
Sample and Computationally Efficient
Robust Learning of Gaussian Single-Index Models

Puqian Wang
Department of Computer Science
University of Wisconsin, Madison

pwang333@wisc.edu

Nikos Zarifis
Department of Computer Science
University of Wisconsin, Madison

zarifis@wisc.edu

Ilias Diakonikolas
Department of Computer Science
University of Wisconsin, Madison

ilias@cs.wisc.edu

Jelena Diakonikolas
Department of Computer Science
University of Wisconsin, Madison

jelena@cs.wisc.edu

Abstract

A single-index model (SIM) is a function of the form σ(w∗ · x), where σ : R → R
is a known link function and w∗ is a hidden unit vector. We study the task of
learning SIMs in the agnostic (a.k.a. adversarial label noise) model with respect
to the L2

2-loss under the Gaussian distribution. Our main result is a sample and
computationally efficient agnostic proper learner that attains L2

2-error of O(OPT)+
ϵ, where OPT is the optimal loss. The sample complexity of our algorithm is
Õ(d⌈k

∗/2⌉ + d/ϵ), where k∗ is the information-exponent of σ corresponding to the
degree of its first non-zero Hermite coefficient. This sample bound nearly matches
known CSQ lower bounds, even in the realizable setting. Prior algorithmic work
in this setting had focused on learning in the realizable case or in the presence
of semi-random noise. Prior computationally efficient robust learners required
significantly stronger assumptions on the link function.

1 Introduction

Single-index models (SIMs) [Ich93, HJS01, HMS+04, DJS08, KS09, KKSK11, DH18, DGK+20,
DKTZ22, WZDD23, DNGL23] are a classical supervised learning model characterized by hidden
low-dimensional structure. The term SIM refers to any function f of the form f(x) = σ(w · x),
where σ : R → R is the link (or activation) function and w ∈ Rd is the hidden vector. In most
settings of interest, the link function is assumed to satisfy certain regularity properties. Indeed, for an
arbitrary function, learnability is information-theoretically impossible.

The efficient learnability of SIMs has been the focus of extensive investigation for several decades.
For example, the special case where σ is the sign function corresponds to Linear Threshold Functions
whose study goes back to the Perceptron algorithm [Ros58]. Classical early works [KS09, KKSK11]
studied the efficient learnability of SIMs for monotone and Lipschitz link functions. They showed
that a gradient method efficiently learns SIMs for any distribution on the unit ball. More recently,
there has been a resurgence of research on the topic with a focus on first-order methods. Indeed, the
non-convex optimization landscape of SIMs exhibits rich structure and has become a useful testbed
for the analysis of such methods. [Sol17] showed that SGD efficiently learns SIMs for the case that σ
is the ReLU activation and the distribution is Gaussian. [CLS15, CCFM19, SQW18] showed that
gradient descent succeeds for the phase retrieval problem, corresponding to σ(t) = t2 or σ(t) = |t|.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

More recently, a line of work [DH18, BAGJ21, DNGL23, DPVLB24] studied the efficient learnability
of SIMs going significantly beyond the monotonicity assumption. Specifically, [BAGJ21, DNGL23]
developed efficient gradient-based SIM learners for a general class of — not necessarily monotone
— link functions under the Gaussian distribution. Roughly speaking, these works show that the
complexity of learning SIMs is intimately related to the Hermite structure of the link function
(roughly, the smallest degree non-zero Hermite coefficient). The results of the current paper are most
closely related to the aforementioned works.

All the aforementioned algorithmic results succeed in the realizable model (i.e., with clean labels) or
in a few cases in the presence of random label noise. The focus of this work is on learning SIMs in
the challenging agnostic (or adversarial label noise) model [Hau92, KSS94]. In the agnostic model,
no assumptions are made on the observed labels and the goal is to compute a hypothesis that is
competitive with the best-fit function in the class. The algorithmic study of agnostically learning SIMs
is not new. A recent line of work [DGK+20, DKTZ22, ATV23, WZDD23, GGKS23, ZWDD24]
has given efficient agnostic SIM learners (typically based on first-order methods) with near-optimal
error guarantees under natural distributional assumptions. The key difference between prior work and
the results of the current paper is in the assumptions on the link function. Specifically, prior robust
learners succeed for (a subclass of) monotone and Lipschitz link functions. In contrast, this work
develops robust learners in the more general setting of [BAGJ21, DNGL23].

In order to precisely describe our contributions, we require the definition of the agnostic learning
problem for Gaussian SIMs. Let D be a distribution of labeled examples (x, y) ∈ Rd × R whose
x-marginal is the standard Gaussian, and let Lσ

2 (w) := E(x,y)∼D[(σ(w · x) − y)2] be the L2
2 (or

squared) loss of the hypothesis h(x) = σ(w · x) with respect to D. Given i.i.d. samples from D, the
goal is to compute a hypothesis with squared error competitive with OPT, where OPT is the best
attainable L2

2-error by any function in the target class.

Problem 1.1 (Robustly Learning Gaussian SIMs). Let D be a distribution of labeled examples
(x, y) ∈ Rd ×R whose x-marginal is Dx = N (0, Id) and y is arbitrary. We say that an algorithm is
a C-approximate proper SIM learner, for some C ≥ 1, if given ϵ > 0 and i.i.d. samples from D, the
algorithm outputs a vector ŵ ∈ Sd−1 such that with high probability it holds Lσ

2 (ŵ) ≤ C OPT+ ϵ,
where OPT := Lσ

2 (w
∗) and w∗ ∈ argminw∈Sd−1 Lσ

2 (w).

First, note that Problem 1.1 does not make realizability assumptions on the distribution D. That is,
the labels are allowed to be arbitrary and the goal is to be competitive against the best-fit function
in the class. Second, our focus is on obtaining efficient learners that achieve a constant factor
approximation to the optimum loss — independent of the dimension d. The reason we require a
constant factor approximation, instead of optimal error of OPT+ ϵ, is the existence of computational
hardness results ruling out this possibility. Specifically, even if the link function is the ReLU, there is
strong evidence that any algorithm achieving error OPT+ ϵ in the above setting requires dpoly(1/ϵ)
time [DKZ20, GGK20, DKPZ21, DKR23].

Recent work [DGK+20, DKTZ22, ATV23, WZDD23] gave efficient, constant-factor robust learners,
for the special case of Problem 1.1 where the link function lies in a proper subclass of monotone and
Lipschitz functions. In this work, we obtain a broad generalization of these results to a much more
general class of link functions, defined below.

We now proceed to formalize the assumptions on the link function. Let σ : R → R be a real-
valued function that admits the Hermite decomposition σ(z) =

∑
k≥0 ckhek(z), where ck =

Ez∼N (0,1)[σ(z)hek(z)] and hek is the normalized probabilist’s Hermite polynomial, defined by

hek(z) =
(−1)k√

k!
exp

(z2
2

) dk

dzk
exp

(
− z2

2

)
.

We make the following assumptions.

Assumption 1 (Family of Link Functions). Suppose that σ is normalized, namely
Ez∼N (0,1)[σ

2(z)] =
∑

k≥0 c
2
k = 1. We assume the following:

(i) The first non-zero Hermite coefficient has degree k∗ and is prominent: ck∗ is an absolute constant
that is bounded away from zero.

(ii) The fourth moment of σ(z) is bounded: Ez∼N (0,1)[σ
4(z)] ≤ B4 < ∞.

2

(iii) The second moment of the derivative of σ(z) is bounded: Ez∼N (0,1)[(σ
′(z))2] =

∑
k≥k∗ kc2k ≤

Ck∗ , where Ck∗ is an absolute constant whenever k∗ is an absolute constant.

The parameter k∗ is known as the information exponent of σ.

The information exponent k∗ can be viewed as a complexity measure of the link function. Specifically,
ReLU activations correspond to k∗ = 1. The same holds for the class of bounded activations
considered in [DKTZ22, WZDD23]. The link functions used in phase retrieval have k∗ = 2.

We note that Assumption 1 is (at least) as general as those used in [BAGJ21, DNGL23] — which
focused on the realizable setting. Comparing against previous constant-factor agnostic learners,
Assumption 1 strongly subsumes the class of “bounded activations” [DKTZ22, WZDD23]. In
particular, it is easy to see that there exist functions satisfying Assumption 1 with constant k∗ that are
far from monotone. See Appendix A for a detailed justification.

In prior work, [DNGL23], building on [BAGJ21], gave a sample-efficient gradient method for
learning SIMs under Assumption 1 in the realizable setting. The sample complexity of their method
is Õ(dk

∗/2 + d/ϵ). This sample upper bound essentially matches known lower bounds in the
Correlational Statistical Query (CSQ) model [DLS22, AAM23].

This discussion leads to the following question, which served as the motivation for the current work:

Is there an efficient constant-factor agnostic learner
for Gaussian SIMs under Assumption 1?

As our main contribution, we answer this question in the affirmative. Interestingly, our algorithm
also relies on a gradient-method (Riemannian optimization over the sphere) following a non-trivial
initialization step. We emphasize that this is the first polynomial-time constant-factor agnostic learner
for this task under Assumption 1.

Specifically, we establish the following result (see Theorem 3.5 for a more detailed statement).

Theorem 1.2 (Main Result, Informal). There exists an algorithm that draws n = Θ̃k∗(d⌈k
∗/2⌉+d/ϵ)

labeled samples, runs in poly(n, d) time, and outputs a weight vector ŵ ∈ Sd−1 that with high
probability satisfies Lσ

2 (ŵ) ≤ C OPT+ ϵ, where C = O(Ck∗).

Theorem 1.2 gives the first sample and computationally efficient robust learner for Gaussian SIMs
under Assumption 1. This generalizes the algorithm of [DNGL23] to the agnostic setting and nearly
matches the aforementioned CSQ lower bounds (our algorithm fits the CSQ framework). It is worth
pointing out that, while more efficient (non-CSQ) algorithms have been developed for the realizable
case [CM20], these algorithms provably fail in the agnostic regime. Finally, we remark that very
recent work [DPVLB24] developed an efficient SIM learner and a nearly matching SQ lower bound
in a model that allows for some forms of label noise. Importantly, their model does not capture
the adversarial label noise studied here. More specifically, the algorithms developed in this prior
work [DNGL23, DPVLB24] fail in the agnostic setting. See Appendix B for a detailed discussion.

1.1 Preliminaries

For n ∈ Z+, let [n] := {1, . . . , n}. We use lowercase bold characters to denote vectors and uppercase
bold characters for matrices and tensors. For x ∈ Rd and i ∈ [d], xi denotes the i-th coordinate
of x, and ∥x∥2 := (

∑d
i=1 x

2
i)

1/2 denotes the ℓ2-norm of x. We use x · y for the inner product of
x,y ∈ Rd and θ(x,y) for the angle between x,y. We slightly abuse notation and denote by ei the
ith standard basis vector in Rd. We use 1{E} to denote the indicator of a statement E . We use Nd to
denote the d-dimensional standard Gaussian distribution, i.e., Nd = N (0, I). We use Bd to denote
the centered unit ball in Rd and denote the unit sphere in Rd by Sd−1. We use projBd

(·) to denote
the projection operator that projects a vector to the unit ball.

Given M ∈ Rd1×d2 and a left singular vector v ∈ Rd1 of M, we denote the corresponding singular
value of v by ρ(v). In addition, we use ρ1 ≥ ρ2 ≥ · · · ≥ ρmin{d1,d2} to denote the singular values of
a matrix M ∈ Rd1×d2 . We use Sk to denote the set of all possible permutations of k distinct objects.
Given a unit vector w, we define Pw⊥ := I−ww⊤ to be the projection matrix that maps a vector v
to its component that is orthogonal to w, i.e., Pw⊥v = v⊥w .

3

Given a vector x ∈ Rd, the (normalized) Hermite multivariate tensor is defined by [Rah17]:

(Hek(x))i1,...,ik :=

(
α1! . . . αd!

k!

)1/2

heα1
(x1) . . . heαd

(xd), where αj =

k∑
l=1

1{il = j}, ∀j ∈ [d].

We use the standard O(·),Θ(·),Ω(·) asymptotic notation. We use Õ(·) to omit polylogarithmic
factors in the argument. We write E ≳ F for two non-negative expressions E and F to denote that
there exists some positive universal constant c > 0 such that E ≥ c F .

1.2 Technical Overview

Our technical approach consists of two main parts: (1) new results for tensor PCA, which allow
us to obtain an initial parameter vector w0 that is nontrivially aligned with the target w∗ and (2)
a structural “alignment sharpness” result, which we use to argue that a variant of Riemannian
minibatch stochastic gradient descent on a sphere applied to a “truncated square loss” (defined below)
converges geometrically fast. In proving these results, we review elementary tensor algebra and basic
properties of Hermite polynomials, and prove several structural results for Hermite polynomials that
are instructive and may be useful to non-experts entering this area.

We now highlight some of the key ideas used in our work.

Initialization via Tensor PCA For our optimization algorithm to work, a warm start ensuring
nontrivial alignment between the initial vector w0 and the target vector w∗, as measured by w0 ·w∗,
is essential. In particular, a consequence of our results in Claim 3.1 and Lemma 3.2 is that w0 ·w∗ =
Ω(1) is required to deal with the highly corruptive agnostic noise. Unfortunately, if we were to select
w0 by drawing uniformly random samples from the sphere, exponentially many in d such samples
would be needed to ensure that with constant probability at least one of the sampled vectors w0 is
such that w0 ·w∗ = Ω(1), due to standard results on concentration of measure on the (unit) sphere.

Perhaps surprisingly, we prove that the tensor PCA method developed in [RM14] when applied to
our problem with O(d⌈k

∗/2⌉) samples1 ensures that w0 ·w∗ ≥ 1−min{1/k∗, 1/2}. The reason that
this result is surprising is that the method in [RM14] was developed to solve the following problem:
given a k-tensor of the form

T = τv⊗k +A, (PCA-S)
where A is a k-tensor with i.i.d. standard Gaussian entries and τ > 0 a “signal strength” parameter,
recover the planted (signal) vector v. This ‘single-observation’ model is equivalent (in law) to the
following ‘multi-observation’ model ([BAGJ20]): given n i.i.d. copies T(i) = τ ′v⊗k +A(i) with
τ ′ = τ/

√
n, recover v using the empirical estimation:

T̂ = τ ′v⊗k + (1/n)
n∑

i=1

A(i). (PCA-M)

In our setting, we wish to recover a vector w∗ (up to some constant alignment error) for the k-Chow
tensor Ck = E(x,y)∼D[yHek(x)], which can be decomposed as

Ck = E
x∼Nd

[∑
j≥k∗

cj⟨Hej(x),w
∗⊗j⟩Hek(x)

]
+ E

(x,y)∼D
[(y − σ(w∗ · x))Hek(x)]. (1)

The first term in this decomposition can be viewed as the “signal” k-tensor. The second term
represents noise, which, due to y being potentially arbitrary, cannot be assumed to be Gaussian. Thus,
previously developed techniques for tensor PCA, which crucially rely on the “Gaussianity” of the
noise term, do not apply here.

To obtain our result, we first argue that for any k ≥ k∗, the top left singular vector v∗ of the k-Chow
tensor Ck unfolded into a matrix of roughly equal dimensions carries a “strong signal” about the
target vector w∗: its associated singular value scales with ck whenever ck = Ω(

√
OPT) and it has a

nontrivial alignment with the vectorized version of the l-tensor w∗⊗l for l = ⌊k/2⌋ (Lemma 2.2).

To prove the desired alignment result using the empirical estimate of the matrix-unfolded k-Chow
tensor Ck, we rely on the application of a matrix concentration inequality obtained very recently

1Ignoring dependence on other problem parameters for simplicity; see Proposition 2.1 for a precise statement.

4

in [BvH22]. This requires a rather technical argument utilizing Gaussian hypercontractivity of
multivariate polynomials of bounded degree, which we show characterizes the different “variance-
like” quantities associated with the empirical estimate of (the matrix-unfolded) Ck, for which we
apply the aforementioned matrix concentration (see Lemma 2.4 and its proof).

Another intriguing aspect of our initialization result is that it is possible to use it directly to obtain
an O(

√
OPT+ ϵ)-error solution. In particular, in the realizable case studied in [DNGL23], where

OPT = 0, this result directly leads to error O(ϵ) in a sample and computationally efficient manner,
with a rather simple algorithm and sample complexity comparable to [DNGL23].

Optimization on a Sphere The second key ingredient in our work is a structural result, stated
in Lemma 3.3, which ensures that the gradient field (Riemannian gradient of a truncated loss)
guiding the steps of our algorithm (which can be interpreted as a Riemmanian minibatch SGD on
a sphere) negatively correlates with w∗ to a significant extent. This property can be viewed as the
considered gradient field, associated with the L2

2 loss truncated to only contain the first nonzero term
in the Hermite expansion of the activation function, containing a strong “signal” that can “pull” the
algorithm iterates towards the target O(OPT) + ϵ solutions. We rely on this property to argue that as
long as our algorithm (initialized using the tensor PCA method described above) does not have as its
iterate a vector with O(OPT) + ϵ loss, the distance between the iterate vector and the target vector
must contract. As a consequence, this algorithm converges in O(log(1/ϵ)) iterations.

This argument parallels the line of work [MBM18, DGK+20, WZDD23, ZWDD24] on addressing
learning of single-index models by proving structural, optimization-theory local error bounds that
bound below the growth of a loss function outside the set of target solutions. Conceptually, the local
error bounds from this line of work all have an intuitive interpretation as showing existence of a strong
“signal” in the problem that can be used to guide algorithm updates towards target solutions. However,
the methodology by which our structural result is obtained is entirely different, as it crucially relies
on properties of Hermite polynomials, which were not considered in this past work.

2 Initialization Procedure

In this section, we show how to get an initial parameter vector w0 such that w0 · w∗ = 1 − ϵ0
for some small constant ϵ0. The main technique is a tensor PCA algorithm that finds the principal
component of a noisy degree-k-Chow tensor for any k ≥ k∗, as long as OPT ≲ c2k. Such a degree-k
Chow tensor is defined by Ck = E(x,y)∼D[yHek(x)], and we denote its noiseless counterpart by

C∗
k = E

x∼Nd

[σ(w∗ · x)Hek(x)] = E
x∼Nd

[∑
j≥k∗

cj⟨Hej(x),w
∗⊗j⟩Hek(x)

]
.

Furthermore, let us denote the difference between Ck and C∗
k by

Hk := Ck −C∗
k = E

(x,y)∼D
[(y − σ(w∗ · x))Hek(x)].

Note that since Hek(x) is a symmetric tensor for any x, all Ck,C
∗
k, and Hk are symmetric tensors.

We use the following matrix unfolding operator that maps a k-tensor T to a matrix in Rdl×dk−l

:2

Mat(l,k−l)(T)i1+(i2−1)d+···+(il−1)dl−1,j1+···+(jk−l−1)dk−l−1 := (T)i1,i2,...,il,j1,...,jk−l

for all i1, . . . , il, j1, . . . , jk−l ∈ [d]. We also define the ‘vectorize’ operator and ‘tensorize’ operators,
which map a vector v ∈ Rdl

to an l-tensor for any integer l, and vice versa. In detail,

Tensor(v)i1,...,il := vi1+(i2−1)d+···+(il−1)dl−1 , ∀i1, . . . , il ∈ [d],

Vec(v⊗l)i1+(i2−1)d+···+(il−1)dl−1 := vi1vi2 . . .vil , ∀i1, . . . , il ∈ [d].

Finally, given a vector v ∈ Rdl

, we can also convert this vector to a matrix of size Rd×dl−1

:

Mat(1,l−1)(v)i,j1,...,jl−1
= vi+(j1−1)d+···+(jl−1−1)dl−1 , ∀i, j1, . . . , jl−1 ∈ [d].

Throughout this section, we take l := ⌊k/2⌋. We leverage the tensor unfolding algorithm proposed in
[RM14], which can succinctly be described as follows. First we unfold the degree-k Chow tensor

5

Algorithm 1 k-Chow Tensor PCA
1: Input: Parameters ϵ, k, ϵ0, ck, B4 > 0; Sample access to D
2: Let l = ⌊k/2⌋
3: Draw n = Θ(ek logk(B4/ϵ)d

k−l/(ϵ20) + 1/ϵ) samples {(x(i), y(i))}ni=1 from D
4: Construct M̂ := (1/n)

∑n
i=1 Mat(l,k−l)(y

(i)Hek(x
(i))); compute its top left singular vector v̂∗

5: Compute the top-left singular vector û of the matrix Mat1,l−1(v̂
∗)

6: Return: û

to a matrix in Rdl×dk−l

and find its top-left singular vector v ∈ Rdl

. Then, we calculate the matrix
Mat(1,l−1)(v), and output its top left singular vector u.

Our main result for initialization is that the output of Algorithm 1 significantly correlates with w∗.

Proposition 2.1 (Initialization). Suppose Assumption 1 holds. Assume that OPT ≤ c2k∗/(64k∗)2,
and let ϵ0 = ck∗/(256k∗). Then, Algorithm 1 applied to Problem 1.1 with k = k∗ uses n =

Θ((k∗)2ek
∗
logk

∗
(B4/ϵ)d

⌈k∗/2⌉/(c2k∗) + 1/ϵ) samples, runs in polynomial time, and outputs a
vector w0 ∈ Sd−1 such that w0 ·w∗ ≥ 1−min{1/k∗, 1/2}.

We remark here that Algorithm 1 can also be used to find an approximate solution of our agnostic
learning problem; however the error dependence on OPT is suboptimal, scaling with its square-root.
For full details of this argument, included for completeness, see Proposition D.3 in Appendix D.

In the remainder of this section, we sketch the proof of Proposition 2.1, which relies on two main
ingredients: (1) alignment of the left singular vectors v of matrix-unfolded k-Chow tensor and the
target vector w∗, which can be interpreted as the k-Chow tensor containing a strong “signal” about
the target vector w∗, and (2) matrix concentration for the unfolded tensor, so that we can translate
“population” properties of the k-Chow tensor to computable empirical quantities.

Signal in the k-Chow Tensor Our first observation is that for any left singular vector v of
Mat(l,k−l)(Ck), the singular value ρ(v) is close to the inner product between v and Vec(w∗⊗l),
where l = ⌊k/2⌋. Concretely, we have:
Lemma 2.2. Let v be any left singular vector of Mat(l,k−l)(Ck). Then, |ρ(v)−ck(Vec(w

∗⊗l)·v)| ≤√
OPT.

Proof Sketch of Lemma 2.2. Recall that the singular value of the left singular vector v satisfies

ρ(v) = max
r∈Rdk−l ,∥r∥2=1

v⊤Mat(l,k−l)(Ck)r
(i)
= max

r∈Rk−l,∥r∥2=1
⟨Ck,Tensor(v)⊗ Tensor(r)⟩,

where we used Fact C.1(2) in (i). Since Ck = C∗
k +Hk, we further have

⟨Ck,Tensor(v)⊗ Tensor(r)⟩ = ⟨C∗
k,Tensor(v)⊗ Tensor(r)⟩+ ⟨Hk,Tensor(v)⊗ Tensor(r)⟩.

We bound both terms above respectively. For the first term, plugging in the definition of C∗
k and using

the orthonormality property of Hermite tensors (Fact C.3) and basic tensor algebraic calculations,

⟨C∗
k,Tensor(v)⊗ Tensor(r)⟩ = ck(Vec(w

∗⊗l) · v)(Vec(w∗⊗k−l) · r). (2)

Next, for the second term, after applying Cauchy-Schwarz inequality, one can show that it holds

|⟨Hk,Tensor(v)⊗ Tensor(r)⟩| ≤
√
OPT∥Sym(Tensor(v)⊗ Tensor(r))∥F ≤

√
OPT. (3)

Combining Equation (2) and Equation (3), we get that the singular value of v must satisfy

ρ(v) ≤ max
r∈Rdk−l ,∥r∥2=1

ck(Vec(w
∗⊗l) · v)(Vec(w∗⊗k−l) · r) +

√
OPT

= ck(Vec(w
∗⊗l) · v) +

√
OPT, (4)

where in the equation above, we used the observation that as ∥Vec(w∗⊗k−l)∥2 = ∥w∗⊗k−l∥F = 1,
it holds maxr∈Rdk−l ,∥r∥2=1

(Vec(w∗⊗k−l) · r) = ∥Vec(w∗⊗k−l)∥2 = 1. Since Equation (3) implies

⟨Hk,Tensor(v)⊗Tensor(r)⟩ ≥ −
√
OPT, similarly we have ρ(v) ≥ ck(Vec(w

∗⊗l) · v)−
√
OPT,

completing the proof of Lemma 2.2.
2A summary of useful algebraic properties of the unfolded tensor is provided in Fact D.1 in Appendix D.

6

Lemma 2.2 implies that the top left singular vector v∗ aligns well with Vec(w∗⊗l). The full version
of Corollary 2.3 is deferred to Corollary D.5.

Corollary 2.3. The top left singular vector v∗ ∈ Rdl

of the unfolded tensor Mat(l,k−l)(Ck) satisfies
v∗ · Vec(w∗⊗l) ≥ 1− (2

√
OPT)/ck.

Concentration of the Unfolded Tensor Matrix Let us denote M(i) = Mat(l,k−l)(y
(i)Hek(x

(i))),
for i ∈ [n] and M̂ = 1

n

∑n
i=1 M

(i), which is the empirical approximation of M = Mat(l,k−l)(Ck) =
Mat(l,k−l)(E(x,y)∼D[yHek(x)]). Though we showed in Corollary 2.3 that the top left singular vector
v∗ of the population M strongly correlates with the signal Vec(w∗⊗l), we only have access to the
empirical estimate M̂ and its corresponding top left singular vector v̂∗. Thus, to guarantee that v̂∗

correlates significantly with Vec(w∗⊗l) as well, we need to show that the angle between the v∗ and
v̂∗ is sufficiently small as long as we use sufficiently many samples. To this aim, we apply Wedin’s
theorem (Fact D.6). Wedin’s theorem states that sin(θ(v∗, v̂∗)) can be bounded above by:

sin(θ(v∗, v̂∗)) ≤ ∥M− M̂∥2/(ρ1 − ρ2 − ∥M− M̂∥2),
where ρ1 and ρ2 are the top 2 singular values of M. We prove in Claim D.7 that ρ1 − ρ2 ≥
(ck − 8

√
OPT)/2 ≳ ck under the assumption that

√
OPT ≲ ck, hence ρ1 − ρ2 is bounded below

by a constant. Thus, our remaining goal is to bound the operator norm such that ∥M− M̂∥2 ≤ ϵ0
where ϵ0 > 0 is a small constant. This can be accomplished by applying a recently obtained matrix
concentration inequality from [BvH22, DPVLB24] (stated in Fact D.8), with additional technical
arguments. Plugging the lower bound on the singular gap ρ1−ρ2 and the upper bound on the operator
norm ∥M − M̂∥2 back into Wedin’s theorem (Fact D.6), we obtain the following main technical
lemma of this subsection, whose proof can be found in Appendix D:
Lemma 2.4 (Sample Complexity for Estimating the Unfolded Tensor Matrix). Let ϵ, ϵ0 > 0. Con-
sider the unfolded matrix M = Mat(l,k−l)(E(x,y)∼D[yHek(x)]) and its empirical estimate M̂ :=

(1/n)
∑n

i=1 Mat(l,k−l)(y
(i)Hek(x

(i))), where {(x(i), y(i))}ni=1 are n = Θ(eklogk(B4/ϵ)d
k/2/ϵ20+

1/ϵ) i.i.d. samples from D. Then, with probability at least 1 − exp(−d1/2), ∥M̂ − M∥2 ≤ ϵ0.

Moreover, if v̂∗ is the top left singular vector of M̂, then with probability at least 1− exp(−d1/2),

v̂∗ · Vec(w∗⊗l) ≥ 1− 2

ck

√
OPT− 2ϵ0

(ck/2− 4
√
OPT)− ϵ0

.

After getting an approximate top left singular vector v̂∗ ∈ Rdl

of Mat(l,k−l)(E(x,y)∼D[yHek(x)]),
the final piece of the argument is that finding the top left singular vector of the matrix Mat(1,l−1)(v̂

∗)
completes the task of computing a vector u that correlates strongly with w∗. Concretely, we have:
Lemma 2.5. Suppose that v̂∗ · Vec(w∗⊗l) ≥ 1 − ϵ1 for some ϵ1 ∈ (0, 1/16]. Then, the top left
singular vector u ∈ R of Mat(1,l−1)(v̂

∗) satisfies u ·w∗ ≥ 1− 2ϵ1.

Proof of Proposition 2.1 Since
√
OPT ≤ ck∗/(64k∗) ≤ ck∗/64, choosing ϵ0 = ck∗/(256k∗) ≤

ck∗/256 in Lemma 2.4, we obtain that using n = Θ((k∗)2ek
∗
logk

∗
(B4/ϵ)d

⌈k∗/2⌉/(c2k∗) + 1/ϵ), it
holds with probability at least 1− exp(−d1/2) that

v̂∗ · Vec(w∗⊗l) ≥ 1− 2

ck

√
OPT− 2ϵ0

(ck/2− 4
√
OPT)− ϵ0

≥ 1− 1

16k∗
.

Then applying Lemma 2.5 with ϵ1 ≤ 1/(16k∗) ≤ 1/16, we get that the output u of Algorithm 1
satisfies u ·w∗ ≥ 1− 2ϵ1 ≥ 1− 1/(8k∗) ≥ 1−min{1/k∗, 1/2}, completing the proof.

3 Optimization via Riemannian Gradient Descent

After obtaining w0 from Algorithm 1, we run Riemannian minibatch SGD Algorithm 2 on the
‘truncated loss’ (see definition in Equation (5)). In the rest of the section, we first present the
definition of the truncated L2

2 loss Lϕ
2 and its Riemannian gradient and then proceed to proving that

Algorithm 2 converges to a constant approximate solution in O(log(1/ϵ)) iterations. Due to space
constraints, omitted proofs are provided in Appendix E.

7

Algorithm 2 Riemannian GD with Warm-start
1: Input: Parameters ϵ, k∗, ck∗ , B4 > 0;T, η; Sample access to D.
2: w0 = Initialization[ϵ, k∗, ck∗ , B4, ϵ0 = ck∗/(256k∗)] (Algorithm 1).
3: for t = 0, . . . , T − 1 do
4: Draw n = Θ(Ck∗dek

∗
logk

∗+1(B4/ϵ)/(ϵδ)) samples from D
5: ĝ(wt) = 1

n

∑n
i=1 k

∗ck∗y(i)(I−wt(wt)⊤)⟨Hek∗(x(i)), (wt)⊗k∗−1⟩.
6: wt+1 = (wt − ηĝ(wt))/∥wt − ηĝ(wt)∥2.
7: Return: wT

3.1 Truncated Loss and the Sharpness property of the Riemannian Gradient

Instead of directly minimizing the L2
2 loss Lσ

2 , we work with the following truncated loss that drops
all the terms higher than k∗ in the polynomial expansion of σ:

Lϕ
2 (w) := 2

(
1− E

(x,y)∼D
[yϕ(w · x)]

)
, where ϕ(w · x) = ⟨Hek∗(x),w⊗k∗

⟩. (5)

Similarly, the noiseless surrogate loss is defined as

L∗ϕ
2 (w) := 2

(
1− E

(x,y)∼D
[σ(w∗ · x)ϕ(w · x)]

)
= 2

(
1− ck∗(w ·w∗)k

∗)
. (6)

It can be shown (using Fact C.1(2)) that the gradient of the truncated L2
2 loss equals:

∇Lϕ
2 (w) = −2 E

(x,y)∼D
[∇ϕ(w · x)y] = −2 E

(x,y)∼D

[
k∗ck∗y⟨Hek∗(x),w⊗k∗−1⟩

]
, (7)

while for the gradient of the noiseless L2
2 loss we have

∇L∗ϕ
2 (w) = −2 E

(x,y)∼D

[
k∗ck∗σ(w∗ · x)⟨Hek∗(x),w⊗k∗−1⟩

]
. (8)

Recall that Pw⊥ := I−ww⊤. Then the Riemannian gradient of the L2
2 loss Lϕ

2 , denoted by g(w) is

g(w) := Pw⊥(∇Lϕ
2 (w)) = −2 E

(x,y)∼D

[
k∗yPw⊥⟨Hek∗(x),w⊗k∗−1⟩

]
. (9)

Similarly, the Riemannian gradient of the noiseless L2
2 loss L∗ϕ

2 is defined by

g∗(w) := Pw⊥(∇L∗ϕ
2 (w)) = −2 E

(x,y)∼D

[
k∗σ(w∗ · x)Pw⊥⟨Hek∗(x),w⊗k∗−1⟩

]
. (10)

We first show that g∗(w) carries information about the alignment between vectors w and w∗.

Claim 3.1. For any w ∈ Sd−1, we have g∗(w) = −2k∗ck∗(w ·w∗)k
∗−1(w∗)⊥w .

Let us denote the difference between the noisy and the noiseless Riemannian gradient by ξ(w), i.e.,
ξ(w) := g(w)− g∗(w) = −2E(x,y)∼D[(y − σ(w∗ · x))Pw⊥∇ϕ(w · x)]. We next show that the
norm of ξ(w) and the inner product between ξ(w) and w∗ are both bounded.
Lemma 3.2. Let ξ(w) = g(w) − g∗(w) as defined above. Then, ∥ξ(w)∥2 ≤ 2k∗ck∗

√
OPT and

|ξ(w) ·w∗| ≤ 2k∗ck∗
√
OPT∥(w∗)⊥w∥2.

We are now ready to present the main structural result of this section.
Lemma 3.3 (Sharpness). Assume OPT ≤ c/(4e)2 for some small absolute constant c < 1. Let
w ∈ Sd−1 and suppose that w · w∗ ≥ 1 − 1/k∗. Let θ := θ(w,w∗). If sin θ ≥ 4e

√
OPT, then

g(w) ·w∗ ≤ −(1/2)∥g∗(w)∥2 sin θ.

Proof. We start by noticing that by Claim 3.1, the noiseless gradient satisfies the following property:
g∗(w) ·w∗ = −2k∗ck∗(w ·w∗)k

∗−1∥(w∗)⊥w∥22 = −∥g∗(w)∥2 sin θ,
where we used that since ∥w∥2 = ∥w∗∥2 = 1, we have ∥(w∗)⊥w∥2 = sin θ. Furthermore, applying
Lemma 3.2 we have the following sharpness property with respect to the L2

2 loss:

g(w) ·w∗ = g∗(w) ·w∗ + ξ(w) ·w∗ ≤ −(∥g∗(w)∥2 − 2k∗ck∗
√
OPT) sin θ. (11)

Observe that (1− 1/t)t−1 ≥ 1/e for all t ≥ 1. Therefore, when w ·w∗ ≥ 1− 1/k∗, we have

∥g∗(w)∥2 = 2k∗ck∗(w ·w∗)k
∗−1 sin θ ≥ 2k∗ck∗(1− 1/k∗)k

∗−1 sin θ ≥ e−1k∗ck∗ sin θ.

Hence, when sin θ ≥ 4e
√
OPT and w · w∗ ≥ 1 − 1/k∗, we have ∥g∗(w)∥2 ≥ 4k∗ck∗

√
OPT.

Thus, as long as sin θ ≥ 4e
√
OPT, we have that g(w) ·w∗ ≤ − 1

2∥g
∗(w)∥2 sin θ.

8

3.2 Concentration of Gradients

Define the empirical estimate of g(w) as ĝ(w) := (1/n)
∑n

i=1 k
∗ck∗y(i)Pw⊥⟨Hek∗(x(i)),w⊗k∗−1⟩.

The following lemma provides the upper bounds on the number of samples required to approximate
the Riemannian gradient g(w) by ĝ(w).
Lemma 3.4 (Concentration of Gradients). Let w∗,w ∈ Sd−1. Let ĝ(w) be the empirical estimate
of the Riemannian gradient. Furthermore, denote the angle between w and w∗ by θ, and denote
κ = (k∗ck∗)2ek

∗
logk

∗
(B4/ϵ). Then, with probability at least 1 − δ, it holds ∥ĝ(w) − g(w)∥2 ≲√

dκ/(nδ), and (ĝ(w)− g(w)) ·w∗ ≲
√

κ/(nδ) sin2 θ.

3.3 Proof of Main Theorem

We proceed to the main theorem of this paper. It shows that using at most Θ̃(d⌈k
∗/2⌉ + d/ϵ)

samples, Algorithm 2 (with initialization from Algorithm 1) generates a vector ŵ such that Lσ
2 (ŵ) =

O(OPT) + ϵ within O(log(1/ϵ)) iterations.
Theorem 3.5. Suppose Assumption 1 holds. Choose the batch size of Algorithm 2 to be
n = Θ(Ck∗dek

∗
logk

∗+1(B4/ϵ)/(ϵδ)), and choose the step size η = 9/(40ek∗ck∗). Then, af-
ter T = O(log(Ck∗/ϵ)) iterations, with probability at least 1 − δ, Algorithm 2 outputs wT

with Lσ
2 (w

T) = O(Ck∗OPT) + ϵ. The total sample complexity of Algorithm 2 is N =

Θ((k∗/ck∗)2ek
∗
logk

∗
(B4/ϵ)d

⌈k∗/2⌉ + (Ck∗ek
∗
logk

∗+2(B4/ϵ))
d
ϵδ).

Proof Sketch of Theorem 3.5. Suppose first that OPT ≥ (ck∗/64k∗)2, then by Claim E.7 we know
that any unit vector (e.g., ŵ = e1) is a constant approximate solution with Lσ

2 (ŵ) = O(OPT). Now
suppose that OPT ≤ (ck∗/64k∗)2. Consider the distance between wt and w∗ after each update of
Algorithm 2. By the non-expansive property of projection operators, we have

∥wt+1 −w∗∥22 = ∥projBd
(wt − ηĝ(wt))−w∗∥22 ≤ ∥wt − ηĝ(wt)−w∗∥22

= ∥wt −w∗∥22 + 2ηĝ(wt) · (w∗ −wt) + η2∥ĝ(wt)∥22. (12)
Let θt = θ(wt,w∗). For the chosen batch size, Lemma 3.4 implies

∥ĝ(wt)− g(wt)∥22 ≤ (k∗ck∗)2ϵ, (ĝ(wt)− g(wt)) ·w∗ ≤
√
ϵ/d sin2 θt.

Assume for now that sin θt ≥ 4e
√
OPT+

√
ϵ, hence Lemma 3.3 applies. As ĝ(wt) · (w∗ −wt) =

(ĝ(wt)− g(wt)) ·w∗ + g(wt) ·w∗, using Lemma 3.3, we get

ĝ(wt) · (w∗ −wt) ≤
√
ϵ/d sin θt − (1/2)∥g∗(w∗)∥2 sin θt. (13)

On the other hand, the squared norm term ∥ĝ(wt)∥22 from Equation (12) can be bounded above by
∥ĝ(wt)∥22 ≤ 2∥ĝ(wt)− g(wt)∥22 + 2∥g(wt)∥22 ≤ (k∗ck∗)2(OPT + ϵ) + ∥g∗(w)∥22. (14)

Plugging Equation (13) and Equation (14) back into Equation (12), we get that w.p. at least 1− δ,

∥wt+1 −w∗∥22 ≤ ∥wt −w∗∥22 + 2η(
√

ϵ/d− ∥g∗(wt)∥2/2) sin θt
+ η2((k∗ck∗)2(OPT + ϵ) + ∥g∗(w)∥22). (15)

Let us assume first that θt ≤ θt−1 ≤ · · · ≤ θ0 and sin θt ≥ 4e
√
OPT +

√
ϵ, then we show that it

holds θt+1 ≤ θt. Recall in Claim 3.1 it was shown that ∥g∗(wt)∥2 = 2k∗ck∗(wt ·w∗)k
∗−1 sin θt.

Since w0 is the initial parameter vector that satisfies w0 ·w∗ ≥ 1−1/k∗, by the inductive hypothesis
it holds wt ·w∗ ≥ 1 − 1/k∗ and hence 1 ≥ (wt ·w∗)k

∗−1 ≥ 1/e. Therefore, we further obtain
(2k∗ck∗/e) sin θt ≤ ∥g∗(wt)∥2 ≤ 2k∗ck∗ sin θt. Therefore, using the inductive assumption that
sin θt ≥ 4e

√
OPT +

√
ϵ and further noticing that ∥wt − w∗∥2 = 2 sin(θt/2), with step size

η = 9/(40ek∗ck∗) we can further bound ∥wt+1 −w∗∥22 in Equation (15) as:
∥wt+1 −w∗∥22 ≤ (1− (81/(320e2)))∥wt −w∗∥22. (16)

This shows that θt+1 ≤ θt, hence completing the inductive argument. Furthermore, Equation (16)
implies that after at most T = O(log(1/ϵ)) iterations it must hold that sin θT ≤ 4e

√
OPT +

√
ϵ,

therefore, we can end the algorithm after at most O(log(1/ϵ)) iterations. Applying Claim E.7 we
know that this final vector wT has error bound Lσ

2 (w
T) = O(Ck∗(OPT + ϵ)). Thus, choosing

ϵ′ = Ck∗ϵ, δ′ = δT , where T = O(log(Ck∗/ϵ′)), Algorithm 2 outputs a parameter wT such that
with probability at least 1− δ′, Lσ

2 (w
T) = O(Ck∗OPT) + ϵ′, with batch size n = Θ̃(d/(ϵ′δ′)). In

summary, the total number of samples required for Algorithm 2 is N = Θ̃(d⌈k
∗/2⌉ + d/(ϵ′δ′)).

9

Acknowledgments

PW was supported in part by NSF Award DMS-2023239. NZ was supported in part by NSF Medium
Award CCF-2107079. ID was supported in part by NSF Medium Award CCF-2107079 and an
H.I. Romnes Faculty Fellowship. JD was supported in part by the Air Force Office of Scientific
Research under award number FA9550-24-1-0076 and by the U.S. Office of Naval Research under
contract number N00014-22-1-2348. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
U.S. Department of Defense.

References
[AAM23] E. Abbe, E. B. Adsera, and T. Misiakiewicz. Sgd learning on neural networks: leap

complexity and saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference on
Learning Theory, pages 2552–2623. PMLR, 2023.

[ADGM17] A. Anandkumar, Y. Deng, R. Ge, and H. Mobahi. Homotopy analysis for tensor pca. In
Conference on Learning Theory, pages 79–104. PMLR, 2017.

[AS68] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas,
graphs, and mathematical tables, volume 55. US Government printing office, 1968.

[ATV23] P. Awasthi, A. Tang, and A. Vijayaraghavan. Agnostic learning of general ReLU
activation using gradient descent. In The Eleventh International Conference on Learning
Representations, ICLR, 2023.

[BAGJ20] G. Ben Arous, R. Gheissari, and A. Jagannath. Algorithmic thresholds for tensor pca.
The Annals of Probability, 48(4):2052–2087, 2020.

[BAGJ21] G. Ben Arous, R. Gheissari, and A. Jagannath. Online stochastic gradient descent on
non-convex losses from high-dimensional inference. Journal of Machine Learning
Research, 22(106):1–51, 2021.

[BvH22] T. Brailovskaya and R. van Handel. Universality and sharp matrix concentration
inequalities. arXiv preprint arXiv:2201.05142, 2022.

[CCFM19] Y. Chen, Y. Chi, J. Fan, and C. Ma. Gradient descent with random initialization:
Fast global convergence for nonconvex phase retrieval. Mathematical Programming,
176:5–37, 2019.

[CLS15] E. J. Candes, X. Li, and M. Soltanolkotabi. Phase retrieval via wirtinger flow: Theory
and algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007, 2015.

[CM20] S. Chen and R. Meka. Learning polynomials in few relevant dimensions. In Conference
on Learning Theory, pages 1161–1227. PMLR, 2020.

[DGK+20] I. Diakonikolas, S. Goel, S. Karmalkar, A. R. Klivans, and M. Soltanolkotabi. Ap-
proximation schemes for ReLU regression. In Conference on Learning Theory, COLT,
volume 125 of Proceedings of Machine Learning Research, pages 1452–1485. PMLR,
2020.

[DH18] R. Dudeja and D. Hsu. Learning single-index models in Gaussian space. In Conference
on Learning Theory, COLT, volume 75 of Proceedings of Machine Learning Research,
pages 1887–1930. PMLR, 2018.

[DH21] R. Dudeja and D. Hsu. Statistical query lower bounds for tensor pca. Journal of
Machine Learning Research, 22(83):1–51, 2021.

[DJS08] A. S. Dalalyan, A. Juditsky, and V. Spokoiny. A new algorithm for estimating the
effective dimension-reduction subspace. The Journal of Machine Learning Research,
9:1647–1678, 2008.

10

[DKPZ21] I. Diakonikolas, D. M. Kane, T. Pittas, and N. Zarifis. The optimality of polyno-
mial regression for agnostic learning under Gaussian marginals in the SQ model. In
Proceedings of The 34th Conference on Learning Theory, COLT, 2021.

[DKR23] I. Diakonikolas, D. M. Kane, and L. Ren. Near-optimal cryptographic hardness of
agnostically learning halfspaces and ReLU regression under Gaussian marginals. In
ICML, 2023.

[DKTZ22] I. Diakonikolas, V. Kontonis, C. Tzamos, and N. Zarifis. Learning a single neuron with
adversarial label noise via gradient descent. In Conference on Learning Theory (COLT),
pages 4313–4361, 2022.

[DKZ20] I. Diakonikolas, D. M. Kane, and N. Zarifis. Near-optimal SQ lower bounds for
agnostically learning halfspaces and ReLUs under Gaussian marginals. In Advances in
Neural Information Processing Systems, NeurIPS, 2020.

[DLS22] A. Damian, J. Lee, and M. Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pages 5413–5452. PMLR,
2022.

[DNGL23] A. Damian, E. Nichani, R. Ge, and J. D. Lee. Smoothing the landscape boosts the
signal for sgd: Optimal sample complexity for learning single index models. Advances
in Neural Information Processing Systems, 36, 2023.

[DPVLB24] A. Damian, L. Pillaud-Vivien, J. D. Lee, and J. Bruna. The computational complexity
of learning gaussian single-index models. arXiv preprint arXiv:2403.05529, 2024.

[FCG20] S. Frei, Y. Cao, and Q. Gu. Agnostic learning of a single neuron with gradient descent.
In Advances in Neural Information Processing Systems, NeurIPS, 2020.

[FFRS21] A. Fiorenza, M. R. Formica, T. G. Roskovec, and F. Soudskỳ. Detailed proof of classical
gagliardo–nirenberg interpolation inequality with historical remarks. Zeitschrift für
Analysis und ihre Anwendungen, 40(2):217–236, 2021.

[GGK20] S. Goel, A. Gollakota, and A. R. Klivans. Statistical-query lower bounds via functional
gradients. In Advances in Neural Information Processing Systems, NeurIPS, 2020.

[GGKS23] A. Gollakota, P. Gopalan, A. R. Klivans, and K. Stavropoulos. Agnostically learning
single-index models using omnipredictors. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[Hau92] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and
other learning applications. Information and Computation, 100:78–150, 1992.

[HJS01] M. Hristache, A. Juditsky, and V. Spokoiny. Direct estimation of the index coefficient
in a single-index model. Annals of Statistics, pages 595–623, 2001.

[HMS+04] W. Härdle, M. Müller, S. Sperlich, A. Werwatz, et al. Nonparametric and semiparamet-
ric models, volume 1. Springer, 2004.

[HSS15] S. B. Hopkins, J. Shi, and D. Steurer. Tensor principal component analysis via sum-of-
square proofs. In Conference on Learning Theory, pages 956–1006. PMLR, 2015.

[HSSS16] S. B. Hopkins, T. Schramm, J. Shi, and D. Steurer. Fast spectral algorithms from sum-
of-squares proofs: tensor decomposition and planted sparse vectors. In Proceedings
of the forty-eighth annual ACM symposium on Theory of Computing, pages 178–191,
2016.

[Ich93] H. Ichimura. Semiparametric least squares (SLS) and weighted SLS estimation of
single-index models. Journal of econometrics, 58(1-2):71–120, 1993.

[KKSK11] S. M Kakade, V. Kanade, O. Shamir, and A. Kalai. Efficient learning of generalized
linear and single index models with isotonic regression. Advances in Neural Information
Processing Systems, 24, 2011.

11

[KS09] A. T. Kalai and R. Sastry. The isotron algorithm: High-dimensional isotonic regression.
In COLT, 2009.

[KSS94] M. Kearns, R. Schapire, and L. Sellie. Toward efficient agnostic learning. Machine
Learning, 17(2/3):115–141, 1994.

[MBM18] S. Mei, Y. Bai, and A. Montanari. The landscape of empirical risk for nonconvex losses.
The Annals of Statistics, 46(6A):2747–2774, 2018.

[Rah17] S. Rahman. Wiener–hermite polynomial expansion for multivariate gaussian probability
measures. Journal of Mathematical Analysis and Applications, 454(1):303–334, 2017.

[RM14] E. Richard and A. Montanari. A statistical model for tensor PCA. Advances in neural
information processing systems, 27, 2014.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958.

[Sol17] M. Soltanolkotabi. Learning ReLUs via gradient descent. In Advances in neural
information processing systems, pages 2007–2017, 2017.

[SQW18] J. Sun, Q. Qu, and J. Wright. A geometric analysis of phase retrieval. Foundations of
Computational Mathematics, 18:1131–1198, 2018.

[WZDD23] P. Wang, N. Zarifis, I. Diakonikolas, and J. Diakonikolas. Robustly learning a single
neuron via sharpness. 40th International Conference on Machine Learning, 2023.

[ZWDD24] N. Zarifis, P. Wang, I. Diakonikolas, and J. Diakonikolas. Robustly learning single-
index models via alignment sharpness. 41th International Conference on Machine
Learning, arXiv preprint: 2402.17756, 2024.

12

Supplementary Material

Organization The appendix is organized as follows. In Appendix A, we provide a detailed
discussion about our assumptions on the activation functions. In Appendix B we compare our results
with the most related prior works. In Appendix C, we provide additional preliminaries on basic tensor
algebra as well as Hermite polynomials and Hermite tensors. In Appendix D and Appendix E we
provide full versions of Section 2 and Section 3 respectively, with omitted lemmas and proofs.

A Remarks on the Assumptions

Assumption 1(i) appears in the same form in [BAGJ21, DNGL23]. The remaining two assump-
tions are implied by |σ′(z)| ≤ A|z|q + B for constants A,B, q, assumed in these works. In detail,
Assumption 1(ii) can be implied from |σ′(z)| ≤ A|z|q +B using the Gagliardo–Nirenberg inequal-
ity [FFRS21]; Assumption 1(iii) follows from direct calculations as Ez∼N1 [(A|z|q +B)2] is finite.
Hence Assumption 1 is no stronger than the assumptions made in prior work, which considered the
less challenging realizable and zero-mean label noise settings.

Some activations satisfying Assumption 1 are:

1. All ‘(a, b)-well-behaved’ activations [DGK+20, DKTZ22, WZDD23] that are non-decreasing,
zero at the origin, b-Lipschitz and σ′(z) ≥ a when z ∈ [0, R] satisfy Assumption 1 with k∗ = 1
(see Claim A.1). This includes ReLU, σ(z) = max{0, z} and sigmoid, σ(z) = ez/(1 + ez).

2. Activations for phase-retrieval [CLS15, CCFM19, SQW18]: σ(z) = z2 and σ(z) = |z| have
information component k∗ = 2. One can verify that they satisfy Assumption 1 after normalization.

Claim A.1. Let a, b, R > 0 be some absolute constants. Let σ : R → R be an activation such that
it is non-decreasing, b-Lipschitz, and satisfies σ(0) = 0 and σ′(z) ≥ a for all z ∈ [0, R]. Then σ
satisfies Assumption 1 with information component k∗ = 1.

Proof. We calculate the Hermite coefficient c1 of σ:

E
z∼N1

[σ(z)z] = E
z∼N1

[σ(z)z1{z ≥ 0}] + E
z∼N1

[σ(z)z1{z ≤ 0}]

(i)

≥ E
z∼N1

[σ(z)z1{z ≥ 0}] ≥ E
z∼N1

[az21{z ∈ [0, R]}] ≳ aR3 exp(−R2),

where in (i) we used the monotonicity property of σ and that σ(0) = 0. Thus we get that all well-
behaved activations as k∗ = 1. In addition, the Ez∼N1

[σ(z)2] ≤ Ez∼N1
[b2z2] ≤ b2, hence after

normalization, we have c1 ≳ aR3 exp(−R2)/(2b2), which is an absolute constant bounded away
from 0. Finally, we have Ez∼N1

[σ(z)4] ≤ 3b4 and Ez∼N1
[(σ′(z))2] ≤ b2 since σ is b-Lipschitz.

Thus, we have that all well-behaved activations satisfy Assumption 1.

B Comparison with Prior Work

B.1 Comparison with Prior Works on Agnostically Learning SIMs

A long thread of research has been focusing on agnostic learning of single index models, includ-
ing [FCG20, DGK+20, DKTZ22, WZDD23, ZWDD24]. A common assumption on the activation
function σ used in these works is the so-called “well-behaved” property, namely that σ is non-
decreasing, zero at the origin (σ(0) = 0), b-Lipshitz, and σ′(z) ≥ a when z ∈ [0, R]. In particular,
ReLUs and sigmoids are well-behaved activations. For well-behaved activations, we have shown
in Claim A.1 that they have k∗ = 1 and satisfy Assumption 1. Therefore, we conclude that our
assumption Assumption 1 is indeed milder compared to prior works.

We also note that Assumption 1 allows for non-monotonic activations as well, for example σ(z) = z2

and σ(z) = |z| satisfy Assumption 1 with k∗ = 2.

At the level of techniques, the algorithmic approaches in the aforementioned prior works on agnos-
tically learning SIMs [FCG20, DGK+20, WZDD23] inherently fail in our more general activation
setting. The main reason is that the underlying algorithms only exploit the information in the degree

13

1-Chow parameters. However, under Assumption 1 with k∗ ≥ 2, the inner product between degree
1-Chow vector and any unit vector v equals |E(x,y)∼D[yx] · v| ≤

√
OPT — which provides no

information about the hidden vector w∗. That is, in our more general setting, considering Chow
vectors of higher degree appears necessary for any optimization method to succeed.

On the other hand, we remark that the algorithms in these works succed under more general distribu-
tions (including the Gaussian distribution), such as log-concave distributions.

B.2 Comparison with [DNGL23]

The work by [DNGL23] applied a smoothing operator to the L2
2 loss inspired by [ADGM17]. For

any function f : R → R, let the smoothing operator be

gλ(f(w · x)) := E
µw

[
f

(
w + λz

∥w + λz∥2
· x

)]
,

where z ∼ µw is the uniform distribution on the sphere Sd−2 that is orthogonal to w, and λ is the
‘smoothing strength’. Applying the smoothing operator to the loss we get

Lλ(w) := 1− E
µw

[
E

(x,y)∼D

[
yσ

(
w + λz

∥w + λz∥2
· x

)]]
,

and

ℓλ(w;x, y) := 1− E
µw

[
yσ

(
w + λz

∥w + λz∥2
· x

)]
.

The main algorithm of [DNGL23] is an online Riemannian gradient descent algorithm on the
smoothed loss Lλ(w).

The dynamics of the online SGD algorithm in [DNGL23] can be split into three stages: In the first
stage, starting from a randomly initialized vector w0 such that w0 ·w∗ = Θ(d−1/2), the algorithm
used a large smoothing operator with λ = d1/4. Then, after Õ(dk

∗/2−1) iterations the algorithm
converges to a parameter w1 such that w1 · w∗ ≥ d−1/4. Then, in the second stage, with zero-
smoothing λ = 0, they run the algorithm for another Õ(dk

∗/2−1) iterations and get a parameter w2

such that w2 ·w∗ ≥ 1−d−1/4. In the third stage, online SGD converges to w3 with w3 ·w∗ ≥ 1− ϵ
in d/ϵ iterations.

However, the smoothing technique does not work in the agnostic setting. The main reason is that the
agnostic noise buries the signal of the gradient. To see this, note that in Lemma 11 of [DNGL23],
they showed that gλ(hek(w · x)) = ⟨Hek(x),Tk(w)⟩, where

Tk(w) :=
1

(1 + λ2)k/2

⌊k/2⌋∑
j=0

(
k

2j

)
Sym(w⊗k−2j ⊗ (P⊗j

w⊥))λ
2jν

(d−1)
j ,

and ν(d−1)
j = Ez∼Sd−2 [z2j1] = Θ((d−1)−j) = Θ(d−j). Note since the smoothing operator is a linear

operator, it holds that Lλ(w) = 1−E(x,y)∼D[ygλ(σ(w·x))] = 1−E(x,y)∼D[y
∑

k≥k∗ ckgλ(hek(w·
x))] = 1 − E(x,y)∼D[y

∑
k≥k∗ ck⟨Hek(x),Tk(w)⟩]. Let gλ(w) := Pw⊥∇Lλ(w) denote the

Riemannian gradient of Lλ(w), we have

gλ(w) ·w∗ = − E
(x,y)∼D

[
y
∑
k≥k∗

ck⟨Hek(x),∇Tk(w)⊗ (w∗)⊥w⟩
]

= − E
(x,y)∼D

[
σ(w∗ · x)

∑
k≥k∗

ck⟨Hek(x),∇Tk(w)⊗ (w∗)⊥w⟩
]

︸ ︷︷ ︸
I1

− E
(x,y)∼D

[
(y − σ(w∗ · x))

∑
k≥k∗

ck⟨Hek(x),∇Tk(w)⊗ (w∗)⊥w⟩
]

︸ ︷︷ ︸
I2

(17)

We show that the noise term I2 kills the signal term I1 in the beginning stage when w·w∗ = Θ(1/
√
d)

and λ = d1/4.

14

Claim B.1. When w ·w∗ = Θ(1/
√
d) and λ = d1/4, it holds

|I1| ≲ d−k∗/2, |I2| ≲
√
OPTd−k∗/4.

Thus, in order for the signal to overcome the noise, one requires OPT ≲ d−k∗/4, which is too strict
to hold in reality.

Proof of Claim B.1. Following the steps in Lemma 12 in [DNGL23], ∇Tk(w)⊗ (w∗)⊥w equals:

∇Tk(w)⊗ (w∗)⊥w

=
k

(1 + λ2)k/2

⌊ k−1
2 ⌋∑

j=0

(
k − 1

2j

)
Sym(w⊗k−2j−1 ⊗P⊗j

w⊥)⊗ (w∗)⊥wλ2jν
(d−1)
j

− λ2k(k − 1)

(d− 1)(1 + λ2)k/2

⌊ k−2
2 ⌋∑

j=0

(
k − 1

2j

)
Sym(w⊗k−2j−1 ⊗P⊗j

w⊥)⊗ (w∗)⊥wλ2jν
(d+1)
j .

Plugging the equation above back into Equation (17), we study each term |I1| and |I2| respectively
in the beginning phase when w ·w∗ = O(d−1/2).

Using Fact C.3, and recall that in [DNGL23] λ is chosen to be λ = d1/4 and ν
(d−1)
j = Θ(d−j),

ν
(d+1)
j = Θ(d−j) by definition, I1 equals:

|I1| =
∑
k≥k∗

c2k

〈
Sym(w∗⊗k),Sym(∇Tk ⊗ (w∗)⊥w)

〉

≲
∑
k≥k∗

c2kk

(1 + λ2)k/2

⌊ k−1
2 ⌋∑

j=0

(
k − 1

2j

)
(w ·w∗)k−2j−1(1− (w ·w∗)2)j∥(w∗)⊥w∥2

dj/2

d−j

+
∑
k≥k∗

c2kλ
2k(k − 1)

(d− 1)(1 + λ2)k/2

⌊ k−2
2 ⌋∑

j=0

(
k − 1

2j

)
(w ·w∗)k−2j−1(1− (w ·w∗)2)j∥(w∗)⊥w∥2

dj/2

d−j

(i)

≲
∑
k≥k∗

c2kk

dk/4

⌊ k−1
2 ⌋∑

j=0

(
k − 1

2j

)
d−(k−2j−1)/2 d

j/2

d−j

+
∑
k≥k∗

c2kk(k − 1)

dk/4+1/2

⌊ k−2
2 ⌋∑

j=0

(
k − 1

2j

)
d−(k−2j−1)/2 d

j/2

d−j

(ii)

≲
∑
k≥k∗

c2kk

dk/4

⌊ k−1
2 ⌋∑

j=0

2kd−k/2+1/2dj/2 +
∑
k≥k∗

c2kk(k − 1)

dk/4+1/2

⌊ k−2
2 ⌋∑

j=0

2kd−k/2+1/2dj/2

(iii)

≲
∑
k≥k∗

(
c2kk

dk/4
+

c2kk(k − 1)

dk/4+1/2

)
2kd−

k
2+

1
2+

k
4

≲
∑
k≥k∗

(kck)
22kd−k/2 ≲

∑
k≥k∗

4kd−k/2 ≲ 4k
∗
d−k∗/2 ,

where in (i) we plugged in the value of λ and ν
(d−1)
j , ν(d+1)

j ; in (ii) we plugged in the value of
w ·w∗ = 1/

√
d; and in (iii) we used the fact that

(
k
j

)
≤ 2k. However, the magnitude of the signal

from |I1| is much smaller compared to the strength of the noise, |I2|, as by Cauchy-Schwarz, we

15

have

|I2|
(iv)

≤
(

E
(x,y)∼D

[(y − σ(w∗ · x))2] E
x∼Nd

[(∑
k≥k∗

ck⟨Hek(x),∇Tk(w)⊗ (w∗)⊥w⟩
)2]) 1

2

≤
√
OPT

(∑
k≥k∗

c2k∥∇Tk(w)⊗ (w∗)⊥w∥2F
) 1

2

.

Note that in Lemma 12 of [DNGL23], it was proved that

∥∇Tk(w)⊗ (w∗)⊥w∥2F

≲
k2

(1 + λ2)k

⌊ k−1
2 ⌋∑

j=0

(
k − 1

2j

)
λ4jν

(d−1)
j +

λ4k4

d2(1 + λ2)k

⌊ k−2
2 ⌋∑

j=0

(
k − 2

2j

)
λ4jν

(d+1)
j

(v)

≲
k22k

d
k
2

+
k42k

d
k
2+1

≲ k42kd−k/2.

where in (v) we plugged in the value of λ and ν
(d−1)
j , ν(d+1)

j . Thus, it holds that

|I2| ≲
√
OPT

(∑
k≥k∗

c2k4
kd−

k
2

)1/2

≲
√
OPT2k

∗
d−k∗/4.

Finally, we remark that the equality holds at (iv) when

y = σ(w∗ ·x)+
√
OPT√∑

k≥k∗ c2k∥∇Tk(w)⊗ (w∗)⊥w∥2F

(∑
k≥k∗

ck⟨Hek(x),∇Tk(w)⊗ (w∗)⊥w⟩
)
.

B.3 Comparison with [DPVLB24]

In [DPVLB24], the authors studied a milder noise model than the agnostic setting. In their model,
the joint distribution on (x, y) is defined as Ey[y | x] = σ(w∗ · x) + ξ(w∗ · x), where ξ : R 7→ R is
assumed to be known to the learner. Note that in this model the labels y are independent of all the
directions orthogonal to w∗, i.e., the random vector x⊥w∗ is independent of y. In comparison, in the
agnostic setting, the distribution of the labels is Ey[y | x] = σ(w∗ · x) + ξ′(x), where ξ′ : Rd 7→ R
is unknown and can depend arbitrarily on x. In particular, the aforementioned independence with the
directions orthogonal to w∗ does not hold. As a result of their milder noise model, the authors can
utilize information on the joint distribution to mitigate the corruption of the noise. This assumption is
significantly weaker than agnostic noise.

In addition, instead of studying the information component k∗ defined as the first non-zero Hermite
coefficient of the activation σ, [DPVLB24] considered the generative component of the label y, which
is defined as k̄∗ := mink≥0{λk > 0}, where λk :=

√
Ey[ζ2k], and ζk(y) := Ez[hek(z)|y]. The main

results in [DPVLB24] are twofold. First, they proved an SQ lower bound showing that under the
setting aforementioned, any polynomial time SQ algorithm requires at least O(dk̄

∗/2) samples to
learn the hidden direction w∗. Then, they provided an SQ algorithm using partial-trace operators that
returns a vector ŵ such that (ŵ ·w∗)2 ≥ 1− ϵ2 with O(dk̄

∗/2 + d/ϵ2) samples, matching the SQ
lower bound.

The algorithm proposed in [DPVLB24] can be described in short as follows: given joint distribu-
tion P, calculate ζk̄∗(y) and transform the label y to ζk̄∗(y). Then, they applied tensor PCA on
ζk̄∗(y)Hek(x), using the partial trace operator and tensor power iteration.

We note that the partial trace method for tensor PCA fails to find an initialization vector w0 such that
w0 ·w∗ ≥ c for some positive absolute constant c under agnostic noise. We explain this briefly below.
For simplicity, let us consider k being even. Note that for a k-tensor T with even k, the partial trace
operator is defined by PT(T) = ⟨T, I⊗(k−2)/2⟩, where I is the identity matrix in Rd×d. The idea

16

in [DPVLB24] and [ADGM17] is to use the top eigenvector v1 ∈ Rd of PT(E(x,y)∼D[yHek(x)])
as a warm-start. However, we show that under agnostic noise, this eigenvector v1 does not contain
a strong enough signal to provide information of w∗. Note that by definition of the partial trace
operator, for any v ∈ Bd we have

v⊤PT(E
(x,y)∼D

[yHek(x)])v = E
(x,y)∼D

[yv⊤⟨Hek(x), I
⊗(k−2)/2⟩v] (18)

= E
(x,y)∼D

[y⟨Hek(x), I
⊗(k−2)/2 ⊗ v⊗2⟩]

= E
x∼Nd

[σ(w∗ · x)⟨Hek(x), I
⊗(k−2)/2 ⊗ v⊗2⟩]

+ E
(x,y)∼D

[(y − σ(w∗ · x))⟨Hek(x), I
⊗(k−2)/2 ⊗ v⊗2⟩]

= ck⟨w∗⊗k, I⊗(k−2)/2 ⊗ v⊗2⟩+ E
(x,y)∼D

[(y − σ(w∗ · x))⟨Hek(x), I
⊗(k−2)/2 ⊗ v⊗2⟩]. (19)

The first term in the equality above equals ck⟨w∗⊗k, I⊗(k−2)/2 ⊗ v⊗2⟩ = ck(w
∗ · v)2, however, the

second term can be as large as (by Cauchy-Schwarz):

E
(x,y)∼D

[(y − σ(w∗ · x))⟨Hek(x), I
⊗(k−2)/2 ⊗ v⊗2⟩]

(i)

≤
√

E
(x,y)∼D

[(y − σ(w∗ · x))2] E
x∼Nd

[⟨Hek(x), I⊗(k−2)/2 ⊗ v⊗2⟩2]

≤
√
OPT∥I⊗(k−2)/2 ⊗ v⊗2∥F =

√
OPTd(k−2)/4.

As suggested by inequality (i) above, let v be any unit vector orthogonal to w∗, consider an agnostic
noise model

y = σ(w∗ · x) + (
√
OPT/d(k−2)/4)⟨Hek(x), I

⊗(k−2)/2 ⊗ v⊗2⟩,
then E(x,y)∼D[(y − σ(w∗ · x))2] = OPT. However, as we can see from Equation (18), it holds that

(w∗)⊤PT(E
(x,y)∼D

[yHek(x)])w
∗

= ck +

√
OPT

d(k−2)/4
E

(x,y)∼D
[⟨Hek(x), I

⊗(k−2)/2 ⊗ v⊗2⟩⟨Hek(x), I
⊗(k−2)/2 ⊗ (w∗)⊗2⟩]

= ck +

√
OPT

d(k−2)/4
⟨Sym(I⊗(k−2)/2 ⊗ v⊗2),Sym(I⊗(k−2)/2 ⊗ (w∗)⊗2)⟩

(ii)

≲ ck +

√
OPT

d(k−2)/4
d(k−4)/2 = ck +

√
OPTdk/4−3/2,

where (ii) comes from the fact that for any permutation π such that {π(1), π(2)}∩{1, 2} ≠ ∅, since
v ⊥ w∗, it holds∑

i1,...,ik

vi1vi2w
∗
iπ(1)

w∗
iπ(2)

Ii3,i4 . . . Iik−1,ikIiπ(3),iπ(4)
. . . Iiπ(k−1),iπ(k)

= 0;

and on the other hand, when {π(1), π(2)} ∩ {1, 2} = ∅, then
d∑

i1,...,ik=1

vi1vi2w
∗
iπ(1)

w∗
iπ(2)

Ii3,i4 . . . Iik−1,ikIiπ(3),iπ(4)
. . . Iiπ(k−1),iπ(k)

≤ d(k−4)/2.

To see this, note that there exists a chain of identity matrices

Iiπ(a1),iπ(a1+1)
Iij1 ,ij1+1Iiπ(a2),iπ(a2+1)

Iij2 ,ij2+1 · · ·
{
Iiπ(am),iπ(am+1)

Iijm ,ijm+1

such that π(a1) = 1, π(a1 +1) = j1, j1 +1 = π(a2), π(a2 +1) = j2 . . . until we have iπ(am+1) ∈
{i1, i2} or ijm+1 ∈ {iπ(1), iπ(2)}. For the latter case, it implies that∑

vi1(w
∗)ijm+1

Iiπ(a1),iπ(a1+1)
Iij1 ,ij1+1

Iiπ(a2),iπ(a2+1)
Iij2 ,ij2+1

· · · Iijm ,ijm+1
=

d∑
i1

vi1(w
∗)i1 = 0.

17

Therefore, only the first case is interesting. Since π(a1) = 1, and π is a bijection, hence π(am+1) ̸= 1
therefore the only possible case would be iπ(am+1) = i2, then we have

∑
vi1viπ(am+1)

Iiπ(a1),iπ(a1+1)
Iij1 ,ij1+1

Iiπ(a2),iπ(a2+1)
Iij2 ,ij2+1

· · · Iiπ(am),iπ(am+1)
=

d∑
i1

v2
i1 = 1.

Continue the discussion for vi2 , w∗
iπ(1)

and w∗
iπ(2)

, and let {j5, j6, . . . , jk−1, jk} = {i1, . . . , ik} −
{i1, i2, iπ(1), iπ(2)}, we get that

d∑
i1,...,ik=1

vi1vi2w
∗
iπ(1)

w∗
iπ(2)

Ii3,i4 . . . Iik−1,ikIiπ(3),iπ(4)
. . . Iiπ(k−1),iπ(k)

≤
d∑

j5,...,jk=1

I2j5,j6 · · · I
2
jk−1,jk

= d(k−4)/2.

Similarly, for any unit vector u ⊥ v and u ⊥ w∗, it holds

u⊤PT(E
(x,y)∼D

[yHek(x)])u ≲
√
OPTdk/4−3/2.

But one can also show that

v⊤PT(E
(x,y)∼D

[yHek(x)])v =

√
OPT

d(k−2)/4
E

(x,y)∼D
[⟨Hek(x), I

⊗(k−2)/2 ⊗ v⊗2⟩2]

=

√
OPT

d(k−2)/4
∥Sym(I⊗(k−2)/2 ⊗ v⊗2)∥2F

≈
√
OPTdk/4−1/2;

This implies that to guarantee that w∗ is the unique top eigenvector, it has to be that OPT ≲
c2kd

−(k−2)/2. Therefore, the noise term completely buries the signal (w∗ · v)2 unless OPT ≲
d−(k−2)/2, which is unrealistic to assume.

B.4 Remarks on Tensor PCA

We summarize some historical bits of Tensor PCA. [RM14] proposed the following ‘spiked’ tensor
PCA problem: given a k-tensor of the form3

T = τv⊗k +A, (PCA-S)

where A is a k-tensor with i.i.d. standard Gaussian entries, recover the planted vector v. The ‘single-
observation’ model is equivalent (in law) to the following ‘multi-observation’ model([BAGJ20]):
given n i.i.d. copies T(i) = τ ′v⊗k+A(i) with τ ′ = τ/

√
n, recover v using the empirical estimation:

T̂ = τ ′v⊗k +
1

n

n∑
i=1

A(i). (PCA-M)

In [RM14], it has been shown that for model (PCA-S), it is information-theoretically impossible
to recover v when τ < (β∗

k − od(1))
√
d, for some real constant β∗

k ; however, there also exists a
constant β′

k such that the information-theoretic optimal threshold for τ is τ > (β′
k + od(1))

√
d

(see also [DH21]). However, there is a huge statistical-computational gap for solving tensor PCA
problems and it is conjectured impossible to solve (PCA-S) when τ ≲ dk/4 for k ≥ 3 [RM14, DH21].
For multi-observation model (PCA-M), this thresholds translates to a sample complexity of n ≳ dk/2

when τ ′ = O(1).

[RM14] proposed the tensor unfolding algorithm that recovers v in (PCA-S) when τ ≳ d⌈k/2⌉/2, i.e.,
for (PCA-M), the required sample complexity is Ω(d⌈k/2⌉). However, it is conjectured in [RM14]
that the tensor unfolding algorithm can actually deal with τ ≳ dk/4.

3Note that [RM14] takes a different normalization and in the notation of [RM14], it holds β ≈ τ/
√
d.

18

Note that the unfolding algorithm requires τ ≳ d when k = 3. Many papers are devoted to
improving from τ ≳ d to τ ≳ d3/4 and reducing the runtime and memory cost. To name a
few, [HSS15, HSSS16] used Sum-of-Squares algorithms with partial trace operators to achieve the
goal within O(d3) runtime; [ADGM17] also used partial trace operators, but instead of using SOS
algorithms, they injected noise to smooth the landscape of the loss.

Perhaps an interesting aspect of our paper is that the unfolding algorithm can deal with stronger noise
(compared to the Gaussian noise A, our noise is very heavy-tailed) and is more robust to the noise, as
partial trace operator does not work under our agnostic noise. However, this might be attributed to
the special structure of the noisy chow tensor.

C Additional Preliminaries

C.1 Elementary Tensor Algebra

We review basic definitions and elementary tensor algebra used throughout the paper. For any positive
integer k, a k-tensor T is defined as a multilinear real function that maps k vectors to a real number,
i.e., T : Rd × · · · × Rd → R. A k-tensor T can also be viewed as a multidimensional array, where
each entry is associated with k indices i1, . . . , ik in [d] and equals Ti1,...,ik = T(ei1 , . . . , eik).

Given a vector w ∈ Rd, w = (w1, . . . ,wd)
⊤, the k-product-tensor w⊗k is defined by

(w⊗k)i1,...,ik := wi1wi2 · · ·wik , ∀i1, . . . , ik ∈ [d].

Given a k-tensor T and an l-tensor T′ (with l ≥ k), the inner product (or contraction) between T

and T′ is defined by (⟨T,T′⟩)ik+1,...,il :=
∑d

i1,i2,...,ik
(T)i1,i2,...,ik(T

′)i1,i2,...,ik,ik+1,...,il . In other
words, the inner product of a k-tensor and an l-tensor yields an (l − k)-tensor. When k = l, the inner
product between T and T′ is a real number. In particular, for vectors w,v ∈ Rd, and any k ≥ 1,

⟨w⊗k,v⊗k⟩ = (w · v)k, (20)

where w · v is the standard inner product between vectors.

A tensor T is symmetric if (T)...,i,...,j,... = (T)...,j,...,i,.... We can symmetrize a k-tensor T by
summing up all its copies with permuted indices i1, . . . , ik and dividing the sum by k!, which is the
total number of permutations. We define the symmetrization operator of a k-tensor T by

(Sym(T))i1,...,ik =
1

k!

∑
π∈Sk

(T)iπ(1),...,iπ(k)
.

When k = 2, this reduces to the symmetrization of a square matrix: Sym(T) = (1/2)(T+T⊤).

Let us provide some useful observations about tensor algebra.
Fact C.1. Let w ∈ Rd and let T be any k-tensor. Then,

(1) The inner product between w⊗k and Sym(T) is equal to the inner product between w⊗k and T:

⟨w⊗k,Sym(T)⟩ = ⟨w⊗k,T⟩. (21)

(2) If T is a symmetric tensor,

∇(⟨T,w⊗k⟩) = k⟨T,w⊗k−1⟩ (22)

Proof. To prove the first statement in Fact C.1, note that direct calculation yields:

⟨w⊗k,Sym(T)⟩ =
∑

i1,...,ik

wi1 · · ·wik

1

k!

∑
π∈S

(T)iπ(1),...,iπ(k)

=
1

k!

∑
π∈S

∑
i1,...,ik

wiπ(1)
· · ·wiπ(k)

(T)iπ(1),...,iπ(k)

=
∑

i1,...,ik

wi1 · · ·wik(T)i1,...,ik = ⟨w⊗k,T⟩.

19

Next for the second statement, let f(w) = ⟨T,w⊗k⟩ where T is a k-tensor. Then, the partial
derivative of f w.r.t. wj is

∂f(w)

∂wj
=

∂

∂wj
⟨T,w⊗k⟩ = ∂

∂wj

(∑
i1,...,ik

(T)i1,...,ikwi1 · · ·wik

)
=

∑
i2,...,ik

(T)j,i2,...,ikwi2 · · ·wik +
∑

i1,i3...,ik

(T)i1,j,i3,...,ikwi1wi3 · · ·wik+

· · ·+
∑

i1,...,ik−1

(T)i1,...,ik−1,jwi1 · · ·wik−1
.

Thus if T is symmetric, then ∇(⟨T,w⊗k⟩) = k⟨T,w⊗k−1⟩.

C.2 Hermite Polynomials and Hermite Tensors

We make use of the normalized probabilist’s Hermite polynomial, defined by

hek(z) =
(−1)k√

k!
exp

(
z2

2

)
dk

dzk
exp

(
− z2

2

)
.

We will heavily use the following properties of the normalized Hermite polynomials [AS68]:
Fact C.2. Hermite polynomials satisfy the following properties:

1. (Orthonormality) Ez∼N (0,1)[hek(z)hej(z)] = 1{k = j}.

2. (Recurrence) he′k(z) =
√
k hek−1(z).

Given a vector x ∈ Rd, we can then define the (normalized) Hermite multivariate tensor by [Rah17]:

(Hek(x))i1,...,ik :=

(
α1! . . . αd!

k!

)1/2

heα1
(x1) . . . heαd

(xd), where αj =

k∑
l=1

1{il = j}, ∀j ∈ [d].

For Hermite tensors, we have the following facts:
Fact C.3. Let x be a d-dimensional standard Gaussian random vector.

1. For any k-tensor A and j-tensor B,

E
x∼Nd

[⟨Hek(x),A⟩⟨Hej(x),B⟩] = 1{k = j}⟨Sym(A),Sym(B)⟩.

2. For any w ∈ Rd such that ∥w∥2 = 1, hek(w · x) = ⟨He(x),w⊗k⟩.

C.3 Loss and Gradients

We consider the L2
2 (or square) loss, defined by

Lσ
2 (w) := E

(x,y)∼D
[(σ(w · x)− y)2].

Let w∗ ∈ argminw∈Sd−1 Lσ
2 (w), and denote the minimum value of the L2

2 loss by OPT :=
minw∈Sd−1 Lσ

2 (w). Furthermore, let us define the “noiseless” L2
2 loss by

L∗σ
2 (w) := E

x∼Nd

[(σ(w · x)− σ(w∗ · x))2]. (23)

We observe that the L2
2 loss is determined by the inner product between w and w∗, therefore, to

obtain error O(OPT)+ ϵ, it suffices to minimize the angle between w and w∗. Concretely, we have:

Claim C.4. Let w ∈ Rd be a unit vector. Then, the L2
2 loss Lσ

2 (w) satisfies:

Lσ
2 (w) ≤ 2OPT + 4

(
1−

∑
k≥k∗

c2k(w ·w∗)k
)
.

20

Proof. Recalling that the activation σ is normalized so that Ex∼Nd
[σ2(w · x)] = Ex∼Nd

[σ2(w∗ ·
x)] = 1, we can simplify the L2

2 loss to

Lσ
2 (w) = 2

(
1− E

(x,y)∼D
[yσ(w · x)]

)
.

The noiseless L2
2 loss admits the following decomposition:

L∗σ
2 (w) = 2

(
1− E

x∼Nd

[σ(w · x)σ(w∗ · x)]
)

= 2

(
1− E

x∼Nd

[∑
k≥k∗

ck⟨Hek(x),w
⊗k⟩

∑
k′≥k∗

ck′⟨Hek′(x),w∗⊗k′
⟩
])

= 2

(
1−

∑
k≥k∗

c2k(w ·w∗)k
)
, (24)

where in the last equality we used the orthonormality property of Hermite tensors (Fact C.3). Further,
using Young’s inequality and the definitions of OPT and L∗σ

2 (w), we also have Lσ
2 (w) ≤ 2OPT +

2L∗σ
2 (w), which combined with Equation (24) leads to

Lσ
2 (w) ≤ 2OPT + 4

(
1−

∑
k≥k∗

c2k(w ·w∗)k
)
.

Remark C.5. Equation (24) suggests that even in the realizable case, some assumption on bounded-
ness of

∑
k≥k∗ kc2k (see Assumption 1(iii)) may be necessary to have a nontrivial bound on the L2

2

loss. Consider an algorithm that outputs a vector w such that w ·w∗ = 1−α for some α ∈ (0, 1) (if
α = 0, w = w∗ since both vectors are on the unit sphere). Since

∑
k≥k∗ c2k = 1, we can also write

L∗σ
2 (w) = 2

∑
k≥k∗ c2k(1− (1− α)k). For k = Ω(1/α), 1− (1− α)k ≈ kα. Thus, if we want an

algorithm that works generically for any target accuracy,
∑

k≥k∗ kc2k ought to be bounded.

Remark C.6. Even though for ∥w∥2 = 1 we have hek(w · x) = ⟨Hek(x),w
⊗k⟩, the gradients

with respect to w of these two functions are different in general. For example, for k = 2, we have

⟨He2(x),w
⊗2⟩ = (1/

√
2)((w · x)2 − ∥w∥22) and he2(w · x) = (1/

√
2)((w · x)2 − 1),

which are equal in function value, but

∇⟨He2(x),w
⊗2⟩ =

√
2((w · x)x−w) = 2⟨He2(x),w⟩,

∇he2(x) =
√
2(w · x)x =

√
2he1(w · x)x,

are different. In particular, for the derivative of the left-hand side of Equation (24) to be equal to the
derivative of its right-hand side, we need to use the tensor form of Hermite polynomials, because
to ensure interchangeability of differentiation and summation, the sequence needs to be uniformly
convergent. Note that Ex∼Nd

[
∑

k≥k∗ ck⟨Hek(x),w
⊗k⟩

∑
k′≥k∗ ck′⟨Hek′(x),w∗⊗k′⟩] converges

to
∑

k≥k∗ c2k(w · w)k uniformly for all w ∈ Rd, but the sequence Ex∼Nd
[
∑

k≥k∗ ckhek(w ·
x)

∑
k′≥k∗ ck′hek′(w∗ · x)] converges to

∑
k c

2
k(w · w)k only when ∥w∥2 = 1, since it requires

w · x ∼ N (0, 1) to ensure that Ex∼Nd
[hek(w · x)hej(w∗ · x)] = 1{k = j}(w ·w∗)k.

As observed in Remark C.6, the gradients of hek(w · x) and ⟨Hek(x),w
⊗k⟩ are different in general.

Throughout the paper, we will be taking the gradient with respect to the tensor form of σ(w · x); in
other words, ∇σ(w · x) = ∇(

∑
k≥k∗ ck⟨Hek(x),w

⊗k⟩).

D Full Version of Section 2

In this section, we show how to get an initial parameter vector w0 such that w0 · w∗ = 1 − ϵ0
for some small constant ϵ0. The main technique is a tensor PCA algorithm that finds the principal

21

component of a noisy degree-k-Chow tensor for any k ≥ k∗, as long as OPT ≲ c2k. Such a degree-k
Chow tensor is defined by Ck = E(x,y)∼D[yHek(x)], and we denote its noiseless counterpart by

C∗
k = E

x∼Nd

[σ(w∗ · x)Hek(x)] = E
x∼Nd

[∑
j≥k∗

cj⟨Hej(x),w
∗⊗j⟩Hek(x)

]
.

Furthermore, let us denote the difference between Ck and C∗
k by

Hk := Ck −C∗
k = E

(x,y)∼D
[(y − σ(w∗ · x))Hek(x)].

Note that since Hek(x) is a symmetric tensor for any x, all Ck,C
∗
k and Hk are symmetric tensors.

We use the following matrix unfolding operator that maps a k-tensor to a matrix in Rdl×dk−l

.
Concretely, given a k-tensor T, we define:

Mat(l,k−l)(T)i1+(i2−1)d+···+(il−1)dl−1,j1+···+(jk−l−1)dk−l−1 := (T)i1,i2,...,il,j1,...,jk−l

for all i1, . . . , il, j1, . . . , jk−l ∈ [d].

For notational convenience, we also define the ‘vectorize’ operator and ‘tensorize’ operator, which
map a vector v ∈ Rdl

to an l-tensor for any integer l, and vice versa. In detail,

Tensor(v)i1,...,il := vi1+(i2−1)d+···+(il−1)dl−1 , ∀i1, . . . , il ∈ [d];

and conversely, we define

Vec(v⊗l)i1+(i2−1)d+···+(il−1)dl−1 := vi1vi2 . . .vil , ∀i1, . . . , il ∈ [d].

Finally, given a vector v ∈ Rdl

, we can also convert this vector to a matrix of size Rd×dl−1

:

Mat(1,l−1)(v)i,j1,...,jl−1
= vi+(j1−1)d+···+(jl−1−1)dl−1 , ∀i, j1, . . . , jl−1 ∈ [d].

Some simple facts on the algebra of the unfolded matrix are in order.

Fact D.1. Let T be a symmetric k-tensor, and let r ∈ Rdk−l

, v ∈ Rdl

. Then

1. For any index i ∈ [dl],

(Mat(l,k−l)(T)r)i =

〈
T, ei′1 ⊗ . . .⊗ ei′l ⊗ Tensor(r)

〉
, (25)

where i′1, . . . , i
′
l ∈ [d] satisfies i = i′1 + (i′2 − 1)d+ · · ·+ (i′l − 1)dl−1.

2. For any index j ∈ [dk−l],

(Mat(l,k−l)(T)⊤v)j =

〈
T,Tensor(v)⊗ ej′1 ⊗ . . .⊗ ej′k−l

〉
, (26)

where j′1, . . . , j
′
k−l ∈ [d] satisfies j′1 + · · ·+ (j′k−l − 1)dk−l−1 = j.

3. Finally,
v⊤Mat(l,k−l)(T)r = ⟨T,Tensor(v)⊗ Tensor(r)⟩. (27)

Proof. First we show that for a symmetric tensor T, the linear transformation Mat(l,k−l)(T)r of
vector r ∈ Rdk−l

is equal to the tensor inner product ⟨T,Tensor(r)⟩. This can be proved by direct
calculations that for any i ∈ [dl]:

(Mat(l,k−l)(T)r)i =

d(k−l)∑
j=1

Mat(l,k−l)(T)i,jrj

=
∑

j1,...,jk−l∈[d]

Mat(l,k−l)(T)i,j1+···+(jk−l−1)dk−l−1rj1+···+(jk−l−1)dk−l−1

=
∑

j1,...,jk−l∈[d]

(T)i′1,...,i′l,j1,...,jk−l
Tensor(r)j1,...,jk−l

,

22

where i′1, . . . , i
′
j ∈ [d] satisfies i = i′1 + (i′2 − 1)d+ · · ·+ (i′l − 1)dl−1. Observe that the summation

above further equals
(Mat(l,k−l)(T)r)i

=
∑

i1,...,il∈[d]

∑
j1,...,jk−l∈[d]

(T)i1,...,il,j1,...,jk−l
Tensor(r)j1,...,jk−l

1{i1 = i′1} . . .1{il = i′l}

=
∑

i1,...,il,j1,...,jk−l∈[d]

(T)i1,...,il,j1,...,jk−l
(ei′1 ⊗ . . .⊗ ei′l ⊗ Tensor(r))i1,...,il,j1,...,jk−l

=

〈
T, ei′1 ⊗ . . .⊗ ei′l ⊗ Tensor(r)

〉
.

Similarly, for a symmetric tensor T and any vector v ∈ Rdl

, and any index j ∈ [dk−l], it holds

(Mat(l,k−l)(T)⊤v)j =

〈
T,Tensor(v)⊗ ej′1 ⊗ . . .⊗ ej′k−l

〉
,

where j′1 + · · ·+ (j′k−l − 1)dk−l−1 = j.

Finally, combining Equation (26) and Equation (25) we get that for any v ∈ Rdl

, r ∈ Rdk−l

, the
quadratic form v⊤Mat(l,k−l)(T)r equals v⊤Mat(l,k−l)(T)r = ⟨T,Tensor(v)⊗ Tensor(r)⟩.

Throughout this section, we define l = k/2 when k is even, and l = (k − 1)/2 when k is odd. In
other words, l = ⌊k/2⌋. We leverage the tensor unfolding algorithm proposed in [RM14], which can
be described in short as follows. First we unfold the degree-k Chow tensor to a matrix in Rdl×dk−l

,
and find its top-left singular vector v ∈ Rdl

. Then, we calculate the matrix Mat(1,l−1)(v), and find
its top left singular vector u. One can show that this eigenvector u correlates with w∗ significantly.

Algorithm 3 k-Chow Tensor PCA
1: Input: Parameters ϵ, k, ϵ0, ck, B4 > 0; Sample access to D
2: Let l = ⌊k/2⌋
3: Draw n = Θ(ek logk(B4/ϵ)d

k−l/(ϵ20) + 1/ϵ) samples {(x(i), y(i))}ni=1 from D
4: Construct M̂ := (1/n)

∑n
i=1 Mat(l,k−l)(y

(i)Hek(x
(i))); compute its top left singular vector v̂∗

5: Compute the top-left singular vector û of the matrix Mat1,l−1(v̂
∗)

6: Return: û

Our main result for initialization is the following:
Proposition D.2 (Initialization). Suppose Assumption 1 holds. Assume that OPT ≤ c2k∗/(64k∗)2,
and let ϵ0 = ck∗/(256k∗). Then, Algorithm 1 applied to Problem 1.1 with k = k∗ uses

n = Θ((k∗)2ek
∗
logk

∗
(B4/ϵ)d

⌈k∗/2⌉/(c2k∗) + 1/ϵ)

samples, runs in polynomial time, and outputs a vector w0 ∈ Sd−1 such that w0 · w∗ ≥ 1 −
min{1/k∗, 1/2}.

We remark here that Algorithm 3 can also be used to find an approximate solution of our agnostic
learning problem; however the dependence on the value of OPT is suboptimal, scaling with its
square-root. In particular, we have the following proposition:
Proposition D.3 (Solving the Agnostic Learning Problem Using Tensor PCA). Suppose Assumption 1
holds. Assume that OPT ≤ c2k∗/(64k∗)2 and ϵ ≤ 1/64. Let ϵ0 = ck∗ϵ/16. Then, Algorithm 1
applied to Problem 1.1 with k = k∗ uses n = Θ(ek

∗
logk

∗
(B4/ϵ)d

⌈k∗/2⌉/(c2k∗ϵ2) + 1/ϵ) samples,
runs in polynomial time, and outputs a vector w0 ∈ Sd−1 such that

w0 ·w∗ ≥ 1− 4

ck∗

√
OPT− 2ϵ/3.

Furthermore, the L2
2 error of w0 is at most

Lσ
2 (w

0) = O

(
Ck∗

(
1

ck∗

√
OPT+ ϵ

))
.

23

Thus, when OPT = 0 (i.e., in the realizable cases), applying Algorithm 3 with O(d⌈k
∗/2⌉/ϵ2)

samples recovers the hidden vector w∗.

Roadmap To prove Proposition D.2 and Proposition D.3 we need three main ingredients. First, we
will show (in Lemma D.4 and its corollary Corollary D.5) that the top-left singular vector v∗ of the
unfolded matrix M := Mat(l,k−l)(E(x,y)∼D[yHek(x)]) correlates significantly with the vectorized
l-product tensor, Vec(w∗⊗l). This indicates that v∗ contains rich information about the direction of
w∗. However, since we only have access to M̂, the empirical estimation of M, we need to ensure that
the top-left singular vector of M̂, denoted by v̂∗, is close to v∗. This is proved in Lemma D.13 using
sophisticated matrix concentration bounds. In particular, in Equation (35) we guarantee that the angle
between v̂∗ and v∗ is bounded by O(ϵ0/ck) for any small constant ϵ0 > 0, provided that we take
Θ̃(d⌈k/2⌉/ϵ20) samples and assume that OPT ≲ c2k. The inner product between v̂∗ and Vec(w∗⊗l)

can then be bounded below by 1−O((
√
OPT+ϵ0)/ck). Combining with Corollary D.5, this implies

that v̂∗ correlates with Vec(w∗⊗l) significantly. Finally, in Lemma D.17 we show that after unfolding
the Rdl

vector v̂∗ to an Rd×dl−1

matrix, its top-left singular vector u correlates with w∗ significantly;
it particular, we have w∗ · u ≳ 1− cϵ0 for some absolute constant c > 0. Combining these results
and choosing ϵ0 ≈ ck∗/k∗, we get Proposition D.2, and choosing ϵ0 ≈ ck∗ϵ yields Proposition D.3.

D.1 Signal in the k-Chow Tensor

Our first observation is that for any left singular vector v of Mat(l,k−l)(Ck), the singular value ρ(v)

is close to the inner product between v and Vec(w∗⊗l), where l = ⌈k/2⌉. Concretely, we have:
Lemma D.4. Let v be any left singular vector of Mat(l,k−l)(Ck). Then,

|ρ(v)− ck(Vec(w
∗⊗l) · v)| ≤

√
OPT.

Proof. Recall that the singular value of the left singular vector v satisfies

ρ(v) = max
r∈Rdk−l ,∥r∥2=1

v⊤Mat(l,k−l)(Ck)r
(i)
= max

r∈Rk−l,∥r∥2=1
⟨Ck,Tensor(v)⊗ Tensor(r)⟩,

where we used Equation (27) in (i). Since Ck = C∗
k +Hk, we further have

⟨Ck,Tensor(v)⊗ Tensor(r)⟩ = ⟨C∗
k,Tensor(v)⊗ Tensor(r)⟩+ ⟨Hk,Tensor(v)⊗ Tensor(r)⟩.

We bound both terms above respectively. For the first term, plugging in the definition of C∗
k and

using Fact C.3, we have

⟨C∗
k,Tensor(v)⊗ Tensor(r)⟩ (28)

= E
x∼Nd

[∑
j≥k∗

cj⟨Hej(x),w
∗⊗j⟩⟨Hek(x),Tensor(v)⊗ Tensor(r)⟩

]
(i)
= ck

〈
w∗⊗k,Sym(Tensor(v)⊗ Tensor(r))

〉
(ii)
= ck

∑
i1,...,ik

w∗
i1 · · ·w

∗
il
Tensor(v)i1,...,ilw

∗
il+1

· · ·w∗
ik
Tensor(r)il+1,...,ik

= ck(Vec(w
∗⊗l) · v)(Vec(w∗⊗k−l) · r), (29)

note that we applied Fact C.3 in equation (i) and Fact C.1(1) in (ii). Next, for the second term, after
applying Cauchy-Schwarz inequality, it holds

|⟨Hk,Tensor(v)⊗ Tensor(r)⟩|

=

∣∣∣∣ E
(x,y)∼D

[
(y − σ(w∗ · x))⟨Hek(x),Tensor(v)⊗ Tensor(r)⟩

]∣∣∣∣
≤

√
E

(x,y)∼D
[(y − σ(w∗ · x))2]

√
E

x∼Nd

[(〈
Hek(x),Tensor(v)⊗ Tensor(r)

〉)2]
=

√
OPT∥Sym(Tensor(v)⊗ Tensor(r))∥F .

24

Since for any k-tensor A we have ∥Sym(A)∥F ≤ ∥A∥F , and in addition, observe that as ∥v∥2 =
∥r∥2 = 1 it holds

∥Tensor(v)⊗ Tensor(r)∥2F =
∑

i1,...,il
il+1,...,ik

(Tensor(v))2i1,...,il(Tensor(r))
2
il+1,...,ik

=

dl∑
i=1

dk−l∑
j=1

v2
i r

2
j = 1,

we finally have

|⟨Hk,Tensor(v)⊗ Tensor(r)⟩| ≤
√
OPT∥Tensor(v)⊗ Tensor(r)∥F =

√
OPT. (30)

Combining Equation (28) and Equation (30), we get that for any v ∈ Rdl

, r ∈ Rdk−l

such that
∥v∥2 = ∥r∥2 = 1, it holds

v⊤Mat(l,k−l)(Ck)r ≤ ck(Vec(w
∗⊗l) · v)(Vec(w∗⊗k−l) · r) +

√
OPT.

Therefore, the singular value of v must satisfy

ρ(v) ≤ max
r∈Rdk−l ,∥r∥2=1

ck(Vec(w
∗⊗l) · v)(Vec(w∗⊗k−l) · r) +

√
OPT

= ck(Vec(w
∗⊗l) · v) +

√
OPT, (31)

where in the equation above, we used the observation that as ∥Vec(w∗⊗k−l)∥2 = ∥w∗⊗k−l∥F = 1,
it holds maxr∈Rdk−l ,∥r∥2=1

(Vec(w∗⊗k−l) · r) = ∥Vec(w∗⊗k−l)∥2 = 1.

Similarly, we have

ρ(v) = max
r∈Rdk−l ,∥r∥2=1

v⊤Mat(l,k−l)(Ck)r = max
r∈Rdk−l ,∥r∥2=1

⟨Ck,Tensor(v)⊗ Tensor(r)⟩

= max
r∈Rdk−l ,∥r∥2=1

ck(Vec(w
∗⊗l) · v)(Vec(w∗⊗k−l) · r) + ⟨Hk,Tensor(v)⊗ Tensor(r)⟩

≥ max
r∈Rdk−l ,∥r∥2=1

ck(Vec(w
∗⊗l) · v)(Vec(w∗⊗k−l) · r)−

√
OPT

= ck(Vec(w
∗⊗l) · v)−

√
OPT,

completing the proof of Lemma D.4.

A direct application of Lemma D.4 is that the top-left singular vector v∗ ∈ Rdl

of Mat(l,k−l)(Ck)

has singular value at least ck −
√
OPT, and in addition, v∗ aligns well with Vec(w∗⊗l).

Corollary D.5. The top-left singular vector v∗ ∈ Rdl

of the unfolded tensor Mat(l,k−l)(Ck) has
corresponding singular value ρ(v∗) ≥ ck −

√
OPT. In addition, it holds that v∗ · Vec(w∗⊗l) ≥

1− (2
√
OPT)/ck.

Proof. Plugging in v = Vec(w∗⊗l) to Lemma 2.2, we get that ρ(Vec(w∗⊗l)) ≥ ck −
√
OPT. Thus,

the top singular value must satisfy ρ1 ≥ ck −
√
OPT. Recall again that as proved in Lemma 2.2,

it holds ρ(v∗) ≤ ckv
∗ · Vec(w∗⊗l) +

√
OPT. Thus, since ρ(Vec(w∗⊗l)) ≥ ck −

√
OPT we have

v∗ · Vec(w∗⊗l) ≥ 1− (2
√
OPT)/ck.

D.2 Concentration of the Unfolded Tensor Matrix

We start with some notations. Let us denote M(i) = Mat(l,k−l)(y
(i)Hek(x

(i))) for i ∈ [n]

and M̂ = 1
n

∑n
i=1 M

(i), which is the empirical approximation of M = Mat(l,k−l)(Ck) =
Mat(l,k−l)(E(x,y)∼D[yHek(x)]). We will use Wedin’s theorem to bound the distance between
the top left singular vector v∗ of M and the top singular vector v̂∗ of the empirical M̂.
Fact D.6 (Wedin’s theorem). Let θ(v∗, v̂∗) be the angle between the top left singular vectors
v∗ ∈ Rdl

and v̂∗ ∈ Rdl

of M and M̂ respectively. Let ρ1 and ρ2 be the first 2 singular values of M.
Then, it holds that:

sin(θ(v∗, v̂∗)) ≤ ∥M− M̂∥2
ρ1 − ρ2 − ∥M− M̂∥2

.

25

We first observe that M admits a large gap between the first and second singular values.

Claim D.7 (Singular Gap of Unfolded Tensor Matrix). Let ρ1, ρ2 be the top two singular values of
M = Mat(l,k−l)(Ck). Then ρ1 − ρ2 ≥ (ck − 8

√
OPT)/2.

Proof. Recall that in Corollary D.5 we showed ρ1 = ρ(v∗) ≥ ck −
√
OPT and v∗ · Vec(w∗⊗l) ≥

1− (2
√
OPT)/ck. Now let v ∈ Rdl

be any left singular vector of M that is orthogonal to v∗. We
can decompose Vec(w∗⊗l) into Vec(w∗⊗l) = av∗ + bv + v′ where v′ is orthogonal to both v∗

and v, and a2 + b2 ≤ 1. Then, since Vec(w∗⊗l) · v∗ = a ≥ 1 − (2
√
OPT)/ck, we thus have

Vec(w∗⊗l) · v = b ≤
√
1− a2 ≤ 1− a2/2. This implies that

ρ1 − ρ(v) ≥ ck −
√
OPT− (ck(Vec(w

∗⊗l) · v) +
√
OPT)

≥ ck(1− b)− 2
√
OPT ≥ ck(1− (1− a2/2))− 2

√
OPT ≥ ck/2− 4

√
OPT,

and hence we get ρ1 − ρ2 ≥ (ck − 8
√
OPT)/2, completing the proof of Claim D.7.

Thus, our remaining goal is to bound the operator norm of M − M̂. For this purpose, we use the
following matrix concentration inequality from [DPVLB24] (also Theorem 2.7 in [BvH22]).

Fact D.8 (Lemma I.5 [DPVLB24]). Let Z(i), i ∈ [n], be independent, mean-zero, self-adjoint
matrices. Define:

γ2 :=

∥∥∥∥E [(n∑
i=1

Z(i)

)2]∥∥∥∥
2

, γ2
∗ := sup

∥v∥2=∥r∥2=1

E

[(n∑
i=1

v⊤Z(i)r

)2]
, R̄2 := E

[
max
i∈[n]

∥Z(i)∥22
]
.

Then, for any R ≥ R̄1/2γ1/2 +
√
2R̄, and any t ≥ 0, if δ = Pr[maxi∈[n] ∥Z(i)∥2 ≥ R], then with

probability at least 1− δ − de−t,∥∥∥∥ n∑
i=1

Z(i)

∥∥∥∥
2

− 2γ ≲ γ∗t
1/2 +R1/3γ2/3t2/3 +Rt. (32)

However, note that M̂ and M are not symmetric matrices, hence to apply matrix concentration
inequalities we will be working on the symmetrization of M̂ and M for simplicity, which we will
denote by P̂ and P:

P̂ =
1

n

n∑
i=1

P(i) =
1

n

n∑
i=1

[
0 M(i)

M(i)⊤ 0

]
=

[
0 M̂

M̂⊤ 0

]
; P =

[
0 M

M⊤ 0

]
.

Before we prove the main theorem of this subsection, we introduce two final pieces of tools that will
be used later in the proof. The first one is Gaussian hypercontractivity.

Fact D.9 (Gaussian Hypercontractivity). Let f(x) : Rd → R be a multivariate polynomial of degree
at most k. Let x be a standard Gaussian random variable of Rd. Then, for any p ≥ 1 it holds

∥f(x)∥Lp ≤ (p− 1)k/2∥f(x)∥L2 .

Gaussian hypercontractivity controls the moments of a polynomial f(x). To utilize the bound on
these moments, we make use of the following inequality from [DNGL23].

Fact D.10 (Lemma 23 [DNGL23]). Let A,B be random variables such that ∥B∥Lp ≤ σBp
C for all

p ≥ 1 and some positive real numbers σB , C. Then,

E[AB] ≤ E[|A|]σB(2e)
C

(
max

{
1,

1

C
log

(
(E[A2])1/2

E[|A|]

)})C

.

We also make use of the following lemma that bounds the magnitude of label y without loss of
generality.

26

Lemma D.11 (Bound on Labels). Let PBy (z) : R → R be a function that truncates the value of z
to the threshold By: PBy

(z) = z1{|z| ≤ By}+By1{|z| ≥ By}. Assume that Assumption 1 holds.
Then choosing By :=

√
4B4/ϵ, it holds that

E
(x,y)∼D

[(PBy
(y)− σ(w∗ · x))2] ≤ OPT+ ϵ.

Therefore, it is without loss of generality to assume that |y| ≤ By .

Proof. After truncating the label y, we have

E
(x,y)∼D

[(Pt(y)− σ(w∗ · x))2]

= E
(x,y)∼D

[(Pt(y)− σ(w∗ · x))21{σ(w∗ · x) ≤ t}] + E
(x,y)∼D

[(Pt(y)− σ(w∗ · x))21{σ(w∗ · x) ≥ t}]

≤ E
(x,y)∼D

[(y − σ(w∗ · x))2] + E
(x,y)∼D

[(Pt(y)− σ(w∗ · x))21{σ(w∗ · x) ≥ t}]

≤ OPT+ 2 E
(x,y)∼D

[(t2 + σ2(w∗ · x))1{σ(w∗ · x) ≥ t}].

Since Ex∼Nd
[σ4(w∗ ·x)] ≤ B4 by assumption, we have by Markov’s inequality that Pr[σ(w∗ ·x) ≥

t] ≤ B4/t
4. Therefore, we can further bound E(x,y)∼D[(Pt(y)− σ(w∗ · x))2] from above by

E
(x,y)∼D

[(Pt(y)− σ(w∗ · x))2] ≤ OPT+
2B4

t2
+ 2

√
E

x∼Nd

[σ4(w∗ · x)]Pr[σ(w∗ · x) ≥ t]

≤ OPT+
4B4

t2
.

Thus, choosing t =
√
4B4/ϵ we have

E
(x,y)∼D

[(Pt(y)− σ(w∗ · x))2] ≤ OPT+ ϵ,

indicating that we can assume without loss of generality that |y| ≤ By :=
√
4B4/ϵ, completing the

proof of Lemma D.11.

After assuming that y is bounded by By without loss of generality, we can then bound the 2nd and 4th

moments of y. These bounds on the moments of the label y will be used when we implement Fact D.10
to get finer bounds compared to what we would get from a simple application of Cauchy-Schwarz.
In particular, we use Fact D.10 to derive upper bounds on expectations like E(x,y)∼D[y

2f2(x)],
where f(x) is a polynomial of x, as we have control on the pth moments of f(x) using Gaussian
hypercontractivity Fact D.9.
Lemma D.12 (Moments of Labels). If OPT ≤ 1/16, then 1/2 ≤ Ey[y

2] ≤ 2 and Ey[y
4] ≤ 8B4/ϵ.

Proof. We first bound the 2nd moment of the label y. Note that since σ(w∗ · x) is normalized such
that Ex∼Nd

[(σ(w∗ · x))2] = 1, we have

E
y
[y2] = E

(x,y)∼D
[(y − σ(w∗ · x) + σ(w∗ · x))2]

(i)

≤ (1 + 1/a) E
(x,y)∼D

[(y − σ(w∗ · x))2] + (1 + a) E
x∼Nd

[(σ(w∗ · x))2].

We used Young’s inequality in (i). Choosing a = 1/8 and since we assumed OPT ≤ 1/16, it holds
Ey[y

2] ≤ 9/16 + 9/8 ≤ 2. In addition, using Cauchy-Schwarz inequality, we have

E
y
[y2] = E

(x,y)∼D
[(y − σ(w∗ · x) + σ(w∗ · x))2]

= E
(x,y)∼D

[(y − σ(w∗ · x))2] + E
x∼Nd

[(σ(w∗ · x))2] + 2 E
(x,y)∼D

[(y − σ(w∗ · x))σ(w∗ · x)]

≥ 1− 2
√

E
(x,y)∼D

[(y − σ(w∗ · x))2] E
x∼Nd

[(σ(w∗ · x))2] ≥ 1/2.

This yields the first statement of the lemma. For the remaining statement, notice that since y ≤ By,
we have Ey[y

4] ≤ B2
y Ey[y

2] ≤ 2B2
y = 8B4/ϵ.

27

We now proceed to bound the sample complexity of Algorithm 3, the argument for which relies on
applying Fact D.8 to Z(i) = 1

n (P
(i) −P) and is summarized in the following lemma.

Lemma D.13 (Sample Complexity for Estimating the Unfolded Tensor Matrix). Let ϵ, ϵ0 > 0. Con-
sider the unfolded matrix M = Mat(l,k−l)(E(x,y)∼D[yHek(x)]) and its empirical estimate M̂ :=

(1/n)
∑n

i=1 Mat(l,k−l)(y
(i)Hek(x

(i))), where {(x(i), y(i))}ni=1 are n = Θ(eklogk(B4/ϵ)d
k/2/ϵ20+

1/ϵ) i.i.d. samples from D. Then, with probability at least 1− exp(−d1/2),

∥M̂−M∥2 ≤ ϵ0.

Moreover, if v̂∗ is the top left-singular vector of M̂, then with probability at least 1− exp(−d1/2),

v̂∗ · Vec(w∗⊗l) ≥ 1− 2

ck

√
OPT− 2ϵ0

(ck/2− 4
√
OPT)− ϵ0

.

Proof. The proof hinges on applying Fact D.8, for which we need to bound above the parameters γ,
γ∗, and R̄ defined in the same fact. We do so in three separate claims, as follows.

Claim D.14. γ ≲ d(k−l)/2ek logk/2(B4/ϵ)√
n

=

√
dk−lek logk(B4/ϵ)

n .

Proof. By the definition of γ, we have:

γ2 =

∥∥∥∥E [(
1

n

n∑
i=1

P(i) −P

)2]∥∥∥∥
2

≤ 1

n
∥E[(P(i) −P)2]∥2 ≤ 1

n
∥E[(P(i))2]∥2

=
1

n
max

v∈Rdl ,r∈Rdk−l

∥v∥2
2+∥r∥2

2=1

E[v⊤M(i)(M(i))⊤v + r⊤(M(i))⊤M(i)r],

Observe that v⊤M(i)(M(i))⊤v = ∥v⊤M(i)∥22 =
∑dk−l

j=1 (v
⊤M(i))2j , and notice that by defini-

tion M(i) = Mat(l,k−l)(y
(i)Hek(x

(i))) where y(i)Hek(x
(i)) is a symmetric tensor, hence using

Equation (26) we get

v⊤M(i)(M(i))⊤v =
∑

(j1,j2,...,jl−k)∈[d]l−k

〈
y(i)Hek(x

(i)),Tensor(v)⊗ ej1 ⊗ . . .⊗ ejk−l

〉2

.

As (x(i), y(i)) are i.i.d. copies of (x, y), using the linearity of expectation, we have

E[v⊤M(i)(M(i))⊤v]

=
∑

j1,...,jk−l

E
(x,y)∼D

[
y2
〈
Hek(x),Tensor(v)⊗ ej1 ⊗ . . .⊗ ejk−l

〉2]
. (33)

Now given any indices j1, . . . , jk−l ∈ [d], observe that fj1,...,jk−l
(x) := ⟨Hek(x),Tensor(v) ⊗

ej1 ⊗ . . .⊗ ejk−l
⟩ is a polynomial of x of degree at most k, and note that

E
x∼Nd

[fj1,...,jk−l
(x)2] = E

x∼Nd

[〈
Hek(x),Tensor(v)⊗ ej1 ⊗ . . .⊗ ejk−l

〉2]
=

∥∥Sym(Tensor(v)⊗ ej1 ⊗ . . .⊗ ejk−l
)
∥∥2
F

≤
∥∥Tensor(v)⊗ ej1 ⊗ . . .⊗ ejk−l

∥∥2
F
≤ 1,

where the second line is by Fact C.3. Our goal is to apply Fact D.10 with A = y2 and
B = fj1,...,jk−l

(x)2. To this aim, we need to bound above the Lp-norm of fj1,...,jk−l
(x)2, i.e.,

Ex∼Nd
[(fj1,...,jk−l

(x)2)p]1/p, which can be done using Fact D.9:(
E

x∼Nd

[(fj1,...,jk−l
(x)2)p]

)1/(2p) ≤ (2p− 1)k/2 E
x∼Nd

[fj1,...,jk−l
(x(i))2] ≤ (2p)k/2.

28

This implies that ∥fj1,...,jk−l
(x)2∥Lp ≤ 2kpk. Thus, using Fact D.10 with A = y2 and B =

fj1,...,jk−l
(x)2, we get

E
(x,y)∼D

[
y2
〈
Hek(x),Tensor(v)⊗ ej1 ⊗ . . .⊗ ejk−l

〉2]
≤ E

y
[y2](4e)k

{
1,

1

k
log

(
Ey[y

4]1/2

Ey[y2]

)}k

.

Finally, using the bound on the moments of the labels as we proved in Lemma D.12, it holds that

E
(x,y)∼D

[
y2
〈
Hek(x),Tensor(v)⊗ ej1 ⊗ . . .⊗ ejk−l

〉2]
≲ ek logk(B4/ϵ).

Plugging the bound above back into Equation (33), we obtain:

E
(x,y)∼D

[v⊤M(i)(M(i))⊤v] =
∑

j1,...,jk−l∈[d]

E
(x,y)∼D

[
y2
〈
Hek(x),Tensor(v)⊗ ej1 ⊗ . . .⊗ ejk−l

〉2]
≤ ekdk−l logk(B4/ϵ).

We now proceed to bound above the second term E[r⊤(M(i))⊤M(i)r]. Using Equation (25), similar
calculations yield that

E[r⊤(M(i))⊤M(i)r] = E[∥M(i)r∥22]

=
∑

i1,...,il

E
x∼Nd

[
(y)2

〈
Hek(x), ei1 ⊗ . . .⊗ eil ⊗ Tensor(r)

〉2]
≤ ekdl logk(B4/ϵ) ≤ ekdk−l logk(B4/ϵ).

Thus, plugging in the value of By =
√
B4/ϵ from Lemma D.11, the variance γ can be bounded by

γ ≲ d(k−l)/2ek logk/2(B4/ϵ)√
n

=

√
dk−lek logk(B4/ϵ)

n .

Next, we bound the operator norm γ∗ from above.

Claim D.15. γ∗ ≲ ek/2 logk/2(B4/ϵ)√
n

.

Proof. By the definition of γ∗,

γ2
∗ = sup

∥ṽ∥2=∥r̃∥2=1

E

[(
1

n

n∑
i=1

ṽ⊤(P(i) −P)r̃

)2]

≤ sup
∥ṽ∥2=∥r̃∥2=1

1

n
E

[(
ṽ⊤(P(i) −P)r̃

)2]
≤ sup

∥ṽ∥2=∥r̃∥2=1

1

n
E

[(
ṽ⊤P(i)r̃

)2]
.

Decompose ṽ into ṽ⊤ = [(ṽ(1))⊤, (ṽ(2))⊤], where ṽ(1) ∈ Rdl

and ṽ(2) ∈ Rdk−l

. Similarly,
we can decompose r̃ into r̃⊤ = [(r̃(1))⊤, (r̃(2))⊤] with the same structure. Then, ṽ⊤P(i)r̃ =
y(i)(ṽ(1)⊤M(i)r̃(2) + r̃(1)⊤M(i)ṽ(2)). Thus, as (x(i), y(i)) are i.i.d. samples, we can further bound
γ2
∗ by

γ2
∗ ≲ sup

v∈Rdl ,∥v∥2=1

r∈Rdk−l
,∥r∥2=1

1

n
E

(x,y)∼D

[
y2(v⊤Mat(l,k−l)(Hek(x))r)

2

]

=
1

n
sup

v∈Rdl ,∥v∥2=1

r∈Rdk−l
,∥r∥2=1

E
(x,y)∼D

[
y2
〈
Hek(x),Tensor(v)⊗ Tensor(r)

〉2]
,

29

where in the last equality we used Equation (27).

Now for any ∥u∥2 = ∥v∥2 = 1, define

f(v,u)(x) :=

〈
Hek(x),Tensor(v)⊗ Tensor(r)

〉
,

where v ∈ Rdl

, r ∈ Rdk−l

, and f(v,u) is a polynomial of (x1, . . . ,xd) of degree at most k. Note
that the polynomial f(v,u)(x) satisfies f(v,u)(x) ≥ 0 and Ex∼Nd

[(f(v,u)(x))
2] = ∥Tensor(v) ⊗

Tensor(r)∥2F = 1. Similarly to the upper bound on γ, we apply Fact D.10 with A being y2 and B
being f(v,u)(x)

2, which yields that for any ∥v∥2 = 1, ∥u∥2 = 1,

E
(x,y)∼D

[
y2
〈
Hek(x),Tensor(v)⊗ Tensor(r)

〉2]
≤ ek logk(B4/ϵ).

Thus, plugging this inequality back into the upper bound on γ∗ above, we obtain

γ2
∗ ≲

ek logk(B4/ϵ)

n
.

Taking the square root on both sides completes the proof of Claim D.15.

To apply Fact D.8, it remains to bound R̄, which we do in the following claim.

Claim D.16. R̄ ≤ ek/2 logk/2(B4/ϵ)√
n

.

Proof. By the definition of ℓ2 norm, we have

R̄2 = E

[
max
i∈[n]

sup
∥ṽ∥2=∥r̃∥2=1

1

n2
(ṽ⊤(P(i) −P)r̃)2

]
≲

1

n2
E

[
max
i∈[n]

sup
∥ṽ∥2=∥r̃∥2=1

(ṽ⊤P(i)r̃)2
]
.

Let us define

fi(x
(i)) := ∥Mat(l,k−l)(Hek(x

(i)))∥2 = sup
∥v∥2=∥r∥2=1

〈
Hek(x

(i)),Tensor(v)⊗ Tensor(r)

〉
,

where v ∈ Rdl

, r ∈ Rdk−l

, and fi(x
(i)) is a polynomial of (x(i)

1 , . . . ,x
(i)
d) of degree at most k.

Using the decomposition of ṽ⊤ = [(ṽ(1))⊤, (ṽ(2))⊤] and r̃⊤ = [(r̃(1))⊤, (r̃(2))⊤] again, we get

R̄2 ≲
1

n2
E

[
max
i∈[n]

sup
v∈B

dl
,r∈B

dk−l

(y(i))2⟨Hek(x
(i)),Tensor(v)⊗ Tensor(r)⟩2

]
≤ 1

n2
E

[
max
i∈[n]

(y(i))2(fi(x
(i)))2

]
.

Note that the polynomial fi(x(i)) satisfies fi(x(i)) ≥ 0 and Ex(i)∼Nd
[(fi(x

(i)))2] = ∥Tensor(v)⊗
Tensor(r)∥2F ≤ 1. Note that E[maxi∈[n] Zi] ≤

∑n
i=1 E[Zi], thus using Fact D.10 we get:

R̄2 ≤ 1

n2

n∑
i=1

E
(x(i),y(i))∼D

[(y(i))2(fi(x
(i)))2] ≤ ek logk(B4/ϵ)

n
.

Taking the square root on both sides completes the proof.

To apply Fact D.8, we need to choose the parameter R such that δ = Pr[maxi∈[n](1/n)∥P(i) −
P∥2 ≥ R] is sufficiently small. Consider choosing R such that

R ≳
ek logk(B4/ϵ)d

(k−l)/4

√
n

≥ R̄1/2γ1/2 +
√
2R̄.

To determine δ, recall that from Fact D.9, we have (using Markov’s inequality):

Pr[|fi(x(i))| ≥ t] ≤ Ex∼Nd
[|fi(x(i))|p]
tp

≤ pkp/2

tp
. (34)

30

Note that ∥P(i) −P∥2 = |y(i)|fi(x(i)), hence

δ = Pr

[
max
i∈[n]

1

n
∥P(i) −P∥2 ≥ R

]
≤ Pr

[
max
i∈[n]

Byfi(x
(i)) ≥ nR

]
(i)

≤ nPr

[
Byfi(x

(i)) ≥ nR

]
(ii)

≤ n

(
pk/2

nR/By

)p

,

where in (i) we used a union bound and in (ii) we used Equation (34) with t = nR/By . Now setting
pk/2 = nR/(eBy), we get

δ ≤ exp(−(nR/(Bye))
2/k + log(n)) ≲ exp(− log2(B4/ϵ)(ϵn)

1/kd1/4).

In summary, applying Fact D.8 with the bound on δ and γ (Claim D.14), γ∗ (Claim D.15), R̄
(Claim D.16), and choosing t = dk/4 in Equation (32), we finally get that with probability at least
1− exp(− log2(1/ϵ)(ϵn)1/kd1/4)− d exp(−dk/4), it holds

∥M− M̂∥2 = ∥P̂−P∥2 ≲ 2γ + γ∗t
1/2 +R1/3γ2/3t2/3 +Rt ≲

logk/2(B4/ϵ)d
(k−l)/2

√
n

.

Therefore, choosing

n = Θ

(
ek logk(B4/ϵ)d

k−l

ϵ20
+

1

ϵ

)
,

we have ∥M− M̂∥2 ≤ ϵ0, with probability at least 1− exp(−d1/2).

To complete the proof of Lemma D.13, we apply Wedin’s theorem (Fact D.6) and Claim D.7, which
together imply that

sin(θ(v∗, v̂∗)) ≤ ϵ0

(ck/2− 4
√
OPT)− ϵ0

. (35)

We then decompose v̂∗ into v̂∗ = av∗ + br, where r ∈ Rdl

such that r ⊥ v∗ and ∥r∥2 = 1, and
a2 + b2 = 1. Since b = sin(θ(v∗, v̂∗)), applying Corollary D.5 we have

v̂∗ · Vec(w∗⊗l) = av∗ · Vec(w∗⊗l) + br · Vec(w∗⊗l)

≥
√
1− b2(1− 2

√
OPT/ck)− b ≥ (1− 2

√
OPT/ck)− (2− 2

√
OPT/ck)b

≥ 1− 2

ck

√
OPT− 2ϵ0

(ck/2− 4
√
OPT)− ϵ0

.

This completes the proof of Lemma D.13.

After getting an approximate top-left singular vector of Mat(l,k−l)(E(x,y)∼D[yHek(x)]), v̂∗ ∈ Rdl

,
we show that finding the top-left singular vector of the matrix Mat(1,l−1)(v̂

∗) completes the task of
computing a vector u that correlates strongly with w∗.
Lemma D.17. Suppose that v̂∗ · Vec(w∗⊗l) ≥ 1 − ϵ1 for some ϵ1 ∈ (0, 1/16]. Then, the top-left
singular vector u ∈ R of Mat(1,l−1)(v̂

∗) satisfies u ·w∗ ≥ 1− 2ϵ1.

Proof. Consider the SVD of Mat(1,l−1)(v̂
∗) ∈ Rd×dl−1

:

Mat(1,l−1)(v̂
∗) =

d∑
i=1

ρiu
(i)(r(i))⊤,

where u(i) ∈ Rd, i ∈ [d], and r(i) ∈ Rdl−1

, i ∈ [d], are two sets of orthonormal vectors. Note
that {r(1), . . . , r(d)} is a subset of {r(1), . . . , r(dl)}, which is an orthonormal basis of Rdl

. Since
(w∗)⊤Mat(1,l−1)(v̂

∗)Vec(w∗⊗l−1) = v̂∗ · Vec(w∗⊗l) ≥ 1− ϵ1, we have ρ1 ≥ 1− ϵ1, and thus

(w∗)⊤Mat(1,l−1)(v̂
∗)Vec(w∗⊗l−1) =

d∑
i=1

ρi(w
∗ · u(i))(Vec(w∗⊗l−1) · r(i)) ≥ 1− ϵ1. (36)

31

Since u(i), i ∈ [d] and r(i), i ∈ [dl−1] form orthonormal bases of Rd and Rdl

respectively, we can
decompose w∗ and Vec(w∗⊗l−1) in these bases respectively:

w∗ =

d∑
i=1

aiu
(i), Vec(w∗⊗l−1) =

dl−1∑
i=1

bir
(i).

Note that since ∥w∗∥2 = 1 and ∥Vec(w∗⊗l−1)∥22 = ∥w∗⊗l−1∥2F = 1, we have
∑

i a
2
i = 1 and∑

i b
2
i = 1. In addition, since ∥v̂∗∥2 = 1, we have ∥Mat(1,l−1)(v̂

∗)∥2F =
∑d

i=1 ρ
2
i = 1. Therefore,

plugging the decomposition above back into Equation (36), we get

1− ϵ1 ≤
d∑

i=1

ρiaibi ≤ ρ1a1b1 + ρ2

√√√√ d∑
i=2

a2i

√√√√ d∑
i=2

b2i

≤ ρ1a1b1 +
√
1− ρ21

√
1− a21

√
1− b21 ≤ ρ1a1b1 +

√
1− ρ21(1− a1b1).

When ρ1 ≥ 1− ϵ1 ≥
√
2/2, we have ρ1 −

√
1− ρ21 ≥ 0 and then it holds that

a1b1 ≥ 1−
√
1− ρ21 − ϵ1

ρ1 −
√
1− ρ21

:= g(ρ1).

We show that when 0 ≤ ϵ1 ≤ 1/16 (which implies that 15/16 ≤ ρ1 ≤ 1), it holds that g(ρ1) ≥
1− 2ϵ1. By the definition of g(ρ1), it suffices to argue that

1− ρ1 ≥ ϵ1(1− 2ρ1 + 2
√
1− ρ21).

This follows by direct calculations as when ρ1 ∈ [15/16, 1], 1− 2ρ1 + 2
√
1− ρ21 ≤ 0.

Therefore, when ϵ1 ≤ 1/16, it holds that a1b1 ≥ 1 − 2ϵ1. Since 0 ≤ a1, b1 ≤ 1, it must be that
a1 ≥ 1− 2ϵ1; this further implies that w∗ · u ≥ 1− 2ϵ1.

D.3 Proof of Proposition D.2

Proof of Proposition D.2. Since
√
OPT ≤ ck∗/(64k∗) ≤ ck∗/64, choosing ϵ0 = ck∗/(256k∗) ≤

ck∗/256 in Lemma D.13, we obtain that using n = Θ((k∗)2ek
∗
logk

∗
(B4/ϵ)d

⌈k∗/2⌉/(c2k∗) + 1/ϵ),
it holds with probability at least 1− exp(−d1/2) that

v̂∗ · Vec(w∗⊗l) ≥ 1− 2

ck

√
OPT− 2ϵ0

(ck/2− 4
√
OPT)− ϵ0

≥ 1− 1

32k∗
− ck∗/(128k∗)

ck∗/2− ck∗/16− ck∗/256
≥ 1− 1

16k∗
.

Then applying Lemma D.17 with ϵ1 ≤ 1/(16k∗) ≤ 1/16 we get that the output u of Algorithm 3
satisfies u ·w∗ ≥ 1− 2ϵ1 ≥ 1− 1/(8k∗) ≥ 1−min{1/k∗, 1/2}, completing the proof.

D.4 Proof of Proposition D.3

Proof of Proposition D.3. Since
√
OPT ≤ ck∗/64 and ϵ ≤ 1/64, choosing ϵ0 = ck∗ϵ/16 in

Lemma D.13, we obtain that using n = Θ(ek
∗
logk

∗
(B4/ϵ)d

⌈k∗/2⌉/(c2k∗ϵ2) + 1/ϵ) samples, it holds
with probability at least 1− exp(−d1/2) that v̂∗ ·Vec(w∗⊗l) ≥ 1− (2/ck∗)

√
OPT+ ϵ/3(≥ 15/16).

Then applying Lemma D.17 with ϵ1 = (2/ck∗)
√
OPT − ϵ/3, we get that the output w0 of Algo-

rithm 3 satisfies w0 ·w∗ ≥ 1− 2((2/ck∗)
√
OPT+ ϵ/3).

32

Finally, to show the upper bound on the L2
2 loss of w0, we bring in the definition of the L2

2 loss
Lσ
2 (w

0), which yields

Lσ
2 (w

0) ≤ 2OPT + 2L∗σ
2 (w0) = 2OPT + 2

(
1−

∑
k≥k∗

c2k(w
0 ·w∗)k

)

= 2OPT+ 2

(∑
k≥k∗

c2k(1− (w0 ·w∗)k)

)

= 2OPT+ 2

(∑
k≥k∗

c2k(1− (w0 ·w∗))(1 + (w0 ·w∗) + · · ·+ (w0 ·w∗)k−1)

)

≤ 2OPT + 2

(∑
k≥k∗

kc2k(1− (w0 ·w∗))

)
≲

(∑
k≥k∗

kc2k

)(
4

ck∗

√
OPT+ ϵ/3

)
.

Since
∑

k≥k∗ kc2k ≤ Ck∗ by Assumption 1(iii), this completes the proof of Proposition D.3.

E Full Version of Section 3

After getting an initialized vector w0 using Algorithm 1, we run Riemannian minibatch SGD
Algorithm 2 on the ‘truncated loss’. In the following sections, we will first present the definition of
the truncated L2

2 loss Lϕ
2 and its Riemannian gradient, then we will proceed to show that Algorithm 2

converges to a constant approximate solution in O(log(1/ϵ)) iterations.

Algorithm 4 Riemannian GD with Warm-start
1: Input: Parameters ϵ, k∗, ck∗ , B4 > 0;T, η; Sample access to D.
2: w0 = Initialization[ϵ, k∗, ck∗ , B4, ϵ0 = ck∗/(256k∗)].
3: for t = 0, . . . , T − 1 do
4: Draw n = Θ(Ck∗dek

∗
logk

∗+1(B4/ϵ)/(ϵδ)) samples from D and compute

ĝ(wt) =
1

n

n∑
i=1

k∗ck∗y(i)(I−wt(wt)⊤)⟨Hek∗(x(i)), (wt)⊗k∗−1⟩.

5: wt+1 = (wt − ηĝ(wt))/∥wt − ηĝ(wt)∥2.
6: Return: wT .

E.1 Truncated Loss and the Sharpness property of the Riemannian Gradient

Instead of directly minimizing the L2
2 loss Lσ

2 , we work with the following truncated loss that drops
all the terms higher than k∗ in the polynomial expansion of σ:

Lϕ
2 (w) := 2

(
1− E

(x,y)∼D
[yϕ(w · x)]

)
, where ϕ(w · x) = ⟨Hek∗(x),w⊗k∗

⟩. (37)

Similarly, the noiseless surrogate loss is defined as

L∗ϕ
2 (w) := 2

(
1− E

(x,y)∼D
[σ(w∗ · x)ϕ(w · x)]

)
= 2

(
1− ck∗(w ·w∗)k

∗)
. (38)

Using Fact C.1(2), the gradient of the truncated L2
2 loss equals:

∇Lϕ
2 (w) = −2 E

(x,y)∼D
[∇ϕ(w · x)y] = −2 E

(x,y)∼D

[
k∗ck∗y⟨Hek∗(x),w⊗k∗−1⟩

]
, (39)

while for the gradient of the noiseless L2
2 loss we have

∇L∗ϕ
2 (w) = −2 E

(x,y)∼D

[
k∗ck∗σ(w∗ · x)⟨Hek∗(x),w⊗k∗−1⟩

]
. (40)

33

Recall that Pw⊥ := I−ww⊤. Then the Riemannian gradient of the L2
2 loss Lϕ

2 , denoted by g(w) is

g(w) := Pw⊥(∇Lϕ
2 (w)) = −2 E

(x,y)∼D

[
k∗yPw⊥⟨Hek∗(x),w⊗k∗−1⟩

]
. (41)

Similarly, the Riemannian gradient of the noiseless L2
2 loss L∗ϕ

2 is defined by

g∗(w) := Pw⊥(∇L∗ϕ
2 (w)) = −2 E

(x,y)∼D

[
k∗σ(w∗ · x)Pw⊥⟨Hek∗(x),w⊗k∗−1⟩

]
. (42)

The following claim establishes that g∗(w) carries information about the alignment between vectors
w and w∗.

Claim E.1. For any w ∈ Sd−1, we have g∗(w) = −2k∗ck∗(w ·w∗)k
∗−1(w∗)⊥w .

Proof. Using the definition of g∗(w) from Equation (42), a direct calculation shows that

g∗(w) · (w∗)⊥w

∥(w∗)⊥w∥2
(i)
= − 2k∗ E

x∼Nd

[∑
k≥k∗

ck

〈
Hek(x),w

∗⊗k

〉
·
〈
Hek∗(x),w⊗k∗−1 ⊗ (w∗)⊥w

∥(w∗)⊥w∥2

〉]
(ii)
= − 2k∗ck∗

〈
Sym(w∗⊗k∗

),Sym

(
w⊗k∗−1 ⊗ (w∗)⊥w

∥(w∗)⊥w∥2

)〉
(iii)
= − 2k∗ck∗(w ·w∗)k

∗−1∥(w∗)⊥w∥2,
where (i) is by the definition of g∗(w) and σ(w∗ · x), (ii) is by Fact C.3, and (iii) is by Fact C.1(1),
Equation (20), and ∥w∗∥2 = 1. Let v ∈ Rd be any unit vector that is orthogonal to (w∗)⊥w . Observe
that v⊥w ·w∗ = v · (w∗)⊥w = 0. Thus, we have

g∗(w) · v = −2k∗ck∗

〈
Sym(v⊥w ⊗w⊗k∗−1),Sym(w∗⊗k∗

)

〉
= −2k∗ck∗(w ·w∗)k

∗−1(v⊥w ·w∗) = 0.

This implies that g∗(w) is parallel to (w∗)⊥w and thus g∗(w) = −2k∗ck∗(w·w∗)k
∗−1(w∗)⊥w .

Let us denote the difference between the noisy and the noiseless Riemannian gradient by ξ(w):

ξ(w) := g(w)− g∗(w) = −2 E
(x,y)∼D

[(y − σ(w∗ · x))Pw⊥∇ϕ(w · x)] .

We next show that the norm of ξ(w) and the inner product between ξ(w) and w∗ are both bounded:
Lemma E.2. Let ξ(w) = g(w)− g∗(w) as defined above. Then,

∥ξ(w)∥2 ≤ 2k∗ck∗
√
OPT and |ξ(w) ·w∗| ≤ 2k∗ck∗

√
OPT∥(w∗)⊥w∥2.

Proof. Using the definition of ξ(w) and the definition of the 2-norm,

∥ξ(w)∥2 = 2k∗ck∗ max
v∈Sd−1

E
(x,y)∼D

[
(y − σ(w∗ · x))Pw⊥⟨Hek∗(x),w⊗k∗−1⟩ · v

]
= 2k∗ck∗ max

v∈Sd−1
E

(x,y)∼D

[
(y − σ(w∗ · x))⟨Hek∗(x),v⊥w ⊗w⊗k∗−1⟩

]

≤ 2k∗ck∗ max
v∈Sd−1

√
E

(x,y)∼D
[(y − σ(w∗ · x))2] E

x∼Nd

[(
⟨Hek∗(x),v⊥w ⊗w⊗k∗−1⟩

)2]
= 2k∗ck∗ max

v∈Sd−1

√
OPT∥Sym(v⊥w ⊗w⊗k∗−1)∥F ,

where the (only) inequality is by Cauchy-Schwarz, and the last equality is by Fact C.3. As a tensor
A, it holds ∥Sym(A)∥F ≤ ∥A∥F , we have

∥Sym(v⊥w ⊗w⊗k∗−1)∥2F ≤ ∥v⊥w ⊗w⊗k∗−1∥2F = ∥v⊥w∥22 ≤ 1,

34

which then implies that4

∥ξ(w)∥2 ≤ 2k∗ck∗
√
OPT.

Following the same line of argument as above, we also get

|ξ(w) ·w∗| ≤ 2
√
OPT

√
(k∗ck∗)2∥(w∗)⊥w ⊗w⊗k∗−1∥2F = 2k∗ck∗

√
OPT∥(w∗)⊥w∥2.

This completes the proof of Lemma E.2.

As a direct corollary of Lemma E.2, we now show that the norm of the noisy gradient ∥g(x)∥2 is
close to the norm of the noiseless gradient ∥g∗(w)∥2.

Corollary E.3. For any w ∈ Sd−1, ∥g(w)∥2 ≤ 2k∗ck∗
√
OPT+ ∥g∗(w)∥2.

Proof. Follows by the triangle inequality, as ∥g(w)∥2 ≤ ∥ξ(w)∥2 + ∥g∗(w)∥2.

We are now ready to present the main structural result of this section.

Lemma E.4 (Sharpness). Assume OPT ≤ c/(4e)2 for some small absolute constant c < 1. Let
w ∈ Rd such that ∥w∥2 = 1 and suppose that w · w∗ ≥ 1 − 1/k∗. Let θ := θ(w,w∗). If
sin θ ≥ 4e

√
OPT, then

g(w) ·w∗ ≤ −1

2
∥g∗(w)∥2 sin θ.

Proof. We start by noticing that by Claim E.1, the noiseless gradient satisfies the following property:

g∗(w) ·w∗ = −2k∗ck∗(w ·w∗)k
∗−1∥(w∗)⊥w∥22 = −∥g∗(w)∥2 sin θ,

where we used that since ∥w∥2 = ∥w∗∥2 = 1, we have ∥(w∗)⊥w∥2 = sin θ. Furthermore, applying
Lemma E.2 we have the following sharpness property with respect to the L2

2 loss:

g(w) ·w∗ = g∗(w) ·w∗ + ξ(w) ·w∗ ≤ −(∥g∗(w)∥2 − 2k∗ck∗
√
OPT) sin θ. (43)

Observe that (1− 1/t)t−1 ≥ 1/e for all t ≥ 1. Therefore, when w ·w∗ ≥ 1− 1/k∗, the norm of the
gradient vector g∗ satisfies

∥g∗(w)∥2 = 2k∗ck∗(w ·w∗)k
∗−1 sin θ ≥ 2k∗ck∗(1− 1/k∗)k

∗−1 sin θ ≥ e−1k∗ck∗ sin θ.

therefore, when sin θ ≥ 4e
√
OPT and w ·w∗ ≥ 1− 1/k∗, we have

∥g∗(w)∥2 ≥ 4k∗ck∗
√
OPT.

Thus, as long as sin θ ≥ 4e
√
OPT, we have that g(w) ·w∗ ≤ − 1

2∥g
∗(w)∥2 sin θ.

E.2 Concentration of Gradients

For notational simplicity, define:

g(w;x(i), y(i)) := k∗ck∗y(i)Pw⊥⟨Hek∗(x(i)),w⊗k∗−1⟩. (44)

Then the empirical estimate of g(w) is

ĝ(w) :=
1

n

n∑
i=1

g(w;x(i), y(i)) =
1

n

n∑
i=1

k∗ck∗y(i)Pw⊥⟨Hek∗(x(i)),w⊗k∗−1⟩. (45)

The following lemma provides the upper bounds on the number of samples required to approximate
the Riemannian gradient g(w) by ĝ(w).

4Note here that if we had not used the truncation of the activation, then the bound on the error term ξ(w) we
could get would be ∥ξ(w)∥2 ≤ (

∑
k≥k∗ c

2
kk

2)1/2
√
OPT.

35

Lemma E.5 (Concentration of Gradients). Let w∗,w ∈ Sd−1. Let ĝ(w) be the empirical estimate
of the Riemannian gradient. Furthermore, denote the angle between w and w∗ by θ. Then, with
probability at least 1− δ it holds

∥ĝ(w)− g(w)∥2 ≲

√
d(k∗ck∗)2ek∗ logk

∗
(B4/ϵ)

nδ
;

(ĝ(w)− g(w)) ·w∗ ≲

√
(k∗ck∗)2ek∗ logk

∗
(B4/ϵ) sin

4(θ)

nδ
.

Proof. By Chebyshev’s inequality, we have

Pr

[∥∥∥∥ 1n
n∑

i=1

g(w;x(i), y(i))− g(w)

∥∥∥∥
2

≥ t

]
≤ 1

t2
E

(x,y)∼D

[∥∥∥∥ 1n
n∑

i=1

g(w;x(i), y(i))− g(w)

∥∥∥∥2
2

]

≤ 1

nt2
E

(x,y)∼D

[∥∥∥∥g(w;x, y)− g(w)

∥∥∥∥2
2

]
. (46)

Let ej be the jth basis of Rd, we have ∥g(w;x, y)−g(w)∥22 =
∑d

j=1(g(w;x, y) ·ej −g(w) ·ej)2.
Thus, it suffices to bound the expectation of each summand (g(w;x, y) ·ej −g(w) ·ej)2, for j ∈ [d].
Note first that since g(w) = E(x,y)∼D[g(w;x, y)], we have

E
(x,y)∼D

[(g(w;x, y) · ej − g(w) · ej)2] ≤ E
(x,y)∼D

[(g(w;x, y) · ej)2]

= 4(k∗ck∗)2 E
(x,y)∼D

[
y2
〈
Hek∗(x), e⊥w

j ⊗w⊗k∗−1

〉2]
.

Denote fj(x) := ⟨Hek∗(x), e⊥w
j ⊗w⊗k∗−1⟩, which is a polynomial of x of degree k∗. In addition,

note that Ex∼Nd
[fj(x)

2] = ∥e⊥w
j ⊗w⊗k∗−1∥2F ≤ ∥e⊥w

j ∥22 ≤ 1. Therefore, applying Fact D.9 and
Fact D.10 with A = y2 and B = fj(x)

2, we get

E
(x,y)∼D

[
y2
〈
Hek∗(x), e⊥w

j ⊗w⊗k∗−1

〉2]
≤ E

(x,y)∼D
[y2](4e)k

∗
max

{
1,

1

k∗
log(B4/ϵ)

}k∗

≲ ek
∗
logk

∗
(B4/ϵ).

Thus, it holds that E(x,y)∼D[(g(w;x, y) · ej − g(w) · ej)2] ≲ (k∗ck∗)2ek
∗
logk

∗
(B4/ϵ), which

further implies that the expectation of ∥g(w;x, y)− g(w)∥22 is bounded above by

E
(x,y)∼D

[∥g(w;x, y)− g(w)∥22] ≲ d(k∗ck∗)2ek
∗
logk

∗
(B4/ϵ).

Plugging this back into the Chebyshev’s bound Equation (46), we obtain

Pr[∥ĝ(w)− g(w)∥2 ≥ t] ≤ d(k∗ck∗)2ek
∗
logk

∗
(B4/ϵ)

nt2
.

Therefore, with probability at least 1− δ, it holds

∥ĝ(w)− g(w)∥2 ≤

√
d(k∗ck∗)2ek∗ logk

∗
(B4/ϵ)

nδ
.

36

Now for the second statement of Lemma E.5, we similarly apply Chebyshev’s inequality, which
yields

Pr

[∣∣∣∣ 1n
n∑

i=1

g(w;x(i), y(i)) ·w∗ − g(w) ·w∗
∣∣∣∣ ≥ t

]

≤ 1

t2
E

(x,y)∼D

[∣∣∣∣ 1n
n∑

i=1

g(w;x(i), y(i)) ·w∗ − g(w) ·w∗
∣∣∣∣2]

≤ 1

nt2
E

(x,y)∼D
[(g(w;x, y) ·w∗)2]

=
4(k∗ck∗)2

nt2
E

(x,y)∼D
[(y⟨Hek∗(x),w⊗k∗−1 ⊗ (w∗)⊥w⟩)2].

Let fw∗(x) := ⟨Hek∗(x),w⊗k∗−1 ⊗ (w∗)⊥w⟩. Note that Ex∼Nd
[fw∗(x)2] = ∥w⊗k∗−1 ⊗

(w∗)⊥w∥2F = ∥(w∗)⊥w∥22. Since w∗,w ∈ Sd−1, we have ∥(w∗)⊥w∥2 = sin θ. Thus, by Fact D.9,

∥f2
w∗(x)∥Lp =

(
E

x∼Nd

[(fw∗(x))2p]

)2/(2p)

≤
(
(2p−1)k

∗/2 E
x∼Nd

[(fw∗(x))2]

)2

≤ (2p)k
∗
sin4 θ.

Hence, applying Fact D.10 with A = y2, B = f2
w∗(x), σB = sin4 θ, and C = k∗, we obtain

E
(x,y)∼D

[(y⟨Hek∗(x),w⊗k∗−1 ⊗ (w∗)⊥w⟩)2] ≲ sin4 θek
∗
logk

∗
(B4/ϵ).

Therefore, it holds that

Pr[|(ĝ(w)− g(w)) ·w∗| ≥ t] ≲
(k∗ck∗)2ek

∗
logk

∗
(B4/ϵ) sin

4(θ)

nt2
,

which implies that with probability at least 1− δ it holds

(ĝ(w)− g(w)) ·w∗ ≲

√
(k∗ck∗)2ek∗ logk

∗
(B4/ϵ) sin

4(θ)

nδ
.

We proceed to the main theorem of this paper. It shows that using at most Θ̃(d⌈k/2⌉ + d/ϵ) samples,
Algorithm 2 (with initialization subroutineAlgorithm 1) generates a vector ŵ such that Lσ

2 (ŵ) =
O(OPT) + ϵ within O(log(1/ϵ)) iterations.

E.3 Proof of Main Theorem

Theorem E.6. Suppose that Assumption 1 holds. Choose the batch size of Algorithm 4 to be
n = Θ(Ck∗dek

∗
logk

∗+1(B4/ϵ)/(ϵδ)), and choose the step size η = 9/(40ek∗ck∗). Then, after
T = O(log(Ck∗/ϵ)) iterations, with probability at least 1− δ, Algorithm 4 generates a parameter
wT that satisfies Lσ

2 (w
T) = O(Ck∗OPT)+ϵ. The total number of samples required for Algorithm 4

is

N = Θ

(
(k∗/ck∗)2ek

∗
logk

∗
(B4/ϵ)d

⌈k∗/2⌉ +

(
ek

∗
logk

∗+2(B4/ϵ)Ck∗

)
d

ϵδ

)
.

Proof. Suppose first that OPT ≥ (ck∗/(64k∗))2, i.e., OPT is of constant value. Then by Claim E.7
we know that for any unit vector ŵ (e.g., ŵ = e1) it holds

Lσ
2 (ŵ) ≤ 2OPT + 4

(∑
k≥k∗

kc2k(1− (w ·w∗))

)
≤ 2OPT + 4Ck∗ = O(OPT).

Hence ŵ is an approximate solution of the agnostic learning problem.

37

Now suppose OPT ≤ (ck∗/(64k∗))2, then the assumption in Proposition D.2 is satisfied and Algo-
rithm 3 can be applied. Consider the distance between wt and w∗ after each update of Algorithm 4.
By the non-expansive property of projection operators, we have

∥wt+1 −w∗∥22 = ∥projBd
(wt − ηĝ(wt))−w∗∥22

≤ ∥wt − ηĝ(wt)−w∗∥22
= ∥wt −w∗∥22 + 2ηĝ(wt) · (w∗ −wt) + η2∥ĝ(wt)∥22. (47)

Let us denote the angle between wt and w∗ by θt. Furthermore, let us assume for now that θt
satisfies sin θt ≥ 4e

√
OPT+

√
ϵ, hence the condition for Lemma E.4 is satisfied. Note by definition

ĝ(wt) ⊥ wt, hence using Lemma E.4 and Lemma E.5 we have that with probability at least 1− δ,
the inner product term in Equation (47) is bounded above by:

ĝ(wt) · (w∗ −wt) = ĝ(wt) ·w∗ = (ĝ(wt)− g(wt)) ·w∗ + g(wt) ·w∗

≤ C1k
∗ck∗ek

∗/2 logk
∗/2(B4/ϵ)√

nδ
sin2(θt)−

1

2
∥g∗(w∗)∥2 sin θt, (48)

where C1 is a sufficiently large absolute constant. On the other hand, the squared norm term ∥ĝ(wt)∥22
from Equation (47) can be bounded above using Lemma E.5 and Corollary E.3:

∥ĝ(wt)∥22 = ∥(ĝ(wt)− g(wt)) + g(wt)∥22
≤ 2∥ĝ(wt)− g(wt)∥22 + 2∥g(wt)∥22

≤ C2d(k
∗ck∗)2ek

∗
logk

∗
(B4/ϵ)

nδ
+ (k∗ck∗)2OPT+ ∥g∗(w)∥22, (49)

for a sufficiently large absolute constant C2. Plugging Equation (48) and Equation (49) back
into Equation (47), and denoting κ := max{C1, C2}k∗ck∗ek

∗/2 logk
∗/2(B4/ϵ), we get that with

probability at least 1− δ,

∥wt+1 −w∗∥22 ≤ ∥wt −w∗∥22 +
ηκ√
nδ

sin2 θt −
η

2
∥g∗(wt)∥2 sin θt

+ η2
(
dκ2

nδ
+ (k∗ck∗)2OPT+ ∥g∗(wt)∥22

)
.

Let us assume first that θt ≤ θt−1 ≤ · · · ≤ θ0 and θt satisfies sin θt ≥ 4e
√
OPT +

√
ϵ. We will

argue that in this case θt+1 ≤ θt (in fact, that it contracts by a constant factor). Then, by an inductive
argument, we immediately know that the assumption is valid and that θt is a decreasing sequence (as
long as sin θt ≥ 4e

√
OPT+ ϵ). To prove θt+1 ≤ θt, recall that in Claim E.1 it was shown that

∥g∗(wt)∥2 = 2k∗ck∗(wt ·w∗)∥(w∗)⊥wt∥2 = 2k∗ck∗(wt ·w∗)k
∗−1 sin θt.

Recall that w0 is the initial parameter vector that satisfies w0 ·w∗ ≥ 1 − 1/k∗. By the inductive
hypothesis it holds θt ≤ θ0, hence wt · w∗ ≥ w0 · w∗ ≥ 1 − 1/k∗. Furthermore, as we have
(1− 1/t)t−1 ≥ 1/e for t ≥ 1, it holds 1 ≥ (wt ·w∗)k

∗−1 ≥ 1/e. Therefore, we further obtain

(2k∗ck∗/e) sin θt ≤ ∥g∗(wt)∥2 ≤ 2k∗ck∗ sin θt.

Now choosing n ≳ dκ/((k∗ck∗)2ϵδ), and recalling that we have assumed sin θt ≥ 4e
√
OPT+

√
ϵ

by the induction hypothesis, we can further bound ∥wt+1 −w∗∥22 above as:

∥wt+1 −w∗∥22 ≤ ∥wt −w∗∥22 + η((ϵ/d)1/2 − (4k∗ck∗/e)) sin2 θt

+ η2(k∗ck∗)2(ϵ+OPT+ 4 sin2 θt) (50)

≤ ∥wt −w∗∥22 − (3k∗ck∗/e)η sin2 θt + 5η2(k∗ck∗)2 sin2 θt.

Observe that since θt ≤ θ0 and by assumption w0 · w∗ = cos θ0 ≥ 1 − min{1/k∗, 1/2} ≥
1/2, we have cos(θt/2) ≥

√
3/2 and thus it further holds that (

√
3/2)(2 sin(θt/2)) ≤ sin θt ≤

2 sin(θt/2). Since ∥wt −w∗∥2 = 2 sin(θt/2) follows from wt,w∗ ∈ Sd−1, we finally obtain that,
with probability at least 1− δ,

∥wt+1 −w∗∥22 ≤ (1− (9k∗ck∗/(4e))η + 5(k∗ck∗)2η2)∥wt −w∗∥22.

38

Choosing η = 9/(40ek∗ck∗) yields (with probability at least 1− δ):

4 sin2(θt+1/2) = ∥wt+1 −w∗∥22
≤ (1− (81/(320e2)))∥wt+1 −w∗∥22
= (1− (81/(320e2)))(4 sin2(θt/2)). (51)

This shows that θt+1 ≤ θt, hence completing the inductive argument. Furthermore, Equation (51)
implies that after at most T = O(log(1/ϵ)) iterations it must hold that sin θT ≤ 4e

√
OPT +

√
ϵ,

therefore, we can end the algorithm after at most O(log(1/ϵ)) iterations. Though the contraction
Equation (51) only holds when sin θT ≥ 4e

√
OPT +

√
ϵ, we can further show that if after some

iteration t∗ we have sin θt∗ ≤ 4e
√
OPT+

√
ϵ, then sin θt∗+1 is still of order

√
OPT+

√
ϵ. Concretely,

if there exists some step t∗ ≤ T such that sin(θt∗) ≤ 4e
√
OPT +

√
ϵ, then at step t∗ + 1 it must

hold (by Equation (50)):

sin(θt∗+1) ≤
√
1 + 8η2(k∗ck∗)2 sin(θt∗) ≤ 3 sin θt∗ ≤ 3(4e

√
OPT+

√
ϵ).

In other words, for all steps t∗ ≤ t ≤ T , it holds that sin θt ≤ 30(
√
OPT+

√
ϵ). Thus, in summary,

choosing T = O(log(1/ϵ)), we get that with probability at least 1 − δT , sin θT ≲
√
OPT +

√
ϵ,

and applying Claim E.7 we get:

Lσ
2 (w

T) = O

((∑
k≥k∗

kc2k

)
(OPT + ϵ)

)
= O(Ck∗OPT) + ϵ′,

where we set ϵ′ = ϵ/Ck∗ ≤ ϵ/(
∑

k≥k∗ kc2k), and used Assumption 1(iii) that
∑

k≥k∗ kc2k ≤ Ck∗ .

Thus, choosing δ′ = δT , where T = O(log(Ck∗/ϵ′)), Algorithm 4 outputs a parameter wT such
that with probability at least 1− δ′, Lσ

2 (w
T) = O(Ck∗OPT) + ϵ′, with batch size

n = Θ

(
dCk∗ek

∗
logk

∗+1(B4/ϵ
′)

ϵ′δ′

)
.

In summary, the total number of samples required for Algorithm 4 is

N = Θ

(
(k∗)2ek

∗
logk

∗
(B4/ϵ

′)d⌈k
∗/2⌉

c2k∗
+

Ck∗dek
∗
logk

∗+2(B4/ϵ
′)

ϵ′δ′

)
.

The final claim shows that if sin(θ(w,w∗)) ≲
√
OPT+

√
ϵ, then Lσ

2 (w) ≲ Ck∗(OPT + ϵ).

Claim E.7. Let w ∈ Sd and denote the angle between w and w∗ by θ. If θ satisfies sin θ ≤
C(

√
OPT+

√
ϵ) for some absolute constant C, then we have

Lσ
2 (w) ≲

(∑
k≥k∗

kc2k

)
(OPT + ϵ).

39

Proof. Since w ·w∗ = cos θ ≥ 1− sin2 θ, according to Claim C.4 the L2
2 loss Lσ

2 (w) can be upper
bounded by

Lσ
2 (w) ≤ 2OPT + 4

(
1−

∑
k≥k∗

c2k(w ·w∗)k
)

= 2OPT+ 4

(∑
k≥k∗

c2k(1− (w ·w∗)k)

)

= 2OPT+ 4

(∑
k≥k∗

c2k(1− (w ·w∗))(1 + (w ·w∗) + · · ·+ (w ·w∗)k−1)

)

≤ 2OPT + 4

(∑
k≥k∗

kc2k(1− (w ·w∗))

)
≤ 2OPT + 4

∑
k≥k∗

kc2k sin
2 θ

≤ 2OPT + 4

(∑
k≥k∗

kc2k

)
C2(OPT + ϵ) ≲

(∑
k≥k∗

kc2k

)
(OPT + ϵ).

40

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract summarizes the main contribution of our paper provided in
Theorem 3.5, that is, we provide the first algorithm for agnostically learning SIMs under a
broad class of activations. In the introduction, we summarize the motivation of our work,
provide a detailed discussion of our results, and compare our work with prior literature.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of our work are discussed in the introduction, and are clearly
stated in the statements of the theorems.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

41

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Our assumptions on the activations are summarized in Assumption 1. Complete
proofs are provided in the main body and the appendix (Appendix D and Appendix E).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper is theoretical in nature and does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

42

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper is theoretical in nature and does not include experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper is theoretical in nature and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper is theoretical in nature and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

43

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper is theoretical in nature and does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is theoretical in nature, and we do not see any major or immediate
implications for society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

44

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is theoretical and does not use data or models that have a high risk
for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This work does not use any assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

45

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This work does not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve any crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

46

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

47

	Introduction
	Preliminaries
	Technical Overview

	Initialization Procedure
	Optimization via Riemannian Gradient Descent
	Truncated Loss and the Sharpness property of the Riemannian Gradient
	Concentration of Gradients
	Proof of Main Theorem

	Remarks on the Assumptions
	Comparison with Prior Work
	Comparison with Prior Works on Agnostically Learning SIMs
	Comparison with damian2023smoothing
	Comparison with damian2024computational
	Remarks on Tensor PCA

	Additional Preliminaries
	Elementary Tensor Algebra
	Hermite Polynomials and Hermite Tensors
	Loss and Gradients

	Full Version of sec:initialization
	Signal in the k-Chow Tensor
	Concentration of the Unfolded Tensor Matrix
	Proof of app:lem:initialization-1-1/k
	Proof of app:thm:solve-using-pca

	Full Version of sec:GD
	Truncated Loss and the Sharpness property of the Riemannian Gradient
	Concentration of Gradients
	Proof of Main Theorem

