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Abstract

This paper revisits the robust overfitting phenomenon of adversarial training. Observing
that models with better robust generalization performance are less certain in predicting
adversarially generated training inputs, we argue that overconfidence in predicting adversar-
ial examples is a potential cause. Therefore, we propose a formal definition of adversarial
certainty that captures the variance of the model’s predicted logits on adversarial examples
and hypothesize that generating adversarial examples after the optimization of decreasing
adversarial certainty improves robust generalization. Our theoretical analysis of synthetic
distributions characterizes the connection between adversarial certainty and robust generaliza-
tion. Accordingly, built upon the notion of adversarial certainty, we develop a general method
to search for models that can generate training-time adversarial inputs with reduced certainty,
while maintaining the model’s capability in distinguishing adversarial examples. Extensive ex-
periments on image benchmarks demonstrate that our method effectively learns models with
consistently improved robustness and mitigates robust overfitting, confirming the importance
of generating less certain adversarial examples for robust generalization. Our implementations
are available as open-source code at: https://github.com/TrustMLRG/AdvCertainty.

1 Introduction

Deep neural networks (DNNs) have achieved exceptional performance and have been widely adopted in various
applications, including computer vision He et al. (2016), natural language processing Devlin et al. (2019) and
recommendation systems Covington et al. (2016). However, DNNs have been shown highly vulnerable to
classifying inputs, known as adversarial examples Szegedy et al. (2014); Goodfellow et al. (2015), crafted
with imperceptible perturbations that are designed to trick the model into making wrong predictions. The
prevalence of adversarial examples has raised serious concerns regarding the robustness of DNNs, especially
when deployed in security-critical applications such as self-driving cars Chen et al. (2015), biometric facial
recognition Komkov & Petiushko (2021) and medical diagnosis Finlayson et al. (2019); Ma et al. (2021). To
improve the resilience of deep neural networks against adversarial perturbations, numerous defenses have
been proposed, such as distillation Papernot et al. (2016), adversarial detection Ma et al. (2018), feature
denoising Xie et al. (2019), randomized smoothing Cohen et al. (2019), and semi-supervised methods Alayrac
et al. (2019). Among them, adversarial training Madry et al. (2018); Zhang et al. (2019) is by far the most
popular approach to learn robustness against adversarial perturbations. Nevertheless, even the state-of-the-art
adversarial training methods Croce et al. (2020); Rebuffi et al. (2021); Wang et al. (2023) cannot achieve
satisfactory robustness performance on simple classification tasks like classifying CIFAR-10 images.
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Witnessing the empirical challenges for improving model robustness, many recent works focus on understanding
the behavior of adversarial training Tu et al. (2019); Gao et al. (2019); Wu et al. (2020); Zhang et al. (2020);
Yu et al. (2022). In particular, Rice et al. observed that test robust accuracy of intermediate models produced
during adversarial training immediately increases by a large margin after the first learning rate decay but keeps
decreasing afterward, known as robust overfitting Rice et al. (2020). Robust overfitting has recently attracted
a lot of attention, since it is not an issue for standard deep learning but appears to be dominant in adversarial
training. Therefore, recognizing the fundamental cause of robust overfitting may provide important insights
for designing better ways to produce more robust models. In this paper, we revisit the robust overfitting
phenomenon and provide a potential reason for why it happens. More concretely, we observe that models
produced during adversarial training tend to be overconfident in predicting the class labels of adversarial
inputs, whereas models with better robust generalization exhibit much less significant overconfidence issues.
By introducing the notion of adversarial certainty, which captures the variation of a model’s output logits in
predicting adversarial examples generated by the model itself, we provide theoretical evidence and empirical
results showing that generating adversarial examples after the optimization of decreasing adversarial certainty
helps produce models with improved robust generalization.

Contributions. By visualizing the label predictions of adversarial examples generated at different epochs, we
observe that adversarial training is prone to produce overconfident models, which further induces decreased
test robust accuracy. Thus, we argue that generating training-time adversarial inputs after the optimization
of decreasing adversarial certainty can improve robust generalization (Section 3). To study the hypothesis
more rigorously, we first introduce a formal definition of adversarial certainty, and then provide theoretical
results on synthetic distributions that characterize the connection between adversarial certainty and robust
generalization (Section 4).

Built upon the definition of adversarial certainty, we propose a general method to explicitly Decrease
Adversarial Certainty (DAC) during adversarial training (Section 5). At a high level, DAC is designed to
find training-time adversarial examples with lower certainty for improving model robustness. In particular,
DAC first finds the steepest descent direction of model weights to decrease adversarial certainty, and then
the newly generated adversarial examples with lower certainty are used to optimize model robustness. As the
model learns from less certain adversarial examples, the aforementioned overconfidence issue is expected to
be largely mitigated. In addition, we provide a correlation analysis between adversarial certainty and robust
generalization, which illustrates the importance of imposing proper constraints on model search space for
DAC. By conducting extensive experiments on image benchmark datasets, we demonstrate that our method
consistently produces more robust models when combined with various adversarial training algorithms, and
robust overfitting is significantly mitigated with the involvement of DAC (Section 6.1). Moreover, we find that
our proposed adversarial certainty has an implicit effect on existing robustness-enhancing techniques that are
even designed based on different insights (Section 6.2). Besides, we provide a more intuitive demonstration
of DAC’s efficacy (Section 6.3), and update the explicit optimization of adversarial certainty by using a regu-
larization term to improve the efficiency (Section 6.4). These empirical results again indicate the importance
of adversarial certainty in understanding adversarial training and bring a further comprehension of our work.

Notation. We use lowercase boldfaced letters for vectors, and 1(·) for the indicator function. For any x ∈ Rd

and i ∈ {1, 2, . . . , d}, let xi be the i-th element of x. For any finite-sample set S, let |S| be the cardinality
of S. Let (X , ∆) be a metric space, where ∆ : X × X → R denotes a distance metric. For any x ∈ X
and ϵ ≥ 0, let Bϵ(x; ∆) = {x′ ∈ X : ∆(x′,x) ≤ ϵ} be the ball centered at x with radius ϵ and metric ∆.
When ∆ is free of context, we simply write Bϵ(x) = Bϵ(x; ∆). Let µ be a probability distribution on X × Y,
where Y denotes a label space. The empirical distribution of µ with respect to a sample set S is defined
as: µ̂S(C) =

∑
(x,y)∈S 1

(
(x, y) ∈ C

)
/|S| for any measurable set C ⊆ X × Y. Let N (γ, σ2) be the Gaussian

distribution with mean γ and standard deviation σ > 0.

2 Related Work

Adversarial training is a promising defense framework for improving model robustness against adversarial
examples Goodfellow et al. (2015); Madry et al. (2018); Zhang et al. (2019); Wang et al. (2020); Tramèr et al.
(2017); Shafahi et al. (2019); Andriushchenko & Flammarion (2020); Wong et al. (2020); Jin et al. (2022). In
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particular, Goodfellow et al. proposed to adversarially train models using perturbations generated by the fast
gradient sign method (FGSM) Goodfellow et al. (2015). Later on, Madry et al. incorporated perturbations
produced by iterative projected gradient descent (PGD) into adversarial training Madry et al. (2018), which
learns models with more reliable and robust performance. Other variants of adversarial training have been
proposed, which typically modify the training objective but also use PGD attacks to approximately solve the
inner maximization problem. For instance, Zhang et al. designed TRADES, which considers optimizing the
standard classification loss while encouraging the decision boundary to be smooth Zhang et al. (2019). Wang et
al. proposed MART to emphasize the importance of misclassified examples during adversarial training Wang
et al. (2020). In this work, we demonstrate how to improve the robust generalization performance of these
adversarial training algorithms by searching for models with lower adversarial certainty.

Apart from improving adversarial training, several recent works focus on understanding robust generalization
and leveraging the gained insight to build more robust models Rice et al. (2020); Stutz et al. (2021); Hwang
et al. (2021); Chen et al. (2021); Yu et al. (2022); Xu et al. (2023). In particular, Rice et al. discovered that,
unlike standard deep learning, robust overfitting is a dominant phenomenon for adversarially-trained DNNs
that hinders robust generalization, and advocated the use of early stopping Rice et al. (2020). Wu et al.
discovered that the flatness of weight loss landscape is an important factor related to robust generalization,
which inspires them to adversarially perturb the model weights during adversarial training Wu et al. (2020).
Besides, Tack et al. proposed a consistency regularization term based on data augmentation to mitigate robust
overfitting Tack et al. (2022). Our work complements these methods, where we explain why overconfidence
in generating adversarial examples is highly related to robust overfitting and illustrate how to improve
robust generalization by promoting less certain perturbed inputs for adversarial training. Moreover, we are
also aware of two existing works that focus on improving the performance of adversarial training with the
consideration of model overconfidence Stutz et al. (2020); Setlur et al. (2022). However, these works target
different objectives from ours. More specifically, Stutz et al. developed a confidence-calibrated adversarial
training method that achieves better robustness against unseen attacks Stutz et al. (2020). Setlur et al.
proposed a regularization technique to maximize the entropy of model predictions on out-of-distribution data
with larger perturbations, thus improving model accuracy on unseen examplesSetlur et al. (2022).

3 Overconfidence Compromises Robustness

In this section, we first introduce the most relevant concepts, including adversarial robustness, adversarial
training and robust overfitting, of which the complete introduction and discussion are detailed in Appendix A.
Next, we visualize the label predictions of adversarially trained models by heatmaps, and propose our
hypothesis that model overconfidence is a potential cause of the decreased robust generalization in adversarial
training, where robust overfitting occurs.

Preliminaries. In this work, we focus on the most widely-studied ℓp-norm bounded perturbations, and work
with the following definition of adversarial robustness:

Rϵ(fθ; µ) = 1 − E(x,y)∼µ max
x′∈Bϵ(x)

1
(
fθ(x′) ̸= y

)
,

where fθ is an arbitrary classifier, µ denotes the underlying data distribution, and ϵ ≥ 0 captures the adversarial
strength. In practice, adversarial robustness estimated based on a set of testing examples Rϵ(fθ; µ̂Ste

) is
typically used as the evaluation metric for measuring the robust generalization of fθ. Adversarial training
aims to improve model robustness by training on adversarially-perturbed inputs Goodfellow et al. (2015);
Madry et al. (2018); Zhang et al. (2019), which can be formulated as a min-max optimization problem:

min
θ∈Θ

1
|Str|

∑
(x,y)∈Str

max
x′∈Bϵ(x)

L
(
fθ,x′, y

)
, (1)

where Θ represents the model class, Str is a set of training examples independently and identically sampled
from µ, and L denotes some convex surrogate loss such as cross-entropy. Note that PGD attacks Madry
et al. (2018) are typically employed in adversarial training to provide approximated solutions to the inner
maximization problem in Equation (1). Nevertheless, PGD-based adversarial training and its variants Madry
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Figure 1: Heatmaps of the label predictions of training- and testing-time
generated adversarial examples with respect to models produced from
the last and best epochs of adversarial training.
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(b) Adversarial Certainty

Figure 2: Model confidence in pre-
dicting training-time adversarial ex-
amples conditioned on the ground-
truth class label using different met-
rics: (a) label-level variance, and (b)
adversarial certainty.

et al. (2018); Zhang et al. (2019) suffer from the robust overfitting phenomenon Rice et al. (2020): The
test-time robustness of intermediate models produced during the training process sharply increases after
the first learning rate decay but keeps decreasing afterward. As a result, the model produced from the last
training epoch cannot achieve a satisfactory robust generalization performance.

Heatmap Visualizations. To gain a deeper understanding of robust overfitting, we visualize the heatmaps
of the label predictions for adversarially-perturbed CIFAR-10 images. Given that robust overfitting captures
the gap of robust generalization performance with respect to models produced at the last and best epochs,
we first plot Figures 1(b) and 1(d). Since only the training process is accessible in adversarial training,
we also depict the corresponding training-time heatmaps in Figures 1(a) and 1(c). Here, the ground-truth
label represents the underlying class of clean images and the predicted label denotes the class of adversarial
examples predicted by the corresponding model. More experimental details about Figure 1 are provided
in Appendix B. Specifically, when comparing Figures 1(a) and 1(c), we find that the predictions of Last
Model mainly concentrate on the ground-truth class, which means the model is overconfident in predicting
adversarial examples generated by itself. In contrast, the heatmap of Best Model, which achieves better
robust generalization performance, depicts less overconfidence. Moreover, by comparing the same model
between the training and testing time, i.e., Figure 1(a) versus Figure 1(b) and Figure 1(c) versus Figure 1(d),
we discover that the train-test gap is significantly smaller with respect to the Best Model. We note that this
result is aligned with the classical machine learning theory: If the testing distribution deviates more from the
training distribution, standard learners will show a decreased generalization performance.

According to the above findings, we hypothesize that the overconfidence property is detrimental to robust
generalization. To be more specific, if the model cannot generate perturbed training inputs with sufficient
uncertainty, the model will not be able to well predict the less certain adversarial examples during the
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inference time. Thus, mitigating model overconfidence could be a potential solution to improve robust
generalization for adversarial training. In Section 4, we will introduce a novel notion of Adversarial Certainty,
which is proposed to measure the degree of model overconfidence and is essential for designing our DAC
method to help robust generalization as demonstrated in Section 5.

4 Introducing Adversarial Certainty

To numerically summarize our findings from the heatmaps, we measure the variance of the class probabilities
of the predicted labels, denoted as label-level variance, with respect to the training-time adversarial examples
for each ground-truth category in Figure 2(a). A lower label-level variance indicates the prediction confidences
of different labels are closer, which corresponds to less certainty. More specifically, we observe that the Best
Model with better robust generalization performance exhibits a lower label-level variance than that of the
Last Model, which is consistent with the results illustrated in Figure 1. Even though the label-level variance
can characterize how certain the training-time generated adversarial examples are, such statistics are on a
class level, which is not easy for optimization. Thus, we propose the following logit-level definition, termed as
adversarial certainty, to capture the certainty of a model in classifying the adversarial examples generated by
itself, where a lower score of adversarial certainty suggests the model has a stronger ability to generate less
certain adversarial inputs:
Definition 1 (Adversarial Certainty). Let X be the input space and Y = {1, 2, . . . , m} be the label space.
Suppose µ is the underlying distribution and S is a set of sampled examples. Let ϵ ≥ 0, ∆ be the perturbation
metric. For any fθ : X → Y, we define the adversarial certainty of fθ as:

ACϵ(fθ; µ̂S , A) = 1
|S|

∑
(x,y)∈S

Var
(
Fθ

[
A(x; y, fθ, ϵ)

])
,

where A denotes an attack method such as PGD attacks for generating adversarial examples, Fθ : X → Rm

represents the mapping from the input space X to the logit layer of fθ, and Var(u) =
∑

k∈[m] (uk − u)2
/m,

with uk and u denoting the k-th element and mean of u ∈ Rm respectively.

Different from label-level variance, adversarial certainty is an averaged sample-wise metric, which calculates the
variance of the logits returned by the model fθ for each adversarially-perturbed example A(x; y, fθ, ϵ). Similar
to Figure 2(a), we visualize the adversarial certainty of the Best Model and the Last Model in Figure 2(b).
Since predicted labels are decided by the class with the highest predicted probabilities, adversarial certainty
depicts a similar pattern to the label-level variance as expected. Based on Definition 1, our hypothesis can
then be specifically formulated as:

Decreasing adversarial certainty during adversarial training can improve robust generalization.

We note that there also exist other alternative metrics, such as confidence and entropy, which can capture
a model’s certainty in predicting adversarial examples and summarize the observations of the heatmaps
depicted in Figure 1. As will be discussed in Section 6.1, we choose logit-level variance as the metric to
define adversarial certainty, mainly because our DAC method illustrated in Section 5 always achieves the
best robust generalization performance with such a choice.

Theoretical Analysis. To better understand the proposed definition of adversarial certainty, we further study
its connection with robust generalization using synthetic data distributions. Following existing works Tsipras
et al. (2019); Wei et al. (2023), we assume the following data generating procedure for any example (x, y) ∼ µ:
The binary label y is first sampled uniformly from Y = {−1, +1}, then the robust feature x1 = y with sampling
probability p and x1 = −y otherwise, while the remaining non-robust features x2, · · · , xd+1 are sampled i.i.d.
from the Gaussian distribution N (ηy, 1). Here, p ∈ (1/2, 1) and η < 1/2 is a small positive number. Following
Wei et al. (2023), we consider linear SVM classifiers: fw(x) = sgn(x1 + x2+···+xd+1

w ) with w > 0, where sgn(·)
denotes the sign operator. Subsequently, we assume all the adversarial examples x′ are sampled from the
following adversarial distribution µadv(ε) with ε > 0: x′

1 = x1, and x′
2, · · · , x′

d+1
i.i.d.∼ N

(
(η −ε)y, 1

)
. Detailed

discussions about the configurations of this synthetic robust classification task are provided in Appendix C.
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The following theorem, proven in Appendix C.1, characterizes a connection between the certainty of adversarial
examples and the robust generalization performance of an SVM classifier after a single step of gradient update.
Theorem 1. Consider the aforementioned data distribution µ and robust classification task. Let εte ∈ (η, 2η)
and fw be an arbitrary SVM classifier with w > 0. For any ε ∈ [η − w

d , η], ACε(fw; µ, µadv(ε)), the adversarial
certainty of fw, is monotonically decreasing with respect to ε. Suppose we conduct one-step gradient update on
w using adversarial examples sampled from µadv(ε): ŵ = w+α ·∇wR(fw; µadv(ε)), where α > 0 stands for the
learning rate. Then, R(fŵ; µadv(εte)), the robust generalization performance of fŵ, also increases as ε increases.

Note that, since we consider the adversarial data distribution µadv instead of ℓp perturbations, we now
generalize the notion of adversarial certainty and robust generalization correspondingly. Theorem 1 suggests
that if we decrease the certainty of the adversarial examples sampled from µadv(ε), the robustness of the
SVM classifier fŵ will increase after one-step gradient update based on the sampled adversarial examples,
confirming the importance of less certain adversarial examples for robust generalization. We remark that
our theoretical analysis can also be extended to the typical setting of ℓ∞-norm bounded perturbations. In
Appendix C.2, we show that considering ℓ∞ perturbations is equivalent to considering the adversarial data
distribution of x′

1 = x1 − yε and x′
2, · · · , x′

d+1 i.i.d. sampled from N ((η − ε)y, 1) for any w > 0, and derive
similar results to Theorem 1.

5 Decreasing Adversarial Certainty Helps Robust Generalization

Previous sections illustrate why decreasing the certainty of adversarial inputs used for adversarial training is
beneficial for robust generalization. To further validate our hypothesis, this section proposes a novel method
to explicitly Decrease Adversarial Certainty (DAC) based on adversarial training. In particular, DAC is
designed to find less certain adversarial examples that are used to improve robust generalization, which aims
to solve the following optimization problem:

min
θ∈Θ

1
|Str|

∑
(x,y)∈Str

max
x′∈Bϵ(x)

L
(
fθ′ ,x′, y

)
, where θ′ = argmin

θ′∈C(θ)
ACϵ(fθ; Str, A). (2)

Str is the clean training dataset, A denotes a specific attack method (e.g., PGD attacks Apgd), and C(θ)
represents the feasible search region for θ′. We remark that imposing the constraint of C(θ) is necessary,
because the goal of DAC is to improve robust generalization of adversarial training, instead of merely obtaining
adversarial certainty as low as possible. Without such a constraint, minimizing adversarial certainty will
cause θ′ to significantly deviate from the initial θ. This will render the adversarial examples generated with
respect to θ′ less useful, thereby inducing a negative impact on robust generalization (see Figure 3(a) and our
correlation analysis for more discussions regarding the design choice of imposing such a constraint set).

Directly solving the min-max-min problem introduced in Equation (2) is challenging, due to the non-convex
nature of the optimization and the implicit definition of C(θ). Thus, we resort to gradient-based methods for
an approximate solver. To be more specific, we take the t-th iteration of adversarial training as an example
to illustrate our design of DAC. Given a set of clean training examples Str, a specific attack method A, and a
classification model fθ, our DAC method can be formulated as a two-step optimization:

θt+0.5 = θt − λ · ∇θACϵ(fθ; Str, A)
∣∣∣
θ=θt

,

θt+1 = θt+0.5 − γ · ∇θLrob(fθ; Str, A)
∣∣∣
θ=θt+0.5

,
(3)

where λ > 0 and γ > 0 represent the step sizes of the two optimization steps, ACϵ(fθ; Str, A) denotes the
adversarial certainty of fθ with respect to Str and A, and Lrob(fθ; Str, A) can be roughly understood as the
robust loss except that the inner maximization is approximated using some attack method such as Apgd. The
first step in Equation (3) optimizes the adversarial certainty, which adjusts the model parameters θt in a
direction such that the generated training-time adversarial examples are less certain, whereas the second step
in Equation (3) optimizes the model’s ability in distinguishing adversarial examples generated by the model
itself as in standard adversarial training.
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Figure 3: Correlation between adversarial certainty and robust generalization under different configurations.

Correlation Analysis. Since our work aims to improve robust generalization by finding less certain
adversarial examples, it is natural to ask the following question:

Does decreasing adversarial certainty always induce better robust generalization?

Recall that in Equation (2), C(θ) defines the feasible region for optimizing adversarial certainty. Therefore,
the answer would be affirmative within this region, i.e., decreasing adversarial certainty will increase test
robust accuracy. To support the answer to this question with evidence, we conduct a correlation analysis
between adversarial certainty and robust generalization. The results are illustrated in Figure 3(a). Specifically,
we use an AT-trained model as the starting point, from which the heatmaps in Figure 1 are derived. Then,
we respectively update the model with one more epoch using DAC with different step sizes, ranging from
0.1 to 2.0, in the θt → θt+0.5 step of Equation (2) to decrease adversarial certainty. Finally, we measure the
training-time adversarial certainty (i.e., the blue bars) and robust test accuracy (i.e., the orange curve) of
the result models. Figure 3(a) shows that adversarial certainty keeps decreasing as the step size increases.
Meanwhile, the model’s robustness first keeps improving but then decreases when the step size is beyond the
value of 1.3. This result suggests that if the model parameters lie in the feasible search region with a properly
selected step size, lower adversarial certainty leads to higher test robust accuracy. However, when the model is
out of the feasible search region, decreasing adversarial certainty will no longer improve robust generalization.

The above investigation suggests a negative answer to the question by performing one-epoch optimization with
different step sizes on the last model of AT, i.e., the model of Figures 1(a) and 1(b). Here, we demonstrate
that our finding is indeed derived from the changes of adversarial certainty but not from the one-epoch
setting. To be more specific, we separate one step of decreasing adversarial certainty with size 0.7 into t
steps, i.e., each step corresponds to the size of 0.7/t, where t = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The results of
training-time adversarial and testing-time robust generalization are depicted in Figure 3(b), where we can
observe a consistent pattern with Figure 3(a) that robust generalization first gains more improvements but
then less with the decrease of adversarial certainty.

Moreover, we apply the one-epoch optimization on the best AT model that corresponds to Figures 1(c) and
1(d) to derive more observations. From Figure 3(c), we can find that the changes of robust generalization
with the increase of adversarial certainty depict a different pattern from Figure 3(a). First, the robust
generalization improvements are slighter than those in the last model. Besides, there is no trend of robust
generalization decreasing even if the step size arrives at 2.0. These results suggest that the feasible region
of the best model is larger than that of the last model, which suffers from more severe robust overfitting.
Consequently, when applying our DAC method, an overconfident model is supposed to select the optimization
step size carefully; otherwise, the selection could be more ambitious.

6 Experiments

This section examines the performance of our DAC method under ℓ∞ perturbations with ϵ = 8/255 on various
model architectures, including PreActResNet-18, denoted as PRN18, and WideResNet-34, denoted as WRN34.
And we train a model for 200 epochs using SGD with a momentum of 0.9. Besides, the initial learning rate
is 0.1, and is divided by 10 at the 100-th epoch and at the 150-th epoch. The adversarial attack used in
training is PGD-10 with a step size of 1/255 for SVHN, and 2/255 for CIFAR-10 and CIFAR-100, while we
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Table 1: Testing-time robustness (%) with/without DAC on CIFAR-10 under ℓ∞ perturbations across different
architectures and adversarial training methods. The best performance is highlighted in bold.

Architecture Method Clean PGD-20 PGD-100 CW∞ AutoAttack

PRN18

AT 82.88 (82.68) 41.51 (49.23) 40.96 (48.92) 41.61 (48.07) 39.66 (45.71)
+ DAC 84.64 (83.55) 45.55 (52.20) 44.94 (51.87) 44.55 (50.05) 42.78 (48.20)

TRADES 82.10 (81.33) 47.44 (51.65) 46.95 (51.42) 46.64 (49.18) 44.99 (48.06)
+ DAC 83.18 (82.80) 49.32 (52.90) 48.81 (52.67) 48.30 (50.11) 46.40 (48.96)

MART 80.85 (78.27) 50.23 (52.28) 49.71 (52.13) 46.88 (47.83) 44.68 (46.01)
+ DAC 81.12 (79.37) 52.38 (53.25) 52.04 (53.14) 48.97 (49.25) 47.24 (47.69)

WRN34

AT 86.47 (85.86) 47.25 (55.31) 46.73 (55.00) 47.85 (54.04) 45.84 (51.94)
+ DAC 86.48 (85.10) 52.02 (57.93) 51.69 (57.68) 51.51 (54.98) 49.75 (53.33)

TRADES 83.37 (81.40) 51.51 (58.78) 51.28 (58.72) 49.26 (53.33) 47.74 (52.63)
+ DAC 85.04 (84.55) 58.97 (60.96) 58.97 (60.81) 52.79 (55.00) 51.80 (53.99)

MART 83.11 (83.30) 48.93 (58.13) 48.31 (57.75) 46.32 (52.22) 44.89 (50.31)
+ DAC 84.69 (80.09) 52.00 (59.31) 51.32 (59.26) 49.50 (53.02) 47.65 (51.48)

utilize the commonly-used attack benchmarks of PGD-20 Madry et al. (2018), PGD-100 Madry et al. (2018),
CW∞ Carlini & Wagner (2017) and AutoAttack Croce & Hein (2020) for evaluation. In addition, we measure
the Clean performance to investigate the influence on clean images. Regarding other hyperparameters, we
follow the settings described in their original papers. In all cases, we evaluate the performance of the last
(best) model in terms of testing-time robust accuracy.

In Section 6.1, we evaluate the effectiveness of our DAC method in improving robust generalization on three
widely-used benchmark datasets: CIFAR-10 Krizhevsky & Hinton (2009), CIFAR-100 Krizhevsky & Hinton
(2009) and SVHN Netzer et al. (2011) based on three baseline adversarial training methods: AT Madry et al.
(2018), TRADES Zhang et al. (2019) and MART Wang et al. (2020). To study the generalizability of our
method, we further conduct experiments under ℓ2 perturbations, where we set ϵ = 128/255 with a step size
of 15/255 for all datasets. In Section 6.2, we associate with other robustness-enhancing techniques to further
investigate the effect of adversarial certainty in adversarial training. Finally, we demonstrate the efficacy
of DAC under a simplified one-step optimization setting in Section 6.3, and improve the DAC efficiency by
regularizing decreasing adversarial certainty in a loss term, i.e., DAC_Reg that will be detailed in Section 6.4.

6.1 Main Results

We first evaluate the robust generalization performance of our proposed DAC method on the benchmark
CIFAR-10 image dataset. The comparison results are depicted in Table 1, showing that DAC significantly
enhances model robustness across different adversarial attacks, such as PGD attacks Madry et al. (2018),
CW attacks Carlini & Wagner (2017) and AutoAttack Croce & Hein (2020). These results demonstrate the
effectiveness of DAC, indicating the significance of generating less certain adversarial examples for robust
generalization. Besides, we observe that although WRN34 suffers from more severe robust overfitting using
baseline adversarial training methods, it achieves more robustness improvement by our method. This suggests
that WRN34 is superior to PRN18 in terms of robust generalization with the help of DAC. In addition to
adversarial robustness, it is also worth noting the effect of DAC on clean test accuracy, which captures the
standard generalization ability of the model. Table 1 reveals that DAC consistently improves the clean test
accuracy under all experimental settings. This promotion shows that DAC could also help models gain better
generalization performance on unseen clean images even by learning from adversarial examples. The results
that include evaluations on more benchmark datasets (i.e., SVHN and CIFAR-100) are depicted in Tables 2
and 3, of which the full versions are shown in Tables 7 and 8 (Appendix E) due to space limit, showing a
similar pattern of improvements.

Moreover, we empirically study the impact of DAC on the phenomenon of robust overfitting. More specifically,
we evaluate the gap of testing-time adversarial robustness between the best and the last models. The results
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Table 2: Testing-time adversarial robustness (%) of AT on SVHN with/without DAC/DAC_Reg under ℓ∞
perturabtions across different model architectures and benchmark datasets. The complete results are shown
in Table 7, including all dataset settings of SVHN, CIFAR-10 and CIFAR-100.

Dataset Architecture Method Clean PGD-20 PGD-100 CW∞ AutoAttack

SVHN

PRN18
AT 89.63 (88.64) 42.25 (51.00) 41.37 (50.30) 42.84 (48.19) 39.52 (46.02)
+ DAC 90.58 (89.63) 45.86 (54.42) 43.92 (53.78) 43.75 (50.15) 40.68 (48.23)
+ DAC_Reg 90.65 (90.21) 45.39 (53.06) 43.77 (52.28) 43.66 (49.64) 41.10 (47.39)

WRN34
AT 91.51 (89.72) 46.81 (53.43) 44.94 (52.77) 45.76 (50.43) 41.71 (49.50)
+ DAC 91.26 (91.83) 60.42 (67.95) 56.71 (64.85) 56.98 (65.09) 42.33 (50.42)
+ DAC_Reg 91.76 (92.13) 62.19 (65.96) 59.54 (63.68) 60.05 (63.87) 42.46 (49.95)

Table 3: Testing-time adversarial robustness (%) of AT, TRADES and MART with/without DAC on SVHN
under ℓ∞ perturbations. The complete results are shown in Table 8, including all dataset settings of SVHN,
CIFAR-10 and CIFAR100.

Dataset Method Clean PGD-20 PGD-100 CW∞ AutoAttack

SVHN

AT 89.63 (88.64) 42.25 (51.00) 41.37 (50.30) 42.84 (48.19) 39.52 (46.02)
+ DAC 90.58 (89.63) 45.86 (54.42) 43.92 (53.78) 43.75 (50.15) 40.68 (48.23)
+ DAC_Reg 90.65 (90.21) 45.39 (53.06) 43.77 (52.28) 43.66 (49.64) 41.10 (47.39)

TRADES 89.12 (87.75) 51.50 (55.19) 50.69 (54.50) 45.50 (50.32) 45.02 (48.69)
+ DAC 90.24 (89.59) 52.24 (57.09) 51.14 (56.39) 46.34 (52.22) 46.20 (50.52)
+ DAC_Reg 90.03 (89.75) 51.78 (56.10) 50.92 (54.83) 45.86 (51.35) 45.30 (49.06)

MART 89.68 (84.48) 49.07 (52.30) 48.30 (52.22) 45.48 (48.04) 44.54 (47.38)
+ DAC 88.90 (84.64) 51.04 (53.64) 50.91 (52.70) 46.94 (49.96) 46.18 (48.50)
+ DAC_Reg 90.18 (88.47) 50.94 (52.94) 49.87 (52.46) 46.32 (49.18) 45.86 (47.73)

Table 4: Testing-time adversarial robustness (%) of AT with/without DAC on PreActResNet-18 under ℓ2
perturabtions against PGD-20 across different benchmark datasets.

Method SVHN CIFAR-10 CIFAR-100
Best Last Best Last Best Last

AT 66.45 63.20 66.02 65.18 39.23 35.68
+ DAC 69.11 67.44 69.10 67.37 40.75 36.32

are shown in Figure 4(a), where DAC consistently mitigates robust overfitting across different settings. These
results indicate that decreasing adversarial certainty can successfully mitigate robust overfitting. Besides, we
also measure the adversarial certainty gap between the best model and the last model produced by AT and AT-
DAC in Figure 4(b). It can be observed that the adversarial certainty gap of AT-DAC is significantly smaller
than that of AT, which is aligned with the closer adversarial robustness of the best model and the last model.

Comparison with Other Metrics. Recall our discussions in Section 3, we propose the notion of adversarial
certainty based on logit-level variance (Definition 1), which is further used in our design of DAC. Noticing that
confidence and entropy are also relevant metrics that can capture the model’s overconfidence in predicting
adversarial examples, we conduct a case study to illustrate why we choose to define adversarial certainty
based on variance. For ease of presentation, we only present results on CIFAR-10 and AT as an illustration,
where similar trends are observed among other settings. Table 5 reports the test-time adversarial robustness
of models learned using AT-DAC with different metrics used in the definition of adversarial certainty. We
can see that the last and best models produced using our method with the variance metric achieve the best
robustness performance, which empirically supports our design choice.

ℓ2-Norm Bounded Perturbations. In the above evaluation, we focus on the ℓ∞ norm-bounded pertur-
bations. Meanwhile, the ℓ2 norm is also a prevalent perturbation setting in adversarial training. Thus, in
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Figure 4: (a) Robust overfitting across different methods, where “-P” and “-W” represent PRN18 and
WRN34 respectively. (b) Adversarial certainty gap with respect to AT and AT-DAC conditioned on different
ground-truth classes. (c) Training curves of adversarial certainty with respect to different adversarial training
algorithms.

Table 5: Comparison results (%)
of different metrics defining ad-
versarial certainty on PRN18 and
CIFAR-10 at the last and best
epochs.

Last Best
Confidence 44.40 51.14
Entropy 44.27 51.00
Variance 45.55 52.20
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Figure 5: Adversarial certainty across different CIFAR-10 classes with on
the last and best models.

Table 4, we evaluate our method under the ℓ2 perturbations. Similarly, DAC depicts consistent improvements
in adversarial robustness on best and last epochs across different benchmark datasets, which shows the
efficacy of DAC against adversarial attacks with ℓ2 perturbations.

6.2 Effect of Adversarial Certainty on Other Robustness-Enhancing Techniques

We note that several recent works also focus on understanding robust generalization and developing methods
to improve adversarial training, including adversarial weight perturbation Wu et al. (2020) (AWP), and
consistency regularization Tack et al. (2022) (Consistency). More concretely, Wu et al. discovered that
the flatness of the weight loss landscape is an important factor related to robust generalization Wu et al.
(2020). And the method of Consistency regularizes the adversarial consistency based on various data
augmentations Tack et al. (2022). However, since these methods focus on different strategies to improve
robust generalization, it is unclear whether our proposed adversarial certainty has any connection with them.
Therefore, we study the changes in adversarial certainty when involving AWP and Consistency in adversarial
training, respectively, which are shown in Figure 5. Surprisingly, we find that AWP and Consistency, which
improve the robust generalization of AT on both the last and best models, can gain lower adversarial certainty.
These findings are consistent with the idea behind our DAC method – decreasing adversarial certainty helps
robust generalization. In other words, AWP and Consistency, which are designed toward their specified
directions, will implicitly decrease adversarial certainty. Note that, even if AWP and Consistency have
influences on adversarial certainty, it does not mean that our work proposes a similar concept to them.
Specifically, adversarial certainty is derived by observing an adversarial-training-unique phenomenon – robust
overfitting, meanwhile, AWP is inspired by the theory of weight loss landscape from standard learning and
Consistency considers the augmentation scope. Consequently, our proposed adversarial certainty is a crucial
property in adversarial training, which can either explicitly or implicitly affect robust generalization.

As AWP and Consistency can implicitly improve adversarial certainty, we then investigate the compatibility of
our DAC method with AWP and Consistency by a naive attempt. To incorporate DAC in AWP, we add a step
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Table 6: Testing-time adversarial robustness (%) of AWP and Consistency with/without DAC on CIFAR-10
and PRN18 under ℓ∞ perturabtions.

Method Clean PGD-100 CW∞ AutoAttack

AT-AWP 83.76±0.06 (82.37±0.07) 52.71±0.26 (53.89±0.27) 51.07±0.24 (51.22±0.24) 48.75±0.23 (49.33±0.27)
+ DAC 84.07±0.13 (82.67±0.10) 54.30±0.26 (55.00±0.31) 51.76±0.25 (52.03±0.22) 49.80±0.26 (49.96±0.20)

TRADES-AWP 81.46±0.13 (81.28±0.08) 52.54±0.31 (53.55±0.26) 50.37±0.23 (50.61±0.21) 49.54±0.25 (49.92±0.23)
+ DAC 82.69±0.06 (82.85±0.08) 53.80±0.29 (54.49±0.29) 51.44±0.23 (51.53±0.21) 50.51±0.26 (50.63±0.25)

MART-AWP 78.13±0.06 (77.27±0.09) 53.06±0.25 (52.58±0.31) 49.05±0.28 (48.39±0.22) 46.53±0.22 (47.01±0.26)
+ DAC 80.03±0.06 (78.65±0.11) 54.67±0.29 (54.93±0.30) 49.58±0.25 (49.14±0.21) 47.47±0.27 (47.73±0.21)

AT-Consistency 85.28±0.06 (84.66±0.08) 55.16±0.31 (56.46±0.27) 50.81±0.23 (51.13±0.21) 48.08±0.21 (48.48±0.23)
+ DAC 85.36±0.09 (85.17±0.13) 56.31±0.26 (56.90±0.26) 51.29±0.27 (51.72±0.22) 49.00±0.21 (49.46±0.25)

TRADES-Consistency 83.68±0.12 (83.51±0.08) 52.78±0.26 (52.79±0.31) 48.85±0.21 (48.89±0.28) 47.75±0.21 (47.77±0.20)
+ DAC 84.78±0.12 (84.73±0.06) 53.48±0.27 (53.72±0.26) 49.37±0.27 (49.41±0.28) 48.15±0.21 (48.19±0.21)

MART-Consistency 78.21±0.10 (78.11±0.09) 56.31±0.29 (56.81±0.28) 47.33±0.28 (47.47±0.21) 45.53±0.27 (45.73±0.22)
+ DAC 81.91±0.06 (81.35±0.10) 58.29±0.33 (58.56±0.28) 50.08±0.27 (50.21±0.27) 48.28±0.22 (48.59±0.27)
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Figure 6: Visualization results for comparing the adversarial certainty and robust generalization of different
adversarial training methods with and without the involvement of DAC.

before weight perturbation to optimize the certainty of adversarial examples. Then the updated intermediate
model is used to generate new adversarial examples for the following AWP optimization. Similarly, we
first explicitly update the adversarial certainty on augmented samples, and then follow the Consistency
optimization. The results are shown in Table 6. As expected, since AWP and Consistency have already
implicitly decreased adversarial certainty, even if DAC conducts an explicit optimization, our method can only
gain limited benefit. Nevertheless, our repeated trials demonstrate that the improvements, even slight, are
indeed derived from our method rather than randomness. Further, we conduct a significance test, which shows
that the improvements of robust generalization on AWP and Consistency are statistically significant, as fully
presented in Appendix D. The goal of our work is to propose adversarial certainty and clarify its significance
in adversarial training, thus better designs of involving adversarial certainty in existing robustness-enhancing
strategies are left as future work.

6.3 Further Discussion on DAC

Based on previous results, we demonstrate the benefits of involving our DAC method in adversarial training.
To more intuitively demonstrate the efficacy of our method, we empirically measure the performance
improvements derived by conducting DAC for a single epoch starting with different models. First, we train a
sequence of models by AT and TRADES for 200 epochs, and by MART for 120 epochs, respectively. For
every 20 epochs, we then update the same intermediate model by one further epoch using each of the three
adversarial training methods with and without the help of DAC. Finally, we measure the adversarial certainty
and robust generalization for all the updated models. Figure 6 summarizes the results, where the blue color
represents the original method without DAC and orange corresponds to results with our DAC. The bars show
adversarial certainty and the curves depict robust generalization. It can be seen from Figure 6 that starting
with different intermediate models, DAC can consistently gain less certain adversarial examples, from which
the updated model attains better robust generalization performance, which is aligned with our theoretical
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results shown in Theorem 1. By optimizing the same model with only one epoch, these comparison results
clearly show the efficacy of DAC for adversarially-trained models.

6.4 Improvement on DAC Efficiency

To gain a better understanding of our method, we explicitly examine our proposed adversarial certainty by
involving two steps for each iteration i.e., DAC, as formulated in Equation (3). In this section, we propose a
more efficient method, denoted as DAC_Reg, by regularizing the optimization of adversarial certainty as a
term in adversarial training loss. More concretely, the optimization problem with the additional regularizer
can be cast as:

min
θ∈Θ

1
|Str|

∑
(x,y)∈Str

L
(
fθ,x′, y

)
+ β · ACϵ(fθ; Str, A),

where β > 0 denotes the trade-off parameter between the regularization of adversarial certainty and the
robust loss. Similar to adversarial training, the model parameters are iteratively updated using stochastic
gradient descent (SGD) with respect to the regularized robust loss. Benefiting from the regularization design,
DAC_Reg requires similar training time to the standard adversarial learning, which is 0.56× of that of DAC.
For instance, for a PRN18 model of AT and CIFAR-10 on a single NVIDIA A100 GPU, DAC averagely costs
143s for each training epoch while DAC_Reg costs 80s. The comparison results of AT, TRADES and MART
models on SVHN, CIFAR-10 and CIFAR-100 datasets are shown in Table 2 and Table 3. We can see that
DAC_Reg achieves comparable performance, due to the additional penalty on adversarial certainty, which
is only a bit inferior to DAC. In a few cases, DAC could bring better and more stable improvements. For
instance, when a PRN18 model is trained on CIFAR-100 by AT, DAC_Reg can only gain the improvement
on the last epoch but not on the best epoch. In addition, we measure the adversarial certainty of a sequence
of models trained by AT, DAC and DAC_Reg, respectively, in Figure 4(c). We observe that DAC gains the
lowest adversarial certainty with a slight advantage over DAC_Reg, again indicating that lower adversarial
certainty corresponds to higher robust generalization.

7 Conclusion and Future Work

We revisited the robust overfitting phenomenon of adversarial training and argued that model overconfidence
in predicting training-time adversarial examples is a potential cause. Accordingly, we introduced the notion of
adversarial certainty to capture the degree of overconfidence and designed a strategy to decrease adversarial
certainty for models produced during adversarial training. Experiments on image benchmarks demonstrate
the effectiveness of our method, which confirms the importance of generating less certain adversarial examples
for robust generalization. Our work aims to gain a better understanding of robust generalization through
observations from robust overfitting. We believe our work provides a significant contribution to advancing
the field of adversarial machine learning, which might inspire practitioners to look into the important role of
less certain adversarial examples when building real-world robust systems against adversarial examples.

Investigating whether the notion of adversarial certainty connects with the robustness of language models
could be an interesting future direction of our work. Nevertheless, natural language processing (NLP) is a
different field from computer vision (CV), as it focuses on the discrete space while that of CV is continuous.
Thus, directly transferring our method to the NLP domain is non-trivial. According to the pipeline of vanilla
adversarial training for text classification (Morris et al., 2020), the generation of adversarial examples is to
substitute some selected words. Such a generation scheme is different from that of CV and does not support
the gradient-based optimization of decreasing adversarial certainty. In that case, we will need to design an
additional objective function to measure how certain an NLP model is about its generated sentences, which
could be the metric for selecting and substituting words. We regard the exploration of DAC in other domains
like NLP as interesting future work but is beyond the scope of our work. We believe our proposed concept of
adversarial certainty will provide important insights for the development of robust machine learning systems.
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Appendix

A Complete Introduction of Preliminaries

For the sake of completeness, this section presents the detailed definitions and discussions of the preliminary
concepts introduced in Section 3, including adversarial robustness, robust generalization and adversarial
training. Let (X , ∆) be a metric space. For any set C ⊆ X and any x ∈ X , let ΠC(x) = argminx′∈C ∆(x′,x)
be the projection of x onto C.

Adversarial Robustness. Adversarial robustness captures the classifier’s resilience to small adversarial
perturbations. In particular, we work with the following definition of adversarial robustness:
Definition 2 (Adversarial Robustness). Let X ⊆ Rn be input space, Y be label space, and µ be the
underlying distribution of inputs and labels. Let ∆ be a distance metric on X and ϵ ≥ 0. For any classifier
fθ : X → Y, the adversarial robustness of fθ with respect to µ, ϵ and ∆ is defined as:

Rϵ(fθ; µ) = 1 − Pr
(x,y)∼µ

[
∃ x′ ∈ Bϵ(x) s.t. fθ(x′) ̸= y

]
. (4)

When ϵ = 0, R0(fθ; µ) is equivalent to the clean accuracy of fθ. In practice, the probability density function of
the underlying distribution µ is typically unknown. Instead, we only have access to a set of test examples Ste

i.i.d. sampled from µ. Thus, a classifier’s adversarial robustness is estimated by replacing µ in Equation (4)
with its empirical counterpart based on Ste. To be more specific, the testing-time adversarial robustness of fθ

with respect to Ste, ϵ and ∆ is given by:

Rϵ(fθ; µ̂Ste
) = 1 − 1

|Ste|
∑

(x,y)∈Ste

max
x′∈Bϵ(x)

1
(
fθ(x′) ̸= y

)
, (5)

where µ̂Ste
denotes the empirical measure of µ based on Ste. We remark that robust generalization, the

main subject of this study, captures how well a model can classify adversarially-perturbed inputs that are
not used for training, which is essentially the testing-time adversarial robustness Rϵ(fθ; µ̂Ste

). And we
write Rϵ(fθ) = Rϵ(fθ; µ̂Ste) in the following discussions when µ̂Ste is free of context. In this work, we
focus on the ℓp-norm distances as the perturbation metric ∆, since they are most widely-used in existing
literature on adversarial examples. Although ℓp distances may not best reflect the human-perceptual
similarity Sharif et al. (2018) and perturbation metrics beyond ℓp-norm such as geometrically transformed
adversarial examples Kanbak et al. (2018); Xiao et al. (2018) were also considered in literature, there is still a
significant amount of interest in understanding and improving model robustness against ℓp perturbations.
We hope that our insights gained from ℓp perturbations will shed light on how to learn better robust models
for more realistic adversaries.

Adversarial Training. Among all the existing defenses against adversarial examples, adversarial train-
ing Madry et al. (2018); Zhang et al. (2019); Carmon et al. (2019) is most promising in producing robust
models. Given a set of training examples Str sampled from µ, adversarial training aims to solve the following
min-max optimization problem:

min
θ∈Θ

LR(fθ; Str), where LR(fθ; Str) = 1
|Str|

∑
(x,y)∈Str

max
x′∈Bϵ(x)

L
(
fθ,x′, y

)
. (6)

Here, Θ denotes the set of model parameters, and L is typically set as a convex surrogate loss such that
L

(
fθ,x, y

)
is an upper bound on the 0-1 loss 1

(
fθ(x) ̸= y

)
for any (x, y). For instance, L is set as the cross-

entropy loss in vanilla adversarial training Madry et al. (2018), whereas the combination of a cross-entropy
loss for clean data and a regularization term for robustness is used in TRADES Zhang et al. (2019). In
theory, if Str well captures the underlying distribution µ and the robust loss LR(fθ; Str) is sufficiently small,
then fθ is guaranteed to achieve high adversarial robustness Rϵ(fθ; µ).

However, directly solving the min-max optimization problem (6) for non-convex models such as deep neural
networks is challenging. It is typical to resort to some good heuristic algorithm to approximately solve the
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problem, especially for the inner maximization problem. In particular, Madry et al. proposed to alternatively
solve the inner maximization using an iterative projected gradient descent method (PGD) and solve the
outer minimization using SGDMadry et al. (2018), which is regarded as the go-to approach in the research
community. We further explain its underlying mechanism below. For any intermediate model fθ produced
during adversarial training, PGD updates the (perturbed) inputs according to the following update rule:

xs+1 = ΠBϵ(x)
(
xs + α · sgn(∇xsL(fθ,xs, y)

)
for any (x, y) and s ∈ {0, 1, . . . , S − 1}, (7)

where x0 = x, α > 0 denotes the step size and S denotes the total number of iterations. For the ease
of presentation, we use Apgd to denote PGD attacks such that for any example (x, y) and classifier fθ, it
generates x′ = xS = Apgd(x; y, fθ, ϵ) based on the update rule (7). After generating the perturbed input for
each example in a training batch, the model parameter θ is then updated by a single SGD step with respect
to L(fθ,x′, y) for the outer minimization problem in Equation (6).

B More Details of Figures in Sections 3 and 4

This section provides all the experimental details for producing the heatmaps and the histograms illustrated
in Sections 3 and 4. Given a model fθ (e.g., Best Model and Last Model) and a set of examples S sampled
from the underlying distribution µ (e.g., CIFAR-10 training and testing datasets), adversarial examples are
generated by PGD attacks within the perturbation ball Bϵ(x) centered at x with radius ϵ = 8/255 under the
ℓ∞ perturbations, which follows the settings of generating training samples considered in Section 6, e.g., PGD
is iteratively conducted by 10 steps with the step size of 2/255. We record and plot the label predictions of
the generated adversarial examples with respect to each model as heatmaps in Figure 1.

Let HM be the m × m matrix representing the heatmap, where Y = {1, 2, . . . , m} denotes the label space.
For any j, k ∈ Y, the (j, k)-th entry of HM with respect to fθ and S is defined as:

HMj,k =

∣∣∣∣{(x, y) ∈ S : y = j and fθ

(
Apgd(x; y, fθ, ϵ)

)
= k

}∣∣∣∣∣∣∣∣{(x, y) ∈ S : y = j
}∣∣∣∣ , (8)

where Apgd denotes PGD attacks defined by the update rule (7). More specifically, for any (x, y) ∈ S, the PGD
attack produces the corresponding adversarial example x′ = Apgd(x; y, fθ, ϵ). Then, we measure the predicted
label ŷ = fθ(x′). In that case, for the given training data, we could construct (ground-truth, predicted) label
pairs, simply denoted by {(y, ŷ)}. Afterward, we first cluster {(y, ŷ)} separately by the ground-truth label,
e.g., the subset of ground-truth label j includes all pairs such that y = j (denoted by {(y, ŷ)}j), which
corresponds to the rows of heatmaps. Further, for each subset, we group it into sub-subsets separately by the
predicted labels, e.g., {(y, ŷ)}j,k contains all pairs in {(y, ŷ)}j such that ŷ = k. Consequently, the number of
adversarial examples of the ground truth label j is calculated as:

|{(y, ŷ)}j | =
∣∣∣∣{(x, y) ∈ S : y = j

}∣∣∣∣.
Meanwhile, the number of adversarial examples of ground truth label j but predicted as label k is measured
as:

|{(y, ŷ)}j,k| =
∣∣∣∣{(x, y) ∈ S : y = j and fθ

(
Apgd(x; y, fθ, ϵ)

)
= k

}∣∣∣∣,
where ŷ = fθ

(
Apgd(x; y, fθ, ϵ)

)
. Finally, we compute the (j, k)-th entry of the heatmap HMj,k as the ratio of

|{(y, ŷ)}j,k| to |{(y, ŷ)}j | (Equation (8)). Following the same settings, we plot the corresponding label-level
variance and adversarial certainty in Figure 2. Specifically, we first measure the label-level variance of
the training-time adversarial examples of the last model (Figure 1(a)) and the best model (Figure 1(c))
conditioned on the ground-truth label in Figure 2(a). Taking the ground-truth label j as an example, the
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label-level variance can be formulated as:

Var(label)
j =

√
1

|Y|
∑
k∈Y

(HMj,k − HMj)2,

where HMj averages all HMj,k with different k, and Y = {1, 2, · · · , m} is the label space. According to
Definition 1, we measure the adversarial certainty of the last and the best models, as illustrated in Figure 2(b),
with respect to the predicted logits of all the adversarial examples with respect to each ground-truth label
class.

C Proofs of Theoretical Results in Section 4

To gain a better understanding of the proposed definition of adversarial certainty, we further study its
connection with robust generalization using theoretical data distributions. Following existing works Tsipras
et al. (2019); Wei et al. (2023), we consider a simple binary classification task, but a further step of gradient
update is considered based on our work. First, we lay out the mathematical formulations of the important
concepts under the assumed setting that will be used for the proofs.

Data Distribution. For this binary classification task, we assume the following procedure of data generation
for any example (x, y) ∼ µ: The binary label y is uniformly sampled, i.e., y

u.a.r.∼ {−1, +1}, then the robust
feature x1 = y with sampling probability p and x1 = −y otherwise, while the remaining non-robust features
x2, · · · , xd=1 are sampled i.i.d. from the Gaussian distribution N (ηy, 1). Here, p ∈ ( 1

2 , 1) and η < 1
2 is a

small positive number. In general, the data distribution can be formulated as:

x1 =
{

+y, w.p. p

−y, w.p. 1 − p
, and x2, · · · , xd+1

i.i.d.∼ N (ηy, 1). (9)

SVM Classifier. Without bias term, an SVM classifier is used, i.e., f(x) = sgn(w1x1+w2x2+· · ·+wd+1xd+1),
where sgn(·) denotes the sign operator. And for brevity, we assume w1, w2 ̸= 0 and w2 = · · · = wd+1 as
x2, · · · , xd+1 are equivalent. Let w = w1

w2
, the classifier is simplified as fw(x) = sgn(x1 + x2+···+xd+1

w ). And
without loss of generality, since x2, · · · , xd+1

i.i.d.∼ N (ηy, 1) tend to share the same sign symbol with y, we
further assume w > 0.

Adversarial Distribution. As discussed in Tsipras et al. (2019) and Ilyas et al. (2019), x1 is robust to
perturbation but not perfect (as p < 1), while x2, · · · , xd+1 are useful for classification but sensitive to small
perturbation. Following the setting of Tsipras et al. (2019), the non-robust features are shifted towards −y
by an adversarial bias distribution ε for constructing adversarial examples. More specifically, the adversarial
examples x′ are sampled from the following adversarial distribution µadv(ε) with ε > 0:

x′
1 = x1, and x′

2, · · · , x′
d+1

i.i.d.∼ N
(
(η − ε)y, 1

)
. (10)

Note that, in this task, no perturbation bound ϵ is involved, which is different from PGD-Attack. Instead,
the distribution bias ε is used to find/sample adversarial examples, which is independent of the attacker’s
budget. Besides, the goal of this work is to find less certain adversarial examples in the training time. As ε
can directly decide the distribution of adversarial examples, there is no need to vary adversarial certainty by
finding a new model status.

Robust Generalization. Since we do not use PGD-based attacks to find adversarial examples as the
empirical parts, instead of Definition 2, we utilize the corresponding version of robust generalization based on
the adversarial distribution µadv(ε). Accordingly, given the model fw, the clean and robust generalizations
are separately denoted by R(fw; µ) and R(fw; µadv(ε)), which are simply written as R0(fw) and Rε(fw)
when µ and µadv(ε) are free of context:

R0(fw) = E(x,y)∼µ1
(
fw(x) = y

)
,

Rε(fw) = E(x,y)∼µadv(ε)1
(
fw(x) = y

)
.

(11)
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For the sake of simplicity, let robust error Eε(fw) be the robust loss for the optimization, i.e.,

Eε(fw) = 1 − Rε(fw) (12)

The normal distribution N (0, 1) is defined by the distribution function ϕ(x) and the probability density
function Φ(x):

Φ(x) =
∫ x

−∞

1√
2π

e− t2
2 dt = P

(
N (0, 1) < x

)
,

ϕ(x) = 1√
2π

e− x2
2 = Φ′(x).

(13)

Recall that w > 0, according to Wei et al. (2023), we have

R0(fw) = pΦ(dη + w√
d

) + (1 − p)Φ(dη − w√
d

). (14)

Based on the distribution of non-robust features of adversarial examples, i.e., x′
i ∼ N

(
(η − ε)y, 1

)
, we simply

replace η with (η − ε) in Equation 14, ∀w > 0, we have

Rε(fw) = pΦ(d(η − ε) + w√
d

) + (1 − p)Φ(d(η − ε) − w√
d

). (15)

Consequently, we have

Eε(fw) = 1 − pΦ(d(η − ε) + w√
d

) − (1 − p)Φ(d(η − ε) − w√
d

). (16)

Adversarial Certainty. In Section 4, we provide our definition of adversarial certainty (Definition 1) by
using the empirical counterpart of adversarial distribution. However, in the theoretical part, adversarial
distribution µadv(ε) is accessible. Thus, we use µadv(ε) to directly define the adversarial certainty for this binary
classification task. In general, adversarial certainty measures how certain a model predicts the training-time
adversarial examples, i.e., the variance of different cases of the ground-truth and the predicted labels. Based
on Equation (15), all probable cases of robust generalization are:

(a) y = +1 and fw = +1, which corresponds to robust generalization Rε(fw);
(b) y = +1 and fw = −1, which corresponds to robust generalization 1 − Rε(fw);
(c) y = −1 and fw = −1, which corresponds to robust generalization Rε(fw);
(d) y = −1 and fw = +1, which corresponds to robust generalization 1 − Rε(fw).

As y
u.a.r.∼ {−1, +1}, it yields Pr(y = +1) = Pr(y = −1) = 1

2 .

For simplicity, we let AC(fw; η, ε) = ACε(fw; µ, µadv(ε)) in the following discussions. According to the above
discussions, the adversarial certainty can be formulated as

AC(fw; η, ε) = Var
(

Rε(fw), y, (x′
1, x′

2, · · · , x′
d+1)

)
= 1

4

[(1
2Rε(fw) − 1

2
)2 +

(1
2Rε(fw)

)2 +
(1

2Rε(fw) − 1
2

)2 +
(1

2Rε(fw)
)2

]
= 1

8

[(
Rε(fw) − 1

)2 +
(
Rε(fw)

)2
]

= 1
8

[
2Rε

2(fw) − 2Rε(fw) + 1
]
.

(17)

Now we are ready to proof Theorem 1.
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C.1 Proof of Theorem 1

Proof of Theorem 1. We start by showing the monotonicity of adversarial certainty with respect to ε.

Monotonicity of AC(fw; η, ε). According to Equation (17), we have AC(fw; η, ε) = 1
8

[
2Rε

2(fw)−2Rε(fw)+

1
]
. Thus, the derivative to ε is

∇εAC(fw; η, ε) = 1
8

[
4Rε(fw) · ∇εRε(fw) − 2∇εRε(fw)

]
= 1

2

[
Rε(fw) − 1

2

]
· ∇εRε(fw).

In that case, to study the monotonicity of AC(fw; η, ε), there is a need to discuss the sign of “Rε(fw) − 1
2 ”

and “∇εRε(fw)”.

∇εRε(fw) = −
√

dp · ϕ
(d(η − ε) + w√

d

)
−

√
d(1 − p) · ϕ

(d(η − ε) − w√
d

)
. (18)

As
√

d > 0, 0 < (1 − p) < p, and ϕ(x) > 0, in Equation (18), ∇εRε(fw) < 0, i.e., Rε(fw) is monotonically
decreasing with respect to ε.

According to Equation (15), we have

Rε(fw) = p · Φ(d(η − ε) + w√
d

) + (1 − p) · Φ(d(η − ε) − w√
d

)

= p ·
∫ d(η−ε)+w√

d

−∞

1√
2π

e− t2
2 dt + (1 − p) ·

∫ d(η−ε)−w√
d

−∞

1√
2π

e− t2
2 dt.

When ε = η, d(η − ε) = 0, thus

Rε(fw) = p ·
∫ w√

d

−∞

1√
2π

e− t2
2 dt + (1 − p) ·

∫ −w√
d

−∞

1√
2π

e− t2
2 dt

= p ·
∫ w√

d

−∞

1√
2π

e− t2
2 dt + (1 − p) − (1 − p) ·

∫ w√
d

−∞

1√
2π

e− t2
2 dt

= (2p − 1) ·
∫ w√

d

−∞

1√
2π

e− t2
2 dt + (1 − p)

> (2p − 1) · 1
2 + (1 − p)

= p − 1
2 + 1 − p = 1

2 .

Since Rε(fw) is monotonically decreasing with respect to ε, when ε ∈ (0, η], we have Rε(fw) − 1
2 > 0.

In that case,

∇εAC(fw; η, ε) = 1
2

[
Rε(fw) − 1

2

]
· ∇εRε(fw) < 0,

that is, AC(fw; η, ε) is monotonically decreasing with respect to ε when ε ∈ (0, η].

Monotonicity of Rεte
(fŵ). As aforementioned, robust error Eε(fw) = 1−pΦ( d(η−ε)+w√

d
)−(1−p)Φ( d(η−ε)−w√

d
)

is used as the robust loss to optimize w. In that case, the derivative of Eε(fw) to w is

∇wEε(fw) = − p√
d

ϕ(d(η − ε) + w√
d

) + (1 − p)√
d

ϕ(d(η − ε) − w√
d

). (19)
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Accordingly, the optimized parameters ŵ by a step size of α > 0 is derived as

ŵ = w − α · ∇wEε(fw)

= w + αp√
d

· ϕ(d(η − ε) + w√
d

) − α(1 − p)√
d

· ϕ(d(η − ε) − w√
d

).
(20)

Following the evaluation of Tsipras et al. (2019), the non-robust features are shifted towards −y to mislead
fŵ(·), i.e., εte ∈ [η, 2η], where the sampled adversarial examples follow x′

i ∼ N
(
(η − εte)y, 1

)∣∣∣
i=2,3,··· ,d+1

.
Based on ŵ and εte, the robust generalization is

Rεte(fŵ) = p · Φ
(d(η − εte) + ŵ√

d

)
+ (1 − p) · Φ

(d(η − εte) − ŵ√
d

)
. (21)

Accordingly, the derivative to ŵ is

∇ŵRεte
(fŵ) = p√

d
· ϕ

(d(η − εte) + ŵ√
d

)
− 1 − p√

d
· ϕ

(d(η − εte) − ŵ√
d

)
. (22)

As εte ∈ [η, 2η], d(η −εte) ≤ 0. Thus, ϕ
(

d(η−εte)+ŵ√
d

)
≥ ϕ

(
d(η−εte)−ŵ√

d

)
. Consequently, ∇ŵRεte

(fŵ) > 0 when
εte ∈ [η, 2η], i.e., Rεte

(fŵ) is monotonically increasing with respect to ŵ.

Monotonicity of ŵ. Based on Equation (20),

ŵ = w + αp√
d

· ϕ(d(η − ε) + w√
d

) − α(1 − p)√
d

· ϕ(d(η − ε) − w√
d

)

= w + αp√
2πd

· e−

(
d(η−ε)+w

)2

2d − α(1 − p)√
2πd

· e−

(
d(η−ε)−w

)2

2d .

In that case, the derivative of ŵ to ε is

∇εŵ = αp√
2πd

(
d(η − ε) + w

)
· e−

(d(η−ε)+w

)2

2d − α(1 − p)√
2πd

(
d(η − ε) − w

)
e−

(
d(η−ε)−w

)2

2d . (23)

When ε ∈ [η − w
d , η], d(η − ε) + w > 0 and d(η − ε) − w ≤ 0, thus ∇εŵ > 0, i.e., ŵ is monotonically increasing

with respect to ε.

Summary. From Monotonicity of AC(fw; η, ε), we have

AC(fw; η, ε) is monotonically decreasing with respect to ε when ε ∈ (0, η].

From Monotonicity of Rεte
(fŵ), we have

Rεte(fŵ) is monotonically increasing with respect to ŵ.

From Monotonicity of ŵ, we have

ŵ is monotonically increasing with respect to ε when ε ∈ [η − w

d
, η].

Consequently, it holds that given fw = sgn(x1 + x2+···+xd+1
w ) (w > 0) and ε ∈ [η − w

d , η], lower AC(fw; η, ε),
which corresponds to a larger ε, can yields a fŵ with better Rεte

(fŵ) under the testing-time distribution bias
εte ∈ [η, 2η]. This theoretical insight theoretically characterizes the connection between adversarial certainty
and robust generalization.
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C.2 Extension of Theorem 1 to ℓ∞ Perturbations

Theorem 1 suggests that if we decrease the certainty of the adversarial examples sampled from µadv(ε),
the robustness of the SVM classifier fŵ will increase after one-step gradient update based on the sampled
adversarial examples. In this section, we generalize our theoretical analysis to the typical setting of ℓ∞-norm
bounded perturbations. First, we prove the following lemma to derive the adversarial data distribution with
respect to worst-case ℓ∞ perturbations under our problem setup.
Lemma 2. Consider the same data distribution and SVM classifiers as assumed in Theorem 1. For any w > 0
and (x, y) sampled from µ, the distribution of worst-case adversarial example (x′, y) under ℓ∞ perturbations
by using the distribution bias ε is equivalent to the following adversarial data distribution:

x′
1 = x1 − yε , and x′

2, · · · , x′
d+1

i.i.d.∼ N
(
(η − ε)y, 1

)
,

In other words, the adversarial data distribution is obtained by shifting all features of x including the robust
feature x1 by yε. Accordingly, the robust generalization can be computed as:

Rε(fw) = p · Φ
(d(η − ε) + w(1 − ε)√

d

)
+ (1 − p) · Φ

(d(η − ε) − w(1 + ε)√
d

)
. (24)

Proof of Lemma 2. According to the definition of adversarial robustness in Equation (4), for any (x, y) ∼ µ
and w > 0, the worst-case adversarial example x′ under ℓ∞-perturbations by using the distribution bias ε is
defined as:

x′ = argmax
∥x̃−x∥∞≤ε

Pr
[
fw(x̃) ̸= y

]
= argmax

∥x̃−x∥∞≤ε

Pr
[
sgn

(
x̃1 + x̃2 + . . . + x̃d+1

w

)
̸= y

]
. (25)

Maximizing the objective in Equation (25) is equivalent to perturbing x in a direction such that x̃1+ x̃2+...+x̃d+1
w

has an opposite sign to the ground-truth y. In the following, we are going to prove the following claim: for
any x̃ such that ∥x̃ − x∥∞ ≤ ε,

Pr
[
y ·

(
x̃1 + x̃2 + . . . + x̃d+1

w

)
< 0

]
≤ Pr

[
y ·

(
x′

1 +
x′

2 + . . . + x′
d+1

w

)
< 0

]
, (26)

provided that x′ is defined as x′
j = xj − y · ε for all j ∈ {1, . . . , d + 1}.

First, we have ∥x′ − x∥∞ = ε which means that x′ is a feasible adversarial example. In addition, we know
that for any feasible x̃

y ·
(

x̃1 + x̃2 + . . . + x̃d+1

w

)
≥ y ·

(
x1 + x2 + . . . + xd+1

w

)
−

∣∣∣∣x̃1 + x̃2 + . . . + x̃d+1

w
−

(
x1 + x2 + . . . + xd+1

w

)∣∣∣∣
≥ y ·

(
x1 + x2 + . . . + xd+1

w

)
−

(
1 + d

w

)
ε

= y ·
(

x′
1 +

x′
2 + . . . + x′

d+1
w

)
.

Based on the above inequalities, we immediately know that our claim specified in Equation (26) holds for
any x. Based on the distribution of robust feature x1 and non-robust features x2, . . . , xd+1 and some simple
algebra to compute the robust generalization (with respect to x′), we complete the proof of Lemma 2.

Now we lay out the extension of Theorem 1 to ℓ∞ perturbations and its proof.
Theorem 3. Consider the aforementioned data distribution µ and robust classification task. Let εte ∈
(η, 2p − 1) and fw be an arbitrary SVM classifier with w >

√
(d+dη)2+16d−(d−dη)

2 > dη > 0. For any
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ε ∈
(

0, min( dη
w+d , w+dη

w+d − ∆ε)
]
, where ∆ε ∈ (0, w+dη

w+d ], ACε(fw; µ, µadv(ε)), the adversarial certainty of fw,
is monotonically decreasing with respect to ε. Suppose we conduct one-step gradient update on w using
adversarial examples sampled from µadv(ε): ŵ = w + α · ∇wR0(fw; µadv(ε)), where α > 0 stands for the
learning rate. Then, R0(fŵ; µadv(εte)), the robust generalization performance of fŵ, also increases as ε
increases.

Proof of Theorem 3. Similar to the proof of Theorem 1, we start by showing the monotonicity of adversarial
certainty.

Monotonicity of AC(fw; η, ε). As defined in Equation (17), the adversarial certainty in this binary
classification task is

AC(fw; η, ε) = 1
8

[
2Rε

2(fw) − 2Rε(fw) + 1
]
.

And accordingly,

∇εAC(fw; η, ε) = 1
2

[
Rε(fw) − 1

2

]
· ∇εRε(fw).

Similarly, to study the AC(fw; η, ε) monotonicity, it is necessary to discuss the sign of “Rε(fw) − 1
2” and

“∇εRε(fw)”. According to Equation 24, the derivative of Rε(fw) to ε is

∇εRε(fw) = −p(d + w)√
d

· ϕ
(d(η − ε) + w(1 − ε)√

d

)
− (1 − p)(d + w)√

d
· ϕ

(d(η − ε) − w(1 + ε)√
d

)
.

(27)

As 0 < (1 − p) < 1
2 < p < 1, d > 0, w > 0 and ∀u, ϕ(u) > 0, it yields ∇εRε(fw) < 0. That is, Rε(fw) is

monotonically decreasing with respect to ε.

When ε = dη
w+d , we have d(η − ε) + w(1 − ε) = w and d(η − ε) − w(1 + ε) = −w. Thus,

Rε(fw)
∣∣∣
ε= dη

w+d

= p · Φ
( w√

d

)
+ (1 − p) · Φ

(
− w√

d

)
= p · Φ

( w√
d

)
+ (1 − p) − (1 − p) · Φ

( w√
d

)
= (2p − 1) · Φ

( w√
d

)
+ (1 − p)

> (2p − 1) · 1
2 + (1 − p) = 1

2 .

In that case, ∀ε ∈ (0, dη
w+d ], it yields Rε(fw) − 1

2 > 0. Consequently,

∇εAC(fw; η, ε) = 1
2

[
Rε(fw) − 1

2

]
· ∇εRε(fw) < 0,

that is, AC(fw; η, ε) is monotonically decreasing with respect to ε when ε ∈ (0, dη
w+d ].

Monotonicity of Rεte
(fŵ). Similarly, the robust error Eε(fw) = 1 − Rε(fw) is involved as the robust loss

to optimize w. In that case, the derivative of Eε(fw) to w is

∇wEε(fw) = −p(1 − ε)√
d

· ϕ
(d(η − ε) + w(1 − ε)√

d

)
+ (1 − p)(1 + ε)√

d
· ϕ

(d(η − ε) − w(1 + ε)√
d

)
.

(28)
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Accordingly, the optimized parameters ŵ by a step size of α > 0 is derived as

ŵ = w − α · ∇wEε(fw)

= w + ap(1 − ε)√
d

· ϕ
(d(η − ε) + w(1 − ε)√

d

)
− α(1 − p)(1 + ε)√

d
· ϕ

(d(η − ε) − w(1 + ε)√
d

)
.

(29)

Based on ŵ and εte, the robust generalization is

Rεte
(fŵ) = p · Φ

(d(η − εte) + ŵ(1 − εte)√
d

)
+ (1 − p) · Φ

(d(η − εte) − ŵ(1 + εte)√
d

)
. (30)

Accordingly, the derivative to ŵ is

∇ŵRεte
(fŵ) = p(1 − εte)√

d
· ϕ

(d(η − εte) + ŵ(1 − εte)√
d

)
− (1 − p)(1 + εte)√

d
· ϕ

(d(η − εte) − ŵ(1 + εte)√
d

)
.

(31)

As η ≤ εte ≤ (2p − 1), it yields 0 < (1−p)(1+εte)√
d

< p(1−εte)√
d

, and 0 < ϕ
(

d(η−εte)−ŵ(1+εte)√
d

)
<

ϕ
(

d(η−εte)+ŵ(1−εte)√
d

)
, thus ∇ŵRεte

(fŵ) > 0. That is, Rεte
(fŵ) is monotonically increasing with respect to ŵ.

Monotonicity of ŵ. Based on Equation 29,

ŵ = w + ap(1 − ε)√
d

· ϕ
(d(η − ε) + w(1 − ε)√

d

)
− α(1 − p)(1 + ε)√

d
· ϕ

(d(η − ε) − w(1 + ε)√
d

)
.

In that case, the derivative of ŵ to ε is

∇εŵ = αp√
d

[
− ϕ

(d(η − ε) + w(1 − ε)√
d

)
+ (1 − ε) · ∇εϕ

(d(η − ε) + w(1 − ε)√
d

)]
− α(1 − p)√

d

[
ϕ

(d(η − ε) − w(1 + ε)√
d

)
+ (1 + ε) · ∇εϕ

(d(η − ε) − w(1 + ε)√
d

)]
= αp√

d

[
− 1 +

(1 − ε)(d + w)
(
d(η − ε) + w(1 − ε)

)
d

]
· ϕ

(d(η − ε) + w(1 − ε)√
d

)
− α(1 − p)√

d

[
1 +

(1 + ε)(d + w)
(
d(η − ε) − w(1 + ε)

)
d

]
· ϕ

(d(η − ε) − w(1 + ε)√
d

)
= αp

d
√

d

[(
(w + d)ε − (w + d)

)(
(w + d)ε − (w + dη)

)
− d

]
· ϕ

(d(η − ε) + w(1 − ε)√
d

)
+ α(1 − p)

d
√

d

[(
(w + d)ε + (w + d)

)(
(w + d)ε + (w − dη)

)
− d

]
· ϕ

(d(η − ε) − w(1 + ε)√
d

)
.

(32)

As dη <

√
(d+dη)2+16d−(d−dη)

2 < w, it yields
(
(w + d)ε + (w + d)

)(
(w + d)ε + (w − dη)

)
− d > 0. As

0 < w+dη
w+d < w+d

w+d and
(
(w + d)ε − (w + d)

)(
(w + d)ε − (w + dη)

)∣∣∣
ε=0

> d, it yields ∃∆ε ∈ (0, w+dη
w+d ],

such that
(
(w + d)ε − (w + d)

)(
(w + d)ε − (w + dη)

)∣∣∣
ε= w+dη

w+d −∆ε
> d. In that case, it holds that ∀ε ∈

(0, w+dη
w+d − ∆ε] , ∇εŵ > 0, that is, ŵ is monotonically increasing with respect to ε when ε ∈ (0, w+dη

w+d − ∆ε].

Summary. From Monotonicity of AC(fw; η, ε), we have

AC(fw; η, ε) is monotonically decreasing with respect to ε when ε ∈ (0,
dη

w + d
].

From Monotonicity of Rεte
(fŵ), we have

Rεte(fŵ) is monotonically increasing with respect to ŵ.
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From Monotonicity of ŵ, we have

ŵ is monotonically increasing with respect to ε when ε ∈ (0,
w + dη

w + d
− ∆ε].

Consequently, it holds that given fw = sgn(x1 + x2+···+xd+1
w ) (0 < dη <

√
(d+dη)2+16d−(d−dη)

2 < w) and
ε ∈ (0, min( dη

w+d , w+dη
w+d − ∆ε)], where ∆ε ∈ (0, w+dη

w+d ], lower AC(fw; η, ε), which corresponds to a larger ε, can
yields a fŵ with better Rεte

(fŵ) under the testing-time distribution bias εte ∈ [η, 2p − 1].

D Significance Test for the Improvements of DAC on AWP and Consistency

As discussed in Section 6.2, our DAC method can only bring slight improvements in robust generalization
for AWP and Consistency. Although our repeated trials have suggested that the improvements are the
consequence of DAC (see Table 6), it is helpful to provide some statistical support. Therefore, in this section,
we conduct a t-test to measure the statistical significance of our DAC method.1 Specifically, we first make a
null hypothesis, i.e.,

H0 : Our DAC method does not improve the robust generalization of AWP and Consistency.

We then collect the robust generalization under AutoAttack without and with DAC from Table 6, which
are separately denoted as two samples X1 and X2. This decision is because AutoAttack is more powerful
and comprehensive than other adversarial attacks used in our evaluation, and AutoAttack is now the default
metric for the leaderboard of adversarial defenses.2 In that case, the null hyperthesis H0 can be informally
understood as X1 ≥ X2. Next, we calculate the mean of X1 and X2, which can be formulated as:

X̄1 = 1
n1

n1∑
i=1

X1i, and X̄2 = 1
n2

n2∑
i=1

X2i,

where n1 and n2 are the size of X1 and X2 in this case. Subsequently, the standard deviation of X1 and X2
can be calculated as:

s1 =

√√√√ 1
n1 − 1

n1∑
i=1

(
X1i − X̄1

)2
, and s2 =

√√√√ 1
n2 − 1

n2∑
i=1

(
X2i − X̄2

)2
.

Accordingly, the pooled standard deviation of the two samples is represented by s1 and s2, i.e.,

sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2 ,

where n1 + n2 − 2 is the total number of degrees of freedom. Given X̄1, X̄2 and sp, we have t-statistic

t =
∣∣∣ X̄1 − X̄2

sp

√
1

n1
+ 1

n2

∣∣∣.
In this case, we have the t-statistic t = 2.141 and total number of degrees of freedom n1 + n2 − 2 = 22.
By comparing to the t-Table, our t-statistic t is larger than the element of t.975 = 2.074, i.e., we have
> 95% confidence to reject the null hypothesis H0.3 In other words, our DAC method can bring statistically
significant improvements to AWP and Consistency.

E Complete Results

Due to the space limit, we present the full results of Table 2 and Table 3 in Table 7 and Table 8, respectively.
1 https://en.wikipedia.org/wiki/Student%27s_t-test
2 https://robustbench.github.io/
3 https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
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Table 7: Testing-time adversarial robustness (%) of AT with/without DAC/DAC_Reg under ℓ∞ perturabtions
across different model architectures and benchmark datasets.

Dataset Architecture Method Clean PGD-20 PGD-100 CW∞ AutoAttack

SVHN

PRN18
AT 89.63 (88.64) 42.25 (51.00) 41.37 (50.30) 42.84 (48.19) 39.52 (46.02)
+ DAC 90.58 (89.63) 45.86 (54.42) 43.92 (53.78) 43.75 (50.15) 40.68 (48.23)
+ DAC_Reg 90.65 (90.21) 45.39 (53.06) 43.77 (52.28) 43.66 (49.64) 41.10 (47.39)

WRN34
AT 91.51 (89.72) 46.81 (53.43) 44.94 (52.77) 45.76 (50.43) 41.71 (49.50)
+ DAC 91.26 (91.83) 60.42 (67.95) 56.71 (64.85) 56.98 (65.09) 42.33 (50.42)
+ DAC_Reg 91.76 (92.13) 62.19 (65.96) 59.54 (63.68) 60.05 (63.87) 42.46 (49.95)

CIFAR-10

PRN18
AT 82.88 (82.68) 41.51 (49.23) 40.96 (48.92) 41.61 (48.07) 39.66 (45.71)
+ DAC 84.64 (83.55) 45.55 (52.20) 44.94 (51.87) 44.55 (50.05) 42.78 (48.20)
+ DAC_Reg 83.78 (83.54) 45.39 (50.86) 44.87 (50.49) 44.18 (48.96) 42.41 (47.02)

WRN34
AT 86.47 (85.86) 47.25 (55.31) 46.73 (55.00) 47.85 (54.04) 45.84 (51.94)
+ DAC 86.48 (85.10) 52.02 (57.93) 51.69 (57.68) 51.51 (54.98) 49.75 (53.33)
+ DAC_Reg 85.69 (76.89) 48.81 (48.91) 47.54 (48.86) 47.55 (45.98) 44.24 (44.99)

CIFAR-100

PRN18
AT 54.58 (53.64) 20.29 (27.80) 20.00 (27.66) 20.18 (25.40) 18.52 (23.45)
+ DAC 54.85 (55.01) 22.46 (27.73) 22.19 (27.48) 21.11 (25.37) 19.09 (23.95)
+ DAC_Reg 54.67 (53.11) 21.78 (28.86) 21.50 (28.70) 20.56 (26.00) 19.29 (23.40)

WRN34
AT 57.23 (54.45) 25.64 (30.30) 25.38 (29.97) 24.09 (27.57) 22.76 (25.46)
+ DAC 58.15 (58.04) 26.08 (31.55) 25.89 (31.43) 24.77 (29.19) 23.66 (27.08)
+ DAC_Reg 57.57 (58.34) 24.46 (30.97) 24.13 (30.89) 24.04 (28.92) 22.68 (26.71)

Table 8: Testing-time adversarial robustness (%) of AT, TRADES and MART with/without DAC on SVHN,
CIFAR-10 and CIFAR-100 under ℓ∞ perturbations.

Dataset Method Clean PGD-20 PGD-100 CW∞ AutoAttack

SVHN

AT 89.63 (88.64) 42.25 (51.00) 41.37 (50.30) 42.84 (48.19) 39.52 (46.02)
+ DAC 90.58 (89.63) 45.86 (54.42) 43.92 (53.78) 43.75 (50.15) 40.68 (48.23)
+ DAC_Reg 90.65 (90.21) 45.39 (53.06) 43.77 (52.28) 43.66 (49.64) 41.10 (47.39)

TRADES 89.12 (87.75) 51.50 (55.19) 50.69 (54.50) 45.50 (50.32) 45.02 (48.69)
+ DAC 90.24 (89.59) 52.24 (57.09) 51.14 (56.39) 46.34 (52.22) 46.20 (50.52)
+ DAC_Reg 90.03 (89.75) 51.78 (56.10) 50.92 (54.83) 45.86 (51.35) 45.30 (49.06)

MART 89.68 (84.48) 49.07 (52.30) 48.30 (52.22) 45.48 (48.04) 44.54 (47.38)
+ DAC 88.90 (84.64) 51.04 (53.64) 50.91 (52.70) 46.94 (49.96) 46.18 (48.50)
+ DAC_Reg 90.18 (88.47) 50.94 (52.94) 49.87 (52.46) 46.32 (49.18) 45.86 (47.73)

CIFAR-10

AT 82.88 (82.68) 41.51 (49.23) 40.96 (48.92) 41.61 (48.07) 39.66 (45.71)
+ DAC 84.64 (83.55) 45.55 (52.20) 44.94 (51.87) 44.55 (50.05) 42.78 (48.20)
+ DAC_Reg 83.78 (83.54) 45.39 (50.86) 44.87 (50.49) 44.18 (48.96) 42.41 (47.02)

TRADES 82.10 (81.33) 47.44 (51.65) 46.95 (51.42) 46.64 (49.18) 44.99 (48.06)
+ DAC 83.18 (82.80) 49.32 (52.90) 48.81 (52.67) 48.30 (50.11) 46.40 (48.96)
+ DAC_Reg 82.97 (82.37) 47.87 (53.33) 47.33 (51.88) 46.80 (49.68) 45.07 (48.70)

MART 80.85 (78.27) 50.23 (52.28) 49.71 (52.13) 46.88 (47.83) 44.68 (46.01)
+ DAC 81.12 (79.37) 52.38 (53.25) 52.04 (53.14) 48.97 (49.25) 47.24 (47.69)
+ DAC_Reg 80.81 (79.07) 50.35 (52.71) 50.06 (52.54) 47.50 (49.32) 45.72 (47.19)

CIFAR-100

AT 54.58 (53.64) 20.29 (27.80) 20.00 (27.66) 20.18 (25.40) 18.52 (23.45)
+ DAC 54.85 (55.01) 22.46 (27.73) 22.19 (27.48) 21.11 (25.37) 19.09 (23.95)
+ DAC_Reg 54.67 (53.11) 21.78 (28.86) 21.50 (28.70) 20.56 (26.00) 19.29 (23.40)

TRADES 55.40 (53.98) 22.40 (28.31) 22.32 (28.18) 21.42 (25.82) 20.55 (24.29)
+ DAC 56.66 (54.67) 25.54 (29.56) 25.43 (29.35) 23.32 (25.92) 22.35 (24.87)
+ DAC_Reg 54.36 (53.86) 23.16 (27.96) 23.13 (27.88) 22.34 (24.35) 21.08 (23.43)

MART 55.73 (52.48) 24.18 (27.17) 24.00 (27.12) 22.41 (24.89) 21.56 (23.06)
+ DAC 55.94 (54.23) 24.81 (28.23) 24.65 (28.13) 23.53 (25.19) 22.06 (24.00)
+ DAC_Reg 55.52 (52.77) 24.33 (27.40) 24.21 (23.41) 22.83 (25.04) 21.73 (23.28)

26



Published in Transactions on Machine Learning Research (10/2024)

F Additional Evaluations

In this section, we provide additional experimental results better to comprehend our work, including the
influence of ϵ on DAC and training efficiency.

F.1 Influence of ϵ on DAC

Table 9: Testing-time robust generalization (RG%) on the last and best epochs, where the training-time ϵ is
set to 8/255 while the testing one varies in {4/255, 8/255, 12/255}.

ϵtr = 8/255 ϵte = 4/255 ϵte = 8/255 ϵte = 12/255
RGlast/RGbest 66.03/70.09 45.55/52.20 29.91/34.88

Table 10: Testing-time robust generalization (RG%) on the last and best epochs, where the testing-time ϵ is
set to 8/255 while the training one varies in {4/255, 8/255, 12/255}.

ϵte = 8/255 ϵtr = 4/255 ϵtr = 8/255 ϵtr = 12/255
RGlast/RGbest 41.49/45.51 45.55/52.20 47.96/53.32

In the previous evaluation, our work focuses on the setting of ϵ = 8/255 in both the training and testing time
for ℓ∞-norm perturbations, which is widely used in this field as ϵ is usually associated with the assumption of
the adversarial strength. However, it is interesting to investigate the influence of ϵ on our DAC method. Thus,
we separately fixed the training- and testing-time ϵ to 8/255, and vary the other one in {4/255, 8/255, 12/255},
as shown in Tables 9 and 10. Specifically, Table 9 depicts that the model of a fixed training-time ϵtr is more
vulnerable to a larger testing-time ϵte, on both the last and best epochs. On the other hand, Table 10, shows
that a stronger adversarial ability in the training time can derive a better robustness when facing the same
testing-time ϵte. Consequently, these results suggest that model robustness will benefit from a larger ϵtr and
a smaller ϵte.

F.2 Training Efficiency

Table 11: Testing-time robust generalization (RG %) on the last and best epochs, where DACt indicates that
decreasing adversarial certainty starts from the t-th epoch.

RG (%) Last Best
DAC1 45.55 52.20
DAC101 45.84 50.49
DAC151 45.68 49.85

In Section 6.4, we proposed DAC_Reg to reduce the training cost. However, it modifies the optimization
flow. Therefore, to enhance DAC’s efficiency, we conduct an additional attempt by decreasing adversarial
certainty only when robust overfitting occurs. In our evaluation, we start the DAC method from the 101-th
and 151-th epochs, respectively, corresponding to the first and second time of learning rate decay. From
Table F.2, we can see that an earlier application of DAC brings better “Best” robustness, while the “Last”
one is comparable. Consequently, improving training efficiency by reducing the epochs that consider DAC
can only derive limited performance promotion. In other words, the potential direction of developing efficient
methods might be regularizing some specific insights in a loss term, such as the design of DAC_Reg. Still,
the effort to guarantee stability is necessary.
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Potential Limitation. Table 11 depicts that applying DAC earlier can achieve better robustness. Thus,
DAC101 and DAC151, decreasing adversarial certainty when robust overfitting happens, cannot achieve
comparable robustness on the best epoch with DAC1 that works from scratch. That is, our method requires
a warm-up instead of an immediate functionality. Consequently, our method might not be suitable for the
real-time scenario, where DAC is deployed only when robust overfitting happens, which limits the flexibility
of our method.
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