

000 001 002 003 004 005 FEDRELA: IMBALANCED FEDERATED LEARNING VIA 006 RE-LABELING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 Federated learning has emerged as the foremost approach for decentralized model
026 training with privacy preserving. The global class imbalance and cross-client
027 data heterogeneity naturally coexist, and the mismatch between local and global
028 imbalances exacerbates the performance degradation of the aggregated model. The
029 agnosticism of global minority classes poses significant challenges for data-level
030 methods, especially under extreme conditions with severe class deficiencies across
031 clients. In this paper, we propose FedReLa, a novel data-level approach that tackles
032 the coexistence of data heterogeneity and class imbalance in federated learning.
033 By re-labeling samples with a feature-dependent label re-allocator, FedReLa corrects
034 the biased decision boundaries without requiring knowledge of the global
035 class distribution. This modular, model-agnostic approach can be integrated with
036 algorithmic methods to offer consistent improvements without any extra communi-
037 cation burden. Through extensive experiments, our method significantly improves
038 the accuracy of minority classes and the overall accuracy on step-wise-imbalanced
039 and long-tailed datasets, outperforming the previous state of the art.
040
041

1 INTRODUCTION

042 Federated learning (FL) facilitates collaborative model training across distributed clients without
043 exchanging raw data, thereby preserving data privacy. Each client trains models locally on private
044 data and uploads only parameter updates to a global server. However, due to variations in client
045 environments such as differences in the received data, participation capacity, and geographic or
046 demographic differences, among others, local data often exhibit significant heterogeneity, leading to
047 disparate parameter updates and suboptimal global model convergence (Zhao et al., 2018).

048 Imbalanced data, where some classes have many samples while others have few, is common in real-
049 world applications (Azaria et al., 2014; Fotouhi et al., 2019; Shangi, 2020) and even more prevalent
050 in FL. Due to client-level data heterogeneity, two types of imbalance often coexist: local imbalance
051 (within individual clients) and global imbalance (across the entire federation), both of which pose
052 challenges for FL classification. Prior research has primarily addressed local imbalance through
053 improved aggregation (McMahan et al., 2017; Wang et al., 2020), robust local training (Acar et al.,
054 2021; Karimireddy et al., 2019; Li et al., 2021; 2020), selective client participation (Chen et al., 2020;
055 Fraboni et al., 2021), or architectural enhancements (Duan et al., 2019). However, these approaches
056 typically assume all the classes are equally represented, a condition rarely met in practice.
057

058 Recent works focus on more realistic scenarios where global class imbalance (e.g., step-wise or
059 long-tailed distributions) *coexists* with data heterogeneity. Early works such as Ratio-loss (Wang
060 et al., 2021) and CLIMB (Shen et al., 2021) pioneered solutions for step-wise global imbalance under
061 non-IID (not independent and identically distributed) client data. Subsequent studies (Chen & Chao,
062 2021b; Li et al., 2023; Shang et al., 2022; Xiao et al., 2024; 2023) further tackled federated long-tailed
063 (Fed-LT) learning. While these works acknowledge both global class imbalance and heterogeneity,
064 they primarily focus on algorithm-level classifier enhancements (e.g., tailored aggregation rules or
065 client-specific optimization). *Existing data-level methods typically rely on class prior information.*
066 For instance, feature-level SMOTE techniques (Chawla et al., 2002b) require prior knowledge of
067 which classes are majority or minority to synthesize new samples. *In FL, however, such information*
068 *is often unavailable due to privacy constraints, especially in the presence of global-local imbalance*
069 *mismatches.* Although in some domain-specific scenarios (e.g., fraud detection (Shangi, 2020) or

rare disease diagnosis (Tan et al., 2023)), the minority class can be identified due to its natural rarity, server data heterogeneity often results in the absence of minority classes in many clients. Such class absence makes it impossible to synthesize minority class samples that do not exist locally. *Therefore, data-level approaches without access to global distribution statistics remain underdeveloped.*

This paper addresses one of the most prevalent yet challenging scenarios in FL: improving FL under the coexistence of agnostic *data heterogeneity* and *mismatched global-local class imbalance*, without *additional communication cost and extra local training burden caused by additional optimizable model parameters*. We propose a novel data-level approach that re-labels local data through a carefully designed feature-dependent label re-allocator. Specifically, our label reallocating mechanism re-labels the majority class samples that intrude into the global minority-class feature spaces, thereby implicitly enlarging the minority-class decision boundary. The key innovation lies in the design of our label re-allocator, which leverages the knowledge of the minority class from the global model to asymmetrically re-label majority class samples based on their posterior probabilities estimated from local data. Unlike traditional data-level augmentation methods, such as SMOTE-based (Chawla et al., 2002b; He et al., 2008) or mixup-based approaches (Chou et al., 2020; Ramasubramanian et al., 2024), our method operates purely in the label space, without synthesizing new features.

We present FedReLa, a model-agnostic approach for addressing heterogeneous, class-imbalanced data in **Federated Learning** via **Re-Labeling**, with three defining characteristics:

(i) **Model-Data Agnosticism:** Unlike methods that rely on balanced auxiliary data or explicit class priors (Shingi, 2020; Wang et al., 2021), FedReLa is agnostic to model architecture, data format, and class distribution and inherently improves data quality without domain-specific constraints.

(ii) **Nearly-Zero-Cost Plug-in Adaptation:** Unlike prior methods (Duan et al., 2019; Shang et al., 2022; Shen et al., 2021; Xiao et al., 2024) that introduce additional communicational or training cost from optimizing and uploading newly introduced parameters or modules, FedReLa re-purposes the global model as a label re-allocator without introducing additional trainable parameters, requiring no extra training or communicational burden. The only computational cost of FedReLa is the one-time model inference required to obtain posterior probabilities, which can be naturally collected during training epochs. Such a one-shot computation is negligible compared to the whole training process (see Appendix B.1). Furthermore, FedReLa efficiently balances the global classifier in the fine-tune stage without retraining the model, while all computation and re-labeling are done locally in parallel.

(iii) **Universal Composability:** Operating solely in the label space, FedReLa integrates seamlessly with algorithm-level approaches and delivers consistent performance gains.

We evaluate the performance of FedReLa through extensive experiments on Fashion-MNIST, CIFAR-10, and CIFAR-100 under both step-wise and long-tailed class distributions, across varying degrees of data heterogeneity and imbalance ratios. FedReLa consistently enhances prior algorithm-level methods, achieving state-of-the-art performance with negligible additional computation cost, while avoiding extra communication or parameter training overhead. Notably, in the most extreme cases, FedReLa boosts minority/tail-class accuracy by up to 38.30% (step-wise) and 30.7% (long-tailed) while maintaining overall accuracy superiority (shown in Tables 1 and 2 in Section 4). These results conclusively demonstrate the superiority and applicability of FedReLa in practical FL deployments.

Related works. (1) *Centralized imbalance learning on decentralized data.* Imbalance learning has seen significant success in centralized settings. The model-agnostic advantages of data-level methods are utilized in data preprocessing to augment features of minority class samples by either generating new samples via generative models (Odena et al., 2017; Mariani et al., 2018) and SMOTE-based methods (Chawla et al., 2002a; Han et al., 2005; He et al., 2008) or mixing existing sample features by mixup-based approaches (Chou et al., 2020; Ramasubramanian et al., 2024; Zhang et al., 2017). However, in heterogeneous decentralized data scenarios, the effectiveness of augmenting local data of these methods becomes very limited. Data heterogeneity, limited seed samples, and class absence on local clients severely restrict their ability to generate minority class samples. Without access to global class priors, ReMix (Chou et al., 2020) fails to identify global minority classes for proper adjustment of label mixup strength, while SelMix (Ramasubramanian et al., 2024) faces practical constraints due to its reliance on auxiliary balanced validation data, which in many cases is scarce. Similarly, algorithm-level methods like loss reweighting (Tan et al., 2020) or logit adjustments (Li et al., 2022) also fall short in FL due to the lack of access to the global label distribution.

108 (2) *Federated learning with data heterogeneity*. Three pivotal components in federated learning
 109 frameworks critically influence global model performance: client update, model aggregation, and
 110 local datasets. Numerous FL methods have been developed to address local data heterogeneity and
 111 imbalance, primarily focusing on client update and model aggregation to mitigate the adverse effects
 112 of skewed local datasets. FedAvg (McMahan et al., 2017) and FedNova (Wang et al., 2020) pioneered
 113 weighted averaging during model aggregation based on local dataset sizes or batch sizes. In the
 114 paradigm of modifying client update, regularization terms are incorporated into loss functions to
 115 penalize discrepancies between global and local models (Li et al., 2021; 2020) or constrain inter-round
 116 model divergence (Acar et al., 2021). SCAFFOLD (Karimireddy et al., 2019) introduced control
 117 variates to correct biased local gradients. However, these methods exhibit suboptimal performance on
 118 global minority/tail classes, as they primarily address local imbalance induced by data heterogeneity
 119 while neglecting global class imbalance.

120 (3) *Data heterogeneity with global class imbalance*. Several approaches have adapted loss reweighting
 121 strategies to address global imbalance. Ratio-Loss (Wang et al., 2021) estimates global class priors
 122 using an auxiliary balanced dataset. To eliminate the reliance on auxiliary data, CLIMB (Shen et al.,
 123 2021) optimizes the local model with additional learnable loss-weighting parameters, but increases
 124 the local training workload and communication cost. Recent studies extend this problem to long-tailed
 125 distributions. CReFF (Shang et al., 2022) enhances tail-class performance by retraining classifiers
 126 with aggregated class-specific features, consequently introducing additional local training overhead
 127 and doubled communication costs. FedROD (Chen & Chao, 2021b) further extends the scope to
 128 personalized FL by decoupling the training of the global and personalized models by separately
 129 optimizing the local models with balanced softmax and cross-entropy loss. However, blindly fully
 130 balancing the local loss may lead to a suboptimal global model. To improve the performance of both
 131 global and personalized models on long-tailed data, FedETF (Li et al., 2023) replaces the classifier
 132 head with a fixed ETF (Equiangular Tight Frame) to enforce the learning of balanced features.

133 Based on the observation that head classes tend to have larger weight norms, FedGraB (Xiao et al.,
 134 2023) rescales the gradients of local models by class weight norms to enhance tail-class performance.
 135 As a follow-up improvement of (Xiao et al., 2023), FedLOGE (Xiao et al., 2024) further integrates
 136 the idea of (Li et al., 2023) by rescaling the weights of the fixed ETF classifier using the weight
 137 norms of an auxiliary classifier head. Despite this, our empirical findings in Section 4 reveal that
 138 weight norms become unreliable under high heterogeneity.

139 **Motivations.** Existing methods tackle data imbalance through algorithmic adjustments. Why not
 140 improve local data quality directly? The reason is apparent: conventional data augmentation relies on
 141 global data distribution knowledge, which violates FL privacy constraints. The most relevant work,
 142 FedMix (Wicaksana et al., 2022), addresses heterogeneity using mixup. Still, it requires clients to
 143 share local data averages, which may require additional privacy-preserving mechanisms and increase
 144 the communication costs. To our knowledge, no existing data-level FL approach mitigates the
 145 coexistence of data heterogeneity and global imbalance while achieving: (1) not requiring auxiliary
 146 datasets, (2) having a negligible additional computation cost with zero communication cost and
 147 no extra parameter training burden, and finally (3) being agnostic to global data distribution. This
 148 motivates FedReLa, a data-level method that simultaneously achieves all of the above requirements
 149 while significantly improving performance under extreme conditions.

150 2 FEDERATED LEARNING VIA RE-LABELING: FEDRELA

151 In this section, we first analyze how local and global imbalances affect decision boundaries and why
 152 heterogeneity in globally imbalanced data exacerbates the performance impact of imbalance data on
 153 global models. We then introduce the label re-allocator and analyze how re-labeled samples implicitly
 154 rebalance the biased global decision boundaries.

155 2.1 PROBLEM FORMULATION

156 Consider a dataset \mathcal{D} that contains data pairs $(X, Y) \sim P(x, y)$, where $x \in \mathcal{X} \subseteq \mathbb{R}^d$, $y \in$
 157 $\mathcal{Y} = \{1, 2, \dots, C\}$ and P represents the joint distribution. Denote the conditional distribution
 158 $X | Y = j \sim P_j(x)$ and the prior probability $\Pr(Y = j) = \pi_j$ for class $j \in \mathcal{Y}$. The marginal
 159 distribution of X is then $P_X(x) = \sum_{j \in \mathcal{Y}} \pi_j P_j(x)$. Assume \mathcal{D} is imbalanced with global imbalance

ratio $\text{IR}(\mathcal{D}) = \max_{j \in \mathcal{Y}} \pi_j / \min_{j \in \mathcal{Y}} \pi_j \gg 1$. Let $\eta_j(x) = \Pr(Y = j \mid X = x) = \pi_j P_j(x) / P_X(x)$ be the global posterior probability. Recalling that the Bayesian decision theorem (Duda et al., 2006) defines the optimal estimated y^* of a sample x as $y^* = \text{argmax}_{j \in \mathcal{Y}} \eta_j(x)$, the following result holds.

Lemma 1. *The optimal Bayesian decision boundary between two classes $j \neq \ell \in \mathcal{Y}$ is*

$$S_{j,\ell} = \{x \in \mathcal{X} : \eta_j(x) = \eta_\ell(x) > \eta_{\ell'}(x) \ \forall \ell' \in \mathcal{Y} \setminus \{j, \ell\}\}.$$

For $x \in S_{j,\ell}$, it holds that $\eta_j(x) = \eta_\ell(x)$ implying $P_j(x)/P_\ell(x) = \pi_\ell/\pi_j$. Then for some minority class j and majority class ℓ with $\pi_j \ll \pi_\ell$, $S_{j,\ell}$ intrudes deeply into the minority class region, increasing the risk of misclassifying minority class samples. This motivates balancing the ratio π_ℓ/π_j to *shift the decision boundary back towards the majority class region*, thereby alleviating the adverse effects of class imbalance.

In FL, the dataset \mathcal{D} is distributed on K clients with local datasets $\{\mathcal{D}^{(k)}\}_{k=1}^K$ and assumes the class conditional distributions $\{P_j^{(k)}(x)\}_{k=1}^K$ are identical across all clients for each $j \in \mathcal{Y}$. In contrast, the class priors $\{\pi_j^{(k)}\}_{k=1}^K$ may be different among clients due to data heterogeneity. For two classes j and ℓ , we have $P_j^{(1)}(x)/P_\ell^{(1)}(x) = \dots = P_j^{(K)}(x)/P_\ell^{(K)}(x) = P_j(x)/P_\ell(x)$. However, divergent class priors result in different local posterior probability $\eta_j^{(k)}(x) = \pi_j^{(k)} P_j(x) / \sum_{j_0 \in \mathcal{Y}} \pi_{j_0}^{(k)} P_{j_0}(x)$ and misaligned Bayesian decision boundaries among clients. This misalignment affects the performance of the aggregated classifier and slows down the convergence rate of FL algorithms (Zhao et al., 2018).

Ideally, with properly chosen aggregation weights $\{w_k\}_{k=1}^K$, the decision boundary between classes j and ℓ of the global aggregated model $\eta_j^{[w]}(x) = \sum_{k=1}^K w_k \eta_j^{(k)}(x)$ given by

$$S_{j,\ell}^{[w]} = \{x \in \mathcal{X} : P_j(x)/P_\ell(x) = \pi_\ell^{[w]}/\pi_j^{[w]}\},$$

can match the decision boundary $S_{j,\ell}$ in Lemma 1 by making $\pi_j^{[w]} = \pi_j$ and $\pi_\ell^{[w]} = \pi_\ell$, where $\pi_j^{[w]} = \sum_{k=1}^K w_k \pi_j^{(k)} / \sum_{k=1}^K w_k$ and $\pi_\ell^{[w]} = \sum_{k=1}^K w_k \pi_\ell^{(k)} / \sum_{k=1}^K w_k$. For instance, setting $w_k = |\mathcal{D}^{(k)}|/|\mathcal{D}|$ achieves this alignment. However, the global imbalance ratio π_ℓ/π_j still introduces bias into the aggregated decision boundary of the global model. To address that, several algorithms (Menon et al., 2020; Tan et al., 2020) have been proposed to adjust the ratio $\pi_\ell^{[w]}/\pi_j^{[w]}$ via alternative weighting schemes. Moreover, data heterogeneity can cause mismatches between global and local imbalance ratios, further complicating the class imbalance issue and amplifying bias in the aggregated decision boundary. See Example 1 in the Appendix for an illustration.

2.2 AGGREGATED DECISION BOUNDARY WITH RE-LABELED DATA

In this paper, we introduce a novel data-level approach that reallocates data labels to adjust the decision boundary by balancing class prior ratios at both local and global levels. This strategy also alleviates the mismatch between global and local imbalance ratios, and improves the overall robustness of the FL model. Our proposed FedReLa is motivated by how re-labeling shifts decision boundaries locally and globally. We begin by analyzing its effect on a local client k , and then extend the discussion to model aggregation. Without loss of generality, we consider a binary classification setting where classes j and ℓ represent the minority and majority classes, respectively.

Let $(X^{(k)}, Y^{(k)}) \sim P^{(k)}(x, y)$ denote the data pair for client k with re-labeled $\tilde{Y}^{(k)}$ and consider $\tilde{\mathcal{D}}^{(k)}$ the corresponding re-labeled dataset. Denote the probabilities of re-labeling ℓ to j as $\rho_{\ell \rightarrow j}^{(k)}(x) = \Pr(\tilde{Y}^{(k)} = j \mid X^{(k)} = x, Y^{(k)} = \ell)$ and re-labeling j to ℓ as $\rho_{j \rightarrow \ell}^{(k)}(x) = \Pr(\tilde{Y}^{(k)} = \ell \mid X^{(k)} = x, Y^{(k)} = j)$ for client k , then

$$\tilde{\eta}_j^{(k)}(x) = \Pr(\tilde{Y}^{(k)} = j \mid X^{(k)} = x) = \eta_j^{(k)}(x)[1 - \rho_{j \rightarrow \ell}^{(k)}(x)] + [1 - \eta_j^{(k)}(x)]\rho_{\ell \rightarrow j}^{(k)}(x).$$

Lemma 2. *The optimal Bayesian decision boundary based on $\tilde{\mathcal{D}}^{(k)}$ for client k is*

$$\tilde{S}^{(k)} = \left\{ x^* \in \mathcal{X} : \frac{P_j(x^*)}{P_\ell(x^*)} = \frac{1 - 2\rho_{\ell \rightarrow j}^{(k)}(x^*)}{1 - 2\rho_{j \rightarrow \ell}^{(k)}(x^*)} \cdot \frac{\pi_\ell^{(k)}}{\pi_j^{(k)}} \right\},$$

provided that $\rho_{\ell \rightarrow j}^{(k)}(x^*) \leq 0.5$ and $\rho_{j \rightarrow \ell}^{(k)}(x^*) \leq 0.5$ for any $x^* \in \tilde{S}^{(k)}$.

When $\pi_\ell^{(k)}/\pi_j^{(k)} \gg 1$, we seek to achieve $[1 - 2\rho_{\ell \rightarrow j}^{(k)}(x^*)]/[1 - 2\rho_{j \rightarrow \ell}^{(k)}(x^*)] < 1$ to locally adjust the decision boundary. Given the scarcity of minority class samples in $\mathcal{D}^{(k)}$, it is reasonable to restrict re-labeling to occur only from majority class ℓ to minority class j , and set $\rho_{j \rightarrow \ell}^{(k)}(x) = 0$. Furthermore, since deeply invaded majority class samples are especially harmful, we design a label re-allocator where the re-labeling probability is proportional to the degree of this intrusion. Specifically, with $\rho_{\ell \rightarrow j}^{(k)}(x) \propto \eta_j^{(k)}(x)$, the Bayesian decision boundary becomes

$$\tilde{S}^{(k)} = \left\{ x^* \in \mathcal{X} : P_j(x^*)/P_\ell(x^*) = [1 - 2\rho_{\ell \rightarrow j}^{(k)}(x^*)]\pi_\ell^{(k)}/\pi_j^{(k)} \right\}.$$

Since $1 - 2\rho_{\ell \rightarrow j}^{(k)}(x^*) < 1$, the boundary $\tilde{S}^{(k)}$ on re-labeled data, shifts back to the majority class region. Based on re-labeled data $\tilde{\mathcal{D}} = \bigcup_{k=1}^K \tilde{\mathcal{D}}^{(k)}$, we also study the decision boundary of the global aggregated model $\tilde{\eta}_j^{[w]}(x) = \sum_{k=1}^K w_k \tilde{\eta}_j^{(k)}(x)$.

Lemma 3. *The optimal Bayesian decision boundary of the global aggregated model $\tilde{\eta}_j^{[w]}(x)$ is*

$$\tilde{S}^{[w]} = \left\{ x^* \in \mathcal{X} : \frac{P_j(x^*)}{P_\ell(x^*)} = \frac{\sum_{k=1}^K w_k \pi_\ell^{(k)} [1 - 2\rho_{\ell \rightarrow j}^{(k)}(x^*)]/\pi_\ell}{\sum_{k=1}^K w_k \pi_j^{(k)}/\pi_j} \cdot \frac{\pi_\ell}{\pi_j} \right\}.$$

Lemma 3 implies that the label re-allocator balances the global imbalance ratio when

$$\frac{\sum_{k=1}^K w_k \pi_\ell^{(k)} [1 - 2\rho_{\ell \rightarrow j}^{(k)}(x)]/\pi_\ell}{\sum_{k=1}^K w_k \pi_j^{(k)}/\pi_j} < 1. \quad (1)$$

By choosing $w_k = |\mathcal{D}^{(k)}|/|\mathcal{D}|$, we have $\sum_{k=1}^K w_k \pi_j^{(k)}/\pi_j = 1$, and (1) reduces to $\sum_{k=1}^K w_k \pi_\ell^{(k)} [1 - 2\rho_{\ell \rightarrow j}^{(k)}(x)]/\pi_\ell < 1$, which holds naturally when $\rho_{\ell \rightarrow j}^{(k)}(x) > 0$ for all $k \in \{1, \dots, K\}$. Thus, the label re-allocator can balance both the local and global decision boundary.

Remark 1. *Due to data heterogeneity, local class distribution can deviate significantly from the global one. It is possible for a class that is globally a minority to become a majority within certain clients. As local clients lack access to the global class prior ratios, the mismatch can lead to re-labeling in unexpected directions. For instance, when re-labeling class j samples to class ℓ even if $\pi_\ell \gg \pi_j$ globally. To handle this, we let the re-labeling direction be determined by local priors: on client k , if $\pi_\ell^{(k)} > \pi_j^{(k)}$, then class ℓ samples are re-labeled to class j , and vice versa. This results in the following Bayesian decision boundary on client k :*

$$\tilde{S}^{(k)} = \left\{ x^* \in \mathcal{X} : \frac{P_j(x^*)}{P_\ell(x^*)} = \frac{1 - 2\rho_{\ell \rightarrow j}^{(k)}(x^*) \cdot \mathbb{I}(\pi_\ell^{(k)} > \pi_j^{(k)})}{1 - 2\rho_{j \rightarrow \ell}^{(k)}(x^*) \cdot \mathbb{I}(\pi_\ell^{(k)} < \pi_j^{(k)})} \cdot \frac{\pi_\ell^{(k)}}{\pi_j^{(k)}} \right\}. \quad (2)$$

Then, the Bayesian decision boundary of the global aggregated model $\tilde{\eta}_j^{[w]}(x)$ takes the form:

$$\tilde{S}^{[w]} = \left\{ x^* \in \mathcal{X} : \frac{P_j(x^*)}{P_\ell(x^*)} = \frac{\sum_{k=1}^K w_k \pi_\ell^{(k)} [1 - 2\rho_{\ell \rightarrow j}^{(k)}(x)] \mathbb{I}(\pi_\ell^{(k)} > \pi_j^{(k)})/\pi_\ell}{\sum_{k=1}^K w_k \pi_j^{(k)} [1 - 2\rho_{j \rightarrow \ell}^{(k)}(x)] \mathbb{I}(\pi_\ell^{(k)} < \pi_j^{(k)})/\pi_j} \cdot \frac{\pi_\ell}{\pi_j} \right\}.$$

Under global imbalance where $\pi_\ell \gg \pi_j$, we typically observe that $\sum_{k=1}^K \mathbb{I}(\pi_\ell^{(k)} > \pi_j^{(k)}) > \sum_{k=1}^K \mathbb{I}(\pi_\ell^{(k)} < \pi_j^{(k)})$, meaning more clients locally reflect the global imbalance than contradict it. Furthermore, even if $\pi_\ell^{(k_0)} < \pi_j^{(k_0)}$ for some client k_0 , its weight $w_{k_0} \propto |\mathcal{D}^{(k_0)}|$ is often small as $|\mathcal{D}^{(k_0)}|$ is less than double of the total number of class- j samples in the full dataset \mathcal{D} . As a result, we still expect a correction in the decision boundary of the global aggregated model with $\frac{\sum_{k=1}^K w_k \pi_\ell^{(k)} [1 - 2\rho_{\ell \rightarrow j}^{(k)}(x)] \mathbb{I}(\pi_\ell^{(k)} > \pi_j^{(k)})/\pi_\ell}{\sum_{k=1}^K w_k \pi_j^{(k)} [1 - 2\rho_{j \rightarrow \ell}^{(k)}(x)] \mathbb{I}(\pi_\ell^{(k)} < \pi_j^{(k)})/\pi_j} < 1$.

3 FRAMEWORK OF FEDRELA

Motivated by decision boundary adjustment through data re-labeling, as analyzed in Section 2.2, we propose FedReLa to mitigate performance degradation caused by data heterogeneity and class

270 imbalance in FL. FedReLa is an adaptive and model-agnostic approach, which is designed as a
 271 plug-in module that can be seamlessly integrated into any existing FL algorithm.
 272

273 As shown in Figure 1, FedReLa works as a local data one-shot preprocessor between communication
 274 rounds of any FL algorithm, with each client applying it locally and in parallel. Specifically, before
 275 client k starts to train the global model $f(\theta; x)$ with parameter $\theta = \theta_t^{\text{global}}$ received at round
 276 $t = T_{\text{relabel}}$, FedReLa re-labels its local dataset $\mathcal{D}^{(k)} = \{(x_i^{(k)}, y_i^{(k)})\}_{i=1}^{n_k}$ using a client-specific label
 277 re-allocator $\rho^{(k)}$, resulting in the re-labeled dataset $\tilde{\mathcal{D}}^{(k)} = \{(x_i^{(k)}, \tilde{y}_i^{(k)})\}_{i=1}^{n_k} = \rho^{(k)}(\mathcal{D}^{(k)})$. Note
 278 that the computation of FedReLa only occurs in T_{relabel} , and the re-labeled local dataset $\tilde{\mathcal{D}}^{(k)}$ can be
 279 reused in subsequent training rounds $t > T_{\text{relabel}}$. Thus, the one-shot computations at round T_{relabel}
 280 for each client-specific label re-allocator are lightweight and almost negligible to the whole training
 281 process. We discuss the approximate computational cost of FedReLa in Appendix B.1. Each client
 282 then updates the global model locally using $\tilde{\mathcal{D}}^{(k)}$, and the server aggregates the local updates $\Delta\theta_t^{(k)}$
 283 to produce the updated global model with parameter $\theta_{t+1}^{\text{global}}$.
 284

302 Figure 1: FedReLa Framework. At round $t = T_{\text{relabel}}$, FedReLa re-labels the local dataset with the
 303 label re-allocator based on the global model before the local training starts.
 304

305 The inspiration of FedReLa is to “reallocate” the shared feature space that is encroached upon by
 306 the majority class (due to biased decision boundaries) to the minority class. This is achieved by
 307 selectively re-labeling the majority-class samples that intrude into the minority-class feature space
 308 with similar features as minority-class labels. Building upon the theoretical analysis in Section 2,
 309 we let the re-labeling probabilities be proportional to the posterior probabilities of minority classes,
 310 and we utilize the global model distributed to each client to perform local inference. This yields a
 311 $|\mathcal{D}^{(k)}| \times |\mathcal{Y}|$ posterior probability matrix $\mathbf{Q}^{(k)}$ for client k , where
 312

$$Q_i^{(k)} = f(\theta_t^{\text{global}}; x_i^{(k)}) \in \mathbb{R}^{|\mathcal{Y}|}$$

313 is the i -th row of $\mathbf{Q}^{(k)}$, denoting the posterior probability vector of the i -th local instance $x_i^{(k)}$.
 314

315 Crucially, the global model implicitly integrates cross-client discriminative knowledge across all
 316 classes $\mathcal{Y} = \{1, 2, \dots, C\}$, making it assign non-zero posterior probabilities even to classes absent
 317 from a client’s local data. Due to global imbalance and data heterogeneity, these posterior estimates
 318 for minority (tail) classes tend to be systematically biased downward. To address posterior underesti-
 319 mation and obtain a well-calibrated label re-allocator, we introduce two key normalization steps: (1)
 320 z-score Standardization, and (2) \tanh Normalization.
 321

322 **Class-wise z-score Standardization.** Samples near decision boundaries often share features with
 323 other classes, thus exhibiting relatively high posterior probabilities for ambiguous ones. As a result
 324 of biased global decision boundaries towards minority classes, most dominant-class samples exhibit

324 **Algorithm 1** Local training process for client k with FedReLa at communication round t

325

326 **Input:** local epochs E , learning rate η , local datasets $\mathcal{D}^{(k)} = \{(x_i^{(k)}, y_i^{(k)})\}_{i=1}^{n_k}$, classifier $f(\cdot; \cdot)$,

327 global model parameter θ_t^{global}

328 **Parameters:** Threshold $t_{\text{re}}^{(k)}$, re-labeling round T_{relabel}

329

330 *Client k ∈ K executes:* $\text{ReAllocator}(\mathcal{D}^{(k)}, \theta_t^{\text{global}}):$

331

332 *ClientUpdate(t, $\mathcal{D}^{(k)}$, θ_t^{global}):*

333 **if** $t == T_{\text{relabel}}$ **then**

334 $\tilde{\mathcal{D}}^{(k)} \leftarrow \text{ReAllocator}(\mathcal{D}^{(k)}, \theta_t^{\text{global}})$

335 $\mathcal{D}^{(k)} \leftarrow \tilde{\mathcal{D}}^{(k)}$

336 **end**

337 $\theta_t^{(k)} \leftarrow \theta_t^{\text{global}}$

338 **for** epoch $e = 1 \rightarrow E$ **do**

339 **for** each batch $b \in \mathcal{D}^{(k)}$ **do**

340 $\theta_t^{(k)} \leftarrow \theta_t^{(k)} - \eta \nabla \mathcal{L}(\theta_t^{(k)}; b)$

341 **end**

342 **end**

343 $\Delta \theta_t^{(k)} \leftarrow \theta_t^{\text{global}} - \theta_t^{(k)}$

344 **return** $\Delta \theta_t^{(k)}$

345

346

347

348

349 *vanishingly small posterior probabilities for minority classes. Despite this, we empirically observe*

350 *that a non-trivial subset of majority-class samples retains non-negligible probabilities for minority*

351 *classes—insufficient to trigger misclassification but indicative of proximity to minority-class regions in*

352 *the feature space. To better calibrate these underestimated posteriors, particularly for minority classes,*

353 *we apply class-wise z-score standardization, which rescales the posterior distributions within each*

354 *class. This highlights candidate samples with shared features for re-labeling. Specifically, the z-score*

355 *vector for the i -th instance in client k is computed as:*

356

357
$$z_i^{(k)} = \frac{Q_i^{(k)} - \mu_i^{(k)}}{\sigma_i^{(k)}}, \mu_i^{(k)} = \frac{1}{|\mathcal{I}_i^{(k)}|} \sum_{i_0 \in \mathcal{I}_i^{(k)}} Q_{i_0}^{(k)}, \sigma_i^{(k)} = \sqrt{\frac{1}{|\mathcal{I}_i^{(k)}| - 1} \sum_{i_0 \in \mathcal{I}_i^{(k)}} (Q_{i_0}^{(k)} - \mu_i^{(k)})^2}, \quad (3)$$

358

359

360 where $\mathcal{I}_i^{(k)} = \{i_0 \in \{1, \dots, n_k\} : y_{i_0}^{(k)} = y_i^{(k)}\}$ denotes the index set of samples in $\mathcal{D}^{(k)}$ that share

361 the same label as the i -th instance. Here, $\mu_i^{(k)} \in \mathbb{R}^{|\mathcal{Y}|}$ and $\sigma_i^{(k)} \in \mathbb{R}^{|\mathcal{Y}|}$ are the class-wise mean

362 and standard deviation vectors of the posterior probabilities over this set. As illustrated in Figure 1,

363 the resulting z-score matrix $\mathbf{Z}^{(k)}$, with i -th row $z_i^{(k)}$, recalibrates $\mathbf{Q}^{(k)}$, amplifying underestimated

364 posterior probabilities of minority (tail) classes and highlighting samples near class boundaries.

365

366 **Normalization via \tanh .** To ensure that the re-labeling rates in the label re-allocator lie within

367 $[0, 1]$, we rescale the z-scores to the range $[-1, 1]$ using a \tanh transformation. This normalization

368 incorporates two critical components: (1) a client-specific threshold $t_{\text{re}}^{(k)}$, which is a tunable hyper-

369 parameter that determines the desired re-labeling strength by filtering out samples with weak feature

370 similarity; and (2) a class-wise reweighting vector $\varpi_j^{(k)} \in \mathbb{R}^{|\mathcal{Y}|}$, computed from local class priors to

371 re-label samples asymmetrically. Specifically, $\varpi_j^{(k)}$ reweights the re-labeling probability from class j

372 to any other class $c \in \mathcal{Y} \setminus j$ with their class prior difference between j and c .

373

374 Let $n_{\mathcal{Y}}^{(k)} \in \mathbb{R}^{|\mathcal{Y}|}$ denote the vector of class-wise sample counts in the local dataset $\mathcal{D}^{(k)}$. We first

375 apply min-max normalization on $n_{\mathcal{Y}}^{(k)}$ to construct the class-wise reweighting vector $\varpi_j^{(k)}$, defined as:

376

377
$$\varpi_j^{(k)} = \max(\varpi^{(k)} - \varpi^{(k)}[j], 0) \text{ with } \varpi^{(k)} = 1 - \min_{\mathcal{Y}} \max_{\mathcal{Y}} (n_{\mathcal{Y}}^{(k)}). \quad (4)$$

378 For samples belonging to a local tail class y_{tail} , we have $\varpi^{(k)}[y_{\text{tail}}] = 1$, which implies that $\varpi_{y_{\text{tail}}}^{(k)} = 0$.
 379 It zeros the re-labeling probabilities from the minority class to other classes, thereby preserving the
 380 integrity of minority-class samples.

381 With a client-specific $t_{\text{re}}^{(k)}$, we define the re-labeling probability for the i -th instant in client k as

$$\rho^{(k)}(x_i^{(k)}) = \max(\tanh(z_i^{(k)} - t_{\text{re}}^{(k)}) \odot \varpi_{y_i^{(k)}}^{(k)}, 0), \quad (5)$$

386 where \odot denotes element-wise multiplication, and $t_{\text{re}}^{(k)}$ acts as a tunable filtering threshold to suppress
 387 re-labeling for samples with low similarity to the minority-class feature. Notably, when the z-score
 388 falls below $t_{\text{re}}^{(k)}$, the re-labeling probability becomes negative and is truncated to zero. We performed
 389 a sensitive analysis on $t_{\text{re}}^{(k)}$ in Appendix B.3.

390 Based on the local label re-allocator $\rho^{(k)}$, each client applies probabilistic re-labeling to its data to
 391 generate the re-labeled data before local training; this is the only difference FedReLa makes from the
 392 standard FL, which adjusts the decision boundaries and thus achieves significant improvement on the
 393 performance of minority/tail classes. The full procedure is summarized in Algorithm 1.

394 4 EXPERIMENTS

395 **Datasets.** To provide a comprehensive evaluation, we conduct experiments under both **step-wise**
 396 and **long-tailed** global imbalance settings on Fashion-MNIST (F-MNIST) Xiao et al. (2017), CIFAR-
 397 10 Krizhevsky & Hinton (2009), and CIFAR-100 Krizhevsky & Hinton (2009) datasets. For step-wise
 398 imbalance, we undersample 10% or 30% of the classes with an imbalance ratio (IR) of 10 or 20.
 399 For long-tailed imbalance, the datasets are sampled into a long-tailed class distribution using an
 400 imbalance factor (IF) of 50 or 100 as in (Cao et al., 2019). To simulate cross-client heterogeneity,
 401 we employ latent Dirichlet sampling (Chen & Chao, 2021a) to partition the data in a non-IID fashion
 402 across clients. Specifically, we use $K = 100$ clients for the step-wise versions of Fashion-MNIST
 403 and CIFAR-10, and $K = 40$ for their long-tailed versions. For CIFAR-100, we use $K = 10$ clients
 404 in both step-wise and long-tailed settings. The heterogeneity level is controlled by the parameter
 405 $\alpha \in \{0.1, 0.3, 10\}$. We set the client sample rate to 1. (See evaluation metrics in Appendix B.)

406 **Baseline and prior SOTA.** We compare FedReLa with prior baselines and SOTA methods under
 407 both step-wise and long-tailed imbalance settings. For step-wise imbalance, we evaluate against
 408 FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020), FedNova (Wang et al., 2020), MOON
 409 (Li et al., 2021), and CLIMB (Shen et al., 2021). For long-tailed imbalance, we compare with
 410 FedETF (Li et al., 2023) and the latest SOTA method, FedLOGE (Xiao et al., 2024). As FedReLa
 411 handles data heterogeneity and class imbalance in FL at the data level, our method can seamlessly
 412 integrate with the above methods, offering further improvements. We thus compare methods trained
 413 on original-labeled data with those trained on re-labeled data by FedReLa. All methods are trained
 414 with sufficient communication rounds to converge. Please refer to Appendix B for the communication
 415 rounds needed to achieve the convergence of each method.

416 **Performance comparision.** For step-wise imbalance scenarios, Table 1 shows that FedReLa
 417 consistently enhances accuracy for both minority classes and overall performance across varying
 418 imbalance ratios (IR) and minority class proportions at heterogeneity level of $\alpha = 0.3$ (see Section
 419 C in the Appendix for ablation analysis on α). On Fashion-MNIST and CIFAR-10, FedReLa
 420 achieves 6.40%–32.20% minority-class accuracy improvement and 0.81%–4.76% overall accuracy
 421 gain under $IR = 10$. At $IR = 20$, the approach further elevates minority-class accuracy by
 422 11.83%–38.30% and overall accuracy by 1.46%–7.79%. For CIFAR-100, FedReLa delivers a steady
 423 6.03%–15.04% boost in minority-class accuracy while maintaining overall accuracy superiority. We
 424 also notice that the majority-class accuracy experiences some degradation in the 30%-minority-class
 425 setting, as the strong performance of minority classes inherently compromises inflated majority-class
 426 performance. This aligns with the fundamental trade-off in class-imbalance learning: enhancing
 427 minority-class performance necessarily diminishes the over-privileged majority-class performance,
 428 a characteristic shared by all imbalance methods. For the 10%-minority-class scenario, FedReLa
 429 exhibits a negligible impact on majority-class accuracy and even improves it on CIFAR-10. This stems

432 from label rectification by FedReLa, which relieves class overlap and thereby reduces outlier-induced
 433 interference for majority classes, particularly on clients with local-global IR mismatch.
 434

435	Dataset	IR	Methods	10% Minority			30% Minority		
				Majority	Minority	Overall	Majority	Minority	Overall
436	F-MNIST	10	FedAvg	88.43(87.40)-1.03	52.50(77.00)+ 24.50	84.84(86.36)+ 1.52	89.86(90.17)+ 0.31	60.67(70.50)+ 9.83	81.10(84.27)+ 3.17
			FedProx	88.23(87.43)-0.80	53.20(76.80)+ 23.60	84.73(86.37)+ 1.64	90.60(88.14)-2.46	60.07(70.40)+ 10.33	81.44(82.82)+ 1.38
			FedNova	86.81(87.46)+ 0.65	67.10(77.50)+ 10.40	84.84(86.46)+ 1.62	88.41(86.83)-1.58	69.77(76.17)+ 6.40	82.82(83.63)+ 0.81
			MOON	88.41(87.83)-0.58	47.00(73.00)+ 26.00	84.27(86.35)+ 2.08	90.61(89.24)-1.37	59.80(69.87)+ 10.07	81.37(83.43)+ 2.06
			CLIMB	89.05(89.93)+ 0.93	65.52(76.24)+ 10.72	86.70(88.61)+ 1.91	93.00(92.30)-0.70	67.23(75.47)+ 8.24	85.27(87.25)+ 1.98
			FedAvg	88.64(88.07)-0.57	49.00(73.10)+ 24.10	84.68(86.57)+ 1.89	90.44(87.33)-3.11	50.50(75.70)+ 25.20	78.46(83.84)+ 5.38
439	CIFAR-10	20	FedProx	89.37(87.77)-1.60	44.58(73.60)+ 29.02	84.89(86.35)+ 1.46	90.69(87.37)-3.32	50.00(74.90)+ 24.90	78.48(83.63)+ 5.15
			FedNova	88.46(88.37)-0.09	52.34(71.30)+ 18.96	84.85(86.66)+ 1.81	85.94(87.27)+ 1.33	55.03(77.90)+ 22.87	76.67(84.46)+ 7.79
			MOON	89.07(88.07)-1.00	32.40(66.60)+ 34.20	83.40(85.92)+ 2.52	91.13(88.63)-2.50	44.43(74.77)+ 30.34	77.12(84.47)+ 7.35
			CLIMB	90.30(90.32)+ 0.02	51.28(71.34)+ 20.06	86.40(88.43)+ 2.03	94.34(90.28)-4.05	53.27(73.60)+ 20.33	82.02(85.28)+ 3.26
			FedAvg	60.10(59.84)-0.26	27.80(55.70)+ 27.90	56.87(59.43)+ 2.56	65.93(62.14)-3.79	22.67(41.33)+ 18.66	52.95(55.90)+ 2.95
			FedProx	60.66(61.18)+ 0.52	30.02(58.70)+ 28.68	57.60(60.93)+ 3.33	67.66(60.79)-6.87	22.80(45.10)+ 22.30	54.20(56.08)+ 1.88
442	CIFAR-100	10	FedNova	58.54(58.60)+ 0.06	29.90(57.00)+ 27.10	55.68(58.44)+ 2.76	65.23(62.70)-2.53	23.47(39.20)+ 15.73	52.70(55.65)+ 2.95
			MOON	58.62(60.33)+ 1.71	17.10(49.30)+ 32.20	54.47(59.23)+ 4.76	66.67(63.21)-3.46	23.63(38.67)+ 15.04	53.76(55.85)+ 2.09
			CLIMB	81.62(82.68)+ 1.06	37.45(46.18)+ 8.73	77.20(79.03)+ 1.88	86.82(87.47)+ 0.65	33.59(43.26)+ 9.67	70.85(74.21)+ 3.36
			FedAvg	60.33(60.70)+ 0.37	17.25(51.60)+ 34.35	56.02(59.79)+ 3.77	67.39(61.51)-5.88	13.82(47.97)+ 34.15	51.32(57.45)+ 6.13
			FedProx	59.33(60.58)+ 1.25	15.60(53.90)+ 38.30	54.96(59.91)+ 4.95	67.69(61.96)-5.73	15.02(47.87)+ 32.85	51.89(57.73)+ 5.84
			FedNova	61.77(62.77)+ 1.00	26.05(57.80)+ 31.75	58.20(62.27)+ 4.07	66.97(60.12)-6.85	18.20(53.03)+ 34.83	52.34(57.99)+ 5.65
447	CIFAR-100	20	MOON	58.75(59.72)+ 0.97	10.12(47.70)+ 37.58	53.89(58.52)+ 4.63	64.51(60.77)-3.74	7.65(40.03)+ 32.38	47.45(54.55)+ 7.10
			CLIMB	79.53(80.34)+ 0.81	28.38(40.21)+ 11.83	74.42(76.33)+ 1.91	87.75(85.81)-1.94	24.03(38.77)+ 14.74	68.64(71.70)+ 3.06
			FedAvg	58.67(58.08)-0.59	12.30(23.10)+ 10.80	54.03(54.58)+ 0.55	58.67(57.07)-1.60	14.37(25.70)+ 11.33	45.38(47.66)+ 2.28
			FedProx	58.14(58.03)-0.11	13.00(26.00)+ 13.00	53.63(54.83)+ 1.20	58.84(58.10)-0.74	14.93(22.03)+ 7.10	45.67(47.28)+ 1.61
			FedNova	58.67(57.90)-0.77	13.40(23.90)+ 10.50	54.14(54.50)+ 0.36	59.49(58.00)-1.49	13.53(23.23)+ 9.70	45.70(47.57)+ 1.87
			MOON	57.55(57.70)+ 0.15	13.22(23.92)+ 10.70	53.12(54.32)+ 1.20	58.60(56.83)-1.77	16.37(23.93)+ 7.56	45.93(46.96)+ 1.03
450	CIFAR-100	50	CLIMB	47.96(48.28)+ 0.32	10.50(24.90)+ 14.40	44.21(45.94)+ 1.73	49.16(47.44)-1.72	10.83(25.87)+ 15.04	37.66(40.97)+ 3.31
			FedAvg	59.34(59.01)-0.33	6.80(15.80)+ 9.00	54.09(54.69)+ 0.60	58.73(57.50)-1.23	5.90(11.93)+ 6.03	42.88(43.83)+ 0.95
			FedProx	58.86(58.18)-0.68	5.00(14.10)+ 9.10	53.47(53.77)+ 0.30	59.49(56.93)-2.56	6.03(13.23)+ 7.20	43.45(43.82)+ 0.37
			FedNova	59.16(58.49)-0.67	7.30(17.80)+ 10.50	53.97(54.42)+ 0.45	59.60(58.11)-1.49	6.03(13.57)+ 7.54	43.53(44.75)+ 1.22
			MOON	57.89(57.43)-0.46	6.65(18.02)+ 11.37	52.77(53.49)+ 0.72	59.36(56.14)-3.22	5.90(13.87)+ 7.97	43.32(43.46)+ 0.14
			CLIMB	47.91(47.21)-0.70	5.02(16.25)+ 11.23	43.62(44.12)+ 0.50	49.22(46.42)-2.80	4.34(13.44)+ 9.10	35.76(36.53)+ 0.77

453 Table 1: Test accuracies (in %) in the format of `original (+FedReLa)+ enhancement / -`
 454 `tradeoff` of different methods on step-wise imbalance datasets at heterogeneity level of $\alpha = 0.3$.
 455

456 On long-tailed data, Table 2 shows that FedReLa consistently outperforms prior SOTA methods. The
 457 improvements are more pronounced under higher heterogeneity partitions, with FedReLa achieving
 458 +17.21% and +1.32% overall accuracy gains on CIFAR-10 and CIFAR-100, respectively, under the
 459 most extreme imbalanced and heterogeneous settings. Inflated majority class performance inherently
 460 comes at the expense of minority classes. Again, in most cases, the gains in overall accuracy outweigh
 461 any reductions in overstated head class accuracy, indicating a favorable trade-off.
 462

463	Dataset	IF	Heterogeneity Method/Metrics	$\alpha = 0.1$		$\alpha = 0.3$		$\alpha = 10$	
				H/M/T-shots	Overall	H/M/T-shots	Overall	H/M/T-shots	Overall
465	CIFAR-10	50	FedETF +(FedReLa)	86.82/55.33/24.62	58.71	88.42/71.74/64.11	76.12	90.41/80.02/68.12	80.60
			FedLOGE +(FedReLa)	75.44/69.63/61.11	69.47	84.51/76.44/69.63	77.64	89.54/79.22/71.80	81.14
			FedLOGE +(FedReLa)	68.67/49.93/58.23	59.92	84.92/72.13/74.57	77.98	89.42/80.80/71.97	81.60
			FedETF +(FedReLa)	64.17/64.67/73.20	67.03	78.77/81.73/78.00	79.43	87.65/80.80/77.73	82.62
			FedLOGE +(FedReLa)	33.12/63.52/20.94	37.33	92.02/69.20/54.33	70.14	93.92/74.80/59.33	74.32
			FedLOGE +(FedReLa)	61.23/51.82/51.64	54.54	89.44/68.42/64.83	73.33	92.22/76.18/61.84	75.24
468	CIFAR-100	100	FedLOGE +(FedReLa)	36.73/38.13/42.72	39.55	89.13/70.03/64.52	73.56	92.37/74.87/67.50	77.17
			FedLOGE +(FedReLa)	56.67/38.20/62.45	53.44	85.27/65.23/74.10	74.79	89.40/75.93/71.90	78.36
			FedETF +(FedReLa)	55.80/47.74/29.09	44.11	67.81/49.53/25.78	47.32	71.41/53.72/26.18	46.01
			FedETF +(FedReLa)	55.34/48.12/32.33	45.13	65.24/51.02/28.55	47.88	69.14/54.63/29.35	47.04
			FedLOGE +(FedReLa)	37.30/43.67/37.12	39.34	58.45/47.97/32.71	46.09	53.38/45.36/32.12	47.12
			FedLOGE +(FedReLa)	52.91/45.79/32.32	43.56	59.45/49.41/32.51	46.81	51.56/47.45/35.224	47.43
473	CIFAR-100	100	FedETF +(FedReLa)	54.70/45.11/18.11	36.82	67.22/50.79/20.30	42.30	71.82/52.21/20.60	42.61
			FedETF +(FedReLa)	56.54/45.83/19.54	38.14	63.54/51.33/24.34	43.12	68.44/53.53/26.13	44.73
			FedLOGE +(FedReLa)	28.03/40.37/25.85	30.84	54.89/48.03/26.07	40.51	68.67/51.46/24.70	43.53
			FedLOGE +(FedReLa)	45.55/44.37/23.71	36.24	52.61/49.00/28.26	41.09	65.22/52.19/27.28	44.00

476 Table 2: Test accuracies (in %) of different methods on long-tailed CIFAR-10/100.

479 5 CONCLUSION

481 We propose FedReLa, a data-level approach for addressing class imbalance and data heterogeneity
 482 in FL. By asymmetrically re-labeling local data by a feature-dependent label re-allocator, FedReLa
 483 rectifies decision boundaries without relying on global class priors or additional communication.
 484 Empirical results across step-wise and long-tailed settings demonstrate consistent improvements in
 485 minority-class and overall accuracy over existing methods, especially under extreme heterogeneity.
 486 FedReLa is easy to integrate into algorithmic methods, offering a practical solution for real-world FL.

486 REFERENCES
487

488 Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
489 and Venkatesh Saligrama. Federated learning based on dynamic regularization. *arXiv preprint*
490 *arXiv:2111.04263*, 2021.

491 Amos Azaria, Ariella Richardson, Sarit Kraus, and Venkatramanan Siva Subrahmanian. Behavioral
492 analysis of insider threat: A survey and bootstrapped prediction in imbalanced data. *IEEE*
493 *Transactions on Computational Social Systems*, 1(2):135–155, 2014.

494 Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
495 datasets with label-distribution-aware margin loss. In *Advances in Neural Information Processing*
496 *Systems*, 2019.

497 Nitesh Chawla, Kevin Bowyer, Lawrence Hall, and William Philip Kegelmeyer. Smote: synthetic
498 minority over-sampling technique. *Journal of artificial intelligence research*, 16:321–357, 2002a.

499 Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
500 minority over-sampling technique. *Journal of artificial intelligence research*, 16:321–357, 2002b.

501 Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized federated learning for
502 image classification. *arXiv preprint arXiv:2107.00778*, 2021a.

503 Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized federated learning for
504 image classification. *arXiv preprint arXiv:2107.00778*, 2021b.

505 Wenlin Chen, Samuel Horvath, and Peter Richtarik. Optimal client sampling for federated learning.
506 *arXiv preprint arXiv:2010.13723*, 2020.

507 Hsin-Ping Chou, Shih-Chieh Chang, Jia-Yu Pan, Wei Wei, and Da-Cheng Juan. Remix: rebalanced
508 mixup. In *European conference on computer vision*, pp. 95–110. Springer, 2020.

509 Moming Duan, Duo Liu, Xianzhang Chen, Yujuan Tan, Jinting Ren, Lei Qiao, and Liang Liang.
510 Astraea: Self-balancing federated learning for improving classification accuracy of mobile deep
511 learning applications. In *2019 IEEE 37th international conference on computer design (ICCD)*, pp.
512 246–254. IEEE, 2019.

513 Richard O Duda, Peter E Hart, et al. *Pattern classification*. John Wiley & Sons, 2006.

514 Sara Fotouhi, Shahrokh Asadi, and Michael Kattan. A comprehensive data level analysis for cancer
515 diagnosis on imbalanced data. *Journal of biomedical informatics*, 90:103089, 2019.

516 Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. Clustered sampling: Low-
517 variance and improved representativity for clients selection in federated learning. In *International*
518 *Conference on Machine Learning*, pp. 3407–3416. PMLR, 2021.

519 Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-sampling method in
520 imbalanced data sets learning. *International conference on intelligent computing*, 2005.

521 Haibo He, Yang Bai, Edwardo Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling approach
522 for imbalanced learning. *2008 IEEE international joint conference on neural networks*, 2008.

523 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and
524 Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for on-device federated
525 learning. *arXiv preprint arXiv:1910.06378*, 2(6), 2019.

526 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
527 Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>.

528 Mengke Li, Yiu-ming Cheung, and Yang Lu. Long-tailed visual recognition via gaussian clouded
529 logit adjustment. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
530 *Recognition (CVPR)*, pp. 6929–6938, June 2022.

540 Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In *Proceedings of*
 541 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10713–10722, 2021.
 542

543 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 544 Federated optimization in heterogeneous networks. *Proceedings of Machine learning and systems*,
 545 2:429–450, 2020.

546 Zexi Li, Xinyi Shang, Rui He, Tao Lin, and Chao Wu. No fear of classifier biases: Neural collapse
 547 inspired federated learning with synthetic and fixed classifier. In *Proceedings of the IEEE/CVF*
 548 *International Conference on Computer Vision (ICCV)*, pp. 5319–5329, October 2023.

549 Giovanni Mariani, Florian Scheidegger, Roxana Istrate, Costas Bekas, and Cristiano Malossi.
 550 Bagan: Data augmentation with balancing gan, 2018. URL <https://arxiv.org/abs/1803.09655>.
 551

552 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 553 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence*
 554 and *statistics*, pp. 1273–1282. PMLR, 2017.

555 Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and
 556 Sanjiv Kumar. Long-tail learning via logit adjustment. *arXiv preprint arXiv:2007.07314*, 2020.
 557

558 Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary
 559 classifier gans, 2017. URL <https://arxiv.org/abs/1610.09585>.
 560

561 Shrinivas Ramasubramanian, Harsh Rangwani, Sho Takemori, Kunal Samanta, Yuhei Umeda, and
 562 Venkatesh Babu Radhakrishnan. Selective mixup fine-tuning for optimizing non-decomposable
 563 metrics. In *The Twelfth International Conference on Learning Representations*, 2024.

564 Xinyi Shang, Yang Lu, Gang Huang, and Hanzi Wang. Federated learning on heterogeneous and
 565 long-tailed data via classifier re-training with federated features. *arXiv preprint arXiv:2204.13399*,
 566 2022.
 567

568 Zebang Shen, Juan Cervino, Hamed Hassani, and Alejandro Ribeiro. An agnostic approach to
 569 federated learning with class imbalance. In *International Conference on Learning Representations*,
 570 2021.

571 Geet Shingi. A federated learning based approach for loan defaults prediction. In *2020 International*
 572 *Conference on Data Mining Workshops (ICDMW)*, pp. 362–368, 2020. doi:
 573 [10.1109/ICDMW51313.2020.00057](https://doi.org/10.1109/ICDMW51313.2020.00057).
 574

575 Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, and Junjie Yan.
 576 Equalization loss for long-tailed object recognition, 2020. URL <https://arxiv.org/abs/2003.05176>.
 577

578 Y. Nguyen Tan, Vo Phuc Tinh, Pham Duc Lam, Nguyen Hoang Nam, and Tran Anh Khoa. A transfer
 579 learning approach to breast cancer classification in a federated learning framework. *IEEE Access*,
 580 11:27462–27476, 2023. doi: [10.1109/ACCESS.2023.3257562](https://doi.org/10.1109/ACCESS.2023.3257562).

581 Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
 582 inconsistency problem in heterogeneous federated optimization. *Advances in neural information*
 583 *processing systems*, 33:7611–7623, 2020.

584 Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. Addressing class imbalance in federated learning.
 585 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 10165–10173,
 586 2021.

587 Jeffry Wicaksana, Zengqiang Yan, Dong Zhang, Xijie Huang, Huimin Wu, Xin Yang, and Kwang-
 588 Ting Cheng. Fedmix: Mixed supervised federated learning for medical image segmentation, 2022.
 589 URL <https://arxiv.org/abs/2205.01840>.
 590

591 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Bench-
 592 marking Machine Learning Algorithms. *arXiv e-prints*, art. arXiv:1708.07747, August 2017. doi:
 593 [10.48550/arXiv.1708.07747](https://doi.org/10.48550/arXiv.1708.07747).

594 Zikai Xiao, Zihan Chen, Songshang Liu, Hualiang Wang, Yang Feng, Jin Hao, Joey Tianyi Zhou, Jian
595 Wu, Howard Yang, and Zuozhu Liu. Fed-grab: Federated long-tailed learning with self-adjusting
596 gradient balancer. *Advances in Neural Information Processing Systems*, 36:77745–77757, 2023.
597

598 Zikai Xiao, Zihan Chen, Liyinglan Liu, Yang Feng, Jian Wu, Wanlu Liu, Joey Tianyi Zhou,
599 Howard Hao Yang, and Zuozhu Liu. Fedloge: Joint local and generic federated learning un-
600 der long-tailed data. *arXiv preprint arXiv:2401.08977*, 2024.

601 Shanshan Yan, Zexi Li, Chao Wu, Meng Pang, Yang Lu, Yan Yan, and Hanzi Wang. You are your own
602 best teacher: Achieving centralized-level performance in federated learning under heterogeneous
603 and long-tailed data. *arXiv preprint arXiv:2503.06916*, 2025.

604 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
605 risk minimization. *arXiv preprint arXiv:1710.09412*, 2017.

606 Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, and Chao Wu. Federated
607 learning with label distribution skew via logits calibration. In *International Conference on Machine
608 Learning*, pp. 26311–26329. PMLR, 2022.

609

610 Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
611 learning with non-iid data. *arXiv preprint arXiv:1806.00582*, 2018.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A TECHNICAL APPENDICES**
649

651 Symbol	651 Definition
<i>1. Datasets & Sets</i>	
D	653 Global dataset (union of all local datasets)
$D^{(k)}$	654 Local dataset of client k
$\tilde{D}^{(k)}$	655 Re-labeled local dataset of client k (by FedReLa)
X	656 Feature space ($x \in X \subseteq \mathbb{R}^d$)
Y	657 Label space ($Y = \{1, 2, \dots, C\}$, C : number of classes)
$Y^{(k)}$	658 Original label set of client k
$\tilde{Y}^{(k)}$	659 Re-labeled label set of client k
$I_i^{(k)}$	660 Index set of samples in $D^{(k)}$ with the same label as $x_i^{(k)}$
<i>2. Model & Parameters</i>	
θ	662 Model parameter vector
θ_t^{global}	663 Global model parameter at communication round t
$\theta^{(k)}$	664 Local model parameter of client k
$f(\theta; x)$	665 Global model (maps feature x to posterior probabilities)
T_{relabel}	666 Communication round for FedReLa's one-shot re-labeling
<i>3. Probability & Distribution</i>	
π_j	668 Global prior probability of class j ($\pi_j = \Pr(Y = j)$)
$\pi_j^{(k)}$	669 Local prior probability of class j on client k
$\pi_j^{[w]}$	670 Weighted aggregated prior of class j (server-side)
$\eta_j(x)$	671 Global posterior probability of class j given x
$\eta_j^{(k)}(x)$	672 Local posterior probability of class j given x on client k
$\tilde{\eta}_j^{(k)}(x)$	673 Posterior probability of class j on $\tilde{D}^{(k)}$
$\tilde{\eta}_j^{[w]}(x)$	674 Aggregated posterior probability of class j (server-side)
$P_j(x)$	675 Class-conditional distribution of $X Y = j$
$P_j^{(k)}(x)$	676 Local class-conditional distribution of $X Y = j$ on client k
<i>4. FedReLa Core Parameters</i>	
$\rho_{\ell \rightarrow j}^{(k)}(x)$	677 Re-labeling probability from local majority class ℓ to local minority class j on client k
$\rho_{j \rightarrow \ell}^{(k)}(x)$	678 Re-labeling probability from class j to ℓ on client k (set to 0)
$Q^{(k)}$	679 Posterior probability matrix of $D^{(k)}$ ($ D^{(k)} \times C$)
$z_i^{(k)}$	680 Class-wise z-score vector of sample $x_i^{(k)}$ on client k
$\mu_i^{(k)}$	681 Class-wise mean of posterior probabilities (for z-score)
$\sigma_i^{(k)}$	682 Class-wise std of posterior probabilities (for z-score)
$t_{\text{re}}^{(k)}$	683 Client-specific re-labeling threshold (tunable via τ)
$\varpi_j^{(k)}$	684 Class-wise reweighting vector (from local class priors $\pi^{(k)}$)
$n_Y^{(k)}$	685 Class-wise sample count vector of $D^{(k)}$
τ	686 Hyperparameter controlling re-labeling strength (top- $\tau\%$ z-scores)
<i>5. Imbalance & Heterogeneity</i>	
$IR(D)$	687 Global imbalance ratio ($\max_j \pi_j / \min_j \pi_j$)
IF	688 Imbalance factor (for long-tailed datasets)
α	689 Heterogeneity control parameter (Latent Dirichlet Sampling)
K	690 Number of clients in the federation
w_k	691 Aggregation weight of client k (FedAvg: $w_k = D^{(k)} / D $)
<i>6. Decision Boundaries</i>	
$S_{j,\ell}$	692 Optimal Bayesian decision boundary between classes j and ℓ
$\tilde{S}^{(k)}$	693 Decision boundary of client k on re-labeled local dataset $\tilde{D}^{(k)}$

701 Table 3: Notation Table: Key Symbols and Definitions

702 **Example 1.** We use an extreme example to illustrate that the mismatches between global and local
 703 imbalance ratios can amplify the bias in the aggregated decision boundary. Consider a binary
 704 classification problem with two classes, j and ℓ , and two clients, k_1 and k_2 . Assume that the global
 705 class priors satisfy $\pi_\ell \gg \pi_j$, where $\pi_j = m_j/n$, $\pi_\ell = m_\ell/n$ and $n = |\mathcal{D}^{(k_1)}| + |\mathcal{D}^{(k_2)}|$. Here,
 706 m_j and m_ℓ , satisfying $m_j + m_\ell = n$, are the number of data points in class j and ℓ , respectively.
 707 Suppose the local dataset $\mathcal{D}^{(k_1)}$ contains $(m_j - 1)$ samples from the global minority class j and one
 708 sample from the global majority class ℓ , while the local dataset $\mathcal{D}^{(k_2)}$ contains $(m_\ell - 1)$ samples
 709 from class ℓ and one sample from class j . The local decision boundaries on $\mathcal{D}^{(k_1)}$ and $\mathcal{D}^{(k_2)}$ are:
 710

$$711 \quad \left\{ x \in \mathcal{X} : \frac{P_j(x)}{P_\ell(x)} = \frac{1}{m_j - 1} \right\} \text{ and } \left\{ x \in \mathcal{X} : \frac{P_j(x)}{P_\ell(x)} = m_\ell - 1 \right\}.$$

714 In FL, consider the global aggregated model $\eta_j^{[w]}(x) = w_{k_1}\eta_j^{(k_1)}(x) + w_{k_2}\eta_j^{(k_2)}(x)$.
 715

716 Suppose the aggregation weights are chosen as $w_{k_1} \propto |\mathcal{D}^{(k_1)}|$ and $w_{k_2} \propto |\mathcal{D}^{(k_2)}|$, which is widely
 717 used in imbalanced classification in the literature. Since $|\mathcal{D}^{(k_1)}| = m_j$ and $|\mathcal{D}^{(k_2)}| = m_\ell$, it follows
 718 that $w_{k_1} = \pi_j$ and $w_{k_2} = \pi_\ell$, implying $w_{k_1} \ll w_{k_2}$. In addition, the local imbalance ratios are
 719 $\text{IR}(\mathcal{D}^{(k_1)}) = 1/(m_j - 1)$ and $\text{IR}(\mathcal{D}^{(k_2)}) = m_\ell - 1$, so that $\text{IR}(\mathcal{D}^{(k_1)}) \ll \text{IR}(\mathcal{D}^{(k_2)})$. Thus, the
 720 decision boundary of the global aggregated model $\eta_j^{[w]}(x)$ is $S_{j,\ell}^{[w]} = \{x \in \mathcal{X} : P_j(x)/P_\ell(x) =$
 721 $\pi_\ell^{[w]}/\pi_j^{[w]}\}$ with $\pi_\ell^{[w]} = \pi_j(m_j - 1)/m_j + \pi_\ell/m_\ell$ and $\pi_j^{[w]} = \pi_j/m_j + \pi_\ell(m_\ell - 1)/m_\ell$. As a result,
 722 during model aggregation in each communication round, the global imbalance is exacerbated due
 723 to the dominant contribution from client k_2 , amplified by both its large aggregation weight w_{k_2} and
 724 local imbalance ratio $\text{IR}(\mathcal{D}^{(k_2)})$.
 725

726 Even under the uniform averaging with $w_{k_1} = w_{k_2} = 1/2$, the decision boundary of the global
 727 aggregated model $\eta_j^{[w]}(x)$ is $S_{j,\ell}^{[w]} = \{x \in \mathcal{X} : P_j(x)/P_\ell(x) = \pi_\ell^{[w]}/\pi_j^{[w]}\}$ with $\pi_\ell^{[w]} = (m_j -$
 728 $1)/(2m_j) + 1/(2m_\ell)$ and $\pi_j^{[w]} = 1/(2m_j) + (m_\ell - 1)/(2m_\ell)$. The decision boundary is still biased
 729 due to the global imbalance.
 730

731 **Supplementary Explanation on Aggregated Model Representation** To analyze how re-labeling
 732 influences the global decision boundary, we adopt the global model defined via posterior aggregation
 733 (i.e., $\sum_{k=1}^K w_k f(x, \theta^{(k)})$), where $f(x, \theta^{(k)})$ denotes the local posterior of client k with parameter
 734 $\theta^{(k)}$ instead of parameter aggregation (i.e., $f\left(x, \sum_{k=1}^K w_k \theta^{(k)}\right)$). This choice is motivated by two
 735 key considerations: (1) the posterior-aggregated form renders changes in the decision boundary more
 736 explicit and easier to quantify, which aligns with our focus on analyzing re-labeling’s effect; (2) it is
 737 consistent with statistical model averaging ideas, providing a flexible framework for heterogeneous
 738 FL scenarios.
 739

740 No specific constraints are imposed on the aggregation weights w_k , and our only assumption is
 741 that the aggregated global model can be expressed as a weighted average of local posteriors, which
 742 we explicitly formalize. Furthermore, the two aggregation paradigms (parameter-aggregated and
 743 posterior-aggregated) are approximately equivalent under mild regularity conditions, as justified by
 744 first-order Taylor expansion:
 745

746 Assume all local parameters $\theta^{(k)}$ are sufficiently close to a common reference value θ_0 (a reasonable
 747 condition in late-stage FL training when models converge). Expanding both models around θ_0 :

748 1. For the parameter-aggregated global model:

$$751 \quad f\left(x, \sum_{k=1}^K w_k \theta^{(k)}\right) \approx f(x, \theta_0) + \frac{\partial f(x, \theta)}{\partial \theta} \Big|_{\theta=\theta_0} \sum_{k=1}^K w_k (\theta^{(k)} - \theta_0) \\ 752 \quad = f(x, \theta_0) + \sum_{k=1}^K w_k \frac{\partial f(x, \theta)}{\partial \theta} \Big|_{\theta=\theta_0} (\theta^{(k)} - \theta_0)$$

756 2. For the posterior-aggregated global model (noting $\sum_{k=1}^K w_k = 1$):
 757

$$\begin{aligned} 758 \quad \sum_{k=1}^K w_k f(x, \theta^{(k)}) &\approx f(x, \theta_0) + \frac{\partial f(x, \theta)}{\partial \theta} \bigg|_{\theta=\theta_0} \left(\sum_{k=1}^K w_k \theta^{(k)} - \theta_0 \right) \\ 759 \\ 760 \\ 761 \quad &= f(x, \theta_0) + \sum_{k=1}^K w_k \frac{\partial f(x, \theta)}{\partial \theta} \bigg|_{\theta=\theta_0} (\theta^{(k)} - \theta_0) \\ 762 \\ 763 \end{aligned}$$

764 The two expansions are identical, confirming that the parameter-aggregated and posterior-aggregated
 765 global models are **first-order equivalent** when local parameters are sufficiently close. This justifies
 766 our use of the posterior-aggregated form for analyzing decision boundary changes, as it does not
 767 introduce substantive deviations from standard parameter-aggregated FL while offering greater
 768 analytical tractability.

769 **A.1 PROOF OF LEMMA 2**

770 *Proof.* As we are considering the binary classification setting, the optimal Bayesian decision boundary
 771 based on $\tilde{\mathcal{D}}^{(k)}$ is

$$772 \quad \tilde{S}^{(k)} = \left\{ x^* \in \mathcal{X} : \tilde{\eta}_j^{(k)}(x)(x^*) = \tilde{\eta}_\ell^{(k)}(x^*) \right\},$$

773 where

$$774 \quad \tilde{\eta}_\ell^{(k)}(x) = \eta_\ell^{(k)}(x)[1 - \rho_{\ell \rightarrow j}^{(k)}(x)] + \eta_j^{(k)}(x)\rho_{j \rightarrow \ell}^{(k)}(x).$$

775 Given the formulation of $\tilde{\eta}_j^{(k)}(x)$, we need

$$776 \quad \eta_j^{(k)}(x^*)[1 - \rho_{j \rightarrow \ell}^{(k)}(x^*)] + \eta_\ell^{(k)}(x^*)\rho_{\ell \rightarrow j}^{(k)}(x^*) = \eta_\ell^{(k)}(x^*)[1 - \rho_{\ell \rightarrow j}^{(k)}(x^*)] + \eta_j^{(k)}(x^*)\rho_{j \rightarrow \ell}^{(k)}(x^*),$$

777 which is equivalent to

$$778 \quad \eta_j^{(k)}(x^*)[1 - 2\rho_{j \rightarrow \ell}^{(k)}(x^*)] = \eta_\ell^{(k)}(x^*)[1 - 2\rho_{\ell \rightarrow j}^{(k)}(x^*)].$$

779 Regarding the fact that $\eta_j^{(k)}(x) = \pi_j^{(k)} P_j(x) / \sum_{j_0 \in \mathcal{Y}} \pi_{j_0}^{(k)} P_{j_0}(x)$, the above equation can be simplified to

$$780 \quad \pi_j^{(k)} P_j(x^*)[1 - 2\rho_{j \rightarrow \ell}^{(k)}(x^*)] = \pi_\ell^{(k)} P_\ell(x^*)[1 - 2\rho_{\ell \rightarrow j}^{(k)}(x^*)],$$

781 and the final result follows immediately. \square

782 **A.2 PROOF OF LEMMA 3**

783 *Proof.* The global aggregated model satisfies

$$784 \quad \tilde{\eta}_j^{[w]}(x) = \sum_{k=1}^K w_k \tilde{\eta}_j^{(k)}(x) = \sum_{k=1}^K w_k \left\{ \eta_j^{(k)}(x) + \eta_\ell^{(k)}(x)\rho_{\ell \rightarrow j}^{(k)}(x) \right\}$$

785 and

$$786 \quad \tilde{\eta}_\ell^{[w]}(x) = \sum_{k=1}^K w_k \tilde{\eta}_\ell^{(k)}(x) = \sum_{k=1}^K w_k \eta_\ell^{(k)}(x)[1 - \rho_{\ell \rightarrow j}^{(k)}(x)].$$

787 Then, for x^* on the Bayesian decision boundary, it requires that

$$\begin{aligned} 788 \quad \tilde{\eta}_j^{[w]}(x^*) &= \sum_{k=1}^K w_k \left\{ \eta_j^{(k)}(x^*) + \eta_\ell^{(k)}(x^*)\rho_{\ell \rightarrow j}^{(k)}(x^*) \right\} \\ 789 \\ 790 \quad &= \sum_{k=1}^K w_k \eta_\ell^{(k)}(x^*)[1 - \rho_{\ell \rightarrow j}^{(k)}(x^*)] = \tilde{\eta}_\ell^{[w]}(x^*), \end{aligned}$$

791 which can be simplified to

$$792 \quad \sum_{k=1}^K w_k \eta_j^{(k)}(x^*) = \sum_{k=1}^K w_k \eta_\ell^{(k)}(x^*)[1 - 2\rho_{\ell \rightarrow j}^{(k)}(x^*)].$$

793 Applying $\eta_j^{(k)}(x) = \pi_j^{(k)} P_j(x) / \sum_{j_0 \in \mathcal{Y}} \pi_{j_0}^{(k)} P_{j_0}(x)$ again, we get the desired result. \square

810 B ADDITIONAL EXPERIMENT DETAILS
811812 The code is available at: <https://github.com/anonymous2025988/FedReLa.git>.
813814 **Training details.** To ensure fair comparison, all global models are trained until full convergence
815 with communication rounds adapted per method. Specifically, baseline methods require 500 rounds
816 for convergence, while CLIMB, which introduces class-wise loss reweighting parameters, demands
817 extended training: 2000 rounds on Fashion-MNIST and CIFAR-10, and 1000 rounds on CIFAR-100.
818 As we do not intend to compare these algorithm-level methods, we use the SGD optimizer with
819 the same weight decay and momentum as they reported in their original implementations: weight
820 decay of 0.00001 and momentum 0.9 for all methods except long-tailed-oriented methods FedETF
821 and FedLOGE, which follow their original implementations with zero weight decay and momentum
822 0.5. All experiments were conducted with three distinct random seeds, and their average results are
823 reported in the tables.
824825 **Evaluation metrics.** A balanced test dataset is used to evaluate the overall accuracy performance
826 of the global model. Additionally, the average test accuracy for both minority and majority classes is
827 reported for the step-wise imbalanced setting. For long-tailed datasets, we report the accuracy over
828 head, medium, and tail classes as Many-, Medium-, and Few-shot, respectively.
829830 Adhering to the long-tailed federated learning protocol established in (Xiao et al., 2024), we categorize
831 classes into three disjoint subsets based on sample size distribution: head (majority), medium, and tail
832 (minority) class groups, constituting 75%, 20%, and 5% of total samples, respectively. For long-tailed
833 CIFAR-10, we define classes $\{0, 1, 2\}$ as head classes, $\{3, 4, 5\}$ as medium classes, and $\{6, 7, 8, 9\}$
834 as tail classes. On long-tailed CIFAR-100, this partitioning extends with classes 0-47 forming the
835 head partition, 48-83 as medium, and 84-99 as tail. To evaluate model performance through stratified
836 accuracy metrics, we report Head/Medium/Tail-shot accuracies corresponding to these partitions in
837 Table 2.
838839 B.1 COMPUTATIONAL COST
840841 All experiments were conducted on a Spartan cluster on a single node equipped with one NVIDIA
842 H100 GPUs (80GB memory) 10GB RAM with 12 CPU cores.
843844 Before approximating the computational cost of FedReLa, we would like to clarify the fundamental
845 difference between **extra Local training** and **extra local computation**:
846847 1. Local training overhead involves **gradient updates for new parameters or module**. For
848 example, methods that introduce new optimizable parameters (e.g., CLIMB, FedLOGE, etc.)
849 require extra per-round local training overhead to update the gradients of these parameters.
850 2. **ONE-TIME Model Inference:** FedReLa only performs **one-time model inference during**
851 **a single round** to obtain posterior probabilities, without updating the model or gradients.
852 Therefore, we describe FedReLa as operating "without extra local training."
853854 **Approximate one-time computation cost of FedReLa.** The strength of FedReLa as a data-level
855 method lies in its requirement for only a single computational step during a single round to refine the
856 imbalanced data distribution, thereby achieving long-lasting improvements in model performance.
857 The core operation of FedReLa is model inference (forward pass) to obtain the local posterior
858 probability matrix $Q^{(k)}$. We approximately consider
859

860
$$\text{FLOP}_{\text{train}} = \text{FLOP}_{\text{forward}} + \text{FLOP}_{\text{backpropagation}},$$

861
$$\text{FLOP}_{\text{backpropagation}} \approx 2 \times \text{FLOP}_{\text{forward}}.$$

862

863 Thus, the FLOPs required for $Q^{(k)} = f(\theta_{T_{\text{relabel}}}^{\text{global}}; X^{(k)})$ can be approximatly quantified with:
864

865
$$\text{FLOP}_{Q^{(k)}} = \text{FLOP}_{\text{forward}} \approx \frac{1}{3} \text{FLOP}_{\text{train}}.$$

866

867 The total computation cost of FedReLa is approximately 1/3 of the computation cost of a single
868 training round. This cost is One-Time only during the single round of T_{relabel} .
869

864 **Runtime comparison.** Unlike methods requiring from-scratch training, FedReLa enhances classifier performance solely through one-shot re-labeling during the fine-tuning phase. Consequently, its computational overhead is primarily determined by the base federated learning algorithm it augments. For instance, each communication round of FedLOGE requires an average of 72.36 seconds on CIFAR100. When FedReLa enhances FedLOGE with a one-shot computation for label re-allocator, the average communication round time increased to 73.06 seconds, which is negligible.

870
871 **B.2 ADDITIONAL EXPERIMENT RESULTS**
872

873 **Additional experiment on step-wise setting with resent SOTAs.** Although recent methods, such
874 as FedETF (Li et al., 2023) and FedLOGE (Xiao et al., 2024), are long-tail-oriented approaches, we
875 conducted additional experiments on CIFAR-10 with step-wise imbalance. The results in Table 4
876 demonstrate that FedReLa still achieves SOTA performance on step-wise imbalance. FedReLa brings
877 significant improvements, especially under higher imbalance ratios and more heterogeneous data.

IR	Method	$\alpha = 0.3$		$\alpha = 0.1$	
		Minority/Majority	Overall	Minority/Majority	Overall
10	FedETF	74.21/93.79	84.01	44.14/96.46	70.30
	+FedReLa	82.11/91.72	86.92	68.28/84.52	76.43
	FedLOGE	80.49/92.12	86.32	61.57/86.05	73.81
	+FedReLa	85.81/89.73	87.77	68.7/81.64	75.17
20	FedETF	69.31/87.73	78.52	43.65/72.55	58.10
	+FedReLa	82.75/83.74	83.11	67.85/75.75	71.82
	FedLOGE	79.30/85.9	82.60	45.61/63.79	54.70
	+FedReLa	79.60/84.21	81.90	59.18/70.73	64.95

888 Table 4: Performance on Step-wise-imbalanced CIFAR10
889
890

891 **Additional experiment on higher proportion of minority classes.** In addition to 10% and 30%
892 minority classes for step-wise-imbalanced datasets, we further extend the proportion to 50% to
893 examine the consistency of enhancement from FedReLa on extreme conditions. As demonstrated in
894 Table 5, FedReLa delivers significant performance gains even in the extreme case where minority
895 classes constitute 50% of the data. Without the FedReLa boost, baseline methods exhibit pronounced
896 accuracy degradation as the proportion of the minority class increases. Our proposed label re-allocator
897 effectively mitigates this performance deterioration while simultaneously enhancing overall accuracy.
898 These results strongly validate FedReLa’s capability to provide robust performance enhancements for
899 federated learning methods that face substantial minority class presence.

Method	IR=10 with 50% Minority Classes					
	Fashion-MNIST		CIFAR-10		CIFAR-100	
	Minority	Overall	Minority	Overall	Minority	Overall
FedAvg	63.44(77.10)+ 13.66	78.29(82.90)+ 4.61	16.94(44.42)+ 27.48	48.67(56.72)+ 8.05	12.17(25.27)+ 13.10	42.48(46.76)+ 4.28
FedProx	63.78(77.24)+ 13.46	78.62(82.62)+ 4.00	16.32(43.54)+ 27.22	48.20(56.52)+ 8.32	12.83(23.13)+ 10.30	41.97(46.28)+ 4.31
FedNova	77.60(80.50)+ 2.90	81.89(83.30)+ 1.41	23.47(39.20)+ 15.73	52.70(55.65)+ 2.95	13.53(23.23)+ 9.70	45.70(47.57)+ 1.87
MOON	64.68(76.60)+ 11.92	79.22(82.74)+ 3.52	11.20(38.54)+ 27.34	46.35(54.69)+ 8.34	11.17(24.23)+ 13.06	42.53(46.56)+ 4.03
CLIMB	75.47(79.90)+ 4.43	85.22(87.14)+ 1.92	31.35(42.85)+ 11.50	69.68(72.01)+ 2.33	11.00(24.48)+ 13.48	30.71(34.79)+ 4.08

900 Table 5: Test accuracies (in %) of different methods on step-wise imbalance datasets under
901 IR=10 with 50% minority classes at heterogeneity level $\alpha = 0.3$ in the format of
902 original (+FedReLa) + **enhancement**

912 **Large-Scale Dataset Validation on ImageNet-LT.** We conduct supplementary experiments on
913 ImageNet-LT with data heterogeneity level $\alpha = 0.1$, 20 clients, and 0.4 participation fraction.
914 Another recent SOTA method, FedYoYo (Yan et al., 2025), is used to demonstrate the algorithmic
915 agnosticism of FedReLa. Although FedYoYo requires each client to upload the estimated local
916 distribution for aggregation on the server, making it fall outside the scope of our core comparisons
917 .raises concerns on data privacy in federated learning), we still include this experiment to demonstrate
918 that FedReLa can consistently enhance performance even when integrated with methods that rely

918 on extra privacy-sensitive information. We focus on evaluating whether FedReLa can maintain
 919 performance gains as it adapts to large-scale data distributions.
 920

Method	Overall Accuracy (%)	H/M/T Accuracy (%)
FedYoYo (Yan et al., 2025)	38.15	41.19/39.42/31.08
+FedReLa	38.78	40.73/40.06/33.71
FedLoGe (Xiao et al., 2024)	30.52	46.29/28.01/15.02
+FedReLa	31.70	45.43/30.44/18.02

927 Table 6: Performance comparison on ImageNet-LT (H=Head, M=Medium, T=Tail). FedReLa
 928 enhances tail-class accuracy by 2.63% without sacrificing overall performance.
 929

930 The result above confirms that FedReLa’s sample-level re-labeling mechanism—calibrated via class-
 931 wise z-score standardization—avoids the scalability bottlenecks of feature-space methods (e.g.,
 932 SMOTE) and maintains effectiveness on large-scale datasets. The consistency of performance gains
 933 validates FedReLa’s inherent scalability for real-world large-scale federated learning scenarios.
 934

935 **Large number of clients on CIFAR100-LT** We extend CIFAR100-LT experiments to 50 and
 936 100 clients, with an imbalance factor $imb_factor = 100$ and data heterogeneity $\alpha = 0.1$. The
 937 participation fractions are set to 0.2 and 0.1, respectively. As the number of clients increases, class
 938 absences become increasingly severe. This setup aims to verify FedReLa’s robustness to extreme
 939 class imbalance and its compatibility with diverse algorithmic approaches.
 940

Method	50 Clients		100 Clients	
	Overall Accuracy (%)	H/M/F Accuracy (%)	Overall Accuracy (%)	H/M/F Accuracy (%)
FedLC (Zhang et al., 2022)	32.81	56.20/32.42/9.74	23.72	46.41/20.74/4.23
+FedReLa	34.76	49.92/35.24/17.21	25.13	39.82/28.34/7.02
FedYoYo (Yan et al., 2025)	40.89	54.32/41.95/24.12	30.73	34.12/29.64/27.92
+FedReLa	41.31	53.62/42.24/25.91	32.13	33.90/32.72/29.22
FedETF	31.89	60.67/40.45/9.22	28.71	59.00/33.72/9.73
+FedReLa	33.94	55.12/43.61/15.12	31.50	52.21/38.73/16.53
FedLoGe	34.83	57.12/42.21/17.29	33.08	62.71/38.78/13.75
+FedReLa	35.62	57.01/44.32/18.00	34.32	59.90/42.22/16.00

950 Table 7: Performance comparison on CIFAR100-LT with 50/100 clients (H=Head, M=Medium,
 951 F=Few-shot). FedReLa consistently boosts few-shot accuracy across baselines.
 952

953 Table 7 demonstrates three key conclusions: (1) FedReLa delivers consistent enhancements for all
 954 baselines; (2) Even with 100 clients (a large-scale client setup), FedReLa maintains performance
 955 gains, validating its scalability to distributed environments with numerous clients and its robustness to
 956 severe class absence; (3) The consistent improvements across diverse algorithmic paradigms further
 957 confirm FedReLa’s algorithm-agnostic property as a data-level plug-in.
 958

959 **Tail-Class Accuracy Gain on CIFAR10-LT Under Extreme Heterogeneity** Under $\alpha = 0.1$,
 960 70% of tail classes are absent from clients, simulating extreme real-world heterogeneity.
 961

Method	Imbalance Factor (IF)	Tail-Class Accuracy Gain (%)		
		$\alpha = 0.1$	$\alpha = 0.3$	$\alpha = 10$
+FedReLa				
FedETF	50	+36.49	+5.52	+3.68
FedETF	100	+30.70	+10.50	+2.51
FedLoGe	50	+14.97	+3.43	+5.76
FedLoGe	100	+19.73	+9.58	+4.40

970 Table 8: Tail-class accuracy gain of FedReLa on CIFAR10-LT. Improvements are more significant
 971 under extreme heterogeneity ($\alpha = 0.1$).
 972

972 As presented in Table 8, FedReLa’s tail-class gains are most pronounced under extreme heterogeneity
 973 ($\alpha = 0.1$). In contrast, gains are smaller under mild heterogeneity ($\alpha = 10$, close to IID). This result
 974 confirms that FedReLa is designed explicitly for heterogeneous scenarios with severe class absence:
 975 its deferred re-labeling strategy and calibrated posterior estimation enable effective identification of
 976 majority-class samples similar to absent minorities, avoiding blind re-labeling and delivering robust
 977 performance gains.

978

979 B.3 SENSITIVITY ANALYSIS

980

981 We perform the sensitivity analysis of re-labeling threshold $t_{re}^{(k)}$ on long-tailed CIFAR-10 with
 982 IF = 50. On each client, the class-wise threshold $t_{re}^{(k)}$ is determined by the top- τ % of z-scores. The
 983 threshold $t_{re}^{(k)}$ controls the re-labeling strength (the amount of re-labeled samples) as demonstrated in
 984 Figure 2(a). This serves as a safeguard to regulate the number of samples re-labeled by FedReLa.
 985 For instance, using the top 1% z-score as the re-labeling threshold limits the number of re-labeled
 986 samples to be less than 1% of local data. Figure 2(a) shows that the amount of re-labeled samples
 987 scales linearly with top- τ percentiles.

988

989 In Figure 2(b), when $\tau \leq 5$, tail-class performance gains outweigh head-class losses. When $\tau > 5$,
 990 medium-class accuracy steadily improves and head-class accuracy continues to decline slowly, while
 991 tail-class accuracy remains relatively stable. The effect on performance of turning $t_{re}^{(k)}$ up reveals
 992 that: (1) Initially, re-labeled head-class samples with a small τ mostly invade tail-class feature space.
 993 (2) After re-labeling these critical samples, further label re-allocating relieves the head-class invasion
 994 of the medium-class feature space. (3) FedReLa prioritizes re-labeling samples that most severely
 995 invade tail-class regions. We observe similar results on the CIFAR100-LT (Table 9 in the appendix).
 996

1008 Figure 2: Sensitive analysis respect to τ , which controls the re-labeling strength.
 1009

1010

1011 The threshold-tuning capability allows FedReLa to deliver customized class-wise enhancement,
 1012 prioritizing tail-class gains ($\tau = 5$) while preserving overall performance. This strategic trade-off
 1013 (suppressing overprivileged head classes to boost tails) is a unique advantage over static algorithm-
 1014 level approaches (Li et al., 2023; Xiao et al., 2024), as evidenced by the accuracy curves surpassing
 1015 the baseline (dashed lines) in critical regions. In practice, we can tune the trade-off through τ
 1016 depending on how much importance we place on minority-class performance.

1017

1018 Recall the conclusion from observations on CIFAR-10-LT: (1) Initially, re-labeled head-class samples
 1019 with a small k mostly invade tail-class feature space. (2) After re-labeling these critical samples,
 1020 further label re-allocating relieves the head-class invasion of the medium-class feature space. (3)
 1021 FedReLa prioritizes re-labeling samples that most severely invade tail-class regions. We observe
 1022 similar results on the CIFAR100-LT dataset, which are presented in Table 9. We anticipate that the
 1023 optimal parameters will exhibit slight differences across datasets with varying posterior probability
 1024 distributions and degrees of class overlap. When $\tau = 3$, FedReLa achieves maximum performance
 1025 gain on CIFAR-100-LT, where the degree of class overlap is more severe. Although the parameter
 range 1-20% consistently provides performance gain on both CIFAR-10 and CIFAR-100, with
 the principle of minimizing data-editing, **we recommend using slightly conservative relabeling
 strength (3%-5%).**

Table 9: Sensitivity analysis on CIFAR-100-LT

top- τ %	Original	1	3	5	7	9	15	20
Overall	44.1	44.6	45.1	44.7	44.6	44.9	44.5	44.6
Many-shot	56.4	57.2	58.5	56.6	57.1	56.8	56.2	56.0
Medium-shot	49.2	49.5	48.8	50.0	49.8	49.4	50.7	51.1
Few-shot	26.6	27.4	28.4	28.0	27.5	28.9	27.6	26.8
Relabeled	0	51	157	194	216	276	317	364

The threshold-tuning capability enables FedReLa to deliver customized class-wise enhancements, prioritizing tail-class gains while preserving overall performance. This strategic trade-off (suppressing overprivileged head classes to boost tails) is a unique advantage over static algorithm-level approaches (Li et al., 2023; Xiao et al., 2024), as evidenced by the accuracy curves surpassing the baseline (dashed lines) in critical regions. Again, in practice, we can tune the trade-off through $t_{\text{re}}^{(k)}$ by τ depending on how much importance we place on minority-class performance.

C ABLATION STUDY

Ablation study on the importance of Z-score standardization Z-score standardization is critical for enabling FedReLa to utilize the underestimated posterior probabilities output by biased models. To validate its necessity, we conducted ablation experiments on CIFAR-10-LT ($\alpha = 0.1$, IF = 50) without standardization, and directly using posterior probabilities as flip probabilities.

Method	Overall	Many-shot	Medium-shot	Few-shot
FedLOGE	57.5	83.0	61.1	19.8
+FedReLa	70.0	76.0	72.7	59.4
+FedReLa w/o Z-score	59.7	82.1	72.3	17.4

Table 10: Performance of FedReLa with/without Z-score Standardization

Without z-score standardization, the Few-shot performance fails to show improvement. This is attributed to the fact that the posterior probabilities are underestimated by the biased global model for tail classes and are typically extremely small. Directly utilizing them as flipping probabilities hinders the effective conversion of these samples into global minority classes. Meanwhile, the Medium-shot performance exhibits improvement as these classes possess more samples than tail classes, resulting in the model underestimating their posterior probabilities to a lesser extent. Thus, head-class samples with similar features are preferentially flipped to the medium class, rather than to the tail classes with tiny posterior probabilities.

Applying z-score standardization to the underestimated posterior probabilities enables a balanced label re-allocating behavior, which achieves a better balanced trade-off among the performance of Head, Medium, and Tail classes. Ultimately, this contributes to the superior Overall accuracy.

Ablation study on data-heterogeneity. To evaluate FedReLa’s performance under higher imbalance ratios across varying degrees of data heterogeneity, we increased the imbalance ratio (IR) to 20 and the number of clients to $K = 100$ on the Fashion-MNIST dataset with 3 minority classes.

Results in Table 11 depict consistent performance improvements by FedReLa across different levels of data heterogeneity on the Fashion-MNIST dataset for each algorithm-level method. This highlights the robustness of FedReLa in mitigating the impact of data heterogeneity through enhancements to both data and classifiers.

Improved percentage shows that the improvement achieved by FedReLa increases with higher data heterogeneity, indicating that FedReLa-boosted models exhibit significantly improved robustness to heterogeneous data distributions compared to baseline methods.

As α decreases (i.e., heterogeneity increases), FedReLa demonstrates progressively greater improvements in both minority-class accuracy (+8.13% to +35.40%) and overall accuracy (+1.83%

	Original (+FedReLa) Performance		Improved Percentage (%)	
	Minority Accuracy	Overall Accuracy	Minority Accuracy	Overall Accuracy
	$\alpha = 10$			
FedAvg	51.70 (81.83)	79.57 (84.56)	+30.13	+4.99
FedProx	51.57 (81.83)	79.35 (84.40)	+30.26	+5.05
FedNova	52.00 (82.27)	79.35 (84.61)	+30.27	+5.26
MOON	45.77 (81.17)	78.35 (85.60)	+35.40	+7.25
CLIMB	55.80 (69.57)	82.39 (86.14)	+13.77	+3.75
	$\alpha = 5$			
FedAvg	45.27 (78.53)	77.80 (84.42)	+33.26	+6.62
FedProx	45.57 (78.03)	77.90 (84.27)	+32.46	+6.37
FedNova	46.10 (78.60)	78.18 (84.30)	+32.50	+6.12
MOON	45.57 (79.73)	78.21 (85.51)	+34.16	+7.30
CLIMB	56.10 (69.53)	82.67 (86.35)	+13.43	+3.68
	$\alpha = 1$			
FedAvg	50.67 (75.57)	79.06 (84.12)	+24.90	+5.06
FedProx	50.10 (74.60)	78.95 (84.25)	+24.50	+5.30
FedNova	50.10 (75.93)	78.91 (84.47)	+25.83	+5.56
MOON	44.87 (74.97)	77.94 (84.95)	+30.10	+7.01
CLIMB	61.17 (69.3)	83.78 (85.93)	+8.13	+2.15
	$\alpha = 0.3$			
FedAvg	50.50 (75.70)	78.46 (83.84)	+25.20	+5.38
FedProx	50.00 (74.90)	78.48 (83.63)	+24.90	+5.15
FedNova	55.03 (77.90)	76.67 (84.46)	+22.87	+7.79
MOON	44.43 (74.77)	77.12 (84.47)	+30.34	+7.35
CLIMB	53.43 (64.70)	81.42 (84.56)	+11.27	+3.14
	$\alpha = 0.1$			
FedAvg	33.83 (67.60)	68.43 (79.25)	+33.77	+10.82
FedProx	34.40 (68.27)	69.37 (79.35)	+33.87	+9.98
FedNova	70.43 (82.83)	74.25 (82.10)	+12.40	+7.85
MOON	22.59 (45.82)	67.44 (77.88)	+23.23	+10.44
CLIMB	56.97 (65.20)	81.78 (83.61)	+8.23	+1.83

Table 11: Ablation study on α . The overall accuracy and average accuracy of minority classes (in %) on step-wise Fashion-MNIST with 3 minority classes (30%) for IR = 20 with 100 clients. The results in brackets show the FedReLa enhanced performance.

to +10.82%), with the most significant gains observed under extreme non-IID scenarios ($\alpha = 0.1$). While baseline methods exhibit varied sensitivity to heterogeneity, CLIMB shows inherent robustness but limited enhancement headroom, and MOON suffers significant performance drops at $\alpha = 0.1$. Yet FedNLR consistently mitigates these limitations through adaptive calibration, offering consistent enhancement. Notably, FedReLa reduces minority-class accuracy disparities by 23-37% across $\alpha \leq 1$ while maintaining global model stability, particularly excelling in balancing the accuracy tradeoff between dominant and rare classes. These results position FedReLa as a versatile solution for real-world federated learning deployments, offering three key advantages: 1) enhanced robustness to severe data heterogeneity without requiring client-specific tuning, 2) compatibility with existing aggregation frameworks, and 3) simultaneous optimization of both class-balanced and global model performance in non-IID environments.