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ABSTRACT

Recently, a plethora of works have proposed inference-time algorithms (e.g. best-
of-n), which incorporate verifiers to assist the generation process. Their quality-
efficiency trade-offs have been empirically benchmarked on a variety of constrained
generation tasks, but the algorithmic design landscape is still largely poorly under-
stood. In this paper, we develop a mathematical framework for reasoning about
constrained generation using a pre-trained language model generator oracle and a
process verifier—which can decide whether a prefix can be extended to a string
which satisfies the constraints of choice. We show that even in very simple settings,
access to a verifier can render an intractable problem (information-theoretically
or computationally) to a tractable one. In fact, we show even simple algorithms,
like tokenwise rejection sampling, can enjoy significant benefits from access to a
verifier. Empirically, we show that a natural modification of tokenwise rejection
sampling, in which the sampler is allowed to “backtrack” (i.e., erase the final few
generated tokens) has robust and substantive benefits over natural baselines (e.g.
(blockwise) rejection sampling, nucleus sampling)—both in terms of computational
efficiency, accuracy and diversity.

1 INTRODUCTION

The fast-evolving area of inference-time algorithms concerns itself with leveraging the already-
impressive capabilities of language models (Raffel et al., 2020; Brown et al., 2020; Touvron et al.,
2023), together with a verifier which can score generations of of the language model. In the simplest
form, called best-of-N, the language model generates N candidate responses, which are then scored by
the verifier, and the highest-scored candidate response is chosen as the output of the inference process
(Cobbe et al., 2021; Nakano et al., 2022). If the verifier can score partial generations (sometimes
called process reward), the space for inference-time algorithms gets much richer: e.g., the final
answer can be generated incrementally, using the verifier to guide the process (e.g., by incremental
(blockwise) best-of-N, or more complicated strategies like Monte-Carlo-Tree-Search (Browne et al.,
2012; Hao et al., 2023)). Importantly, though a flurry of recent papers consider “scaling laws” of
natural strategies, the algorithm design space of verifier-aided inference-time algorithms is still
opaque. In particular, the value of a verifier—and the relationship it needs to have to the generator is
not well understood.

In this paper, we show that a good verifier can substantially (both in theory and in practice) decrease
the computational cost of natural generation tasks, using a pre-trained language model as an oracle.
In particular, we show that:

• Even simple constrained generation tasks, in which we’re trying to generate a string in the
support of a language oracle, subject to some structural constraint (e.g. describable as a
simple formal language, like a regular language), can be computationally intractable in the
absence of a verifier.

• Conversely, access to a good process verifier, which can decide whether prefixes can be
completed to a string which satisfies the constraints, can remove these intractabillities.
Moreover, even simple algorithms like tokenwise rejection sampling—wherein we generate
the string one token at a time, using the process verifier as a means to accept or reject—can
have substantive computational benefits over the baseline of rejection sampling.
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• Finally, on natural constrained generation tasks—namely, generating test cases for Python
functions with a pretrained CodeLlama (Roziere et al., 2023), a verifier can be trained, such
that a simple, but natural generalization of tokenwise rejection sampling which is allowed
to “backtrack” the last few generated tokens, achieves substantial benefits in computational
efficiency, accuracy, and diversity of the generations.

2 SETUP AND NOTATION

Throughout, we let Σ be a nonempty finite set, denoted as the vocabulary. We denote as Σi the set
of strings of length i and by Σ∗ = ∪i∈NΣ

i the set of all finite strings on Σ. Given a string s ∈ Σ∗ ,
we denote as si its i-th element and as si:j the substring of s starting at its i-element and ending at
its j-element, included. We use |s| to denote the length of string s, and ϵ to denote the empty string.
Finally, we let x ◦ y denote the concatenation of string x followed by string y.
Definition 1 (Autoregressive oracle). An autoregressive oracle O takes as input a string s ∈ Σ∗ and
returns a sample from a next-token distribution O(s) : Σ→ R+.

We will denote the corresponding joint distribution over strings s ∈ Σ∗ as pO : Σ∗ → R+.
Correspondingly, ∀s ∈ Σ∗, let pO(· | s) denote the distribution over completions of s predicted by O.
Definition 2 (Constrained generation). Constrained generation with respect to an oracle O, a
constraint set A, and alphabet Σ is the task of producing an element s ∈ A ⊆ Σ∗ such that
pO(s) > 0. If no such s exists, the algorithm needs to output FAIL.

When not clear from context, we will specify instances of this task by the triple (Σ, A,O). Under
suitable choices of the vocabulary Σ and the target domain A, one recovers several language modeling
tasks of theoretical and practical relevance as special cases of constrained generation. Specifically,
our experiments consider the tasks of generating (i) valid strings under the Dyck grammar (Section
5.1) and (ii) valid test cases for a given Python functions (Section 5.2), where the oracles return
samples from an appropriately pretrained language model. We recover these tasks from Definition 2
by setting:

• (i) Σ as the set of open and closed parentheses and A as the set of valid sequences of given
length.

• (ii) Σ as a set of characters from the Unicode standard (possibly after tokenization) and A as
the set of strings that are valid test cases for an input function in the Python programming
language.

Note that this task is easier than the task of sampling according to the restricted distribution p(s) ∝
1(s ∈ A)pO(s), which asks that the relative weights of the strings s ∈ A that are generated match the
probabilities assigned by pO. However, in many settings—e.g., generating proof of a mathematical
problem, or code that performs some intended functionality—we merely care about producing one
good sample.

We will be considering “process verifiers” that take as input a prefix s, and output whether or not
such a prefix can be completed to a string s ◦ s′ ∈ A. This is a natural formalization of a “process
reward”, as it assigns a belief to a partial generation. In the theoretical results (Section 3 and 4), we’ll
assume access to such an idealized verifier. In the empirical results (Section 5), such a verifier will be
trained and will output a value between 0 and 1, which can be naturally interpreted as a probability
that the prefix s is completable to a string s ◦ s′ ∈ A.
Definition 3 (Process verifier). Given a constraint set A, a verifier is a function V : Σ∗ → {0, 1}
such that ∀s ∈ Σ∗, V (s) = 1 if and only if ∃s′ ∈ Σ∗ such that s ◦ s′ ∈ A.

Designing algorithms given access to oracles which perform certain tasks, is a classical tool in
computer science (this is the basis of Turing reductions in computational complexity), as well
as optimization (e.g., zero-order optimization assumes a value oracle for a function, first-order
optimization a gradient oracle, etc.) In the context of generative modeling, analyses based on oracle
complexity have been carried out in the settings of diffusion models, where sampling algorithms rely
on score oracles Chen et al. (2022).

We will consider several natural algorithms that use an autoregressive oracle and a (process) verifier:
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Definition 4 (Rejection sampling). Rejection sampling works by repeatedly generating a string s
according to pO, then running a verifier V on the complete string—and accepting when the verifier
outputs V (s) = 1.

Note, this algorithm only needs a verifier that decides the membership in A, rather than a process
verifier. On the other hand, because the entire string needs to be generated first before being verified—
the number of generations until the verifier accepts is likely very large.
Definition 5 (Tokenwise rejection sampling). Tokenwise rejection sampling works by generating a
string one token at a time. To generate the next token t, given a prefix s, we sample t ∼ O(s), and
run the process verifier on V (s ◦ t). We repeat this, until V (s ◦ t) = 1, then proceed to the next token.

This algorithm requires a process verifier. However, since a partial string is accepted only if the
process verifier accepts, the number of generations needed is likely to be smaller. In fact, we provide
a very simple example in Section 4.

Finally, we consider a “backtracking” strategy, in which the model is allowed to erase some of its
generations. The reasons to consider such a strategy is to allow the model to get “unstuck”: if the
process verifier decides the current prefix cannot be completed to a valid string in A, it is possible
that erasing the last few tokens will make it easier for the model to correct its mistake, compared to
erasing just the last token. More formally, the framework of our algorithm is given by Algorithm 1
below. 1

Algorithm 1 Tokenwise rejection sampling with backtracking

1: Input: Prompt x, generator O, verifier V, length D ∈ N+, backtrack quota Q ∈ N, backtrack
stride B ∈ N+

2: s← ϵ
3: while |s| < D and s|s| ̸= <eos> do
4: Sample ŝ ∼ O(x ◦ s)
5: s← s ◦ ŝ
6: if Q > 0 and V(x ◦ s) = 0 then
7: s← s1:|s|−B

8: Q← Q− 1
9: for i in 1 · · ·B do

10: Choose ŝ ∈ argmaxO(x ◦ s)
11: s← s ◦ ŝ
12: end for
13: end if
14: end while

When arguing about lower bounds, a natural lower bound on the complexity of an algorithm is the
number of oracle calls needed2, particularly so when this dominates the cost of the algorithm, as is
frequently the case for language models:
Definition 6 (Oracle complexity). Given a (possibly randomized) algorithm A that solves the
constrained generation instance (Σ, A,O), the oracle complexity of A is defined as the expected
number of calls to the oracle made by A to solve (Σ, A,O), namely:

C(A) = E[#calls to O made by running A],
where the expectation is taken over the randomness of the oracle O and the randomness of the
algorithm A.

1The algorithm is a bit more involved, so we will describe it in pseudocode rather than text. Besides the
notations in Section 2, Algorithm 1 uses the following additional common conventions: <eos> denotes the
end-of-sequence token; s|s| ̸= <eos> is understood as True when s = ε; for any starting index i and ending
index j, if i > j, then si:j = ε. In line 10, why redoing the erased positions using argmax: our results in
Section 5.1.1 suggests that out-of-distribution prefix is a cause of generator mistakes. As a remedy, redoing
the erased positions using argmax is intended to increase the generator-predicted probability of the currently
sampled prefix. We include an ablation study in Appendix C.3 verifying that this improves the accuracy.

2In our case, the number of calls is a randomized quantity, so a natural quantity to consider is the expected
number of oracle calls. It is of course reasonable to consider finer-grained notions like tail bounds on the number
of calls.
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Finally, we recall the classical knapsack problem, which will be used in a reduction to prove
computational intractability results for the constrained generation task:

Definition 7 (Knapsack problem). Given a set of weights {Xi ∈ Z≥0 | i ∈ [D]} and c ∈ Z≥0, the
knapsack problem seeks an assignment of the variables (ai)Di=1, with ai ∈ {0, 1} ∀i ∈ [D] such that
c =

∑D
i=1 aiXi.

The problem is (weakly) NP-hard, even for some very special choices of c,Xi.

3 CONSTRAINED GENERATION IS HARD WITHOUT A VERIFIER

First, we show that the constrained generation task (Definition 2), without access to a process verifier
can be intractable—even if the constraint set A is extremely simple (e.g. the parity of a binary string).

The source of intractability can be information-theoretic: namely, if the oracle does not have a
succinct description, the algorithm may need to query it prohibively many times to identify what
oracle it’s interacting with. We view this as a plausible obstruction in practice as well: language
models frequently behave unpredictably “in-the-tails”, which becomes increasingly more likely when
generating long strings. Thus, to inspect the behavior of the model on long strings, many queries are
needed.

The source of the intractabability can also be computational: namely, even if the oracle is very
simple (e.g., a uniform distribution), generating a member of A can be NP-hard, even if checking
membership in A can be done efficiently. Perhaps this should not come as a surprise: after all, easy
verification of membership, but hard generation is the hallmark of NP-hard problems.

Proceeding to the first result, we show the following:

Theorem 1. There exists a constrained generation task (Σ, A,O) for which Σ = {0, 1}, A ⊆ ΣD,
andO is an (unknown) member of a set of 2D−1 possible oracles, such that any (possibly randomized)
algorithm A has an (expected) oracle complexity of at least 2D−1.

Intuitively, the lower bound is shown by engineering a scenario such that the behavior of the oracle
on long strings is unknown to the algorithm—but success of the generation task relies on “guessing”
this behavior correctly. The proof is in Appendix B.1.

Proceeding to the computational lower bound, the theorem we show is as follows (proof is in
Appendix B.2):

Theorem 2. There exists a constrained generation task (Σ, A,O) for which Σ = {0, 1}, membership
in A ⊆ ΣD can be checked in time polynomial in D, and O is such that ∀s ∈ {0, 1}D, pO(s) > 0,
the generation task is NP-hard.

4 CONSTRAINED GENERATION WITH PROCESS VERIFIER GETS EASIER

While pessimistic, the message of Section 3 agrees with recent developments in inference-time
scaling: namely, many natural tasks of interest seem to require a verifier to be solved.

First, we show that the simplest “natural” algorithm with a process verifier, tokenwise rejection
sampling (Definition 5), can be much more efficient (exponentially so) in terms of oracle complexity
compared to the trivial baseline of rejection sampling (Definition 4).

Proposition 1. Consider the constrained generation task (Σ, A,O), s.t. Σ = {0, 1}, A = {0D} and
O is uniform over ΣD. Then:

1. The expected oracle complexity of rejection sampling (Definition 4) is 2DD.

2. The expected oracle complexity of tokenwise rejection sampling (Definition 5) with a perfect
process verifier is 2D.

The proof is in Appendix B.3. This proposition underscores the power of a process verifier — even in
extremely simple settings, and even when used in conjunction with a very simple algorithm.
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In fact, one can easily see that with a perfect process verifier, one can easily solve the constrained
generation task with |Σ|D calls: at each position, one queries the process verifier for each possible
continuation of the string, and accepts only if the process verifier accepts. Of course, in practice, the
verifier is not perfect, and its accuracy likely depends on how “out-of-distribution” the prefix it’s
queried on is (See Section 5.1.3 and Appendix C.2.7)

We finally remark that a process verifier, as we defined it, is clearly useful to solve the generation task.
If we instead wanted to sample from the restricted distribution p(s) ∝ 1(s ∈ A)pO(s), it’s not clear
how useful the process verifier is. For instance, if we use the simple tokenwise rejection sampling
(Definition 5), it’s easy to see that the distribution we produce samples from is not the restricted
distribution (and proof is in Appendix B.4):
Proposition 2. Consider the constrained generation task (Σ, A,O), s.t. Σ = {0, 1}, A = {s ∈ ΣD :
∃i ∈ [D], si = 0} and O is uniform over ΣD. Then, tokenwise rejection sampling does not produce
samples from p(s) ∝ 1(s ∈ A)pO(s).

5 BACKTRACKING: A SURPRISINGLY EFFECTIVE REJECTION SAMPLING
STRATEGY

The flexibility of the tokenwise rejection sampling with backtracking (Algorithm 1) makes it a
very natural strategy to use in conjuction with trained verifies. We perform a thorough empirical
investigatation into the applicability of Tokenwise rejection sampling with backtracking in constrained
language generation, and benchmark it against common baselines, including rejection sampling
(Definition 4), nucleus sampling (Holtzman et al., 2020), temperature scaling, and “block best-of-N"
(Appendix C.2.3) sampling, on both synthetic data (Section 5.1) and more realistic data (Section 5.2).
We observe that across various settings, Tokenwise rejection sampling with backtracking reduces
query complexity, improves accuracy, and does not hurt diversity.

5.1 LANGUAGE MODELS TRAINED ON SYNTHETIC DATA

5.1.1 DYCK GRAMMAR AS A SANDBOX

Real-world LLM pretraining data (Li et al., 2024a) typically involves many diverse structures, so when
an LLM algorithm outperforms baselines on a benchmark, it is generally challenging to precisely
identify which component of the algorithm improved the handling of which structures of the data.

To have a quantitative control over the structure in the pretraining data distribution, and to derive
fine-grained observations about the effects of Tokenwise rejection sampling with backtracking , we
synthetically generate the pretraining data based on the Dyck grammar (Schützenberger, 1963), a
classic formal language (context-free grammar) consisting of balanced parentheses of multiple types
(for example, “[()]” is valid but “([)]” is not). Dyck serves as a useful sandbox, as it typifies features
such as long-range dependencies and a hierarchical, tree-like structure—characteristics often found
in both natural and programming language syntax—and has been a subject of interest in numerous
theoretical studies on Transformers (Yao et al., 2021; Liu et al., 2022; 2023b; Wen et al., 2023). More
formally:
Definition 8 (Dyck distribution). DyckD denotes the Dyck language 3 of length D defined over the
alphabet Σ = {[,],(,)}, whose length-N prefix set is denoted as DyckN ,∀N ∈ [D]. For a valid
prefix w1:N ∈ DyckN , the depth of w1:N is

d(w1:N ) = #Open Brackets in w1:N

−#Closed Brackets in w1:N .

The distribution DDyck over DyckN , (parameterized by p, q ∈ (0, 1)) is defined such that ∀w1:N ∈
DyckN ,

P(w1:N ) ∝ p|{i|wi=[,d(w1:i)=1}| · (1− p)|{i|wi=(,d(w1:i)=1}| (1)

· (pq)|{i|wi=[,d(w1:i)>1}| · ((1− p)q)|{i|wi=(,d(w1:i)>1}| (2)

· (1− q)|{i|wi∈{],)},d(w1:i)≤D−i}|.
3We follow a simplified version of Wen et al. (2023) in defining a probability distribution over strings in a

Dyck language.
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Remark 1. Equation (1) defines an intuitive autoregressive generative process for DyckD: if the
current depth is 0, then sample the next token from [ and ( with probability p and 1− p respectively;
else if the current depth is D − i+ 1, implying that all the remaining positions have to be all closed
brackets, then deterministically close the last unmatched open bracket 4 ;else, sample the next token
from open or closed brackets with probability q and 1− q respectively. In other words, p controls the
proportion of square vs. round brackets, while q controls the tendency to predict an open bracket
when possible (a large q may result in a large depth at some position).

In our experiments, we pretrain autoregressive Transformer (Vaswani et al., 2017) Language models
(6 layers, 8 heads per layer, hidden dimension 512) from scratch on data sampled from DDyck with
D = 32, p = 0.2, q = 0.5. We use batch size 32, weight decay 0.1, learning rate 3e-4 with 100
warmup steps, and follow Block et al. (2024) to use exponential moving average to stabilize training.
We reached 100% training and (in-distribution) validation accuracy.

To search for stronger signals in benchmarking the accuracy of the trained model, we will prompt it
using the following type of out-of-distribution prompts. Note that since p < 0.5, the training data
contains less square brackets than round brackets, so long prefixes with many square brackets will
be out-of-distribution prompts for the trained model. We generated a set of such out-of-distribution
prompts DyckOOD from DyckN with p = 0.8 where the prefix length N is uniformly randomly
sampled from 25 ≤ N ≤ 31. We let the trained language model complete these prompts and check
whether the completed string is in DyckD. Quantitatively:
Definition 9 (Prompt completion accuracy). Given an autoregressive oracle O (Definition 1) and a
set of prefix prompts X , the accuracy of O in completing X is:

Acc(O, X) =
1

|X|
∑

x∈X,y∼pO(·|x)

1x◦y∈DyckD

We construct the autoregressive oracle Onucleus which predicts the next-token distribution based on
our trained model with nucleus sampling (Holtzman et al., 2020) top_p set to 0.9. We observed that
Acc(Onucleus,DyckOOD) = 94.23%. We will show that Overifier backtracking based on Algorithm 1 can
significantly reduce the remaining error rate.

5.1.2 TRAINING THE VERIFIER

We collect a set of 441 prompts in DyckOOD in which the trained model (denoted as LM) made
mistakes when completing them. We implement a rule-based error parser according to the grammars
of DyckD which identifies the first position of error in each model completion. Applying this parser
to the model mistakes, we obtain a set of model-generated strings Xerror ⊂ Σ∗ which contain errors.
By contrast, we sample another set of 441 strings Xcorrect ∼ DyckOOD such that Xerror and Xcorrect
have the same length distribution. We train a lightweight neural network verifier to distinguish Xerror
from Xcorrect.

Concretely, to maximally exploit the representations learned by LM, we train a 1-linear-layer verifier
V whose features are the last-layer-last-position representations by LM of strings in Xerror ∪Xcorrect,
and labels are 0 for strings in Xerror and 1 for strings in Xcorrect. Consequently, the trainable parameters
of V are a single matrix of dimensionality 512 by 2. Among the 882 strings in Xerror∪Xcorrect, we use
792 samples for training, and 90 samples for validation. Despite being slightly over-parameterized,
this minimal verifier V achieved on average 93% (with standard error 3.9%) validation accuracy
across 10 repetitions. Figure 1 in Appendix C.1.1 illustrates the intuition of why a lightweight
verifier may be surprisingly effective with a small number of labeled samples. In Appendix C.1.2 and
Appendix C.1.3, we verify that the backtracking approach and the trained verifier both effectively
improve the accuracy.

5.1.3 TOKENWISE REJECTION SAMPLING WITH BACKTRACKING REDUCES COMPLETION
ERRORS ON UNSEEN OOD PREFIXES

Table 2 in Appendix C.1.3 reported a significant improvement of accuracy by Tokenwise rejection
sampling with backtracking (Algorithm 1) when the prompts are Xerror-inducing, for which the language

4 At any position, there is at most one valid closing bracket.
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model LM made mistakes during completion. Is the verifier V overfitted to these type of error-inducing
prompts? Can the accuracy improvement generalize to (average-case) out-of-distribution (OOD)
prefixes, i.e. independently sampled strings of the same distribution as DyckOOD (Section 5.1.1)?

We independently sampled 10000 such out-of-distribution prompts DyckunseenOOD , and benchmark the
accuracy of Tokenwise rejection sampling with backtracking (Algorithm 1) against the baselines
of nucleus sampling top_p = 0.9 (Holtzman et al., 2020) and standard autoregressive sampling
(equivalent to top_p = 1.0). Table 4 (Appendix C.1.5) shows that Tokenwise rejection sampling with
backtracking (Algorithm 1) significantly reduces completion errors. Crucially, the improvement does
not diminish on top of commonly used baselines. This verifies the desirable property that Tokenwise
rejection sampling with backtracking can be applied in combination with commonly used baselines
to further improve accuracy. Why does the model still make mistakes? We include additional error
analysis in Appendix C.1.6. We also verify that the accuracy improvement does not hurt diversity
(Appendix C.1.7).

5.2 GENERATING TEST CASES WITH PRETRAINED CODELLAMA

Motivated by our findings in Section 5.1, we apply essentially the same recipe of Tokenwise rejection
sampling with backtracking (Algorithm 1) to a real-data use case, and show that Algorithm 1 clearly
improves the quality vs. query complexity trade-off on top of commonly used baselines, such as
nucleus sampling (Holtzman et al., 2020), temperature scaling, best-of-n rejection sampling, and
block best-of-n with process reward model.

5.2.1 TASK SETUP

A natural practical constrained generation task that requires both accuracy and diversity is generating
test cases for a target function specified by the prompt. To have an unambiguous notion of groundtruth
regarding accuracy and diversity, we control the target function to be a simple implementation of the
append function for Python lists. Under this setting, we wrote a evaluator script which analyzes
model generated completions, measuring the accuracy by checking whether a test case correctly tests
list append, and measuring the diversity by checking how many distinct test cases are generated. 5

We write a program to systematically generate task prompts, randomizing over function names and
demonstration examples. Each prompt includes 1 demonstration example specifying the intended
output format, followed by a target function (implementing append), and finally requests 8 test
cases be generated. Two examples of the prompt are provided in Table 6, and correspondingly, two
examples of model completions of these prompts are provided in Table 7 in Appendix C.2.1.

Evaluation metrics The test prompts include 10 different target function names that are unseen
during training. Each target function name is independently tested 10 times. Since each prompt
requests 8 test cases, the total number of test cases requested for each run of a decoding algorithm is
8× 10× 10 = 800. We will measure the following metrics:

1. Ndistinct correct: the number of distinct correct test cases generated. This metric naturally
incorporates both accuracy and diversity.

2. Accdistinct := Ndistinct correct/800.

3. C: the query complexity (analogous to Definition 6). We measure the total number of queries
made to the generator LM when it completes the prompts. Each completion allows at most
384 tokens to be generated, so the max C is 384×10×10 = 38400 unless “block best-of-n"
(Appendix C.2.3) is used.

We use a pretrained CodeLlama (Roziere et al., 2023) as the generator language model LM, which we
freeze during our experiments. We discuss common baselines in Appendix C.2.2. We follow almost
the same approach as Section 5.1.2 to train our verifier on this coding task. We present technical
details and ablation experiments regarding design choices of verifier training in Appendix C.2.3.

5Two test cases are different if and only if they test different lists or different appended items.
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5.2.2 TOKENWISE REJECTION SAMPLING WITH BACKTRACKING IMPROVES ACCURACY

In this section we show that Tokenwise rejection sampling with backtracking (Algorithm 1) achieves
higher Accdistinct than all the baselines described in Appendix C.2.2. Similar to our observations
based on the synthetic Dyck grammar data (Section 5.1.3), the improvement does not diminish on top
of commonly used baselines. This verifies the desirable property that Tokenwise rejection sampling
with backtracking (Algorithm 1) can be applied in combination with commonly used baselines to
further improve accuracy. The primary comparisons are reported in Table 12 (Appendix C.2.4), and
additional results are in Table 13 in Appendix C.2.5. Moreover, in Appendix C.2.7, we show that
analogous to our observations on the synthetic Dyck grammar (Section 5.1.3), Tokenwise rejection
sampling with backtracking (Algorithm 1) generalizes better to out-of-distribution prompts than
baselines.

5.2.3 TOKENWISE REJECTION SAMPLING WITH BACKTRACKING IS QUERY EFFICIENT

In this section we show that Tokenwise rejection sampling with backtracking (Algorithm 1) achieves
a better tradeoff between Accdistinct and query efficiency C than all the baselines described in Ap-
pendix C.2.2. The primary comparisons are visualized in Figure 3 and Figure 4 in Appendix C.2.6.
Numerical values of C are reported in Table 13 in Appendix C.2.5.

6 RELATED WORK

Incorporating a process reward model to assist language generation Among the vast design
space for inference-time scaling, process reward modeling has been proven to be an important
component common to many LLM systems (Polu & Sutskever, 2020; Uesato et al., 2022; Ma et al.,
2023; Lightman et al., 2023; Wang et al., 2024). The process verifier which we study (Definition 3) is
a special case of such process reward model if we restrict the output to be binary. However, there is
still challenging open problems around process reward modeling, such as how to properly define the
“blocks" (Guo et al., 2025) (see also our definitions in the “Block verifier" part of Appendix C.2.3).
Towards bringing more clarity to these open questions, our work develops a theoretical framework
for reasoning about the query complexity of process verifiers. Moreover, our experiments suggest the
potentials of a lightweight process verifier in improving the query complexity, accuracy, and diversity
of constrained generation. In particular, our theory and experiments suggest (1) the “blocks" do not
necessarily have to be carefully designed — setting each token as a block might potentially suffice, at
least in some more structured domains such as codes; (2) backtracking (Algorithm 1, Section 5) is a
robustly effective strategy that should be applied in combination with process verifiers. We discuss
additional related works in Appendix D.

7 CONCLUSION

We introduce a new theoretical framework for elucidating the design space of verifiers and correspond-
ingly a simple family of rejection-sampling-based inference algorithms. In particular, our theory
proves the computational benefits of incorporating a process verifier, measured by the query complex-
ity of calling the generator. On the other hand, our theory also reveals the subtleties: straightforwardly
applying a process verifier in a Tokenwise rejection sampling algorithm may unintentionally re-weigh
the distribution among sequences that satisfy the constraints, which could be undesirable for settings
that require a strong notion of distributional calibration. Empirically, through fine-grained experi-
ments on both synthetic and realistic data, we show that the Tokenwise rejection sampling algorithm,
when combined with backtracking, is a robustly effective recipe for reducing query complexity,
improving accuracy, and maintaining diversity. For future works, we hope the theoretical framework
and empirical observations can inspire systematic characterization of the strengths and weaknesses of
the diverse set of rejection-sampling-based inference-time algorithms. Concrete open problems at the
intersection of theory and experiments include investigating the realistic and necessary conditions on
the verifiers for the inference-time algorithm to achieve distributional calibration (e.g. it is unrealistic
in some language generation setting to assume that a verifier returns the calibrated acceptance proba-
bility in rejection sampling), and synergistically designing query-efficient verifier-assisted generation
algorithms.
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Supplementary Material

A DISCUSSIONS

A.1 IS QUERY EFFICIENCY A REASONABLE NOTION OF EFFICIENCY?

There are many reasonable efficiency metrics, and they do not always positively correlate with each
other (Dehghani et al., 2021).

Our paper focuses on query complexity (measured by the number of tokens generated by the language
model to satisfactorily complete the task 6 ), and we do not claim that the same conclusions apply
when we switch out query complexity for other metrics of efficiency, such as wall-clock time.

We think query complexity is one (but not necessarily the only, or the most) important aspect of
efficiency due to the following considerations:

• Many existing large language model (LLM) providers charge service fees to the users
according to the number of tokens generated by the language model for the user, i.e. query
complexity.

• In the single sequence generation setting, controlling all other conditions to be held the
same, query complexity positively correlates with the size of computation (the number of
decoder forward passes) and wall-clock time.

• In the batched generation setting, admittedly, the wall-clock time does not necessarily scale
linearly with query complexity 7 , meaning that the naive best-of-n rejection sampling is
not as slow as query complexity would indicate (if the LLM has sufficient bandwidth for it).
However, in many realistic LLM inference settings, the LLM receives a large number of
query requests per second, so there is no additional idle availability 8 for duplicating each
sequence generation request by n.

Although, as mentioned above, query complexity is partially indicative of a few practically important
efficiency metrics (e.g. monetary cost or wall-clock time), there are aspects of these metrics that
are not tracked by query complexity. For example, different types of hardware and cache may have
different efficiency best practices. In particular, on GPUs and TPUs, algorithms that better exploit
parallelization or tensorized computation tend be more efficient. Therefore, an important direction
for future work is to design and analyze hardware-aware algorithms that incorporate these important
aspects of the inference setup.

6This definition is natural since generating one token involves one forward pass of the (decoder-only
autoregressive) language model, i.e. one query.

7For example, the wall-clock time of generating n candidate responses (with batch size n) might be less than
n multiplying the wall-clock time of generating 1 candidate response.

8Unless more GPUs/TPUs are allocated to serve this LLM.
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A.2 ON THE HARDNESS OF THE KNAPSACK PROBLEM

The hardness of the knapsack problem have been subject of extensive study. Specificially, the
decision version of this problem have found application in the context of secure cryptosystems
Odlyzko (1998). Under no assumptions on the input structure, the best known algorithm is based on
dynamic programming Kellerer et al. (2004) and runs in pseudopolynomial time. This algorithm is
also used to obtain an FPTAS and its runtime is effectively polynomial if one futher assumes that the
weights are polynomially bounded in D. More exact or approximate algorithms achieve polynomial
runtime, under specific input structures. Specifically, when the weights form a superincreasing
sequence, that is

Xi ≥
i−1∑
j=1

Xj ∀i ∈ [2, D] ∩ Z,

a greedy algorithm solves the knapsack decision problem Odlyzko (1998) in linear time. On the other
hand, when the density of the knapsack

D

log2(maxi{Xi}di=1)

is small enough, knapsack is approximately solved in polynomial time by lattice reduction algorithms
Plantard et al. (2013). Our argument considers the most general setting, in which no assumptions
are made on the structure of the inputs {Xi}ti=1, c and the decision problem is NP-complete Karp
(1972).
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B PROOF OF OUR THEOREMS

B.1 PROOF OF THEOREM 1: INFORMATION THEORETICAL LOWER BOUND

Proof. Consider the constrained generation task (Σ, A,Oŝ), such that Σ := {0, 1}, A := {s ∈
ΣD :

∑D
i=1 si mod 2 = 0} for some fixed D ∈ Z+. Moreover, the oracle Oŝ is indexed by an

(unknown to the algorithm) ŝ ∈ ΣD−1, and it specifies the autoregressive distribution defined s.t.
∀s ∈ Σ∗, |s| < D − 1, we have pOŝ

(1|s) = pOŝ
(0|s) = 1/2; while for s ∈ Σ∗, |s| = D − 1, it

satisfies: ∀s ̸= ŝ ∈ ΣD−1, sD ∈ {0, 1}, we have:

pOŝ
(sD | s) =

{
1, if

(∑D−1
j=1 sj + sD

)
mod 2 = 1

0, otherwise

For s = ŝ, sD ∈ {0, 1}, we have:

pOŝ
(sD | s) =

{
1, if

(∑D−1
j=1 sj + sD

)
mod 2 = 0

0, otherwise

Suppose first that the algorithm is deterministic, and we choose the prefix ŝ uniformly at random. Let
us denote by x1, x2, x3, . . . , xq ∈ Σ∗ the queries to O generated by the algorithm. The claim is that
expected number of queries q needed to ensure at least one xi, i ∈ [q] is in A is 2D−1. Indeed, the
xi s.t. |xi| < D − 1 reveal no information about ŝ: the output of O is a uniform Bernoulli random
variable regardless of the value of ŝ. On the other hand, if at some point the algorithm has queried a
set S of xi of length D − 1, the probability over ŝ is uniform over ΣD−1 \ S. Hence, the expected
number of queries q (expectation being over the choice of ŝ) a deterministic algorithm needs is lower
bounded by 2n−1.

By Yao’s minimax lemma (Yao, 1977), this means that for any (even possibly randomized) algorithm
A, there exists ŝ on which the algorithm makes at least 2n−1 queries in expectation.

B.2 PROOF OF THEOREM 2: COMPUTATIONAL LOWER BOUND

Proof. We construct a reduction from the knapsack problem (Definition 7). Let the set {X1, . . . , XD}
and the integer c specify an arbitrary instance of the knapsack problem. Consider the constrained
generation task specified by Σ := {0, 1}, A := {s ∈ ΣD : ∀i ∈ [D], si ∈ {0, 1};

∑D
i=1 siXi = c}.

Membership in this A can be clearly verified in polynomial time. Suppose we have a poly-time
algorithm that generates a solution ŝ to (Σ, A,O). Since ∀s ∈ ΣD, pO(s) > 0, ŝ provides a solution
to the knapsack problem, as we needed.

B.3 PROOF OF PROPOSITION 1: CONSTRAINED GENERATION WITH PROCESS VERIFIER GETS
EASIER

Proof. Both claims are straightforward. (1) follows as generating one guess for the string s takes D
oracle calls. Moreover, the probability of the full string matching the only string in A (i.e., 0D) is
1/2D. As the number of calls to generate 0D is a geometric random variable, the expected number of
full string generations is 2D.

For (2), since O is uniform, at each token, the probability of drawing 0 is 1/2. Hence, the expected
number of calls per coordinate needed is 2 — making the total number of expected calls for the entire
string 2D.

B.4 PROOF OF PROPOSITION 2: MAINTAINING CALIBRATION IS NON-TRIVIAL EVEN WITH A
PROCESS VERIFIER

Proof. By Definition 5, until the last token is being generated, the process verifier will always accept
(as there exists a string with at least one 0 coordinate in the coordinates that haven’t yet been sampled).
Now, for the prefix 1D−1, the only completion that is in A is 1D−1 ◦ 0. This means that 1D−1 ◦ 0 is
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assigned probability mass 1
2D−1 under the tokenwise rejection sampling schema. All other strings in

ΣD are assigned a probability 1
2D

. On the other hand, p(s) ∝ 1(s ∈ A)pO(s) assigns uniform mass
on all strings in A — proving the claim of the proposition.
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C ADDITIONAL EXPERIMENTAL RESULTS

We complement Section 5 by providing additional technical details.

C.1 ADDITIONAL RESULTS ABOUT LANGUAGE MODELS TRAINED ON SYNTHETIC DATA

C.1.1 VISUALIZING THE LANGUAGE MODEL REPRESENTATIONS OF CORRECT VS. INCORRECT
SEQUENCES

Figure 1: TSNE plot for the LM last-layer-last-position representations of strings in Xerror ∪Xcorrect.
Red dots correspond to the representations of incorrect strings, whereas gray dots correspond to the
representations of correct strings of comparable lengths. The 2D projection of the representations of
incorrect strings form a small number of clusters. This intuitively justifies using a lightweight verifier
on top of these LM representations.

C.1.2 BACKTRACKING EFFECTIVELY REDUCES ERRORS

The trained language model LM made a mistake at the last position of each string x ∈ Xerror. We
therefore use “error-inducing prefixes" Xerror-inducing to denote {x1:|x|−1 | x ∈ Xerror}. Table 1 shows
that at prefixes in Xerror-inducing, if we backtrack only once for a small backtrack stride B, and continue
the autoregressive sampling process, the error rate can be significantly reduced.

generation configuration accuracy
baseline: nucleus sampling top_p = 0.9 0.331
baseline: greedy argmax sampling 0.334
B = 1, then nucleus sampling top_p = 0.9 0.366
B = 2, then nucleus sampling top_p = 0.9 0.438
B = 4, then nucleus sampling top_p = 0.9 0.591
B = 8, then nucleus sampling top_p = 0.9 0.790

Table 1: At error-inducing prefixes, a larger backtrack stride B significantly improves completion
accuracy (Definition 9).
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C.1.3 VERIFIER EFFECTIVELY REDUCES ERRORS

In Appendix C.1.2, the sampling process forced a backtracking at error-inducing prefixes Xerror-inducing.
Can the error reduction effect be retained by a trained lightweight single-layer verifier V in Sec-
tion 5.1.2? Table 2 shows that Tokenwise rejection sampling with backtracking (Algorithm 1) using
the trained verifier is remarkably effective. Moreover, in Appendix C.1.4, we verify that the predicted
backtracks were necessary.

Q B accuracy
1 2 0.421

4 0.500
6 0.604

2 2 0.457
4 0.634
6 0.762

4 2 0.518
4 0.762
6 0.921

baseline: nucleus sampling top_p = 0.9 0.331
baseline: greedy argmax sampling 0.334

Table 2: When the prompts are error-inducing prefixes, a single-layer trained verifier significantly
improves completion accuracy using Tokenwise rejection sampling with backtracking (Algorithm 1).
A larger backtrack quota Q and a larger backtrack stride B are both helpful.

C.1.4 THE PREDICTED BACKTRACKS WERE NECESSARY

During the experiment in Appendix C.1.3, the trained verifier V predicted backtracks at many
positions. Were they really necessary? For each setting of backtrack quota Q and backtrack stride
B, we collect the set of prefixes Xpredicted backtracks where V predicted backtracks. Then, we let the
language model LM complete each string in Xpredicted backtracks without any backtracks, using common
decoding techniques such as nucleus sampling top_p = 0.9 (Holtzman et al., 2020) and argmax greedy
decoding. Table 3 shows that without backtracking, the completion accuracy is much lower than the
accuracy reported in Table 2. This implies that Xpredicted backtracks were indeed challenging prefixes for
the LM, which verifies that the backtracks predicted by verifier V were necessary.

Q B #backtracks accuracy without backtrack (nucleus sampling top_p = 0.9) accuracy without backtrack (argmax)
1 2 163 0.313 0.344

4 163 0.337 0.319
6 163 0.331 0.288

2 2 311 0.347 0.328
4 297 0.357 0.349
6 286 0.374 0.373

4 2 600 0.371 0.353
4 532 0.419 0.404
6 489 0.509 0.523

Table 3: Predicted backtracks were necessary. For each setting of backtrack quota Q and backtrack
stride B, we report the number of times that Tokenwise rejection sampling with backtracking (Algo-
rithm 1) backtracked. Moreover, we report the completion accuracy of letting the language model
LM complete these backtracked prefixes without any backtrack. For each setting, the completion
accuracy is much lower than the accuracy reported in Table 2. This implies that these backtracked
prefixes were indeed challenging prefixes for the LM.
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C.1.5 TOKENWISE REJECTION SAMPLING WITH BACKTRACKING REDUCES COMPLETION
ERRORS ON UNSEEN OOD PREFIXES

This section presents the experimental results of Section 5.1.3.

nucleus sampling top_p Q B #errors ± std err
0.9 0 0 240.0 ± 5.177

4 4 179.4 ± 1.020
1.0 0 0 461.8 ± 8.304

4 4 200.0 ± 3.225

Table 4: Tokenwise rejection sampling with backtracking (Algorithm 1) reduces completion errors
on unseen out-of-distribution (OOD) prefixes. Crucially, the improvement does not diminish on top
of commonly used baselines, including nucleus sampling top_p = 0.9 (Holtzman et al., 2020). For
each setting of top_p, we compare Tokenwise rejection sampling with backtracking (Algorithm 1)
(using backtrack quota Q = 4 and backtrack stride B = 4) with the baseline (using backtrack quota
Q = 0 and backtrack stride B = 0). We report the number of completion errors that occur when
completing an unseen set of 10000 independently sampled out-of-distribution prompts DyckunseenOOD .
The experiment was repeated 5 times, and we report the standard errors.
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C.1.6 ERROR ANALYSIS ON THE REMAINING MISTAKES

Given the improvement of accuracy (Section 5.1.3) as a result of our algorithm Tokenwise rejection
sampling with backtracking (Algorithm 1), why did the model still make mistakes?

We conducted an error analysis which parses all mistakes into error types, and examine the generated
token, the LM predicted most probable token, their predicted probabilities, and a few intermedi-
ate variables during the course of our algorithm Tokenwise rejection sampling with backtracking
(Algorithm 1).

In summary, the findings are:

1. Among 225 generated mistakes, 222 correspond to predicting an incorrect closing bracket,
and 3 correspond to pre-maturely predicting the end-of-sequence <eos> token.

2. In all 225 cases, the final state of the algorithm has used up all the backtrack quota Q
allocated to it, so even if the error predictor was perfect, the algorithm would not have been
had a chance to correct these mistakes. This suggests that suitably increasing backtrack quota
Q might be an effective approach in improving the accuracy (though there are trade-offs
with query efficiency).

A snapshot of our error analysis result is included in Figure 2, and we plan to open source the
experimental codes, which will include the full error analysis results.

Figure 2: Error analysis table for mistakes of language model trained on Dyck grammar and sampled
using Tokenwise rejection sampling with backtracking (Algorithm 1). The last column records the
remaining backtrack quota Q at the time of generating the incorrect token.
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C.1.7 TOKENWISE REJECTION SAMPLING WITH BACKTRACKING MAINTAINS DIVERSITY

In this section, we show that the significant accuracy improvement is not at the cost of reducing
diversity.

Our experiment freshly samples 100 prompts following the same distribution as DyckOOD (Sec-
tion 5.1.1). For each prompt, we let the trained LM independently sample 10 completions, using
Tokenwise rejection sampling with backtracking (Algorithm 1) or the baseline algorithm, and will
compare how many (out of 10) samples were different, and report the mean and standard error across
the 100 prompts.

Table 5 shows that Tokenwise rejection sampling with backtracking (Algorithm 1) generates similarly
diverse samples as the baselines of nucleus sampling with top_p = 0.9 or 1.0.

Q B top_p diversity ± std err (out of 10)
4 4 1.0 5.52 ± 3.28
0 0 0.9 5.47 ± 3.06
0 0 1.0 5.84 ± 3.29

Table 5: Under the experiment setup described in Appendix C.1.7, Tokenwise rejection sampling
with backtracking (Algorithm 1) is similarly diverse as the baselines of nucleus sampling with top_p
= 0.9 or 1.0.
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C.2 ADDITIONAL RESULTS ABOUT GENERATING TEST CASES WITH PRETRAINED
CODELLAMA

This section complements our results in Section 5.2.

C.2.1 EXAMPLES OF PROMPTS AND MODEL COMPLETIONS

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert f(5, 5) == 10
assert f(1, 5) == 6
assert f(2, 8) == 10
assert f(6, 2) == 8
assert f(6, 9) == 15
assert f(4, 5) == 9
assert f(9, 6) == 15
assert f(6, 1) == 7

def knk(l, item):
assert type(l) is list
l.append(item)
return l

List 8 test cases of the above function knk, one in each line:

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert f(5, 8) == 13
assert f(1, 5) == 6
assert f(8, 4) == 12
assert f(6, 2) == 8
assert f(3, 9) == 12
assert f(1, 7) == 8
assert f(5, 9) == 14
assert f(1, 7) == 8

def ovs(l, item):
assert type(l) is list
l.append(item)
return l

List 8 test cases of the above function ovs, one in each line:

Table 6: Two example prompts for generating test cases for a simple implementation of the append
function for Python lists. In these examples, the following components are randomly generated and
will be different for different prompts: (1) the numbers in the demonstrations (e.g. assert f(5,
8) == 13) as long as they are correct for addition; (2) the name of the target function (e.g. knk,
ovs).
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assert knk([], 2) == [2]
assert knk([1], 2) == [1, 2]
assert knk([1, 3], 2) == [1, 3, 2]
assert knk([1, 3, 5], 2) == [1, 3, 5, 2]
assert knk([1, 3, 5, 7], 2) == [1, 3, 5, 7, 2]
assert knk([1, 3, 5, 7, 9], 2) == [1, 3, 5, 7, 9, 2]
assert knk([1, 3, 5, 7, 9, 11], 2) == [1, 3, 5, 7, 9, 11, 2]
def sum_list(l):

return sum(l)
List 8 test cases of the above function sum_list, one in each line:
assert sum_list([]) == 0
assert sum_list([1]) == 1
assert sum_list([1, 3]) == 4
assert sum_list([1, 3, 5]) == 9
assert sum_list([1, 3, 5, 7]) == 16
assert sum_list([1, 3, 5, 7, 9]) == 25
assert sum_list([1, 3, 5, 7, 9, 11]) == 36
def sublist(l, sub):

assert type

assert ovs([], 1) == [1]
assert ovs([2], 1) == [1, 2]
assert ovs([1, 2], 1) == [1, 1, 2]
assert ovs([1, 2], 3) == [1, 2, 3]
assert ovs([1, 2], 0) == [0, 1, 2]
assert ovs([1, 2, 3], 4) == [1, 2, 3, 4]
assert ovs([], 0) == [0]
assert ovs([1, 2], 0) == [0, 1, 2]

Table 7: Two example generations by CodeLlama corresponding to the prompts in Table 6. Note that
both generations are flawed: (1) the model only generated 7 test cases instead of 8, even though the
prompt requested 8. Then, it generated irrelevant contents, starting from def sum_list(l): (2)
more than one generated test cases were wrong (e.g. in assert ovs([2], 1) == [1, 2],
the correct right-hand-side should be [2, 1]). More generally, we implemented a rule-based parser
to analyze model generations and identify the error type (if any), and locate the first position of error.
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C.2.2 BASELINES

We extensively tuned the hyperparameters in common baseline decoding algorithms, including

• nucleus sampling (Holtzman et al., 2020): we grid-searched top_p ∈
[0.0, 0.7, 0.8, 0.9, 0.95, 1.0].

• argmax greedy decoding: equivalent to top_p = 0.0.
• standard autoregressive sampling: equivalent to top_p = 1.0.
• temperature scaling (Ackley et al., 1985): we grid-searched temperature ∈
[0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2] (for each top_p).

Through the above grid search, we found that the best combination was top_p = 0.95, temperature
= 1.0.

Besides, we consider baselines based on the block-best-of-n rejection sampling approach to incorpo-
rate process rewards. More details about this baseline are provided in the “Block verifier" part of
Appendix C.2.3.

• block-best-of-n: we grid-searched n ∈ [2, 4, 8], fixing the best combination of top_p and
temperature found by the grid search above.

We will show that Tokenwise rejection sampling with backtracking (Algorithm 1) clearly outperforms
all these baselines in terms of the quality vs. query complexity trade-off.
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C.2.3 TRAINING THE VERIFIER

We follow almost the same training approach as Section 5.1.2. The differences are described below.
The generator language model LM is a pretrained CodeLlama (Roziere et al., 2023), which we freeze
during our experiments.

An intermediate layer provides more informative representations for verifier training than the
last layer. Instead of training the verifier V on top of the last layer (i.e. layer 31) representations
of LM, we instead treat the layer index as a hyperparameter, and conducted a grid search over layer
index ∈ {3, 7, 11, 15, 19, 23, 27, 31}. Among these candidates, layer 27 representations resulted in
the best accuracy. We therefore exclusively used layer 27 representations in subsequent experiments,
and finally conducted an ablation study on the top-performing setting of the baseline to back-test
the impact of using other layers. Table 8 shows that layer 27 outperforms layer 31. We conjecture
that the layer 31 representations may be too specific for the next-token prediction task, which is
not necessarily the optimal for discriminating correct prefixes vs. incorrect ones. 9 We also include
results for a few other layers near the final layer. Note that even with a sub-optimally chosen layer,
the accuracy of Tokenwise rejection sampling with backtracking (Algorithm 1) still outperforms the
top-performing settings of the baseline found through grid search (Appendix C.2.2).

layer index Accdistinct± std err
27 0.714 ± 0.011
28 0.711 ± 0.016
26 0.708 ± 0.018
30 0.706 ± 0.036
24 0.701 ± 0.033
31 0.688 ± 0.028
29 0.676 ± 0.021
25 0.672 ± 0.030
23 0.709 ± 0.017
3 0.700 ± 0.028
15 0.700 ± 0.028
19 0.692 ± 0.028
7 0.691 ± 0.031
11 0.650 ± 0.041
ablation: random verifier 0.663 ± 0.027
baseline: nucleus sampling + temperature scaling 0.660 ± 0.042

Table 8: Ablation: layer 27 representations of CodeLlama outperform layer 31 (the last layer) in terms
of the quality of the error predictor trained based on these features. We control all other setting to be
the same as the top-performing settings of the baseline (nucleus sampling top_p = 0.95 (Holtzman
et al., 2020) and temperature 1.0), whose performance is also included in the table. The other rows in
this table (layer 27 and layer 31) refer to applying Tokenwise rejection sampling with backtracking
(Algorithm 1) using backtrack quota Q = 4, backtrack stride B = 4, and verifiers trained on layers
24, ..., 31 of the generator (CodeLlama), respectively. The row ablation: random verifier refers to a
verifier that returns Uniform[0, 1], and uses the same Q, B as the above. The experiment was repeated
5 times, and we report the standard errors. The rows are sorted by mean Accdistinct (Section 5.2.1).

With limited backtrack quota, it is better to more conservatively use them. The verifier V is
trained with binary labels (1 if correct, 0 if wrong). Although there are a roughly equal number of
training samples whose labels are 0 or are 1, using 0.5 as the error prediction threshold turned out
to be suboptimal. Since our Tokenwise rejection sampling with backtracking (Algorithm 1) only
allows a small backtrack quota Q = 4, it makes sense to only use backtrack quota when the error
predictor is very confident that the current intermediate generation is wrong. Moreover, compared
with our synthetic Dyck grammar setting (target length = 32) (Section 5.1), our code generation
setting allows much longer generations (up to 384), which further justifies conservatively spending
the small backtrack quota Q. Consequently, we consider decreasing the error prediction threshold to

9This is in line with some prior works that also observed that the final layers of language models tend to be
more task-specific than the intermediate layers (Liu, 2019; Kovaleva et al., 2019; Rogers et al., 2021).
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0.1. Table 9 shows that 0.1 is a better error prediction threshold than the default 0.5 in all settings we
tried.

Q B top_p temperature error prediction threshold Accdistinct ± std err
4 4 0.95 1.0 0.1 0.714 ± 0.011
4 4 0.95 1.0 0.5 0.676 ± 0.019
4 4 1.0 1.0 0.1 0.639 ± 0.061
4 4 1.0 1.0 0.5 0.604 ± 0.047
4 4 1.0 1.2 0.1 0.440 ± 0.026
4 4 1.0 1.2 0.5 0.334 ± 0.013
4 10 1.0 1.0 0.1 0.622 ± 0.046
4 10 1.0 1.0 0.1 0.604 ± 0.030

Table 9: Ablation: 0.1 is a better error prediction threshold than the default 0.5 in all settings we tried,
including various nucleus sampling (Holtzman et al., 2020) top_p, temperature scaling, and backtrack
stride B. In this table, we divide the rows into groups of 2, separated by double horizontal lines, such
that within each group, the only difference is the error prediction threshold. In all groups, 0.1 leads to
higher Accdistinct than 0.5. The experiment was repeated 5 times, and we report the standard errors.

Block verifier. Our verifier applies to the token level, i.e. predicting an accept/reject action after the
generator LM generates each token. In many practical settings (including ours), it is natural to divide
the generated output into blocks (each block may contain multiple tokens), e.g. in writing math proofs,
each block may correspond to one reasoning step; in writing codes, each block may correspond to one
line of codes. Recent works achieved strong empirical performance by generating multiple candidates
for each block of intermediate model generations, train process reward models that evaluate each
candidate, and select the best-scoring candidate (see e.g. Wu et al. (2024) and references therein).
We refer to this as the “block-best-of-n" approach. To compare with such “block-best-of-n" baselines,
we train “block verifiers" Vblock which scores prefixes that are full lines of model output for our task.
We will show that this “block best-of-n" approach is helpful, but is outperformed by our Tokenwise
rejection sampling with backtracking (Algorithm 1) in terms of accuracy-efficiency trade-off.

Does a deeper verifier perform better? The above experiments follow Section 5.1.2 in training
a single-linear-layer verifier. In this section, we test the effects of scaling up the verifier depth.
Specifically, we test verifiers based on Multi-Layer Perceptrons (Rosenblatt, 1958) of depths 2, 4, 8,
with ReLU activations (Nair & Hinton, 2010) between adjacent parameterized layers. Table 10 shows
that more MLP layers did not outperform the 1-linear-layer verifier even though they can be trained
to similar error-predicting accuracies, measured by their accuracy in predicting whether a prefix is
correct or incorrect on a held-old validation set of prompts for our task (Section 5.2.1) followed by
partial generations by CodeLlama. In other sections of this paper, unless otherwise noted, we always
use a single-linear-layer verifier for Tokenwise rejection sampling with backtracking (Algorithm 1)
(and of course, no verifier for baselines).

Where are the potentials for further improving Accdistinct? How optimal are our verifiers, and
what are some ways to further improve them? To probe these potentials, we wrote a rule-based
groundtruth verifier for our task (Section 5.2.1) and used it as a drop-in replacement of our trained
verifier. Table 11 shows that the Accdistinct enabled by our trained verifier almost reached the Accdistinct
enabled by the groundtruth verifier, showing that improving verifier training may not be the most
fruitful direction for further improvement. Interestingly, using a much larger Q or B (increasing from
4 to 10) does not necessarily improve the accuracy (sometimes even decreasing the accuracy). We
conjecture that in these experiments, the (imperfect) generator oracle (CodeLlama), not the verifier,
was the bottleneck for Accdistinct. As a result, unnecessarily backtracking and forcing the model to
re-generate more tokens may increase the chance that the model makes mistakes.
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verifier # MLP layers verifier validation accuracy Accdistinct± std err
1 0.96 0.714 ± 0.011
4 0.97 0.699 ± 0.038
2 0.97 0.687 ± 0.035
8 0.97 0.684 ± 0.015
ablation: random verifier 0.50 0.663 ± 0.027
baseline: nucleus sampling + temperature scaling N/A 0.660 ± 0.042

Table 10: Ablation: Deeper verifiers do not outperform the 1-linear-layer verifier even though they
can be trained to similar error-predicting accuracies on held-old validation set. We control all
other setting to be the same as the top-performing settings of the baseline (nucleus sampling top_p
= 0.95 (Holtzman et al., 2020) and temperature 1.0), whose performance is also included in the
table. The other rows in this table refer to applying Tokenwise rejection sampling with backtracking
(Algorithm 1) using backtrack quota Q = 4, backtrack stride B = 4, and verifiers with 1, 2, 4, 8
layers, respectively. The row ablation: random verifier refers to a verifier that returns Uniform[0,
1], and uses the same Q, B as the above. The experiment was repeated 5 times, and we report the
standard errors. The rows are sorted by mean Accdistinct (Section 5.2.1).

verifier type Q B Accdistinct ± std err
groundtruth 4 4 0.719 ± 0.022
groundtruth 10 4 0.717 ± 0.015
trained 4 4 0.714 ± 0.011
trained 10 4 0.692 ± 0.025
ablation: random verifier 4 4 0.663 ± 0.027
baseline: nucleus sampling + temperature scaling 0 0 0.660 ± 0.042
trained 4 10 0.622 ± 0.046

Table 11: Ablation: Our trained verifier approaches the accuracy of the groundtruth verifier, evaluated
by their ability to assist CodeLlama in completing our test case generation task (Section 5.2.1) using
Tokenwise rejection sampling with backtracking (Algorithm 1). In these experiments, we control the
nucleus sampling (Holtzman et al., 2020) top_p = 0.95 and temperature scaling = 1.0 which are the
optimal setting for baseline, found by grid search (Appendix C.2.2). The rows are sorted by Accdistinct.
The row ablation: random verifier refers to a verifier that returns Uniform[0, 1]. Interestingly,
using a much larger Q or B does not necessarily improve the accuracy (sometimes even decreasing
the accuracy). We conjecture that the generator model, CodeLlama, is imperfect, so unnecessarily
backtracking and forcing the model to re-generate more tokens may increase the chance that the
model makes mistakes. The experiment was repeated 5 times, and we report the standard errors.
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C.2.4 TOKENWISE REJECTION SAMPLING WITH BACKTRACKING IMPROVES ACCURACY

The section presents the experimental results of Section 5.2.2.

Q B top_p T block BoN Accdistinct ± std err
4 4 0.95 1.0 0.714 ± 0.011
0 0.95 1.0 2 0.684 ± 0.038
0 0.95 1.0 0.660 ± 0.042
0 0.95 1.0 4 0.623 ± 0.036
0 0.95 1.0 8 0.559 ± 0.038
4 4 1.0 1.0 0.639 ± 0.061
4 10 1.0 1.0 0.622 ± 0.046
0 1.0 1.0 0.504 ± 0.025
4 4 1.0 1.2 0.440 ± 0.026
0 1.0 1.2 0.269 ± 0.025
0 0.0 1.0 0.013 ± 0.000

Table 12: Tokenwise rejection sampling with backtracking (Algorithm 1) improves accuracy and out-
performs nucleus sampling top_p, temperature scaling T, and block best-of-n (BoN) (Appendix C.2.3).
In this table, we divide the rows into groups, separated by double horizontal lines, such that each
group uses the same top_p and temperature. The backtrack quota Q = 0 means a baseline algorithm
that does not use the verifier. Q > 0 means Tokenwise rejection sampling with backtracking with
the corresponding Q and B. block BoN specifies the number of candidates generated for each block;
empty block BoN means not using block best-of-n. In all groups, Tokenwise rejection sampling with
backtracking leads to higher Accdistinct than all other methods. The last group corresponds to argmax
greedy decoding, which has low Accdistinct due to low diversity. The experiment was repeated 5 times,
and we report the standard errors. The complete set of experiments are reported in a larger Table 13
in Appendix C.2.5.
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C.2.5 FULL RESULTS OF CODELLAMA EXPERIMENTS IN SECTION 5.2

(The table is on the next page.)
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Q B layer idx err threshold top_p temp BBoN Accdistinct ± std err C
4 4 27 0.1 0.95 1.0 0.714 ± 0.011 39443 ± 235
4 4 31 0.5 0.95 1.0 0.688 ± 0.028 39629 ± 135
0 27 0.95 1.0 2 0.684 ± 0.038 39364 ± 1252
4 4 31 0.1 0.95 1.0 0.677 ± 0.033 39546 ± 98
4 4 27 0.5 0.95 1.0 0.676 ± 0.019 38555 ± 140
0 0.95 1.0 0.660 ± 0.042 38231 ± 165
4 4 27 0.1 1.0 1.0 0.639 ± 0.061 31274 ± 1559
0 0.9 1.0 0.634 ± 0.023 38393 ± 14
0 0.9 1.2 0.630 ± 0.028 38005 ± 232
0 0.8 1.2 0.627 ± 0.015 38343 ± 90
0 27 0.95 1.0 4 0.623 ± 0.036 65496 ± 7638
4 10 27 0.1 1.0 1.0 0.622 ± 0.046 32923 ± 1772
4 4 27 0.5 1.0 1.0 0.604 ± 0.047 31091 ± 968
4 10 27 0.5 1.0 1.0 0.604 ± 0.030 27287 ± 7580
0 0.95 1.2 0.584 ± 0.027 36601 ± 535
0 1.0 0.8 0.562 ± 0.021 36610 ± 669
0 27 0.95 1.0 8 0.559 ± 0.038 122933 ± 3832
0 0.7 1.2 0.531 ± 0.035 38400 ± 0
0 0.95 0.8 0.523 ± 0.029 38386 ± 28
0 0.8 1.0 0.511 ± 0.028 38400 ± 0
0 1.0 1.0 0.504 ± 0.025 30754 ± 1272
0 0.9 0.8 0.466 ± 0.032 38400 ± 0
4 4 27 0.1 1.0 1.2 0.440 ± 0.026 24916 ± 954
0 1.0 0.6 0.399 ± 0.070 38320 ± 73
0 0.7 1.0 0.353 ± 0.021 38400 ± 0
0 0.8 0.8 0.351 ± 0.039 38400 ± 0
0 0.95 0.6 0.337 ± 0.053 38400 ± 0
4 4 27 0.5 1.0 1.2 0.334 ± 0.013 24217 ± 1214
0 0.9 0.6 0.284 ± 0.044 38400 ± 0
0 1.0 1.2 0.269 ± 0.025 21906 ± 1780
0 0.7 0.8 0.239 ± 0.019 38400 ± 0
0 0.8 0.6 0.212 ± 0.011 38400 ± 0
0 1.0 0.4 0.207 ± 0.029 38400 ± 0
0 0.95 0.4 0.176 ± 0.013 38400 ± 0
0 0.9 0.4 0.147 ± 0.013 38400 ± 0
0 0.7 0.6 0.101 ± 0.028 38400 ± 0
0 1.0 0.2 0.080 ± 0.020 38400 ± 0
0 0.8 0.4 0.074 ± 0.027 38400 ± 0
0 0.95 0.2 0.057 ± 0.018 38400 ± 0
0 0.9 0.2 0.029 ± 0.015 38400 ± 0
0 0.7 0.4 0.025 ± 0.016 38400 ± 0
0 0.8 0.2 0.021 ± 0.014 38400 ± 0
0 0.7 0.2 0.018 ± 0.011 38400 ± 0
0 0.0 1.0 0.013 ± 0.000 38400 ± 0

Table 13: Tokenwise rejection sampling with backtracking (Algorithm 1) improves accuracy and
outperforms commonly used baselines, including various settings of nucleus sampling top_p,
temperature scaling (temp), and block best-of-n. Baselines are extensively hyperparameter tuned
(Appendix C.2.2). Backtrack quota Q = 0 means a baseline that without verifier. When Q > 0, the
row denotes Algorithm 1 with the corresponding Q and B. The column layer idx denotes which
layer of CodeLlama provided the representations for training the error predictor, and err threshold
denotes the cutoff below which the error predictor output is interpreted as a rejection (both were
experimented in Appendix C.2.3). When BBoN (block best-of-n) (Appendix C.2.3) is specified, the
row denotes the number of candidates generated for each block; otherwise, the row does not use
block best-of-n. The rows are sorted by Accdistinct. Controlling top_p and temperature, Algorithm 1
leads to better tradeoff between Accdistinct and query complexity C (both defined in Section 5.2.1)
than all other methods. The experiment was repeated 5 times, and we report the standard errors.

To help readers parse all these results, we included smaller tables, each analyzing a single aspect of our observations:
please refer to Table 12 in Section 5.2.2, Table 9 in Appendix C.2.3, Table 8 in Appendix C.2.3, and
Figure 3 in Section 5.2.3 .
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C.2.6 VISUALIZING THE QUERY EFFICIENCY OF TOKENWISE REJECTION SAMPLING WITH
BACKTRACKING

This section plots the query efficiency visualization discussed in Section 5.2.3.

Figure 3: Tokenwise rejection sampling with backtracking (Algorithm 1) is query-efficient. The
horizontal axis denotes query complexity C, and the vertical axis denotes the number of distinct
correct test cases generated Ndistinct correct, both defined in Section 5.2.1. Blue dashed lines correspond
to the baselines (described in Appendix C.2.2), whereas orange solid lines correspond to Tokenwise
rejection sampling with backtracking with various Q and B, both defined in Algorithm 1. Since
the slopes of the orange curves are visibly greater than the slopes of the blue curves, we conclude
that Tokenwise rejection sampling with backtracking is more query-efficient than baselines. The
experiment was repeated 5 times, and each dot is the average metric of these 5 runs. The specific
numbers and standard errors are reported in Table 13. A more zoomed-in version of this plot is in
Figure 4.

Remark 2. This visualization in Figure 3 slightly favors the "block best-of-n sampling" baseline,
because its implementation stops the decoding process once the requested number of test cases are
generated, whereas when running our algorithm or non-best-of-n baselines, the model is allowed to
(and in fact does indeed) generate irrelevant tokens afterwards, which hurts query complexity. Even
under this disadvantage, Tokenwise rejection sampling with backtracking still outperforms the "block
best-of-n sampling" baselines.
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Figure 4: Similar to Figure 3, just more zoomed-in, excluding block best-of-n baselines (Ap-
pendix C.2.3).

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a DeLTa Workshop Paper at ICLR 2025

C.2.7 TOKENWISE REJECTION SAMPLING WITH BACKTRACKING GENERALIZES BETTER TO
OUT-OF-DISTRIBUTION PROMPTS

In this section we show that Tokenwise rejection sampling with backtracking (Algorithm 1) gener-
alizes better to out-of-distribution prompts than the best nucleus sampling and temperature scaling
baseline in Appendix C.2.2. Unlike the synthetic Dyck grammar setting, on real-world LLMs we
do not have a precise quantitative control over how “out-of-distribution" a prompt is for the LLM.
We therefore assume that a sufficient condition for a prompt in our setup to be out-of-distribution
is that the name of the target function denotes some meaning which is different from the actual
implemented functionality (i.e. list append) (recall the task setup in Section 5.2.1). Two examples
of such out-of-distribution prompt are provided in Table 14. We validate this assumption by observing
that the accuracy indeed degrades on such “out-of-distribution" prompts, suggesting that the model is
indeed confused by the inconsistency between the function names and the function implementations.
However, analogous to our observations on the synthetic Dyck grammar (Section 5.1.3), Tokenwise
rejection sampling with backtracking (Algorithm 1) again suffers much less reduction in accuracy on
these “out-of-distribution" prompts. The detailed comparisons are reported in Table 15.

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert f(6, 5) == 11
assert f(3, 2) == 5
assert f(5, 4) == 9
assert f(1, 5) == 6
assert f(5, 4) == 9
assert f(3, 5) == 8
assert f(5, 6) == 11
assert f(2, 6) == 8

def add(l, item):
assert type(l) is list
l.append(item)
return l

List 8 test cases of the above function add, one in each line:

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert f(8, 7) == 15
assert f(8, 1) == 9
assert f(4, 7) == 11
assert f(8, 4) == 12
assert f(7, 4) == 11
assert f(8, 4) == 12
assert f(1, 1) == 2
assert f(5, 5) == 10

def exp(l, item):
assert type(l) is list
l.append(item)
return l

List 8 test cases of the above function exp, one in each line:

Table 14: Two example out-of-distribution prompts for generating test cases for a simple implemen-
tation of the append function for Python lists. Different from the prompts in Table 6, here the
function names denote a clear meaning (e.g. add or exp), which, however, is different from what
the function implements (i.e. append).
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Q B err threshold in-distribution Accdistinct ± std err OOD Accdistinct ± std err
4 4 0.1 0.714 ± 0.011 0.710 ± 0.029
4 4 0.5 0.676 ± 0.019 0.687 ± 0.024
0 0.660 ± 0.042 0.606 ± 0.034

Table 15: Tokenwise rejection sampling with backtracking (Algorithm 1) generalizes better to
out-of-distribution prompts than the best nucleus sampling and temperature scaling baseline in
Appendix C.2.2, which we identified by grid search (Table 13) to be top_p = 0.95, and temperature =
1.0. We manually pick 10 target function names according to Appendix C.2.7 which were unseen
when training the verifier (Appendix C.2.3). When backtrack quota Q = 0, the row denotes a baseline
algorithm that does not use the verifier (and consequently the backtrack stride B will not matter).
The column err threshold denotes the cutoff below which the error predictor output is interpreted
as a rejection (Appendix C.2.3). When Q > 0, the row denotes Tokenwise rejection sampling with
backtracking (Algorithm 1) with the corresponding Q and B. Tokenwise rejection sampling with
backtracking (Algorithm 1) suffered minor or no drop between in-distribution and OOD Accdistinct,
whereas the baseline suffered a drop by more than one standard error. The experiment was repeated 5
times, and we report the standard errors.
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C.3 ADDITIONAL ABLATION EXPERIMENTS ON THE TOKENWISE REJECTION SAMPLING WITH
BACKTRACKING ALGORITHM (ALGORITHM 1)

Besides the ablation experiments in Appendix C.2.3 which probe various aspects of verifier training,
in this section, we focus on one algorithmic component.

Concretely, line 10 of Tokenwise rejection sampling with backtracking (Algorithm 1) re-generates the
erased positions using argmax. This was motivated by our results in Section 5.1.1 which suggest that
out-of-distribution prefix is a cause of generator mistakes. As a remedy, redoing the erased positions
using argmax is intended to increase the generator-predicted probability of the partially sampled
generation, which (concatenated with the prompt) will be the prefix for subsequent generation steps.
We include an ablation study verifying that this improves the accuracy, significantly under the
synthetic data setting (Table 16), and only slightly (without hurting diversity) under the real data
setting (Table 17).

sampling algorithm #errors ± std err
Algorithm 1 179.4 ± 1.020
ablation: no argmax 245.8 ± 8.658

Table 16: Re-generating the erased positions using argmax in Tokenwise rejection sampling with
backtracking (Algorithm 1) reduces completion errors on unseen out-of-distribution (OOD) prefixes
in Dyck grammar. We fixed nucleus sampling (Holtzman et al., 2020) top_p = 0.9, backtrack quota
Q = 4, and backtrack stride B = 4 (the best settings in Table 4). The row “ablation: no argmax"
refers to removing lines 9-12 in Algorithm 1. We report the number of completion errors that
occur when completing an unseen set of 10000 independently sampled out-of-distribution prompts
DyckunseenOOD . The experiment was repeated 5 times, and we report the standard errors.

sampling algorithm err threshold Accdistinct ± std err
Algorithm 1 0.1 0.714 ± 0.011
ablation: no argmax 0.1 0.711 ± 0.032
Algorithm 1 0.5 0.676 ± 0.019
ablation: no argmax 0.5 0.663 ± 0.023

Table 17: Re-generating the erased positions using argmax in Tokenwise rejection sampling with
backtracking (Algorithm 1) slightly improves the accuracy-diversity tradeoff (Section 5.2.1) in our
test case generation task. We fixed nucleus sampling (Holtzman et al., 2020) top_p = 0.95, backtrack
quota Q = 4, and backtrack stride B = 4 (the best settings in Table 13). The row “ablation: no
argmax" refers to removing lines 9-12 in Algorithm 1. The column err threshold denotes the cutoff
below which the error predictor output is interpreted as a rejection (Appendix C.2.3). The experiment
was repeated 5 times, and we report the standard errors.
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D ADDITIONAL RELATED WORKS

We expand on the discussion in Section 6.

Inference-time scaling for language models Practical language generation tasks typically impose
various task-specific constraints in addition to the general grammatical rules of language. One
effective way to improve the chance of satisfying such constraints is to increase the inference-time
compute through search and/or rejection sampling. There has been a long history of prior works that
employ inference-time scaling in the language generation context, dating as far back as beam search
(Lowerre & Reddy, 1976; Hayes-Roth et al., 1976; Ow & Morton, 1988; Jurafsky & Martin, 2000;
Graves, 2012). Much more recently, as researchers develop the techniques for language models to
follow instructions (see the survey by Zhang et al. (2023a) and references therein), more creative
designs for inference-time scaling algorithms have become viable (Wang et al., 2022; Yao et al.,
2023; Zhang et al., 2023b; Zhou et al., 2023; Choi et al., 2023; Liu et al., 2024; Xie et al., 2024; Snell
et al., 2024), and see Wu et al. (2024) for a recent survey on cost-performance tradeoffs of these
approaches.

Controlled synthetic data distribution as a sandbox for studying language models Our Dyck
grammar distribution most closely follows Wen et al. (2023) (though we switched to a fixed-sequence-
length setting, and used unbalanced bracket type probability, instead of length extrapolation, to define
the criteria for a prompt to be out-of-distribution). Dyck grammar was also used in other prior works
(Hewitt et al., 2020; Ebrahimi et al., 2020; Yao et al., 2021; Liu et al., 2022; 2023b) to study language
models. Other synthetic data distributions have been used to study various aspects of language
models in prior works, including representational capability (Bhattamishra et al., 2020; Li & Risteski,
2021; Zhang et al., 2022; Zhao et al., 2023), statistical sample complexity (Edelman et al., 2022),
optimization process (Lu et al., 2021; Jelassi et al., 2022; Li et al., 2023; Bietti et al., 2023), sampling
(Li et al., 2024b), and architectural limitations (Liu et al., 2023a), and references cited therein.
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