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ABSTRACT

With the goal of benchmarking generative systems beyond expert software devel-
opment ability, we introduce COMMIT0, a benchmark that challenges AI agents
to write libraries from scratch. Agents are provided with a specification document
outlining the library’s API as well as a suite of interactive unit tests, with the goal
of producing an implementation of this API accordingly. The implementation is
validated through running these unit tests. As a benchmark, COMMIT0 is designed
to move beyond static one-shot code generation towards agents that must process
long-form natural language specifications, adapt to multi-stage feedback, and gen-
erate code with complex dependencies. COMMIT0 also offers an interactive envi-
ronment where models receive static analysis and execution feedback on the code
they generate. Our experiments demonstrate that while current agents can pass
some unit tests, none can yet fully reproduce full libraries. Results also show that
interactive feedback is quite useful for models to generate code that passes more
unit tests, validating the benchmarks that facilitate its use. We publicly release the
benchmark1, the interactive environment2, and the leaderboard3.

1 INTRODUCTION

AI agents have been increasing rapidly in ability, particularly in domains such as problem-solving,
math, and coding. Tasks related to software development have been particularly promising areas
due to both their clarity of evaluation and economic value. This has motivated the release of several
coding benchmarks in recent years (Hendrycks et al., 2021a; Chen et al., 2021; Zhuo et al., 2024).
A notable example is SWE-bench (Jimenez et al., 2024), which assesses the ability of agents to
generate patches to resolve real-world GitHub issues. While critical, these tasks generally remain
within the skill set of an experienced software engineer. If LLM systems continue to improve at
current rates, these tasks will be completely solvable.

We are interested in benchmarks that exist further beyond both the frontier of expert human ability
as well as current model ability. Specifically, tasks that experts struggle to solve but can still be fully
specified and reliably verified. Software engineering is an appealing domain for this, as the process
of developing actual implementations of functions is very complex. Nevertheless, humans can fully
specify the desired behavior of functions and validate them through unit testing.

With this goal in mind, we introduce COMMIT0, a benchmark that tests an agent’s ability to generate
a software library from scratch. This task is especially challenging – large, real-world libraries are
notoriously difficult to design, often requiring hundreds of engineers and years of development.
Nonetheless, this task remains verifiable without requiring humans to solve it directly. Humans can
provide specifications that outline the library’s API and write unit tests to verify whether the API
has been implemented correctly.

COMMIT0 extends beyond existing benchmarks in several ways. Central to COMMIT0 is interactive
feedback. Due to the complexity of generating a library, it is improbable, or likely impossible, that an
agent could generate a complete, working version in one shot. Instead, the benchmark is constructed

1https://huggingface.co/datasets/commit0/commit0
2https://github.com/commit-0/commit0
3https://commit-0.github.io/
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class Event:
  """An event that may happen at...
  """

  def _desc(self) -> str:
    """Return a string *Event()*."""
    return f’{self._class_._name_}()’

class Process(Event):
  @property
  def target(self) -> Event:
    """The event that the process...
    """
    return self._target

</>

</>

</>

</>

</>

class Event:
  """An event that may happen at...
  """

  def _desc(self) -> str:
    """Return a string *Event()*."""
    pass

class Process(Event):
  @property
  def target(self) -> Event:
    """The event that the process...
    """
    pass

tests passed

tests passed

tests passed

Figure 1: An overview of COMMIT0. Given a starter repository with empty function body, a spec-
ification, and a suite of unit tests, agents are required to produce an implementation of the library
that passes all unit tests.

such that must adapt to multi-stage feedback such as unit test errors. Libraries also feature complex
dependencies. Implementing one function in a library involves calling other functions, and therefore
Agents need to identify the right order to implement the functions. Finally COMMIT0 features
long-context processing: agents must navigate specifications of hundreds of pages, and generate
thousands of functions, both of which require processing texts in a long context.

While our main focus is the benchmark itself, we also introduce a prototype agent SDE-I for com-
pleting the benchmark. The agent introduces a basic method for traversing the complex library
dependencies, uses best-in-class LLMs to process long contexts, and responds to the interactive
feedback of the system. To perform code completion SDE-I uses a state-of-the-art coding agent.

We empirically evaluate this system on COMMIT0. Our experiments show that with a state-of-the-
art LLM without feedback, it can pass 17% unit tests in the easier libraries but can only pass 6%
in all libraries. We find that iterating on error messages from unit tests improves the pass rate of
unit tests to 26% on the easier libraries, demonstrating the utility of leveraging execution feedback.
Finally, conditioning on relevant files – i.e., ensuring the agent considers related file dependencies
and context – further enhances performance.

2 RELATED WORK

Evaluation of LMs. Recent benchmarks for evaluating agents focus on knowledge-intense,
exam-style questions in domains ranging from grade-school mathematics to quantum mechanics
(Hendrycks et al., 2021c; Srivastava et al., 2023; Hendrycks et al., 2021b; Rein et al., 2023). While
these questions are challenging, with some requiring PhD level knowledge, they are often short and
easy to memorize, and they only require few steps of sequential reasoning. In contrast, Commit0
requires reasoning over a long horizon. Mastering the ability to develop full repositories requires
considering many files, many unit tests, and complex static analysis feedback.

Software engineering benchmarks Existing benchmarks for code generation focus on specific
aspects of the software engineering pipeline. Program synthesis benchmarks evaluate code gener-
ation, for example, HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), BigCodeBench
(Zhuo et al., 2024), CodeBenchGen (Xie et al., 2024), and Classeval (Du et al., 2023). Segmented
benchmarks, such as DevBench (Li et al., 2024), separately evaluate different aspects such as code
design, code generation, and unit test synthesis. R2E (Jain et al., 2024) introduces a more chal-
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Figure 2: Basic statistics of COMMIT0. The red dotted line denotes the median. Top left: the
distribution of the number of unit tests in a library; top right: the distribution of the number of
tokens in a specification; bottom left: the distribution of the number of source files in a library;
bottom right: the distribution of the number of public functions to be implemented in a library.

lenging task by requiring function generation that involves dependencies within and across files.
SWE-bench (Jimenez et al., 2024) provides a more holistic evaluation of a model’s ability to re-
solve pull requests, requiring the incorporation of repository-level context. However, the amount of
context necessary to resolve a specific pull request varies greatly and is small on average. These
previous benchmarks focus on generating one or a few functions and are thus manageable via static
one-shot code generation. In contrast, COMMIT0 requires generating an entire codebase consisting
of numerous interdependent functions, which necessitates a series of refinements based on execution
results to pass all unit tests.

Software engineering agents Recent work has made impressive progress in developing software
engineering agents that operate on repositories (Yang et al., 2024; Zhang et al., 2023; Wang et al.,
2024a). Commit0 proposes a software agent that not only operates at the repository-level but also
self-corrects given test feedback. Our method extends prior work on self-correction (Madaan et al.,
2023; Shinn et al., 2023) to the larger-scale problem of repository generation.

3 THE COMMIT0 BENCHMARK

COMMIT0 benchmarks an agent’s ability to generate a functioning library from scratch. It consists
of 54 Python libraries covering a wide range of topics, including machine learning, networking,
databases, and data visualization. Given, (1) a specification document that contains both texts and
images, (2) a starter repository with both unit tests and files to fill in, agents are tasked with complet-
ing the implementation of the API described in the specification document. Libraries are prepared
by removing the core source code from their repo in a systematized manner.

The agent is provided with a specification in PDF format and a starter repository containing a source
code directory and a test directory. The task is to make edits to the repository. In practice, the
model generates modified versions of the source code files. We then replace the original files with
the modified ones and perform a commit to save the repository state. The model is allowed to run
unit tests interactively along with code generation. For evaluation, we clone this commit in a clear
repository and run unit tests. The model’s performance is measured only by the pass rate of these
unit tests.

To prevent the model from copying source code, we restrict access to original GitHub repositories
via web retrieval. However, the model is allowed to use the web for general knowledge lookup. For
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instance, if it needs to implement a radar plot for visualization, it is allowed to search for relevant
information online.

Figure 2 presents basic statistics of COMMIT0. The top left of Figure 2 shows the distribution of
unit tests across all libraries. Approximately 30 libraries have fewer than 1,000 unit tests, but the
distribution shows a long tail. The top right illustrates the distribution of tokens in the specifications,
with even the smallest specification containing over 10,000 tokens. Most libraries have fewer than
50,000 tokens, though the longest specification reaches up to 300,000 tokens. The bottom left
displays the distribution of files, where the majority of libraries have fewer than 50 files, but some
exceed 100. Finally, the bottom right shows the number of public functions to be implemented.
While most libraries have fewer than 250 functions, this number can exceed 1,300 in some cases.

3.1 LIBRARY SELECTION

We focus on Python libraries due to their widespread use, abundant data resources, and strong
ecosystem support. To select a set of high-quality libraries for models to implement, we design
three sets of filtering criteria.

Library requirements. We restrict libraries to be Python-only. Specifically, the library needs
to contain over 95% Python code. The library also needs to have native Python implementations
instead of using Python wrapping libraries in other languages. Finally, the library must support
testing with pytest.

Specification requirements. We identify libraries that have comprehensive specifications. The
specification must have its own webpage rather than a plain README page. The specification
document must cover both a user guide which describes how the library is intended to be used and a
comprehensive API reference that defines the input and the output of a function. The specification
should both describe in natural language what are the inputs and outputs and specify the types of
inputs and outputs.

Unit test requirements. We include libraries with comprehensive unit tests to test the implemen-
tation of a library, while having understandable tests that are feasible to run in an interactive system.
We limit the libraries to those with over 90% of code that can be covered by unit tests. We filter
libraries whose unit tests take over than 30 minutes to run on a single CPU and the libraries where a
significant number of unit tests can only be run on GPU.

To compile the list of libraries included in COMMIT0, we consider both generally popular Python
libraries and PyPI packages with top download counts4. We follow the annotation guideline5 to filter
out the libraries that satisfy the criteria described above.

We create two dataset splits: lite, which includes libraries with fewer functions to implement, and
all, which contains all libraries. Lite has a total of 16 libraries. Due to the complexity of COMMIT0
and budget constraints, we focus most of our evaluation on COMMIT0 lite.

3.2 BENCHMARK CONSTRUCTION

Ensuring Replicability. A key aspect of COMMIT0 is replicable running of unit tests across all
the libraries, which depends on the correct setup of development environments. To achieve this, we
annotate setup commands for each library. We begin by annotating a specific commit of the library
repository, which is used to extract installation requirements and generate the starter repository. The
installation requirements typically include a compatible Python version, necessary pip packages,
and an installation command. Some libraries may also require system-level dependencies, such as
clang. Finally, we annotate the pytest command, the directory containing the unit tests, and the
source code directory.

Preparing Libraries. We prepare a library for COMMIT0 by removing its core code in a sys-
tematic way. We assume that a library contains public functions which are accessible to users, and
private functions which are not supposed to be called. This is often not enforced explicitly by Python

4https://hugovk.github.io/top-pypi-packages/
5We include the annotation guideline in Appendix.

4

https://hugovk.github.io/top-pypi-packages/


Published as a conference paper at ICLR 2025

but is upheld by convention. To determine if a function is a public function, we check if it has an
associated docstring. To prepare COMMIT0, we replace the function body of all public functions to
be empty (pass) and remove all private functions entirely. We perform these code modifications by
first parsing each Python file into an abstract syntax tree, performing transforms on the syntax tree,
and converting back to source code.6

Preparing Specifications. Specifications exist in different forms. Some libraries have pure text
descriptions while others have extensive figures to demonstrate how the libraries work. For example,
seaborn is a data visualization library; it uses figures to demonstrate the expected outcomes of API
functions. To unify the format, we convert all specifications to the PDF format. Specifically, starting
from the main documentation page, we crawl the webpage as well as all the internal links recursively
and save them as a PDF.

3.3 INTERACTIVE ENVIRONMENT

A key feature of COMMIT0 is its interactivity. Generating an entire library in a single attempt is chal-
lenging for an agent; it may need to iteratively incorporate feedback to refine the implementations.
COMMIT0 provides an interactive environment that allows agents multiple sources of feedback,
including unit testing, static analysis, and coverage analysis.

Unit Test Feedback Unit tests are crucial for validating the specified behavior of functions. The
results from unit tests provide valuable information about implementation issues, including error
types and execution traces. Our interactive environment allows agents to execute an arbitrary number
of unit tests for any library in parallel. The primary challenge in this process is the need to set up
environments for each library to run the unit tests. To address this, we create a Docker image
for each library and execute the tests in these isolated environments. This setup allows agents to
simultaneously develop and run unit tests across all libraries using the pre-built images.

Static Analysis Feedback Our interactive environment also offers comprehensive static analysis
feedback, including linting and type checking, as an additional corrective signal. We apply a stan-
dardized linter and configuration file across all libraries to ensure consistency. Specifically, we use
ruff as our linter7. For reproducibility, we release both the Docker images and the linter configu-
ration file alongside our benchmark.

Coverage Feedback Coverage analysis serves as another valuable signal. For instance, if a unit
test passes in one run but fails in another, the difference in coverage can help identify which lines
of code are causing errors by comparing the differences in coverage. To provide this coverage
information, we use pytest-cov and leverage the pre-built isolated environments described above
to run the coverage analysis in a reproducible way.

4 THE SDE-I AGENT

Challenges involving complex multi-file dependencies and interactive feedback are challenging for
current agentic systems (Yang et al., 2024). To test the difficulty level of COMMIT0, we design a
prototype interactive agent. SDE-I performs a basic software engineering loop. It writes functions,
runs unit tests, and iteratively edits the code based on error messages. The agent operates in three
stages as shown in Figure 3.

Stage 1: Draft initial implementations. SDE-I drafts an initial implementation for each func-
tion. The first challenge is determining the appropriate unit for generation. Implementing all func-
tions at once is impractical, as concatenating them often exceeds the model’s maximum context
length. However, implementing each function in isolation loses the broader context of the other
functions. To balance this, we choose to treat all functions within a single module8 as one genera-
tion unit.

The second challenge is managing complex dependencies between modules since implementing
a module often requires understanding which other modules it depends on. SDE-I performs a

6done with the ast library
7github.com/astral-sh/ruff
8In Python, a file is a module.
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operators.py

Fill in autodiff.py based on

minitorch

tensor_ops.py

tensor_ops.pyoperators.py

autodiff.py

Stage 1: Fill-in Stage 2: Revise based on linting
autodiff.py:28:5 - error: 
(reportUndefinedVariable)

autodiff.py:36:45 - error: 
(reportReturnType)

autodiff.py:49:17 - error:
(reportAttributeAccessIssue)

............

Stage 3: Revise based on testing

SDE-I SDE-ISDE-I

# minitorch/autodiff.py
-    pass
+    visited = set()

# minitorch/autodiff.py
- for parent in node:
+ for parent in nodes:

# minitorch/autodiff.py
+ class SimpleOps:
+     self.cmap = 0

minitorch/tensor_ops.py:40:
in __init__
    self.id_cmap = 
ops.cmap(operators.id)
E   AttributeError:
type object 'SimpleOps' has no 
attribute 'cmap'.

............

Figure 3: Overview of SDE-I.
topological sort on imports of source code modules. It constructs a directed acyclic graph (DAG) of
the library, where each node represents a module. If a module imports others, the imported modules
are set as its parent nodes. In the case of conditional import cycles, a random edge is removed
to break the cycle. SDE-I then proceeds by filling in the modules in the order determined by the
topological sort. When implementing a module, it also includes the content of all modules that
the current module imports. In this step, SDE-I entirely ignores whether the generated code is
executable or not.

Stage 2: Refine based on static analysis. SDE-I improves the initial implementations by running
static analysis to detect and correct issues related to code style, syntax, and type errors. This static
analysis helps enforce coding standards and catch potential problems before running more resource-
intensive tests. SDE-I appends these results to the context and generates revised versions of where
issues were located. This process is repeated until all errors are resolved or the maximum number
of runs is reached.

Stage 3: Refine based on unit test results. SDE-I refines the implementation further by running
unit tests to ensure functional correctness. A challenge similar to the first stage arises: running all
unit tests simultaneously may generate error messages that exceed the model’s maximum context
length. However, unit tests are naturally grouped by functionality, with tests for related features
typically organized within the same test module. We leverage this structure by executing unit tests
one module at a time. The results are then incorporated into the context, allowing SDE-I to revise
the code based on the error messages. This process is iterative, with SDE-I continually revising the
code until all tests pass or a predefined limit on test runs is reached.

Implementation The SDE-I is implemented to be modular for the underlying coding system
and language model. For code generation, we default to the Aider framework.9 Aider’s interface
allows us to define a prompt, a lint command, and a test command. We construct a message that
includes a prompt to fill in the missing function body, along with texts from specifications and any
necessary import modules. For the LLM, we evaluate several model families known for their strong
performance on coding benchmarks. Specifically, we consider GPT-4o-mini (Hurst et al., 2024), o1-
preview (OpenAI, 2024), Claude 3.5 Sonnet10, DeepSeek-V2.5 (Guo et al., 2024), Llama-3.1-8B-
Instruct, Llama-3.1-70B-Instruct, Llama-3.1-405B-Instruct (Dubey et al., 2024), and Codestral11.

5 RESULTS

To assess the effectiveness of each stage in the SDE-I agent, we evaluate ablated versions of the
method where we apply a fixed number of stages. We summarize the results on COMMIT0 lite
in Table 1. (Note that we skip stage 2 for OpenAI o1-preview due to its high costs.) Among the
three models, Claude 3.5 Sonnet consistently delivers the best performance across all three stages.

9aider.chat
10anthropic.com/news/claude-3-5-onnet
11mistral.ai/news/codestral/
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Stage 1 Stage 2 Stage 3

OpenAI o1-preview 17.34105.92 - 21.46913.35

Claude 3.5 Sonnet 17.80 1.55 18.7912.47 29.30 99.39

DeepSeek-V2.5 16.55 1.43 11.6110.21 25.43 26.41

Llama-3.1-8B-Instruct 6.03 1.47 0.23 1.78 0.37 2.77

Llama-3.1-70B-Instruct 7.10 10.85 1.8311.25 2.49 24.82

Llama-3.1-405B-Instruct 8.08 7.94 1.7612.20 4.95 29.10

Codestral 6.34 0.30 6.34 0.36 7.41 1.99

Table 1: Unit test pass rates across three stages of SDE-I on COMMIT0 lite. Subscripts are corre-
sponding costs in US dollars.

Library Total Stage 1 Stage 2 Stage 3
babel 5663 0 0 0
cachetools 215 173 179 179
chardet 376 3 25 3
cookiecutter 367 108 102 16
deprecated 171 73 80 151
imapclient 267 0 0 31
jinja 851 0 0 0
marshmallow 1229 456 338 456
minitorch 230 0 0 0
parsel 206 10 10 0
portalocker 36 15 1 15
pyjwt 259 11 11 128
simpy 140 20 17 94
tinydb 201 27 38 64
voluptuous 149 0 0 0
wcwidth 38 6 6 1

Table 2: Pass rate on COMMIT0 lite across three stages of SDE-I.

Surprisingly progressing from Stage 1 to Stage 2 results in a decline in performance with the open-
weights models. As discussed in the qualitative analysis in Section 6, although the static analysis
feedback provides useful guidance for fixing bugs, the model struggles to apply it effectively, often
introducing additional errors. This issue particularly affects the less capable models. However,
moving from Stage 2 to Stage 3 consistently improves the average pass rate, demonstrating the
value of utilizing unit test feedback. In the cost-constrained setting, Codestral in stage 1 has the best
performance (6.34%) under $1, and Claude 3.5 Sonnet in stage 3 has the best performance (%29.3)
under $100.

Table 2 shows the pass rate for each library using Claude 3.5 Sonnet at each stage. At the individual
library level, the results are mixed. In many cases, when models attempt to address static analysis
issues and unit test feedback, they inadvertently introduce new errors. However, for libraries like
deprecated, parsel, and tinydb, Claude 3.5 Sonnet shows the greatest improvement from execution
feedback.

Stage 1 Stage 2 Stage 3

GPT-4o-mini 2.87 8.73 1.4227.22 4.24123.74

Claude 3.5 Sonnet 6.1220.46 - -
DeepSeek-V2.5 2.3314.94 2.9522.58 4.93 84.11

Table 3: Unit test pass rates at the first stage of SDE-I on COMMIT0 all. Subscripts are correspond-
ing costs in US dollars.

Results on COMMIT0 all. We summarize the results in Table 3. Due to the high API cost of
Claude 3.5 Sonnet, we only run it for the first stage of the SDE-I agent on COMMIT0 all. We note
that running just the first stage with Claude 3.5 Sonnet already outperforms running all stages with
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Figure 5: Left: Cost-constrained test-time approaches. The blue line shows test-time scaling in stage
1, where SDE-I generates n copies of a module and picks the copy that passes the most unit tests.
The green line shows test-time scaling in stage 3, where SDE-I iterates on unit test feedback for n
iterations. Right: 10-gram overlaps between Claude-generated functions and reference functions.
Each dot is a function. We sort the 10-gram overlap by function lengths.

GPT-4o-mini or DeepSeek-V2.5. In the compute-constrained setting, GPT-4o-mini in stage 1 has
the best performance (2.87%) under $1, and Claude 3.5 Sonnet in stage 1 has the best performance
(%6.12) under $100.

Results on state-of-the-art software development agent: OPENHANDS. We test OPENHANDS
(Wang et al., 2024b), the best-performing agent on SWE-bench. To have OPENHANDS take full
advantage of the specifics of COMMIT0, we share the list of unit test IDs, static analysis commands,
and test commands with the agent. With this deep integration, OPENHANDS passes 42.95% of unit
tests on COMMIT0 lite (a 13.65% improvement compared to SDE-I) and 15.25% on COMMIT0
all (a 9% improvement). To understand this improvement, we analyze the TinyDB example, where
OPENHANDS improved from 64 passed tests to 174. We attribute the success of OPENHANDS to
its better debugging capabilities. Unlike SDE-I, which often repetitively generates the same fix for
a bug, OPENHANDS is able to explore different solutions.

6 ANALYSIS

Ablations. We conduct ablation studies based on the first stage of SDE-I in Figure 4. First, we
investigate whether including information from the specifications and tests can help LLM agents
pass more unit tests. Since the length of the specification often exceeds the maximum context length
of the LMs, we feed only the first 10,000 tokens from the specification. For test, we append the
prompt to include test modules. Surprisingly, both additions reduce performance. We hypothesize
that much of the specification and tests are irrelevant to implementing specific modules, which may
distract the model. To better leverage the specification, the agent will likely need to first filter
out only the relevant information. To verify this hypothesis, we perform retrieval to obtain 10,000
tokens. Specifically, we break the specification into chunks of 1,000 tokens and retrieve the top 10
chunks to include in the context. With the same number of tokens, using BM25-retrieved tokens
yields a higher unit test pass rate, suggesting that agents can benefit from more relevant context.

8
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Next, we explore whether filling in functions following the order found by topological sort is help-
ful. Interestingly, we find that a random-ordering approach leads to more passed unit tests (22%
compared to 17%). Upon further inspection, we found conditioning on incorrect implementations
of previous modules was the issue. Relying on incorrect implementations appears to be more harm-
ful than relying on empty ones. Lastly, we assess the impact of excluding relevant modules from the
context. As expected, excluding these relevant imports results in fewer passed unit tests.

Table 4: Qualitative example for using static analysis feedback to revise function implementations.
Test Results Before

PASSED tests/test_utils.py::test_work_in
PASSED tests/test_utils.py::test_work_in_without_path

Lint Feedback
cookiecutter/utils.py:38:5: ANN201 Missing
return type annotation for public function ‘work_in’
37 | @contextlib.contextmanager
38 | def work_in(dirname=None):

| ˆˆˆˆˆˆˆ ANN201
39 | """Context manager version of os.chdir.

= help: Add return type annotation

Revised Implementation
@contextlib.contextmanager
- def work_in(dirname=None):
+ def work_in(
+ dirname: Optional[Union[str, "os.PathLike[str]"]] = None
+ ) -> Any:

"""Context manager version of os.chdir.
@@ -44,11 +50,12 @@ def work_in(dirname=None):

try:
if dirname is not None:

os.chdir(dirname)
- yield
+ yield None

finally:
os.chdir(curdir)

Test Results After
Failed tests/test_utils.py::test_work_in

- TypeError: ’NoneType’ object is not an iterator
Failed tests/test_utils.py::test_work_in_without_path

- TypeError: ’NoneType’ object is not an iterator

Test-time Scaling. An interesting question is how unit test pass rates scale with more test-time
compute. We address this question with two experiments. First, we sample a module 1, 3, and 10
times, picking the best implementation based on pass rates before proceeding to the next module.
Additionally, we test whether continuous iterations on unit test feedback will eventually enable
agents to pass all unit tests. We conducted an experiment where we applied unit test feedback over
different numbers of iterations: 1, 3, and 10. We summarize the results on the left of Figure 5. We
observed that, in both cases, unit test pass rates improve with more test-time compute.

Library Memorization. COMMIT0 tests models on existing libraries, versions of which are may
be part of their training data. This raises the possibility that LLMs may be simply recalling these
libraries from memory, but not reasoning about the specifications and unit tests. (We not that a
similar question exists for many other coding benchmarks.) To explore whether current models are
primarily memorizing the libraries, we calculate the 10-gram overlap between the generated and
reference libraries. We create a mapping from function IDs to their corresponding function bodies
for public functions. We then compute the 10-gram overlap between the generated implementation
and the reference implementation for each function. The overlaps are sorted by function length. The
results, presented on the right of Figure 5, indicate that LMs either fully memorize the functions
or produce implementations that are significantly different. Shorter functions are more frequently

9
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memorized. Given the low total test accuracy, the observed degree of memorization is not a major
factor for the benchmark.

Table 5: Qualitative example for using unit test feedback to revise function implementations.
Test Results Before

FAILED tests/test_condition.py::test_ior_with_or_cond
FAILED tests/test_condition.py::test_ior_with_and_cond

Unit Test Feedback
> event._value = event._callback(event)
E AttributeError: ’Initialize’ object has no attribute ’_callback’.

Did you mean: ’callbacks’?

Revised Implementation
- event._ok = True
- event._value = event._callback(event)
- event._processed = True
+ try:
+ if hasattr(event, ’_callback’):
+ event._value = event._callback(event)
+ event._ok = True
+ elif hasattr(event, ’callbacks’):
+ for callback in event.callbacks:
+ callback(event)
+ event._ok = True
+ elif isinstance(event, Process):
+ if event._target is None:
+ raise RuntimeError(’Invalid yield value "None"’)
+ event._resume(event._target)
+ else:
+ event._ok = True
+ except Exception as e:
+ event._ok = False
+ event._value = e
+ if not getattr(event, ’_defused’, False):
+ raise
+ finally:
+ event._processed = True

Test Results After
PASSED tests/test_condition.py::test_ior_with_or_cond
PASSED tests/test_condition.py::test_ior_with_and_cond

Qualitative Analysis. In the first example, we show how static analysis feedback might hurt per-
formance. Presented in Table 4, the function implemented in stage 1 successfully passes the unit
tests. However, the agent misinterpreted the static analysis feedback, which requested type annota-
tions. In response, the agent adds Any as the return type and modifies the function to include yield
None to match the type. Unfortunately, since a generator cannot return NoneType, this introduces
a new error. In the second example, we show test feedback can improve performance. Presented
in Table 5, the unit test feedback points out that the attribute ‘ callback‘ is missing. The agent thus
revised the implementation by adding an if statement to check for relevant attributes, hence passing
the unit tests.

7 CONCLUSION

We introduce COMMIT0, a challenging task that requires LMs to generate libraries from scratch.
Our task provides signals through unit test feedback, including both error messages and execution
traces. It also offers comprehensive static analysis feedback including type checking. This task
is meant to be beyond the level of most human experts, and currently seems beyond what state-
of-the-art LLMs are capable of. We hope that it can serve as both as progress benchmark for AI
development as well as spurring new agent architectures and methods.

10
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LIMITATIONS

One limitation of COMMIT0 is that we exclusively include Python libraries in our evaluation, which
may limit the generalizability of our findings to other programming languages. Additionally, our
experimental environment requires a well-specified document and a full suite of unit tests for each
library, which may not reflect the typical development process where documentation and tests are
often incomplete or evolving. While these assumptions may not be entirely realistic in every real-
world scenario, they are closely aligned with the principles of test-driven development (TDD), where
rigorous testing and clear documentation are integral parts of the development process.

Furthermore, our reliance on unit tests as the primary means of evaluating the correctness of the
generated code introduces additional limitations. Unit tests may not cover all possible use cases or
edge cases, potentially allowing erroneous or suboptimal code to pass unnoticed. This overreliance
on testing may mask underlying issues that would be evident in a thorough code review or through
integration testing. As a result, the agent’s ability to generate code that passes all tests does not
necessarily equate to producing robust, high-quality software.

Another concern is the risk associated with having agents generate code that humans may find dif-
ficult to read or maintain. Automatically generated code might be syntactically correct and func-
tionally adequate to pass tests, but it may lack clarity, proper documentation, or adherence to coding
standards and best practices. This can lead to maintainability issues, as future developers may strug-
gle to understand or modify the codebase, increasing the risk of introducing bugs or vulnerabilities
in subsequent updates. The opaqueness of machine-generated code also raises questions about ac-
countability and traceability in software development.

ETHICS STATEMENT

COMMIT0 consists of forked public repositories whose licenses permit our use. Our study does not
involve human participants, and does not rely on human task workers for data collection. We do not
gather any data, including personal data, from GitHub.

Additionally, code generation without human oversight may raise potential ethical issues. For ex-
ample, agents could introduce security vulnerabilities or violate licensing terms. Ensuring that the
generated code is safe, compliant, and ethically sound may require human intervention, which our
current benchmark does not account for.

Finally, automating software engineering is a challenge that has both potential benefits and harms.
Our release of COMMIT0 serves to measure progress towards this challenge.

REPRODUCIBILITY

We release the COMMIT0 benchmark in its entirety, along with all methods and results. We also
provide the code for reproducing the dataset, so that it may be used for synthesizing data.
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A DATA ANNOTATION

Table A lists what we annotated for each library in order to execute the unit tests.

Annotation Description

Repository Name Owner and repository name
Commit or Tag Annotate either a specific commit or a version tag (recommended).
Python Version Python version that is compatible with the specified code state
Packages Path to ‘requirements.txt‘ that contains packages to be installed
Pip packages Additional pip packages to install
Install Installation command (must be in editable mode and include test dependencies)
Pre-install System-level dependencies (e.g., apt-get, clang, etc.)
Specification URL link to the project specification, preferably a PDF link
Test Command pytest command for running unit tests
Test Directory Directory where unit tests are located
Source Directory Directory where the source code is located (e.g., web3/ for web3.py library)

Table 6: Annotations for setting up executing unit tests

B IMPLEMENTATION DETAILS

Here is your task:
You need to complete the implementations for all functions (i.e.,
those with pass statements) and pass the unit tests. Do not change
the names of existing functions or classes, as they may be referenced
from other code like unit tests, etc.
IMPORTANT: When you generate code, you must maintain the original
formatting of the function stubs (such as whitespaces), otherwise we
will not be able to search/replace blocks for code modifications, and
therefore you will receive a score of 0 for your generated code.

Figure 6: The prompt provided to SDE-I at stage 1.

Prompt. We present the stage-1 SDE-I prompt in Figure 6.

C LIBRARY ANNOTATION GUIDELINES

We share the library annotation guidelines12 that we provide to annotators. To incorporate new
libraries into COMMIT0, one can follow these guidelines to produce the necessary annotations for
the libraries.

D ABLATIONS

Fill in by Module Fill in by Pass Statement

Avg. pass 17.80 12.42

Table 7: Comparison of average pass rates between filling in by module and by function.

12https://tinyurl.com/commit0-annotation-guidelines
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Generation units. Here we analyze the generation unit for filling in libraries from scratch. We
compare filling in by module and by pass statement and present the results in Table 7. We find
that filling in by pass statement leads to significantly worse results than filling in at the module
level. When generating code for one pass statement, models tend to focus solely on local contexts
and often overlook interactions with other parts in the modele. In contrast, generating code at the
module level enables models to develop a holistic understanding of a file. For example, in the
following portalocker.py file, when filling in for the only pass statement, the agent terminates
without any modification.

import os
import typing
from . import constants, exceptions
LockFlags = constants.LockFlags

class HasFileno(typing.Protocol):
pass

LOCKER: typing.Optional[typing.Callable[
[typing.Union[int, HasFileno], int], typing.Any]] = None
if os.name == ’nt’:

import msvcrt
import pywintypes
import win32con
import win32file
import winerror
__overlapped = pywintypes.OVERLAPPED()

elif os.name == ’posix’:
import errno
import fcntl
LOCKER = fcntl.flock

else:
raise RuntimeError(’PortaLocker only defined for nt and posix platforms’)

}

As a result, all the unit tests failed in the collection stage:

ImportError while loading conftest ’/testbed/portalocker_tests/conftest.py’.
portalocker_tests/conftest.py:8: in <module>

from portalocker import utils
portalocker/__init__.py:37: in <module>

lock = portalocker.lock
E AttributeError: module ’portalocker.portalocker’ has no attribute ’lock’

However, when the agent is asked to fill in the whole module, it returns the following message:

Thank you for providing the task details and the content of the relevant files.
I’ll focus on completing the implementations for the functions with ‘pass‘
statements in the ‘portalocker/portalocker.py‘ file. Since there are no explicit
‘pass‘ statements in the provided code, I’ll assume that we need to implement
the locking and unlocking functionality for both Windows (nt) and POSIX systems.

Let’s start by implementing the ‘lock‘ and ‘unlock‘ functions for both platforms.

Following this message, the agent produces the code:

if os.name == ’nt’:
[...]
def lock(file, flags):

if flags & constants.LockFlags.EXCLUSIVE:
lock_type = win32con.LOCKFILE_EXCLUSIVE_LOCK

15
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else:
lock_type = 0

if flags & constants.LockFlags.NON_BLOCKING:
lock_type |= win32con.LOCKFILE_FAIL_IMMEDIATELY

hfile = msvcrt.get_osfhandle(file.fileno())
try:

win32file.LockFileEx(hfile, lock_type, 0, -0x10000, __overlapped)
except pywintypes.error as exc_value:

if exc_value.winerror == winerror.ERROR_LOCK_VIOLATION:
raise exceptions.LockException(fh=file)

else:
raise

def unlock(file):
hfile = msvcrt.get_osfhandle(file.fileno())
try:

win32file.UnlockFileEx(hfile, 0, -0x10000, __overlapped)
except pywintypes.error as exc_value:

if exc_value.winerror == winerror.ERROR_NOT_LOCKED:
# File was not locked.
pass

else:
raise

elif os.name == ’posix’:
[...]
def lock(file, flags):

locking_flags = fcntl.LOCK_EX
if flags & constants.LockFlags.EXCLUSIVE
else fcntl.LOCK_SH

if flags & constants.LockFlags.NON_BLOCKING:
locking_flags |= fcntl.LOCK_NB

try:
fcntl.flock(file.fileno(), locking_flags)

except IOError as exc_value:
if exc_value.errno == errno.EACCES or exc_value.errno == errno.EAGAIN:

raise exceptions.LockException(fh=file)
else:

raise
def unlock(file):

fcntl.flock(file.fileno(), fcntl.LOCK_UN)
else:

raise RuntimeError(’PortaLocker only defined for nt and posix platforms’)
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