the minimum performance gap:

Aa 2 Lmina (47)
where the minimum performance gap is defined as

Lin == ggg(Xs - sz) (48)

Since Yy < X for all s in the finite set S, it follows that Ly, > 0, confirming that HF strictly
dominates PF in terms of CVaR for this range of .

Proof. We proceed in three steps. First, we compute CVaR,, (X) under the stated tail condition.
Second, we upper-bound CVaR,,(Y"). Finally, we combine these results.

Exact value of CVaR,,(X) for & > 1 — q. Let Fix(z) = PB(X < z) be the cumulative distribution
function of X. By Crash State Exceptionalism, X; is the unique maximum of X. Hence, for any
z < Xy,

N

Fx(z) =PB(X <2) <Y po=1-¢. (49)

s=2
Therefore, for every p € (1 — g, 1], the smallest z with F'x (z) > pis z = X7, i.e., VaR,(X) = X;.
If & > 1 — q (equivalently, the tail mass 1 — « < q), then

1 1 1
/ VaR,(X)dp = —— / X, dp = X. (50)
(6% «@

11—«

1
CVaRa(X) = -

—

Upper bound for CVaR,(Y). By definition of L,,;,, we have X, — Yy > L, forall s € S,
equivalently
Y <X — Lyn (state-wise). (G20

Two standard properties of CVaR at a fixed level « are:
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1. Monotonicity: If 7, < Z, state-wise, then CVaR, (Z;) < CVaR,(Z3).
2. Translation Equivariance: For any constant ¢ € R, CVaR,(Z — ¢) = CVaR,(Z) — c.

Applying these to Y < X — Ly, yields
CVaR,(Y) < CVaR, (X — Lin) = CVaR,(X) — Lmin = X1 — Lmin. (52)

So, to get the risk gap, we combine the steps mentioned above.
A, =CVaR,(X) — CVaR,(Y) > X1 — (X1 — Lin) = Lmin > 0. (53)

This completes the proof. O

F DETAILS OF PREDICT-THEN-OPTIMIZE BASELINES

The deep learning baselines evaluated in our experiments operate under a two-stage predict-then-
optimize approach. Unlike SIT, these baselines treat the two tasks as disjoint stages. This section
details the mathematical formulation of this process.

Stage 1: Return Prediction via MSE In the first stage, a forecasting model fy is trained to
minimize the statistical discrepancy between the predicted returns and the ground truth. Let X,
denote the lookback window of historical asset features at time ¢, and ryy; € R4 denote the realized
returns at time ¢ 4+ 1. The model parameters 6 are optimized using the Mean Squared Error (MSE)
loss function:

T
1 .
Lyse(0) = T E [req1 — Bogall3 (54)
t=1

where ;1 = fy(X,) is the point forecast of the asset returns. The training process focuses solely
on maximizing predictive accuracy (minimizing L, distance) without considering the downstream
portfolio risk metric or the covariance structure between assets.

Stage 2: Portfolio Optimization via Mean-CVaR In the second stage, the trained forecasting
model is frozen. Its output ;1 is treated as the vector of expected returns to construct the portfolio.
To ensure a fair comparison with our proposed method, we employ a CVaR optimization framework.
The solver seeks a portfolio weight vector w; that minimizes the Conditional Value-at-Risk (CVaR)
while satisfying a target return constraint derived from the prediction 'y .

The optimization problem at time ¢ is formulated as follows:

S
o 1 T +
mniE g 2 T -

subjectto W' fyyq > Hrarget
weWw

Here, AY represents the simplex of valid portfolio weights (e.g., > w; = 1,w; > 0 for long-only
strategies). The risk term CVaR,, is approximated using S historical scenarios rs sampled from the
immediate past, and ( represents the Value-at-Risk (VaR) auxiliary variable.
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G APPENDIX. ADDITIONAL EXPERIMENTS

Panel A. Asset 30 Universe (S&P100)

Model Sharpe Sortino MDD Wealth
CVaR 0.2883 0.3707 0.3499 1.1915
EW 0.5268 0.6569 0.3724 1.5648
GMV 0.1690 0.2177 0.2853 1.0723
HRP 0.4609 0.5711 0.3287 1.4099
Autoformer ~ 0.3228 £ 0.0549  0.4500 + 0.0840  0.3782 + 0.0062  1.2989 +0.1028
DLinear 0.3929 £+ 0.1294  0.5399 + 0.1758  0.3863 + 0.0266  1.4235 + 0.2587
FEDformer 0.1594 £0.1323  0.2162 £ 0.1790  0.4345 4+ 0.0319 1.032 £+ 0.2090
iTransformer  0.2948 £+ 0.0721  0.3853 £ 0.0942  0.4169 +0.0118  1.2447 4+ 0.1459
NSformer 0.2227 £ 0.1535  0.3070 £ 0.2126  0.4422 + 0.0535  1.1190 + 0.2650
PatchTST 0.2189 £ 0.1446  0.2916 4 0.1945  0.5003 4+ 0.0667  1.1238 + 0.2287
TimesNet 0.2192 £ 0.1520  0.2999 4+ 0.2103  0.4434 +0.0311  1.1213 + 0.2853
RFormer 0.4631 £0.2771  0.5854 £0.2094  0.4561 £ 0.0501  1.5566 + 0.2038
SIT (Ours) 0.5496 + 0.0552  0.6797 + 0.0792  0.3415 + 0.0162  1.5678 + 0.0973

Table 5: Portfolio performance of SIT versus baselines across 30-asset universes. The best, second-
best, and third-best results for each metric are highlighted in red, blue, and bold, respectively. SIT
consistently delivers superior risk-adjusted returns.

Panel A. Asset 10 Universe (DOW30)

Sortino Ratio (1)

Maximum Drawdown ({)

Final Wealth Factor (1)

Models Sharpe Ratio (1)
CVaR 0.4584
EW 0.9123
GMV 1.0394
HRP 0.8407
Autoformer 0.6767 £ 0.3150
DLinear 0.8223 + 0.1251
FEDformer 0.7664 £ 0.0867
iTransformer  0.9458 + 0.1279
NSformer 0.8863 + 0.2525
PatchTST 0.7815 £ 0.1745
TimesNet 0.4249 £ 0.2673
RFormer 0.8605 £ 0.1936
SIT (Ours) 1.0312 + 0.0671

0.5617
1.1714
1.3191
1.0332
0.9581 £ 0.4848
0.9789 £ 0.1692
0.8245 £ 0.1460
1.1248 £+ 0.2274
0.9630 £ 0.4478
0.9712 £ 0.2462
0.5876 £ 0.3658
1.1928 £ 0.2708
1.3798 + 0.1049

0.3053
0.3191
0.2467
0.3104
0.4655 + 0.0265
0.4240 £ 0.0414
0.4948 £+ 0.0116
0.4230 £ 0.0532
0.4733 4 0.0825
0.4133 £+ 0.0224
0.6326 £ 0.0967
0.3615 £ 0.0407
0.2766 + 0.0413

1.4341
2.4551
2.3841
2.0583
2.2787 £ 1.3004
2.4523 £ 0.6336
2.0578 £+ 0.7550
2.4016 + 1.7240
2.1044 £ 1.1644
2.1454 £ 0.8895
1.6655 £ 0.6016
2.1120 £ 0.5219
2.8674 + 0.2263

Panel B. Asset 20 Universe (DOW30)

Models Sharpe Ratio (1) Sortino Ratio (1)  Maximum Drawdown ({)  Final Wealth Factor (1)
CVaR 0.5453 0.6871 0.3249 1.5166
EW 0.8603 1.0472 0.3503 2.2293
GMV 0.8618 1.0730 0.2853 1.9457
HRP 0.7500 0.8917 0.3253 1.8443
Autoformer 0.5688 + 0.2224  0.8312 4 0.3437 0.4642 4+ 0.0244 1.8605 4+ 0.9118
DLinear 0.7969 £+ 0.1057  0.9339 + 0.1475 0.3276 4 0.0415 2.1966 + 0.4046
FEDformer 0.3341 £0.5907  0.5471 £ 0.8805 0.4671 4 0.0763 1.8039 + 1.1031
iTransformer ~ 0.4668 + 0.2290  0.6682 =+ 0.3666 0.6001 4 0.0208 1.8563 + 0.9329
NSformer 0.6541 £0.4828  0.9751 + 0.7710 0.5620 £+ 0.0778 2.1464 + 1.0281
PatchTST 0.6828 £ 0.1866  0.9499 + 0.2417 0.5109 £ 0.0395 2.0649 + 0.4307
TimesNet 0.2381 £ 0.2584  0.3428 + 0.3871 0.4919 £ 0.0511 1.2356 + 0.5723
RFormer 0.7055 £+ 0.1568  0.8295 + 0.1663 0.4514 4+ 0.1046 2.0048 + 0.6198
SIT (Ours) 0.8861 + 0.1243  1.0949 + 0.1607 0.3151 + 0.0181 2.2039 + 0.2983

Table 6: Portfolio performance of SIT versus baselines across 10 and 20-asset universes from DOW30.
The best, second-best, and third-best results for each metric are highlighted in red, blue, and bold,
respectively. SIT consistently delivers superior risk-adjusted returns.

H APPENDIX. THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this study, Large Language Models (LLMs) were employed solely to refine the grammar and tone
of the written text. Importantly, the research results, including the development of the code and the
core scientific contributions, were carried out entirely without the assistance of LLMs.
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Panel A. Asset 50 Universe (CSI300)

Models Sharpe Ratio (1) Sortino Ratio (1)  Maximum Drawdown ()  Final Wealth Factor (1)
CVaR 0.8292 1.0038 0.1220 1.0971
EW 1.1695 1.3671 0.1263 1.1413
GMV 1.6717 2.1255 0.0942 1.1766
HRP 1.7428 2.0183 0.1136 1.1825
Autoformer 0.5834 £+ 0.4666  0.5923 + 0.5446 0.2441 4+ 0.0779 0.9079 + 0.1257

DLinear 0.5122 £ 0.3699
FEDformer 0.3267 £ 0.7165
iTransformer  0.6161 £ 0.1936
NSformer 0.3010 £ 0.1859
PatchTST 0.2789 £ 0.1646
TimesNet 0.8213 £ 0.1636
RFormer 0.8867 + 0.2363
SIT (Ours) 1.9373 + 0.0091

0.6819 £ 0.5769
0.4185 £ 0.8655
0.8566 + 0.2296
0.4132 £ 0.2395
0.3368 £ 0.2040
1.0533 4+ 0.1929
1.0921 £ 0.2451
2.3399 + 0.1711

0.2032 £ 0.0664
0.2822 £+ 0.0371
0.2001 £ 0.0234
0.2889 =+ 0.0689
0.1913 £+ 0.0124
0.2855 £ 0.0954
0.2579 £ 0.0554
0.0964 -+ 0.0046

1.1252 £ 0.1615
1.0383 £ 0.2970
1.0204 £ 0.1806
1.0775 £+ 0.0704
1.0394 + 0.0442
1.1700 £ 0.2386
1.1665 £ 0.1245
1.2804 + 0.0105

Panel B. Asset 100 Universe (CSI300)

Models Sharpe Ratio (1) Sortino Ratio (1)  Maximum Drawdown (/)  Final Wealth Factor (1)
CVaR 1.5199 2.0863 0.1155 1.2905
EwW 1.1179 1.2660 0.1302 1.1252
GMV 1.5365 2.0612 0.1175 1.2724
HRP 1.2424 1.6540 0.1229 1.2097
Autoformer 0.5681 £0.3129  0.6014 £ 0.4024 0.2529 £+ 0.0206 0.9725 £+ 0.1396

DLinear 0.7382 £ 0.4826
FEDformer 0.4269 + 0.4916
iTransformer  0.9865 £ 0.2055
NSformer 0.5470 £ 0.3975
PatchTST 0.4650 £+ 0.1313
TimesNet 0.7353 £+ 0.1357
RFormer 1.0267 £ 0.2152
SIT (Ours) 1.8772 4+ 0.0918

0.8309 £ 0.4303
0.5356 £+ 0.6167
1.2495 £+ 0.2386
0.7586 + 0.5326
0.5551 +0.1793
1.0598 £ 0.1992
1.2359 £ 0.2599
2.3637 + 0.0936

0.2314 £+ 0.0778
0.2831 £ 0.0344
0.2492 £+ 0.0741
0.2175 £ 0.0851
0.2547 £ 0.5590
0.2997 £ 0.0940
0.2111 £ 0.0732
0.1199 + 0.0048

1.0934 + 0.3219
1.0846 £ 0.1694
1.1169 £ 0.3491
1.1560 + 0.1387
1.0809 £ 0.1104
1.1610 £ 0.2039
1.2321 £ 0.1094
1.2777 + 0.0214

Table 7: Portfolio performance of SIT versus baselines across 10 and 20-asset universes from CSI300.
The best, second-best, and third-best results for each metric are highlighted in red, blue, and bold,
respectively. SIT consistently delivers superior risk-adjusted returns.
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I APPENDIX. DRAWDOWN WITH GAMMA(7)

Drawdown with Gammal(y) - Asset 40
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Figure 7: Visual analysis of the dynamic gate ~ relative to portfolio drawdown over the test period
(2020-2024). The plots display the drawdown curves for the 40-asset (top) and 50-asset (bottom)
universes, where the line color intensity encodes the magnitude of the learnable scalar .
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