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ABSTRACT

Federated learning has emerged as the foremost approach for decentralized model
training with privacy preserving. The global class imbalance and cross-client
data heterogeneity naturally coexist, and the mismatch between local and global
imbalances exacerbates the performance degradation of the aggregated model. The
agnosticism of global minority classes poses significant challenges for data-level
methods, especially under extreme conditions with severe class deficiencies across
clients. In this paper, we propose FedReLa, a novel data-level approach that tackles
the coexistence of data heterogeneity and class imbalance in federated learning.
By re-labeling samples with a feature-dependent label re-allocator, FedReLa cor-
rects the biased decision boundaries without requiring knowledge of the global
class distribution. This modular, model-agnostic approach can be integrated with
algorithmic methods to offer consistent improvements without any extra communi-
cation burden. Through extensive experiments, our method significantly improves
the accuracy of minority classes and the overall accuracy on step-wise-imbalanced
and long-tailed datasets, outperforming the previous state of the art.

1 INTRODUCTION

Federated learning (FL) facilitates collaborative model training across distributed clients without
exchanging raw data, thereby preserving data privacy. Each client trains models locally on private
data and uploads only parameter updates to a global server. However, due to variations in client
environments such as differences in the received data, participation capacity, and geographic or
demographic differences, among others, local data often exhibit significant heterogeneity, leading to
disparate parameter updates and suboptimal global model convergence (Zhao et al., 2018).

Imbalanced data, where some classes have many samples while others have few, is common in real-
world applications (Azaria et al., 2014; Fotouhi et al., 2019; Shingi, 2020) and even more prevalent
in FL. Due to client-level data heterogeneity, two types of imbalance often coexist: local imbalance
(within individual clients) and global imbalance (across the entire federation), both of which pose
challenges for FL classification. Prior research has primarily addressed local imbalance through
improved aggregation (McMahan et al., 2017; Wang et al., 2020), robust local training (Acar et al.,
2021; Karimireddy et al., 2019; Li et al., 2021; 2020), selective client participation (Chen et al., 2020;
Fraboni et al., 2021), or architectural enhancements (Duan et al., 2019). However, these approaches
typically assume all the classes are equally represented, a condition rarely met in practice.

Recent works focus on more realistic scenarios where global class imbalance (e.g., step-wise or
long-tailed distributions) coexists with data heterogeneity. Early works such as Ratio-loss (Wang
et al., 2021) and CLIMB (Shen et al., 2021) pioneered solutions for step-wise global imbalance under
non-IID (not independent and identically distributed) client data. Subsequent studies (Chen & Chao,
2021b; Li et al., 2023; Shang et al., 2022; Xiao et al., 2024; 2023) further tackled federated long-tailed
(Fed-LT) learning. While these works acknowledge both global class imbalance and heterogeneity,
they primarily focus on algorithm-level classifier enhancements (e.g., tailored aggregation rules or
client-specific optimization). Existing data-level methods typically rely on class prior information.
For instance, feature-level SMOTE techniques (Chawla et al., 2002b) require prior knowledge of
which classes are majority or minority to synthesize new samples. In FL, however, such information
is often unavailable due to privacy constraints, especially in the presence of global-local imbalance
mismatches. Although in some domain-specific scenarios (e.g., fraud detection (Shingi, 2020) or
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rare disease diagnosis (Tan et al., 2023)), the minority class can be identified due to its natural rarity,
server data heterogeneity often results in the absence of minority classes in many clients. Such class
absence makes it impossible to synthesize minority class samples that do not exist locally. Therefore,
data-level approaches without access to global distribution statistics remain underdeveloped.

This paper addresses one of the most prevalent yet challenging scenarios in FL: improving FL under
the coexistence of agnostic data heterogeneity and mismatched global-local class imbalance, without
additional communication cost and extra local training burden caused by additional optimizable
model parameters. We propose a novel data-level approach that re-labels local data through a carefully
designed feature-dependent label re-allocator. Specifically, our label reallocating mechanism re-
labels the majority class samples that intrude into the global minority-class feature spaces, thereby
implicitly enlarging the minority-class decision boundary. The key innovation lies in the design of
our label re-allocator, which leverages the knowledge of the minority class from the global model
to asymmetrically re-label majority class samples based on their posterior probabilities estimated
from local data. Unlike traditional data-level augmentation methods, such as SMOTE-based (Chawla
et al., 2002b; He et al., 2008) or mixup-based approaches (Chou et al., 2020; Ramasubramanian et al.,
2024), our method operates purely in the label space, without synthesizing new features.

We present FedReLa, a model-agnostic approach for addressing heterogeneous, class-imbalanced
data in Federated Learning via Re-Labeling, with three defining characteristics:

(i) Model-Data Agnosticism: Unlike methods that rely on balanced auxiliary data or explicit class
priors (Shingi, 2020; Wang et al., 2021), FedReLa is agnostic to model architecture, data format, and
class distribution and inherently improves data quality without domain-specific constraints.

(ii) Nearly-Zero-Cost Plug-in Adaptation: Unlike prior methods (Duan et al., 2019; Shang et al.,
2022; Shen et al., 2021; Xiao et al., 2024) that introduce additional communicational or training cost
from optimizing and uploading newly introduced parameters or modules, FedReLa re-purposes the
global model as a label re-allocator without introducing additional trainable parameters, requiring no
extra training or communicational burden. The only computational cost of FedReLa is the one-time
model inference required to obtain posterior probabilities, which can be naturally collected during
training epochs. Such a one-shot computation is negligible compared to the whole training process
(see Appendix B.1). Furthermore, FedReLa efficiently balances the global classifier in the fine-tune
stage without retraining the model, while all computation and re-labeling are done locally in parallel.

(iii) Universal Composability: Operating solely in the label space, FedReLa integrates seamlessly
with algorithm-level approaches and delivers consistent performance gains.

We evaluate the performance of FedReLa through extensive experiments on Fashion-MNIST, CIFAR-
10, and CIFAR-100 under both step-wise and long-tailed class distributions, across varying degrees
of data heterogeneity and imbalance ratios. FedReLa consistently enhances prior algorithm-level
methods, achieving state-of-the-art performance with negligible additional computation cost, while
avoiding extra communication or parameter training overhead. Notably, in the most extreme cases,
FedReLa boosts minority/tail-class accuracy by up to 38.30% (step-wise) and 30.7% (long-tailed)
while maintaining overall accuracy superiority (shown in Tables 1 and 2 in Section 4). These results
conclusively demonstrate the superiority and applicability of FedReLa in practical FL deployments.

Related works. (1) Centralized imbalance learning on decentralized data. Imbalance learning has
seen significant success in centralized settings. The model-agnostic advantages of data-level methods
are utilized in data preprocessing to augment features of minority class samples by either generating
new samples via generative models (Odena et al., 2017; Mariani et al., 2018) and SMOTE-based
methods (Chawla et al., 2002a; Han et al., 2005; He et al., 2008) or mixing existing sample features
by mixup-based approaches (Chou et al., 2020; Ramasubramanian et al., 2024; Zhang et al., 2017).
However, in heterogeneous decentralized data scenarios, the effectiveness of augmenting local data
of these methods becomes very limited. Data heterogeneity, limited seed samples, and class absence
on local clients severely restrict their ability to generate minority class samples. Without access to
global class priors, ReMix (Chou et al., 2020) fails to identify global minority classes for proper
adjustment of label mixup strength, while SelMix (Ramasubramanian et al., 2024) faces practical
constraints due to its reliance on auxiliary balanced validation data, which in many cases is scarce.
Similarly, algorithm-level methods like loss reweighting (Tan et al., 2020) or logit adjustments (Li
et al., 2022) also fall short in FL due to the lack of access to the global label distribution.
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(2) Federated learning with data heterogeneity. Three pivotal components in federated learning
frameworks critically influence global model performance: client update, model aggregation, and
local datasets. Numerous FL methods have been developed to address local data heterogeneity and
imbalance, primarily focusing on client update and model aggregation to mitigate the adverse effects
of skewed local datasets. FedAvg (McMahan et al., 2017) and FedNova (Wang et al., 2020) pioneered
weighted averaging during model aggregation based on local dataset sizes or batch sizes. In the
paradigm of modifying client update, regularization terms are incorporated into loss functions to
penalize discrepancies between global and local models (Li et al., 2021; 2020) or constrain inter-round
model divergence (Acar et al., 2021). SCAFFOLD (Karimireddy et al., 2019) introduced control
variates to correct biased local gradients. However, these methods exhibit suboptimal performance on
global minority/tail classes, as they primarily address local imbalance induced by data heterogeneity
while neglecting global class imbalance.

(3) Data heterogeneity with global class imbalance. Several approaches have adapted loss reweighting
strategies to address global imbalance. Ratio-Loss (Wang et al., 2021) estimates global class priors
using an auxiliary balanced dataset. To eliminate the reliance on auxiliary data, CLIMB (Shen et al.,
2021) optimizes the local model with additional learnable loss-weighting parameters, but increases
the local training workload and communication cost. Recent studies extend this problem to long-tailed
distributions. CReFF (Shang et al., 2022) enhances tail-class performance by retraining classifiers
with aggregated class-specific features, consequently introducing additional local training overhead
and doubled communication costs. FedROD (Chen & Chao, 2021b) further extends the scope to
personalized FL by decoupling the training of the global and personalized models by separately
optimizing the local models with balanced softmax and cross-entropy loss. However, blindly fully
balancing the local loss may lead to a suboptimal global model. To improve the performance of both
global and personalized models on long-tailed data, FedETF (Li et al., 2023) replaces the classifier
head with a fixed ETF (Equiangular Tight Frame) to enforce the learning of balanced features.

Based on the observation that head classes tend to have larger weight norms, FedGraB (Xiao et al.,
2023) rescales the gradients of local models by class weight norms to enhance tail-class performance.
As a follow-up improvement of (Xiao et al., 2023), FedLOGE (Xiao et al., 2024) further integrates
the idea of (Li et al., 2023) by rescaling the weights of the fixed ETF classifier using the weight
norms of an auxiliary classifier head. Despite this, our empirical findings in Section 4 reveal that
weight norms become unreliable under high heterogeneity.

Motivations. Existing methods tackle data imbalance through algorithmic adjustments. Why not
improve local data quality directly? The reason is apparent: conventional data augmentation relies on
global data distribution knowledge, which violates FL privacy constraints. The most relevant work,
FedMix (Wicaksana et al., 2022), addresses heterogeneity using mixup. Still, it requires clients to
share local data averages, which may require additional privacy-preserving mechanisms and increase
the communication costs. To our knowledge, no existing data-level FL approach mitigates the
coexistence of data heterogeneity and global imbalance while achieving: (1) not requiring auxiliary
datasets, (2) having a negligible additional computation cost with zero communication cost and
no extra parameter training burden, and finally (3) being agnostic to global data distribution. This
motivates FedReLa, a data-level method that simultaneously achieves all of the above requirements
while significantly improving performance under extreme conditions.

2 FEDERATED LEARNING VIA RE-LABELING: FEDRELA

In this section, we first analyze how local and global imbalances affect decision boundaries and why
heterogeneity in globally imbalanced data exacerbates the performance impact of imbalance data on
global models. We then introduce the label re-allocator and analyze how re-labeled samples implicitly
rebalance the biased global decision boundaries.

2.1 PROBLEM FORMULATION

Consider a dataset D that contains data pairs (X,Y ) ∼ P (x, y), where x ∈ X ⊆ Rd, y ∈
Y = {1, 2, . . . , C} and P represents the joint distribution. Denote the conditional distribution
X | Y = j ∼ Pj(x) and the prior probability Pr(Y = j) = πj for class j ∈ Y . The marginal
distribution of X is then PX(x) =

∑
j∈Y πjPj(x). Assume D is imbalanced with global imbalance
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ratio IR(D) = maxj∈Y πj/minj∈Y πj ≫ 1. Let ηj(x) = Pr(Y = j | X = x) = πjPj(x)/PX(x)
be the global posterior probability. Recalling that the Bayesian decision theorem (Duda et al., 2006)
defines the optimal estimated y∗ of a sample x as y∗ = argmaxj∈Yηj(x), the following result holds.
Lemma 1. The optimal Bayesian decision boundary between two classes j ̸= ℓ ∈ Y is

Sj,ℓ = {x ∈ X : ηj(x) = ηℓ(x) > ηℓ′(x) ∀ ℓ′ ∈ Y \ {j, ℓ}} .

For x ∈ Sj,ℓ, it holds that ηj(x) = ηℓ(x) implying Pj(x)/Pℓ(x) = πℓ/πj . Then for some minority
class j and majority class ℓ with πj ≪ πℓ, Sj,ℓ intrudes deeply into the minority class region,
increasing the risk of misclassifying minority class samples. This motivates balancing the ratio πℓ/πj

to shift the decision boundary back towards the majority class region, thereby alleviating the adverse
effects of class imbalance.

In FL, the dataset D is distributed on K clients with local datasets {D(k)}Kk=1 and assumes the class
conditional distributions {P (k)

j (x)}Kk=1 are identical across all clients for each j ∈ Y . In contrast, the

class priors {π(k)
j }Kk=1 may be different among clients due to data heterogeneity. For two classes j and

ℓ, we have P
(1)
j (x)/P

(1)
ℓ (x) = · · · = P

(K)
j (x)/P

(K)
ℓ (x) = Pj(x)/Pℓ(x). However, divergent class

priors result in different local posterior probability η
(k)
j (x) = π

(k)
j Pj(x)/

∑
j0∈Y π

(k)
j0

Pj0(x) and
misaligned Bayesian decision boundaries among clients. This misalignment affects the performance
of the aggregated classifier and slows down the convergence rate of FL algorithms (Zhao et al., 2018).

Ideally, with properly chosen aggregation weights {wk}Kk=1, the decision boundary between classes
j and ℓ of the global aggregated model η[w]

j (x) =
∑K

k=1 wkη
(k)
j (x) given by

S
[w]
j,ℓ = {x ∈ X : Pj(x)/Pℓ(x) = π

[w]
ℓ /π

[w]
j },

can match the decision boundary Sj,ℓ in Lemma 1 by making π
[w]
j = πj and π

[w]
ℓ = πℓ, where

π
[w]
j =

∑K
k=1 wkπ

(k)
j /

∑K
k=1 wk and π

[w]
ℓ =

∑K
k=1 wkπ

(k)
ℓ /

∑K
k=1 wk. For instance, setting wk =

|D(k)|/|D| achieves this alignment. However, the global imbalance ratio πℓ/πj still introduces bias
into the aggregated decision boundary of the global model. To address that, several algorithms
(Menon et al., 2020; Tan et al., 2020) have been proposed to adjust the ratio π

[w]
ℓ /π

[w]
j via alternative

weighting schemes. Moreover, data heterogeneity can cause mismatches between global and local
imbalance ratios, further complicating the class imbalance issue and amplifying bias in the aggregated
decision boundary. See Example 1 in the Appendix for an illustration.

2.2 AGGREGATED DECISION BOUNDARY WITH RE-LABELED DATA

In this paper, we introduce a novel data-level approach that reallocates data labels to adjust the
decision boundary by balancing class prior ratios at both local and global levels. This strategy
also alleviates the mismatch between global and local imbalance ratios, and improves the overall
robustness of the FL model. Our proposed FedReLa is motivated by how re-labeling shifts decision
boundaries locally and globally. We begin by analyzing its effect on a local client k, and then extend
the discussion to model aggregation. Without loss of generality, we consider a binary classification
setting where classes j and ℓ represent the minority and majority classes, respectively.

Let (X(k), Y (k)) ∼ P (k)(x, y) denote the data pair for client k with re-labeled Ỹ (k) and consider
D̃(k) the corresponding re-labeled dataset. Denote the probabilities of re-labeling ℓ to j as ρ(k)ℓ→j(x) =

Pr(Ỹ (k) = j | X(k) = x, Y (k) = ℓ) and re-labeling j to ℓ as ρ(k)j→ℓ(x) = Pr(Ỹ (k) = ℓ | X(k) =

x, Y (k) = j) for client k, then

η̃
(k)
j (x) = Pr(Ỹ (k) = j | X(k) = x) = η

(k)
j (x)[1− ρ

(k)
j→ℓ(x)] + [1− η

(k)
j (x)]ρ

(k)
ℓ→j(x).

Lemma 2. The optimal Bayesian decision boundary based on D̃(k) for client k is

S̃(k) =

{
x∗ ∈ X :

Pj(x
∗)

Pℓ(x∗)
=

1− 2ρ
(k)
ℓ→j(x

∗)

1− 2ρ
(k)
j→ℓ(x

∗)
·
π
(k)
ℓ

π
(k)
j

}
,

provided that ρ(k)ℓ→j(x
∗) ≤ 0.5 and ρ

(k)
j→ℓ(x

∗) ≤ 0.5 for any x∗ ∈ S̃(k).
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When π
(k)
ℓ /π

(k)
j ≫ 1, we seek to achieve [1−2ρ

(k)
ℓ→j(x

∗)]/[1−2ρ
(k)
j→ℓ(x

∗)] < 1 to locally adjust the
decision boundary. Given the scarcity of minority class samples in D(k), it is reasonable to restrict
re-labeling to occur only from majority class ℓ to minority class j, and set ρ(k)j→ℓ(x) = 0. Furthermore,
since deeply invaded majority class samples are especially harmful, we design a label re-allocator
where the re-labeling probability is proportional to the degree of this intrusion. Specifically, with
ρ
(k)
ℓ→j(x) ∝ η

(k)
j (x), the Bayesian decision boundary becomes

S̃(k) =
{
x∗ ∈ X : Pj(x

∗)/Pℓ(x
∗) = [1− 2ρ

(k)
ℓ→j(x

∗)]π
(k)
ℓ /π

(k)
j

}
.

Since 1 − 2ρ
(k)
ℓ→j(x

∗) < 1, the boundary S̃(k) on re-labeled data, shifts back to the majority class

region. Based on re-labeled data D̃ = ∪Kk=1D̃(k), we also study the decision boundary of the global
aggregated model η̃[w]

j (x) =
∑K

k=1 wkη̃
(k)
j (x).

Lemma 3. The optimal Bayesian decision boundary of the global aggregated model η̃[w]
j (x) is

S̃[w] =

{
x∗ ∈ X :

Pj(x
∗)

Pℓ(x∗)
=

∑K
k=1 wkπ

(k)
ℓ [1− 2ρ

(k)
ℓ→j(x)]/πℓ∑K

k=1 wkπ
(k)
j /πj

· πℓ

πj

}
.

Lemma 3 implies that the label re-allocator balances the global imbalance ratio when∑K
k=1 wkπ

(k)
ℓ [1− 2ρ

(k)
ℓ→j(x)]/πℓ∑K

k=1 wkπ
(k)
j /πj

< 1. (1)

By choosing wk = |D(k)|/|D|, we have
∑K

k=1 wkπ
(k)
j /πj = 1, and (1) reduces to

∑K
k=1 wkπ

(k)
ℓ [1−

2ρ
(k)
ℓ→j(x)]/πℓ < 1, which holds naturally when ρ

(k)
ℓ→j(x) > 0 for all k ∈ {1, . . . ,K}. Thus, the

label re-allocator can balance both the local and global decision boundary.
Remark 1. Due to data heterogeneity, local class distribution can deviate significantly from the
global one. It is possible for a class that is globally a minority to become a majority within certain
clients. As local clients lack access to the global class prior ratios, the mismatch can lead to re-
labeling in unexpected directions. For instance, when re-labeling class j samples to class ℓ even if
πℓ ≫ πj globally. To handle this, we let the re-labeling direction be determined by local priors: on
client k, if π(k)

ℓ > π
(k)
j , then class ℓ samples are re-labeled to class j, and vice versa. This results in

the following Bayesian decision boundary on client k:

S̃(k) =

{
x∗ ∈ X :

Pj(x
∗)

Pℓ(x∗)
=

1− 2ρ
(k)
ℓ→j(x

∗) · I(π(k)
ℓ > π

(k)
j )

1− 2ρ
(k)
j→ℓ(x

∗) · I(π(k)
ℓ < π

(k)
j )
·
π
(k)
ℓ

π
(k)
j

}
. (2)

Then, the Bayesian decision boundary of the global aggregated model η̃[w]
j (x) takes the form:

S̃[w] =

{
x∗ ∈ X :

Pj(x
∗)

Pℓ(x∗)
=

∑K
k=1 wkπ

(k)
ℓ [1− 2ρ

(k)
ℓ→j(x)]I(π

(k)
ℓ > π

(k)
j )/πℓ∑K

k=1 wkπ
(k)
j [1− 2ρ

(k)
j→ℓ(x)]I(π

(k)
ℓ < π

(k)
j )/πj

· πℓ

πj

}
.

Under global imbalance where πℓ ≫ πj , we typically observe that
∑K

k=1 I(π
(k)
ℓ > π

(k)
j ) >∑K

k=1 I(π
(k)
ℓ < π

(k)
j ), meaning more clients locally reflect the global imbalance than contradict

it. Furthermore, even if π(k0)
ℓ < π

(k0)
j for some client k0, its weight wk0 ∝ |D(k0)| is often small

as |D(k0)| is less than double of the total number of class-j samples in the full dataset D. As a
result, we still expect a correction in the decision boundary of the global aggregated model with∑K

k=1 wkπ
(k)
ℓ [1−2ρ

(k)
ℓ→j(x)]I(π

(k)
ℓ >π

(k)
j )/πℓ∑K

k=1 wkπ
(k)
j [1−2ρ

(k)
j→ℓ(x)]I(π

(k)
ℓ <π

(k)
j )/πj

< 1.

3 FRAMEWORK OF FEDRELA

Motivated by decision boundary adjustment through data re-labeling, as analyzed in Section 2.2,
we propose FedReLa to mitigate performance degradation caused by data heterogeneity and class

5
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imbalance in FL. FedReLa is an adaptive and model-agnostic approach, which is designed as a
plug-in module that can be seamlessly integrated into any existing FL algorithm.

As shown in Figure 1, FedReLa works as a local data one-shot preprocessor between communication
rounds of any FL algorithm, with each client applying it locally and in parallel. Specifically, before
client k starts to train the global model f(θ;x) with parameter θ = θglobalt received at round
t = Trelabel, FedReLa re-labels its local dataset D(k) = {(x(k)

i , y
(k)
i )}nk

i=1 using a client-specific label
re-allocator ρ(k), resulting in the re-labeled dataset D̃(k) = {(x(k)

i , ỹ
(k)
i )}nk

i=1 = ρ(k)(D(k)). Note
that the computation of FedReLa only occurs in Trelabel, and the re-labeled local dataset D̃(k) can be
reused in subsequent training rounds t > Trelabel. Thus, the one-shot computations at round Trelabel
for each client-specific label re-allocator are lightweight and almost negligible to the whole training
process. We discuss the approximate computational cost of FedReLa in Appendix B.1. Each client
then updates the global model locally using D̃(k), and the server aggregates the local updates ∆θ

(k)
t

to produce the updated global model with parameter θglobalt+1 .

Client 1

Client 2

. 

. 

.

Client 𝑲 

𝑤𝑔
𝑇=𝑖

. 

. 

.

𝑐 = 1                     𝑐 = 𝐶.    .    .

0 0.70.4 0 0 0 0

0 0.20 0.4 0 0 0.9

0 00.6 0 0 0 0.6

Z-score Standardlization

. 

. 

.

𝑐 = 1                     𝑐 = 𝐶.    .    .

9 4.23.1 -0.1 -0.1 -0.1 -0.1

0.4 2.3-0.1 7 -0.1 -0.1 5.2

5.7 -0.14.5 2.2 -0.1 -0.1 5.2

Local data Posterior Probability Matrix Global Model

. 

. 

.
Feature

extractor
Classifier

head

𝑐 = 1                     𝑐 = 𝐶.    .    .

0.7 0.20.1 0 0 0 0

0.1 0.10 0.6 0 0 0.2

0.5 00.2 0.1 0 0 0.2𝑐 = 1 2 . .  .  𝐶 

Communication Round

    Normalization

Figure 1: FedReLa Framework. At round t = Trelabel, FedReLa re-labels the local dataset with the
label re-allocator based on the global model before the local training starts.

The inspiration of FedReLa is to “reallocate” the shared feature space that is encroached upon by
the majority class (due to biased decision boundaries) to the minority class. This is achieved by
selectively re-labeling the majority-class samples that intrude into the minority-class feature space
with similar features as minority-class labels. Building upon the theoretical analysis in Section 2,
we let the re-labeling probabilities be proportional to the posterior probabilities of minority classes,
and we utilize the global model distributed to each client to perform local inference. This yields a
|D(k)| × |Y| posterior probability matrix Q(k) for client k, where

Q
(k)
i = f(θglobalt ;x

(k)
i ) ∈ R|Y|

is the i-th row of Q(k), denoting the posterior probability vector of the i-th local instance x
(k)
i .

Crucially, the global model implicitly integrates cross-client discriminative knowledge across all
classes Y = {1, 2, . . . , C}, making it assign non-zero posterior probabilities even to classes absent
from a client’s local data. Due to global imbalance and data heterogeneity, these posterior estimates
for minority (tail) classes tend to be systematically biased downward. To address posterior underesti-
mation and obtain a well-calibrated label re-allocator, we introduce two key normalization steps: (1)
z-score Standardization, and (2) tanh Normalization.

Class-wise z-score Standardization. Samples near decision boundaries often share features with
other classes, thus exhibiting relatively high posterior probabilities for ambiguous ones. As a result
of biased global decision boundaries towards minority classes, most dominant-class samples exhibit
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Algorithm 1 Local training process for client k with FedReLa at communication round t

Input: local epochs E, learning rate η, local datasets D(k) = {(x(k)
i , y

(k)
i )}nk

i=1, classifier f(·; ·),
global model parameter θglobal

t

Parameters: Threshold t
(k)
re , re-labeling round Trelabel

Client k ∈ K executes:

ClientUpdate(t,D(k), θglobalt ):
if t == Trelabel then
D̃(k) ← ReAllocator(D(k), θglobal

t )

D(k) ← D̃(k)

end

θ
(k)
t ← θglobal

t
for epoch e = 1→ E do

for each batch b ∈ D(k) do
θ
(k)
t ← θ

(k)
t − η∇L(θ(k)t ; b)

end
end
∆θ

(k)
t ← θglobal

t − θ
(k)
t

return ∆θ
(k)
t

ReAllocator(D(k), θglobalt ):

for (x
(k)
i , y

(k)
i ) ∈ D̃(k) do

Q
(k)
i ← f(θglobal

t ;x
(k)
i )

end
Compute ϖ(k) by (4) with n

(k)
Y

for (x
(k)
i , y

(k)
i ) ∈ D(k) do

Compute z
(k)
i by (3)

ϖ
(k)

y
(k)
i

← max(ϖ(k) −ϖ(k)[y
(k)
i ], 0)

Compute ρ(k)(x
(k)
i ) by (5)

U ∈ R|Y| ← Bernoulli(ρ(k)(x(k)
i ))

if U contains 1 then
ỹ
(k)
i ← Y[argmax(ρ(k)(x(k)

i ))]
end

end
return D̃(k) ← {(x(k)

i , ỹ
(k)
i )}nk

i=1

vanishingly small posterior probabilities for minority classes. Despite this, we empirically observe
that a non-trivial subset of majority-class samples retains non-negligible probabilities for minority
classes–insufficient to trigger misclassification but indicative of proximity to minority-class regions in
the eature space. To better calibrate these underestimated posteriors, particularly for minority classes,
we apply class-wise z-score standardization, which rescales the posterior distributions within each
class. This highlights candidate samples with shared features for re-labeling. Specifically, the z-score
vector for the i-th instance in client k is computed as:

z
(k)
i =

Q
(k)
i − µ

(k)
i

σ
(k)
i

, µ
(k)
i =

1

|I(k)i |

∑
i0∈I(k)

i

Q
(k)
i0

, σ
(k)
i =

√√√√ 1

|I(k)i | − 1

∑
i0∈I(k)

i

(
Q

(k)
i0
− µ

(k)
i

)2
, (3)

where I(k)i = {i0 ∈ {1, . . . , nk} : y(k)i0
= y

(k)
i } denotes the index set of samples in D(k) that share

the same label as the i-th instance. Here, µ(k)
i ∈ R|Y| and σ

(k)
i ∈ R|Y| are the class-wise mean

and standard deviation vectors of the posterior probabilities over this set. As illustrated in Figure 1,
the resulting z-score matrix Z(k), with i-th row z

(k)
i , recalibrates Q(k), amplifying underestimated

posterior probabilities of minority (tail) classes and highlighting samples near class boundaries.

Normalization via tanh. To ensure that the re-labeling rates in the label re-allocator lie within
[0, 1], we rescale the z-scores to the range [−1, 1] using a tanh transformation. This normalization
incorporates two critical components: (1) a client-specific threshold t

(k)
re , which is a tunable hyperpa-

rameter that determines the desired re-labeling strength by filtering out samples with weak feature
similarity; and (2) a class-wise reweighting vector ϖ(k)

j ∈ R|Y|, computed from local class priors to

re-label samples asymmetrically. Specifically, ϖ(k)
j reweighs the re-labeling probability from class j

to any other class c ∈ Y \ j with their class prior difference between j and c.

Let n(k)
Y ∈ R|Y| denote the vector of class-wise sample counts in the local dataset D(k). We first

apply min-max normalization on n
(k)
Y to construct the class-wise reweighting vector ϖ(k)

j , defined as:

ϖ
(k)
j = max(ϖ(k) −ϖ(k)[j], 0) with ϖ(k) = 1− minmax(n(k)

Y ). (4)
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For samples belonging to a local tail class ytail, we have ϖ(k)[ytail] = 1, which implies that ϖ(k)
ytail = 0.

It zeros the re-labeling probabilities from the minority class to other classes, thereby preserving the
integrity of minority-class samples.

With a client-specific t
(k)
re , we define the re-labeling probability for the i-th instant in client k as

ρ(k)(x
(k)
i ) = max

(
tanh(z(k)i − t(k)re )⊙ϖ

(k)

y
(k)
i

, 0
)
, (5)

where⊙ denotes element-wise multiplication, and t
(k)
re acts as a tunable filtering threshold to suppress

re-labeling for samples with low similarity to the minority-class feature. Notably, when the z-score
falls below t

(k)
re , the re-labeling probability becomes negative and is truncated to zero. We performed

a sensitive analysis on t
(k)
re in Appendix B.3.

Based on the local label re-allocator ρ(k), each client applies probabilistic re-labeling to its data to
generate the re-labeled data before local training; this is the only difference FedReLa makes from the
standard FL, which adjusts the decision boundaries and thus achieves significant improvement on the
performance of minority/tail classes. The full procedure is summarized in Algorithm 1.

4 EXPERIMENTS

Datasets. To provide a comprehensive evaluation, we conduct experiments under both step-wise
and long-tailed global imbalance settings on Fashion-MNIST (F-MNIST) Xiao et al. (2017), CIFAR-
10 Krizhevsky & Hinton (2009), and CIFAR-100 Krizhevsky & Hinton (2009) datasets. For step-wise
imbalance, we undersample 10% or 30% of the classes with an imbalance ratio (IR) of 10 or 20.
For long-tailed imbalance, the datasets are sampled into a long-tailed class distribution using an
imbalance factor (IF) of 50 or 100 as in (Cao et al., 2019). To simulate cross-client heterogeneity, we
employ latent Dirichlet sampling (Chen & Chao, 2021a) to partition the data in a non-IID fashion
across clients. Specifically, we use K = 100 clients for the step-wise versions of Fashion-MNIST
and CIFAR-10, and K = 40 for their long-tailed versions. For CIFAR-100, we use K = 10 clients
in both step-wise and long-tailed settings. The heterogeneity level is controlled by the parameter
α ∈ {0.1, 0.3, 10}. We set the client sample rate to 1. (See evaluation metrics in Appendix B.)

Baseline and prior SOTA. We compare FedReLa with prior baselines and SOTA methods under
both step-wise and long-tailed imbalance settings. For step-wise imbalance, we evaluate against
FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020), FedNova (Wang et al., 2020), MOON
(Li et al., 2021), and CLIMB (Shen et al., 2021). For long-tailed imbalance, we compare with
FedETF (Li et al., 2023) and the latest SOTA method, FedLOGE (Xiao et al., 2024). As FedReLa
handles data heterogeneity and class imbalance in FL at the data level, our method can seamlessly
integrate with the above methods, offering further improvements. We thus compare methods trained
on original-labeled data with those trained on re-labeled data by FedReLa. All methods are trained
with sufficient communication rounds to converge. Please refer to Appendix B for the communication
rounds needed to achieve the convergence of each method.

Performance comparision. For step-wise imbalance scenarios, Table 1 shows that FedReLa
consistently enhances accuracy for both minority classes and overall performance across varying
imbalance ratios (IR) and minority class proportions at heterogeneity level of α = 0.3 (see Section
C in the Appendix for ablation analysis on α). On Fashion-MNIST and CIFAR-10, FedReLa
achieves 6.40%–32.20% minority-class accuracy improvement and 0.81%–4.76% overall accuracy
gain under IR = 10. At IR = 20, the approach further elevates minority-class accuracy by
11.83%–38.30% and overall accuracy by 1.46%–7.79%. For CIFAR-100, FedReLa delivers a steady
6.03%–15.04% boost in minority-class accuracy while maintaining overall accuracy superiority. We
also notice that the majority-class accuracy experiences some degradation in the 30%-minority-class
setting, as the strong performance of minority classes inherently compromises inflated majority-class
performance. This aligns with the fundamental trade-off in class-imbalance learning: enhancing
minority-class performance necessarily diminishes the over-privileged majority-class performance,
a characteristic shared by all imbalance methods. For the 10%-minority-class scenario, FedReLa
exhibits a negligible impact on majority-class accuracy and even improves it on CIFAR-10. This stems
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from label rectification by FedReLa, which relieves class overlap and thereby reduces outlier-induced
interference for majority classes, particularly on clients with local-global IR mismatch.

Dataset IR Methods 10% Minority 30% Minority
Majority Minority Overall Majority Minority Overall

F-MNIST

10

FedAvg 88.43(87.40)-1.03 52.50(77.00)+24.50 84.84(86.36)+1.52 89.86(90.17)+0.31 60.67(70.50)+9.83 81.10(84.27)+3.17
FedProx 88.23(87.43)-0.80 53.20(76.80)+23.60 84.73(86.37)+1.64 90.60(88.14)-2.46 60.07(70.40)+10.33 81.44(82.82)+1.38
FedNova 86.81(87.46)+0.65 67.10(77.50)+10.40 84.84(86.46)+1.62 88.41(86.83)-1.58 69.77(76.17)+6.40 82.82(83.63)+0.81
MOON 88.41(87.83)-0.58 47.00(73.00)+26.00 84.27(86.35)+2.08 90.61(89.24)-1.37 59.80(69.87)+10.07 81.37(83.43)+2.06
CLIMB 89.05(89.98)+0.93 65.52(76.24)+10.72 86.70(88.61)+1.91 93.00(92.30)-0.70 67.23(75.47)+8.24 85.27(87.25)+1.98

20

FedAvg 88.64(88.07)-0.57 49.00(73.10)+24.10 84.68(86.57)+1.89 90.44(87.33)-3.11 50.50(75.70)+25.20 78.46(83.84)+5.38
FedProx 89.37(87.77)-1.60 44.58(73.60)+29.02 84.89(86.35)+1.46 90.69(87.37)-3.32 50.00(74.90)+24.90 78.48(83.63)+5.15
FedNova 88.46(88.37)-0.09 52.34(71.30)+18.96 84.85(86.66)+1.81 85.94(87.27)+1.33 55.03(77.90)+22.87 76.67(84.46)+7.79
MOON 89.07(88.07)-1.00 32.40(66.60)+34.20 83.40(85.92)+2.52 91.13(88.63)-2.50 44.43(74.77)+30.34 77.12(84.47)+7.35
CLIMB 90.30(90.32)+0.02 51.28(71.34)+20.06 86.40(88.43)+2.03 94.34(90.28)-4.05 53.27(73.60)+20.33 82.02(85.28)+3.26

CIFAR-10

10

FedAvg 60.10(59.84)-0.26 27.80(55.70)+27.90 56.87(59.43)+2.56 65.93(62.14)-3.79 22.67(41.33)+18.66 52.95(55.90)+2.95
FedProx 60.66(61.18)+0.52 30.02(58.70)+28.68 57.60(60.93)+3.33 67.66(60.79)-6.87 22.80(45.10)+22.30 54.20(56.08)+1.88
FedNova 58.54(58.60)+0.06 29.90(57.00)+27.10 55.68(58.44)+2.76 65.23(62.70)-2.53 23.47(39.20)+15.73 52.70(55.65)+2.95
MOON 58.62(60.33)+1.71 17.10(49.30)+32.20 54.47(59.23)+4.76 66.67(63.21)-3.46 23.63(38.67)+15.04 53.76(55.85)+2.09
CLIMB 81.62(82.68)+1.06 37.45(46.18)+8.73 77.20(79.03)+1.83 86.82(87.47)+0.65 33.59(43.26)+9.67 70.85(74.21)+3.36

20

FedAvg 60.33(60.70)+0.37 17.25(51.60)+34.35 56.02(59.79)+3.77 67.39(61.51)-5.88 13.82(47.97)+34.15 51.32(57.45)+6.13
FedProx 59.33(60.58)+1.25 15.60(53.90)+38.30 54.96(59.91)+4.95 67.69(61.96)-5.73 15.02(47.87)+32.85 51.89(57.73)+5.84
FedNova 61.77(62.77)+1.00 26.05(57.80)+31.75 58.20(62.27)+4.07 66.97(60.12)-6.85 18.20(53.03)+34.83 52.34(57.99)+5.65
MOON 58.75(59.72)+0.97 10.12(47.70)+37.58 53.89(58.52)+4.63 64.51(60.77)-3.74 7.65(40.03)+32.38 47.45(54.55)+7.10
CLIMB 79.53(80.34)+0.81 28.38(40.21)+11.83 74.42(76.33)+1.91 87.75(85.81)-1.94 24.03(38.77)+14.74 68.64(71.70)+3.06

CIFAR-100

10

FedAvg 58.67(58.08)-0.59 12.30(23.10)+10.80 54.03(54.58)+0.55 58.67(57.07)-1.60 14.37(25.70)+11.33 45.38(47.66)+2.28
FedProx 58.14(58.03)-0.11 13.00(26.00)+13.00 53.63(54.83)+1.20 58.84(58.10)-0.74 14.93(22.03)+7.10 45.67(47.28)+1.61
FedNova 58.67(57.90)-0.77 13.40(23.90)+10.50 54.14(54.50)+0.36 59.49(58.00)-1.49 13.53(23.23)+9.70 45.70(47.57)+1.87
MOON 57.55(57.70)+0.15 13.22(23.92)+10.70 53.12(54.32)+1.20 58.60(56.83)-1.77 16.37(23.93)+7.56 45.93(46.96)+1.03
CLIMB 47.96(48.28)+0.32 10.50(24.90)+14.40 44.21(45.94)+1.73 49.16(47.44)-1.72 10.83(25.87)+15.04 37.66(40.97)+3.31

20

FedAvg 59.34(59.01)-0.33 6.80(15.80)+9.00 54.09(54.69)+0.60 58.73(57.50)-1.23 5.90(11.93)+6.03 42.88(43.83)+0.95
FedProx 58.86(58.18)-0.68 5.00(14.10)+9.10 53.47(53.77)+0.30 59.49(56.93)-2.56 6.03(13.23)+7.20 43.45(43.82)+0.37
FedNova 59.16(58.49)-0.67 7.30(17.80)+10.50 53.97(54.42)+0.45 59.60(58.11)-1.49 6.03(13.57)+7.54 43.53(44.75)+1.22
MOON 57.89(57.43)-0.46 6.65(18.02)+11.37 52.77(53.49)+0.72 59.36(56.14)-3.22 5.90(13.87)+7.97 43.32(43.46)+0.14
CLIMB 47.91(47.21)-0.70 5.02(16.25) +11.23 43.62(44.12)+0.50 49.22(46.42)-2.80 4.34(13.44)+9.10 35.76(36.53)+0.77

Table 1: Test accuracies (in %) in the format of original (+FedReLa)+enhancement / -
tradeoff of different methods on step-wise imbalance datasets at heterogeneity level of α = 0.3.

On long-tailed data, Table 2 shows that FedReLa consistently outperforms prior SOTA methods. The
improvements are more pronounced under higher heterogeneity partitions, with FedReLa achieving
+17.21% and +1.32% overall accuracy gains on CIFAR-10 and CIFAR-100, respectively, under the
most extreme imbalanced and heterogeneous settings. Inflated majority class performance inherently
comes at the expense of minority classes. Again, in most cases, the gains in overall accuracy outweigh
any reductions in overstated head class accuracy, indicating a favorable trade-off.

Dataset IF Heterogeneity α = 0.1 α = 0.3 α = 10
Method/Metrics H/M/T-shots Overall H/M/T-shots Overall H/M/T-shots Overall

CIFAR-10

50

FedETF 86.82/55.33/24.62 58.71 88.42/71.74/64.11 76.12 90.41/80.02/68.12 80.60
+(FedReLa) 75.44/69.63/61.11 69.47 84.51/76.44/69.63 77.64 89.54/79.22/71.80 81.14

FedLOGE 68.67/49.93/58.23 59.92 84.92/72.13/74.57 77.98 89.42/80.80/71.97 81.60
+(FedReLa) 64.17/64.67/73.20 67.03 78.77/81.73/78.00 79.43 87.65/80.80/77.73 82.62

100

FedETF 33.12/63.52/20.94 37.33 92.02/69.20/54.33 70.14 93.92/74.80/59.33 74.32
+(FedReLa) 61.23/51.82/51.64 54.54 89.44/68.42/64.83 73.33 92.22/76.18/61.84 75.24

FedLOGE 36.73/38.13/42.72 39.55 89.13/70.03/64.52 73.56 92.37/74.87/67.50 77.17
+(FedReLa) 56.67/38.20/62.45 53.44 85.27/65.23/74.10 74.79 89.40/75.93/71.90 78.36

CIFAR-100

50

FedETF 55.80/47.74/29.09 44.11 67.81/49.53/25.78 47.32 71.41/53.72/26.18 46.01
+(FedReLa) 55.34/48.12/32.33 45.13 65.24/51.02/28.55 47.88 69.14/54.63/29.35 47.04

FedLOGE 37.30/43.67/37.12 39.34 58.45/47.97/32.71 46.09 53.38/45.36/32.12 47.12
+(FedReLa) 52.91/45.79/32.32 43.56 59.45/49.41/32.51 46.81 51.56/47.45/35.224 47.43

100

FedETF 54.70/45.11/18.1 36.82 67.22/50.79/20.30 42.30 71.82/52.21/20.60 42.61
+(FedReLa) 56.54/45.83/19.54 38.14 63.54/51.33/24.34 43.12 68.44/53.53/26.13 44.73

FedLOGE 28.03/40.37/25.85 30.84 54.89/48.03/26.07 40.51 68.67/51.46/24.70 43.53
+(FedReLa) 45.55/44.37/23.71 36.24 52.61/49.00/28.26 41.09 65.22/52.19/27.28 44.00

Table 2: Test accuracies (in %) of different methods on long-tailed CIFAR-10/100.

5 CONCLUSION

We propose FedReLa, a data-level approach for addressing class imbalance and data heterogeneity
in FL. By asymmetrically re-labeling local data by a feature-dependent label re-allocator, FedReLa
rectifies decision boundaries without relying on global class priors or additional communication.
Empirical results across step-wise and long-tailed settings demonstrate consistent improvements in
minority-class and overall accuracy over existing methods, especially under extreme heterogeneity.
FedReLa is easy to integrate into algorithmic methods, offering a practical solution for real-world FL.
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A TECHNICAL APPENDICES

Symbol Definition
1. Datasets & Sets
D Global dataset (union of all local datasets)
D(k) Local dataset of client k
D̃(k) Re-labeled local dataset of client k (by FedReLa)
X Feature space (x ∈ X ⊆ Rd)
Y Label space (Y = {1, 2, ..., C}, C: number of classes)
Y (k) Original label set of client k
Ỹ (k) Re-labeled label set of client k
I
(k)
i Index set of samples in D(k) with the same label as x(k)

i

2. Model & Parameters
θ Model parameter vector
θglobal
t Global model parameter at communication round t
θ(k) Local model parameter of client k
f(θ;x) Global model (maps feature x to posterior probabilities)
Trelabel Communication round for FedReLa’s one-shot re-labeling

3. Probability & Distribution
πj Global prior probability of class j (πj = Pr(Y = j))
π
(k)
j Local prior probability of class j on client k

π
[w]
j Weighted aggregated prior of class j (server-side)

ηj(x) Global posterior probability of class j given x

η
(k)
j (x) Local posterior probability of class j given x on client k
η̃
(k)
j (x) Posterior probability of class j on D̃(k)

η̃
[w]
j (x) Aggregated posterior probability of class j (server-side)
Pj(x) Class-conditional distribution of X|Y = j

P
(k)
j (x) Local class-conditional distribution of X|Y = j on client k

4. FedReLa Core Parameters
ρ
(k)
ℓ→j(x) Re-labeling probability from local majority class ℓ to local minority class j on client k

ρ
(k)
j→ℓ(x) Re-labeling probability from class j to ℓ on client k (set to 0)

Q(k) Posterior probability matrix of D(k) (|D(k)| × C)
z
(k)
i Class-wise z-score vector of sample x

(k)
i on client k

µ
(k)
i Class-wise mean of posterior probabilities (for z-score)

σ
(k)
i Class-wise std of posterior probabilities (for z-score)

t
(k)
re Client-specific re-labeling threshold (tunable via τ )
ϖ

(k)
j Class-wise reweighting vector (from local class priors π(k))

n
(k)
Y Class-wise sample count vector of D(k)

τ Hyperparameter controlling re-labeling strength (top-τ% z-scores)

5. Imbalance & Heterogeneity
IR(D) Global imbalance ratio (maxj πj/minj πj)
IF Imbalance factor (for long-tailed datasets)
α Heterogeneity control parameter (Latent Dirichlet Sampling)
K Number of clients in the federation
wk Aggregation weight of client k (FedAvg: wk = |D(k)|/|D|)
6. Decision Boundaries
Sj,ℓ Optimal Bayesian decision boundary between classes j and ℓ

S̃(k) Decision boundary of client k on re-labeled local dataset D̃(k)

Table 3: Notation Table: Key Symbols and Definitions
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Example 1. We use an extreme example to illustrate that the mismatches between global and local
imbalance ratios can amplify the bias in the aggregated decision boundary. Consider a binary
classification problem with two classes, j and ℓ, and two clients, k1 and k2. Assume that the global
class priors satisfy πℓ ≫ πj , where πj = mj/n, πℓ = mℓ/n and n = |D(k1)| + |D(k2)|. Here,
mj and mℓ, satisfying mj +mℓ = n, are the number of data points in class j and ℓ, respectively.
Suppose the local dataset D(k1) contains (mj − 1) samples from the global minority class j and one
sample from the global majority class ℓ, while the local dataset D(k2) contains (mℓ − 1) samples
from class ℓ and one sample from class j. The local decision boundaries on D(k1) and D(k2) are:{

x ∈ X :
Pj(x)

Pℓ(x)
=

1

mj − 1

}
and

{
x ∈ X :

Pj(x)

Pℓ(x)
= mℓ − 1

}
.

In FL, consider the global aggregated model η[w]
j (x) = wk1

η
(k1)
j (x) + wk2

η
(k2)
j (x).

Suppose the aggregation weights are chosen as wk1
∝ |D(k1)| and wk2

∝ |D(k2)|, which is widely
used in imbalanced classification in the literature. Since |D(k1)| = mj and |D(k2)| = mℓ, it follows
that wk1

= πj and wk2
= πℓ, implying wk1

≪ wk2
. In addition, the local imbalance ratios are

IR(D(k1)) = 1/(mj − 1) and IR(D(k2)) = mℓ − 1, so that IR(D(k1)) ≪ IR(D(k2)). Thus, the
decision boundary of the global aggregated model η[w]

j (x) is S
[w]
j,ℓ = {x ∈ X : Pj(x)/Pℓ(x) =

π
[w]
ℓ /π

[w]
j } with π

[w]
ℓ = πj(mj −1)/mj +πℓ/mℓ and π

[w]
j = πj/mj +πℓ(mℓ−1)/mℓ. As a result,

during model aggregation in each communication round, the global imbalance is exacerbated due
to the dominant contribution from client k2, amplified by both its large aggregation weight wk2 and
local imbalance ratio IR(D(k2)).

Even under the uniform averaging with wk1
= wk2

= 1/2, the decision boundary of the global
aggregated model η[w]

j (x) is S
[w]
j,ℓ = {x ∈ X : Pj(x)/Pℓ(x) = π

[w]
ℓ /π

[w]
j } with π

[w]
ℓ = (mj −

1)/(2mj)+1/(2mℓ) and π
[w]
j = 1/(2mj)+ (mℓ− 1)/(2mℓ). The decision boundary is still biased

due to the global imbalance.

Supplementary Explanation on Aggregated Model Representation To analyze how re-labeling
influences the global decision boundary, we adopt the global model defined via posterior aggregation
(i.e.,

∑K
k=1 wkf(x, θ

(k)), where f(x, θ(k)) denotes the local posterior of client k with parameter

θ(k)) instead of parameter aggregation (i.e., f
(
x,
∑K

k=1 wkθ
(k)
)

). This choice is motivated by two
key considerations: (1) the posterior-aggregated form renders changes in the decision boundary more
explicit and easier to quantify, which aligns with our focus on analyzing re-labeling’s effect; (2) it is
consistent with statistical model averaging ideas, providing a flexible framework for heterogeneous
FL scenarios.

No specific constraints are imposed on the aggregation weights wk, and our only assumption is
that the aggregated global model can be expressed as a weighted average of local posteriors, which
we explicitly formalize. Furthermore, the two aggregation paradigms (parameter-aggregated and
posterior-aggregated) are approximately equivalent under mild regularity conditions, as justified by
first-order Taylor expansion:

Assume all local parameters θ(k) are sufficiently close to a common reference value θ0 (a reasonable
condition in late-stage FL training when models converge). Expanding both models around θ0:

1. For the parameter-aggregated global model:

f

(
x,

K∑
k=1

wkθ
(k)

)
≈ f(x, θ0) +

∂f(x, θ)

∂θ

∣∣∣∣
θ=θ0

K∑
k=1

wk(θ
(k) − θ0)

= f(x, θ0) +

K∑
k=1

wk
∂f(x, θ)

∂θ

∣∣∣∣
θ=θ0

(θ(k) − θ0)
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2. For the posterior-aggregated global model (noting
∑K

k=1 wk = 1):
K∑

k=1

wkf(x, θ
(k)) ≈ f(x, θ0) +

∂f(x, θ)

∂θ

∣∣∣∣
θ=θ0

(
K∑

k=1

wkθ
(k) − θ0

)

= f(x, θ0) +

K∑
k=1

wk
∂f(x, θ)

∂θ

∣∣∣∣
θ=θ0

(θ(k) − θ0)

The two expansions are identical, confirming that the parameter-aggregated and posterior-aggregated
global models are first-order equivalent when local parameters are sufficiently close. This justifies
our use of the posterior-aggregated form for analyzing decision boundary changes, as it does not
introduce substantive deviations from standard parameter-aggregated FL while offering greater
analytical tractability.

A.1 PROOF OF LEMMA 2

Proof. As we are considering the binary classification setting, the optimal Bayesian decision boundary
based on D̃(k) is

S̃(k) =
{
x∗ ∈ X : η̃

(k)
j (x)(x∗) = η̃

(k)
ℓ (x∗)

}
,

where
η̃
(k)
ℓ (x) = η

(k)
ℓ (x)[1− ρ

(k)
ℓ→j(x)] + η

(k)
j (x)ρ

(k)
j→ℓ(x).

Given the formulation of η̃(k)j (x), we need

η
(k)
j (x∗)[1− ρ

(k)
j→ℓ(x

∗)] + η
(k)
ℓ (x∗)ρ

(k)
ℓ→j(x

∗) = η
(k)
ℓ (x∗)[1− ρ

(k)
ℓ→j(x

∗)] + η
(k)
j (x∗)ρ

(k)
j→ℓ(x

∗),

which is equivalent to

η
(k)
j (x∗)[1− 2ρ

(k)
j→ℓ(x

∗)] = η
(k)
ℓ (x∗)[1− 2ρ

(k)
ℓ→j(x

∗)].

Regarding the fact that η(k)j (x) = π
(k)
j Pj(x)/

∑
j0∈Y π

(k)
j0

Pj0(x), the above equation can be simpli-
fied to

π
(k)
j Pj(x

∗)[1− 2ρ
(k)
j→ℓ(x

∗)] = π
(k)
ℓ Pℓ(x

∗)[1− 2ρ
(k)
ℓ→j(x

∗)],

and the final result follows immediately.

A.2 PROOF OF LEMMA 3

Proof. The global aggregated model satisfies

η̃
[w]
j (x) =

K∑
k=1

wkη̃
(k)
j (x) =

K∑
k=1

wk

{
η
(k)
j (x) + η

(k)
ℓ (x)ρ

(k)
ℓ→j(x)

}
and

η̃
[w]
ℓ (x) =

K∑
k=1

wkη̃
(k)
ℓ (x) =

K∑
k=1

wkη
(k)
ℓ (x)[1− ρ

(k)
ℓ→j(x)].

Then, for x∗ on the Bayesian decision boundary, it requires that

η̃
[w]
j (x∗) =

K∑
k=1

wk

{
η
(k)
j (x∗) + η

(k)
ℓ (x∗)ρ

(k)
ℓ→j(x

∗)
}

=

K∑
k=1

wkη
(k)
ℓ (x∗)[1− ρ

(k)
ℓ→j(x

∗)] = η̃
[w]
ℓ (x∗),

which can be simplified to
K∑

k=1

wkη
(k)
j (x∗) =

K∑
k=1

wkη
(k)
ℓ (x∗)[1− 2ρ

(k)
ℓ→j(x

∗)].

Applying η
(k)
j (x) = π

(k)
j Pj(x)/

∑
j0∈Y π

(k)
j0

Pj0(x) again, we get the desired result.
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B ADDITIONAL EXPERIMENT DETAILS

The code is available at: https://github.com/anonymous2025988/FedReLa.git.

Training details. To ensure fair comparison, all global models are trained until full convergence
with communication rounds adapted per method. Specifically, baseline methods require 500 rounds
for convergence, while CLIMB, which introduces class-wise loss reweighting parameters, demands
extended training: 2000 rounds on Fashion-MNIST and CIFAR-10, and 1000 rounds on CIFAR-100.
As we do not intend to compare these algorithm-level methods, we use the SGD optimizer with
the same weight decay and momentum as they reported in their original implementations: weight
decay of 0.00001 and momentum 0.9 for all methods except long-tailed-oriented methods FedETF
and FedLOGE, which follow their original implementations with zero weight decay and momentum
0.5. All experiments were conducted with three distinct random seeds, and their average results are
reported in the tables.

Evaluation metrics. A balanced test dataset is used to evaluate the overall accuracy performance
of the global model. Additionally, the average test accuracy for both minority and majority classes is
reported for the step-wise imbalanced setting. For long-tailed datasets, we report the accuracy over
head, medium, and tail classes as Many-, Medium-, and Few-shot, respectively.

Adhering to the long-tailed federated learning protocol established in (Xiao et al., 2024), we categorize
classes into three disjoint subsets based on sample size distribution: head (majority), medium, and tail
(minority) class groups, constituting 75%, 20%, and 5% of total samples, respectively. For long-tailed
CIFAR-10, we define classes {0, 1, 2} as head classes, {3, 4, 5} as medium classes, and {6, 7, 8, 9}
as tail classes. On long-tailed CIFAR-100, this partitioning extends with classes 0-47 forming the
head partition, 48-83 as medium, and 84-99 as tail. To evaluate model performance through stratified
accuracy metrics, we report Head/Medium/Tail-shot accuracies corresponding to these partitions in
Table 2.

B.1 COMPUTATIONAL COST

All experiments were conducted on a Spartan cluster on a single node equipped with one NVIDIA
H100 GPUs (80GB memory) 10GB RAM with 12 CPU cores.

Before approximating the computational cost of FedReLa, we would like to clarify the fundamental
difference between extra Local training and extra local computation:

1. Local training overhead involves gradient updates for new parameters or module. For
example, methods that introduce new optimizable parameters (e.g., CLIMB, FedLOGE, etc.)
require extra per-round local training overhead to update the gradients of these parameters.

2. ONE-TIME Model Inference: FedReLa only performs one-time model inference during
a single round to obtain posterior probabilities, without updating the model or gradients.
Therefore, we describe FedReLa as operating "without extra local training."

Approximate one-time computation cost of FedReLa. The strength of FedReLa as a data-level
method lies in its requirement for only a single computational step during a single round to refine the
imbalanced data distribution, thereby achieving long-lasting improvements in model performance.
The core operation of FedReLa is model inference (forward pass) to obtain the local posterior
probability matrix Q(k). We approximately consider

FLOPtrain = FLOPforward + FLOPbackpropagation,

FLOPbackpropagation ≈ 2× FLOPforward.

Thus, the FLOPs required for Q(k) = f(θglobal
Trelabel

;X(k)) can be approximatly quantified with:

FLOPQ(k) = FLOPforward ≈
1

3
FLOPtrain.

The total computation cost of FedReLa is approximately 1/3 of the computation cost of a single
training round. This cost is One-Time only during the single round of Trelabel.
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Runtime comparison. Unlike methods requiring from-scratch training, FedReLa enhances classi-
fier performance solely through one-shot re-labeling during the fine-tuning phase. Consequently, its
computational overhead is primarily determined by the base federated learning algorithm it augments.
For instance, each communication round of FedLOGE requires an average of 72.36 seconds on
CIFAR100. When FedReLa enhances FedLOGE with a one-shot computation for label re-allocator,
the average communication round time increased to 73.06 seconds, which is negligible.

B.2 ADDITIONAL EXPERIMENT RESULTS

Additional experiment on step-wise setting with resent SOTAs. Although recent methods, such
as FedETF (Li et al., 2023) and FedLOGE (Xiao et al., 2024), are long-tail-oriented approaches, we
conducted additional experiments on CIFAR-10 with step-wise imbalance. The results in Table 4
demonstrate that FedReLa still achieves SOTA performance on step-wise imbalance. FedReLa brings
significant improvements, especially under higher imbalance ratios and more heterogeneous data.

α = 0.3 α = 0.1
IR Method Minority/Majority Overall Minority/Majority Overall

10 FedETF 74.21/93.79 84.01 44.14/96.46 70.30
+FedReLa 82.11/91.72 86.92 68.28/84.52 76.43
FedLOGE 80.49/92.12 86.32 61.57/86.05 73.81
+FedReLa 85.81/89.73 87.77 68.7/81.64 75.17

20 FedETF 69.31/87.73 78.52 43.65/72.55 58.10
+FedReLa 82.75/83.74 83.11 67.85/75.75 71.82
FedLOGE 79.30/85.9 82.60 45.61/63.79 54.70
+FedReLa 79.60/84.21 81.90 59.18/70.73 64.95

Table 4: Performance on Step-wise-imbalanced CIFAR10

Additional experiment on higher proportion of minority classes. In addition to 10% and 30%
minority classes for step-wise-imbalanced datasets, we further extend the proportion to 50% to
examine the consistency of enhancement from FedReLa on extreme conditions. As demonstrated in
Table 5, FedReLa delivers significant performance gains even in the extreme case where minority
classes constitute 50% of the data. Without the FedReLa boost, baseline methods exhibit pronounced
accuracy degradation as the proportion of the minority class increases. Our proposed label re-allocator
effectively mitigates this performance deterioration while simultaneously enhancing overall accuracy.
These results strongly validate FedReLa’s capability to provide robust performance enhancements for
federated learning methods that face substantial minority class presence.

IR=10 with 50% Minority Classes
Fashion-MNIST CIFAR-10 CIFAR-100

Method Minority Overall Minority Overall Minority Overall
FedAvg 63.44(77.10)+13.66 78.29(82.90)+4.61 16.94(44.42)+27.48 48.67(56.72)+8.05 12.17(25.27)+13.10 42.48(46.76)+4.28
FedProx 63.78(77.24)+13.46 78.62(82.62)+4.00 16.32(43.54)+27.22 48.20(56.52)+8.32 12.83(23.13)+10.30 41.97(46.28)+4.31
FedNova 77.60(80.50)+2.90 81.89(83.30)+1.41 23.47(39.20)+15.73 52.70(55.65)+2.95 13.53(23.23)+9.70 45.70(47.57)+1.87
MOON 64.68(76.60)+11.92 79.22(82.74)+3.52 11.20(38.54)+27.34 46.35(54.69)+8.34 11.17(24.23)+13.06 42.53(46.56)+4.03
CLIMB 75.47(79.90)+4.43 85.22(87.14)+1.92 31.35(42.85)+11.50 69.68(72.01)+2.33 11.00(24.48)+13.48 30.71(34.79)+4.08

Table 5: Test accuracies (in %) of different methods on step-wise imbalance datasets un-
der IR=10 with 50% minority classes at heterogeneity level α = 0.3 in the format of
original (+FedReLa) +enhancement

.

Large-Scale Dataset Validation on ImageNet-LT. We conduct supplementary experiments on
ImageNet-LT with data heterogeneity level α = 0.1, 20 clients, and 0.4 participation fraction.
Another recent SOTA method, FedYoYo (Yan et al., 2025), is used to demonstrate the algorithmic
agnosticism of FedReLa. Although FedYoYo requires each client to upload the estimated local
distribution for aggregation on the server, making it fall outside the scope of our core comparisons
(raises concerns on data privacy in federated learning), we still include this experiment to demonstrate
that FedReLa can consistently enhance performance even when integrated with methods that rely
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on extra privacy-sensitive information. We focus on evaluating whether FedReLa can maintain
performance gains as it adapts to large-scale data distributions.

Method Overall Accuracy (%) H/M/T Accuracy (%)
FedYoYo (Yan et al., 2025) 38.15 41.19/39.42/31.08
+FedReLa 38.78 40.73/40.06/33.71
FedLoGe (Xiao et al., 2024) 30.52 46.29/28.01/15.02
+FedReLa 31.70 45.43/30.44/18.02

Table 6: Performance comparison on ImageNet-LT (H=Head, M=Medium, T=Tail). FedReLa
enhances tail-class accuracy by 2.63% without sacrificing overall performance.

The result above confirms that FedReLa’s sample-level re-labeling mechanism—calibrated via class-
wise z-score standardization—avoids the scalability bottlenecks of feature-space methods (e.g.,
SMOTE) and maintains effectiveness on large-scale datasets. The consistency of performance gains
validates FedReLa’s inherent scalability for real-world large-scale federated learning scenarios.

Large number of clients on CIFAR100-LT We extend CIFAR100-LT experiments to 50 and
100 clients, with an imbalance factor imb_factor = 100 and data heterogeneity α = 0.1. The
participation fractions are set to 0.2 and 0.1, respectively. As the number of clients increases, class
absences become increasingly severe. This setup aims to verify FedReLa’s robustness to extreme
class imbalance and its compatibility with diverse algorithmic approaches.

Method 50 Clients 100 Clients
Overall Accuracy (%) H/M/F Accuracy (%) Overall Accuracy (%) H/M/F Accuracy (%)

FedLC (Zhang et al., 2022) 32.81 56.20/32.42/9.74 23.72 46.41/20.74/4.23
+FedReLa 34.76 49.92/35.24/17.21 25.13 39.82/28.34/7.02
FedYoYo (Yan et al., 2025) 40.89 54.32/41.95/24.12 30.73 34.12/29.64/27.92
+FedReLa 41.31 53.62/42.24/25.91 32.13 33.90/32.72/29.22
FedETF 31.89 60.67/40.45/9.22 28.71 59.00/33.72/9.73
+FedReLa 33.94 55.12/43.61/15.12 31.50 52.21/38.73/16.53
FedLoGe 34.83 57.12/42.21/17.29 33.08 62.71/38.78/13.75
+FedReLa 35.62 57.01/44.32/18.00 34.32 59.90/42.22/16.00

Table 7: Performance comparison on CIFAR100-LT with 50/100 clients (H=Head, M=Medium,
F=Few-shot). FedReLa consistently boosts few-shot accuracy across baselines.

Table 7 demonstrates three key conclusions: (1) FedReLa delivers consistent enhancements for all
baselines; (2) Even with 100 clients (a large-scale client setup), FedReLa maintains performance
gains, validating its scalability to distributed environments with numerous clients and its robustness to
severe class absence; (3) The consistent improvements across diverse algorithmic paradigms further
confirm FedReLa’s algorithm-agnostic property as a data-level plug-in.

Tail-Class Accuracy Gain on CIFAR10-LT Under Extreme Heterogeneity Under α = 0.1,
70% of tail classes are absent from clients, simulating extreme real-world heterogeneity.

Method Imbalance Factor (IF) Tail-Class Accuracy Gain (%)
+FedReLa α = 0.1 α = 0.3 α = 10

FedETF 50 +36.49 +5.52 +3.68
FedETF 100 +30.70 +10.50 +2.51

FedLoGe 50 +14.97 +3.43 +5.76
FedLoGe 100 +19.73 +9.58 +4.40

Table 8: Tail-class accuracy gain of FedReLa on CIFAR10-LT. Improvements are more significant
under extreme heterogeneity (α = 0.1).
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As presented in Table 8, FedReLa’s tail-class gains are most pronounced under extreme heterogeneity
(α = 0.1). In contrast, gains are smaller under mild heterogeneity (α = 10, close to IID). This result
confirms that FedReLa is designed explicitly for heterogeneous scenarios with severe class absence:
its deferred re-labeling strategy and calibrated posterior estimation enable effective identification of
majority-class samples similar to absent minorities, avoiding blind re-labeling and delivering robust
performance gains.

B.3 SENSITIVITY ANALYSIS

We perform the sensitivity analysis of re-labeling threshold t
(k)
re on long-tailed CIFAR-10 with

IF = 50. On each client, the class-wise threshold t
(k)
re is determined by the top-τ % of z-scores. The

threshold t
(k)
re controls the re-labeling strength (the amount of re-labeled samples) as demonstrated in

Figure 2(a). This serves as a safeguard to regulate the number of samples re-labeled by FedReLa.
For instance, using the top 1% z-score as the re-labeling threshold limits the number of re-labeled
samples to be less than 1% of local data. Figure 2(a) shows that the amount of re-labeled samples
scales linearly with top-τ percentiles.

In Figure 2(b), when τ ≤ 5, tail-class performance gains outweigh head-class losses. When τ > 5,
medium-class accuracy steadily improves and head-class accuracy continues to decline slowly, while
tail-class accuracy remains relatively stable. The effect on performance of turning t

(k)
re up reveals

that: (1) Initially, re-labeled head-class samples with a small τ mostly invade tail-class feature space.
(2) After re-labeling these critical samples, further label re-allocating relieves the head-class invasion
of the medium-class feature space. (3) FedReLa prioritizes re-labeling samples that most severely
invade tail-class regions. We observe similar results on the CIFAR100-LT (Table 9 in the appendix).
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Figure 2: Sensitive analysis respect to τ , which controls the re-labeling strength.

The threshold-tuning capability allows FedReLa to deliver customized class-wise enhancement,
prioritizing tail-class gains (τ = 5) while preserving overall performance. This strategic trade-off
(suppressing overprivileged head classes to boost tails) is a unique advantage over static algorithm-
level approaches (Li et al., 2023; Xiao et al., 2024), as evidenced by the accuracy curves surpassing
the baseline (dashed lines) in critical regions. In practice, we can tune the trade-off through τ
depending on how much importance we place on minority-class performance.

Recall the conclusion from observations on CIFAR-10-LT: (1) Initially, re-labeled head-class samples
with a small k mostly invade tail-class feature space. (2) After re-labeling these critical samples,
further label re-allocating relieves the head-class invasion of the medium-class feature space. (3)
FedReLa prioritizes re-labeling samples that most severely invade tail-class regions. We observe
similar results on the CIFAR100-LT dataset, which are presented in Table 9. We anticipate that the
optimal parameters will exhibit slight differences across datasets with varying posterior probability
distributions and degrees of class overlap. When τ = 3, FedReLa achieves maximum performance
gain on CIFAR-100-LT, where the degree of class overlap is more severe. Although the parameter
range 1-20% consistently provides performance gain on both CIFAR-10 and CIFAR-100, with
the principle of minimizing data-editing, we recommend using slightly conservative relabeling
strength (3%-5%).
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Table 9: Sensitivity analysis on CIFAR-100-LT

top-τ % Original 1 3 5 7 9 15 20
Overall 44.1 44.6 45.1 44.7 44.6 44.9 44.5 44.6
Many-shot 56.4 57.2 58.5 56.6 57.1 56.8 56.2 56.0
Medium-shot 49.2 49.5 48.8 50.0 49.8 49.4 50.7 51.1
Few-shot 26.6 27.4 28.4 28.0 27.5 28.9 27.6 26.8
Relabeled 0 51 157 194 216 276 317 364

The threshold-tuning capability enables FedReLa to deliver customized class-wise enhancements,
prioritizing tail-class gains while preserving overall performance. This strategic trade-off (suppressing
overprivileged head classes to boost tails) is a unique advantage over static algorithm-level approaches
(Li et al., 2023; Xiao et al., 2024), as evidenced by the accuracy curves surpassing the baseline (dashed
lines) in critical regions. Again, in practice, we can tune the trade-off through t

(k)
re by τ depending on

how much importance we place on minority-class performance.

C ABLATION STUDY

Ablation study on the importance of Z-score standardization Z-score standardization is critical
for enabling FedReLa to utilize the underestimated posterior probabilities output by biased models.
To validate its necessity, we conducted ablation experiments on CIFAR-10-LT (α = 0.1, IF = 50)
without standardization, and directly using posterior probabilities as flip probabilities.

Method Overall Many-shot Medium-shot Few-shot
FedLOGE 57.5 83.0 61.1 19.8
+FedReLa 70.0 76.0 72.7 59.4
+FedReLa w/o Z-score 59.7 82.1 72.3 17.4

Table 10: Performance of FedReLa with/without Z-score Standardization

Without z-score standardization, the Few-shot performance fails to show improvement. This is
attributed to the fact that the posterior probabilities are underestimated by the biased global model for
tail classes and are typically extremely small. Directly utilizing them as flipping probabilities hinders
the effective conversion of these samples into global minority classes. Meanwhile, the Medium-shot
performance exhibits improvement as these classes possess more samples than tail classes, resulting
in the model underestimating their posterior probabilities to a lesser extent. Thus, head-class samples
with similar features are preferentially flipped to the medium class, rather than to the tail classes with
tiny posterior probabilities.

Applying z-score standardization to the underestimated posterior probabilities enables a balanced
label re-allocating behavior, which achieves a better balanced trade-off among the performance of
Head, Medium, and Tail classes. Ultimately, this contributes to the superior Overall accuracy.

Ablation study on data-heterogeneity. To evaluate FedReLa’s performance under higher imbal-
ance ratios across varying degrees of data heterogeneity, we increased the imbalance ratio (IR) to 20
and the number of clients to K = 100 on the Fashion-MNIST dataset with 3 minority classes.

Results in Table 11 depict consistent performance improvements by FedReLa across different levels
of data heterogeneity on the Fashion-MNIST dataset for each algorithm-level method. This highlights
the robustness of FedReLa in mitigating the impact of data heterogeneity through enhancements to
both data and classifiers.

Improved percentage shows that the improvement achieved by FedReLa increases with higher data
heterogeneity, indicating that FedReLa-boosted models exhibit significantly improved robustness to
heterogeneous data distributions compared to baseline methods.

As α decreases (i.e., heterogeneity increases), FedReLa demonstrates progressively greater im-
provements in both minority-class accuracy (+8.13% to +35.40%) and overall accuracy (+1.83%
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Original (+FedReLa) Performance Improved Percentage (%)
Minority Accuracy Overall Accuracy Minority Accuracy Overall Accuracy

α = 10
FedAvg 51.70 (81.83) 79.57 (84.56) +30.13 +4.99
FedProx 51.57 (81.83) 79.35 (84.40) +30.26 +5.05
FedNova 52.00 (82.27) 79.35 (84.61) +30.27 +5.26
MOON 45.77 (81.17) 78.35 (85.60) +35.40 +7.25
CLIMB 55.80 (69.57) 82.39 (86.14) +13.77 +3.75

α = 5
FedAvg 45.27 (78.53) 77.80 (84.42) +33.26 +6.62
FedProx 45.57 (78.03) 77.90 (84.27) +32.46 +6.37
FedNova 46.10 (78.60) 78.18 (84.30) +32.50 +6.12
MOON 45.57 (79.73) 78.21 (85.51) +34.16 +7.30
CLIMB 56.10 (69.53) 82.67 (86.35) +13.43 +3.68

α = 1
FedAvg 50.67 (75.57) 79.06 (84.12) +24.90 +5.06
FedProx 50.10 (74.60) 78.95 (84.25) +24.50 +5.30
FedNova 50.10 (75.93) 78.91 (84.47) +25.83 +5.56
MOON 44.87 (74.97) 77.94 (84.95) +30.10 +7.01
CLIMB 61.17(69.3) 83.78(85.93) +8.13 +2.15

α = 0.3
FedAvg 50.50 (75.70) 78.46 (83.84) +25.20 +5.38
FedProx 50.00 (74.90) 78.48 (83.63) +24.90 +5.15
FedNova 55.03 (77.90) 76.67 (84.46) +22.87 +7.79
MOON 44.43(74.77) 77.12(84.47) +30.34 +7.35
CLIMB 53.43 (64.70) 81.42 (84.56) +11.27 +3.14

α = 0.1
FedAvg 33.83 (67.60) 68.43 (79.25) +33.77 +10.82
FedProx 34.40 (68.27) 69.37 (79.35) +33.87 +9.98
FedNova 70.43 (82.83) 74.25 (82.10) +12.40 +7.85
MOON 22.59 (45.82) 67.44 (77.88) +23.23 +10.44
CLIMB 56.97 (65.20) 81.78 (83.61) +8.23 +1.83

Table 11: Ablation study on α. The overall accuracy and average accuracy of minority classes (in
%) on step-wise Fashion-MNIST with 3 minority classes (30%) for IR = 20 with 100 clients. The
results in brackets show the FedReLa enhanced performance.

to +10.82%), with the most significant gains observed under extreme non-IID scenarios (α = 0.1).
While baseline methods exhibit varied sensitivity to heterogeneity, CLIMB shows inherent robustness
but limited enhancement headroom, and MOON suffers significant performance drops at α = 0.1.
Yet FedNLR consistently mitigates these limitations through adaptive calibration, offering consistent
enhancement. Notably, FedReLa reduces minority-class accuracy disparities by 23-37% across
α ≤ 1 while maintaining global model stability, particularly excelling in balancing the accuracy
tradeoff between dominant and rare classes. These results position FedReLa as a versatile solution
for real-world federated learning deployments, offering three key advantages: 1) enhanced robustness
to severe data heterogeneity without requiring client-specific tuning, 2) compatibility with existing
aggregation frameworks, and 3) simultaneous optimization of both class-balanced and global model
performance in non-IID environments.
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