
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a DeLTa Workshop Paper at ICLR 2025

ON THE QUERY COMPLEXITY OF VERIFIER-ASSISTED
LANGUAGE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, a plethora of works have proposed inference-time algorithms (e.g. best-
of-n), which incorporate verifiers to assist the generation process. Their quality-
efficiency trade-offs have been empirically benchmarked on a variety of constrained
generation tasks, but the algorithmic design landscape is still largely poorly under-
stood. In this paper, we develop a mathematical framework for reasoning about
constrained generation using a pre-trained language model generator oracle and a
process verifier—which can decide whether a prefix can be extended to a string
which satisfies the constraints of choice. We show that even in very simple settings,
access to a verifier can render an intractable problem (information-theoretically
or computationally) to a tractable one. In fact, we show even simple algorithms,
like tokenwise rejection sampling, can enjoy significant benefits from access to a
verifier. Empirically, we show that a natural modification of tokenwise rejection
sampling, in which the sampler is allowed to “backtrack” (i.e., erase the final few
generated tokens) has robust and substantive benefits over natural baselines (e.g.
(blockwise) rejection sampling, nucleus sampling)—both in terms of computational
efficiency, accuracy and diversity.

1 INTRODUCTION

The fast-evolving area of inference-time algorithms concerns itself with leveraging the already-
impressive capabilities of language models (Raffel et al., 2020; Brown et al., 2020; Touvron et al.,
2023), together with a verifier which can score generations of of the language model. In the simplest
form, called best-of-N, the language model generates N candidate responses, which are then scored by
the verifier, and the highest-scored candidate response is chosen as the output of the inference process
(Cobbe et al., 2021; Nakano et al., 2022). If the verifier can score partial generations (sometimes
called process reward), the space for inference-time algorithms gets much richer: e.g., the final
answer can be generated incrementally, using the verifier to guide the process (e.g., by incremental
(blockwise) best-of-N, or more complicated strategies like Monte-Carlo-Tree-Search (Browne et al.,
2012; Hao et al., 2023)). Importantly, though a flurry of recent papers consider “scaling laws” of
natural strategies, the algorithm design space of verifier-aided inference-time algorithms is still
opaque. In particular, the value of a verifier—and the relationship it needs to have to the generator is
not well understood.

In this paper, we show that a good verifier can substantially (both in theory and in practice) decrease
the computational cost of natural generation tasks, using a pre-trained language model as an oracle.
In particular, we show that:

• Even simple constrained generation tasks, in which we’re trying to generate a string in the
support of a language oracle, subject to some structural constraint (e.g. describable as a
simple formal language, like a regular language), can be computationally intractable in the
absence of a verifier.

• Conversely, access to a good process verifier, which can decide whether prefixes can be
completed to a string which satisfies the constraints, can remove these intractabillities.
Moreover, even simple algorithms like tokenwise rejection sampling—wherein we generate
the string one token at a time, using the process verifier as a means to accept or reject—can
have substantive computational benefits over the baseline of rejection sampling.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a DeLTa Workshop Paper at ICLR 2025

• Finally, on natural constrained generation tasks—namely, generating test cases for Python
functions with a pretrained CodeLlama (Roziere et al., 2023), a verifier can be trained, such
that a simple, but natural generalization of tokenwise rejection sampling which is allowed
to “backtrack” the last few generated tokens, achieves substantial benefits in computational
efficiency, accuracy, and diversity of the generations.

2 SETUP AND NOTATION

Throughout, we let Σ be a nonempty finite set, denoted as the vocabulary. We denote as Σi the set
of strings of length i and by Σ∗ = ∪i∈NΣ

i the set of all finite strings on Σ. Given a string s ∈ Σ∗ ,
we denote as si its i-th element and as si:j the substring of s starting at its i-element and ending at
its j-element, included. We use |s| to denote the length of string s, and ϵ to denote the empty string.
Finally, we let x ◦ y denote the concatenation of string x followed by string y.
Definition 1 (Autoregressive oracle). An autoregressive oracle O takes as input a string s ∈ Σ∗ and
returns a sample from a next-token distribution O(s) : Σ→ R+.

We will denote the corresponding joint distribution over strings s ∈ Σ∗ as pO : Σ∗ → R+.
Correspondingly, ∀s ∈ Σ∗, let pO(· | s) denote the distribution over completions of s predicted by O.
Definition 2 (Constrained generation). Constrained generation with respect to an oracle O, a
constraint set A, and alphabet Σ is the task of producing an element s ∈ A ⊆ Σ∗ such that
pO(s) > 0. If no such s exists, the algorithm needs to output FAIL.

When not clear from context, we will specify instances of this task by the triple (Σ, A,O). Under
suitable choices of the vocabulary Σ and the target domain A, one recovers several language modeling
tasks of theoretical and practical relevance as special cases of constrained generation. Specifically,
our experiments consider the tasks of generating (i) valid strings under the Dyck grammar (Section
5.1) and (ii) valid test cases for a given Python functions (Section 5.2), where the oracles return
samples from an appropriately pretrained language model. We recover these tasks from Definition 2
by setting:

• (i) Σ as the set of open and closed parentheses and A as the set of valid sequences of given
length.

• (ii) Σ as a set of characters from the Unicode standard (possibly after tokenization) and A as
the set of strings that are valid test cases for an input function in the Python programming
language.

Note that this task is easier than the task of sampling according to the restricted distribution p(s) ∝
1(s ∈ A)pO(s), which asks that the relative weights of the strings s ∈ A that are generated match the
probabilities assigned by pO. However, in many settings—e.g., generating proof of a mathematical
problem, or code that performs some intended functionality—we merely care about producing one
good sample.

We will be considering “process verifiers” that take as input a prefix s, and output whether or not
such a prefix can be completed to a string s ◦ s′ ∈ A. This is a natural formalization of a “process
reward”, as it assigns a belief to a partial generation. In the theoretical results (Section 3 and 4), we’ll
assume access to such an idealized verifier. In the empirical results (Section 5), such a verifier will be
trained and will output a value between 0 and 1, which can be naturally interpreted as a probability
that the prefix s is completable to a string s ◦ s′ ∈ A.
Definition 3 (Process verifier). Given a constraint set A, a verifier is a function V : Σ∗ → {0, 1}
such that ∀s ∈ Σ∗, V (s) = 1 if and only if ∃s′ ∈ Σ∗ such that s ◦ s′ ∈ A.

Designing algorithms given access to oracles which perform certain tasks, is a classical tool in
computer science (this is the basis of Turing reductions in computational complexity), as well
as optimization (e.g., zero-order optimization assumes a value oracle for a function, first-order
optimization a gradient oracle, etc.) In the context of generative modeling, analyses based on oracle
complexity have been carried out in the settings of diffusion models, where sampling algorithms rely
on score oracles Chen et al. (2022).

We will consider several natural algorithms that use an autoregressive oracle and a (process) verifier:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a DeLTa Workshop Paper at ICLR 2025

Definition 4 (Rejection sampling). Rejection sampling works by repeatedly generating a string s
according to pO, then running a verifier V on the complete string—and accepting when the verifier
outputs V (s) = 1.

Note, this algorithm only needs a verifier that decides the membership in A, rather than a process
verifier. On the other hand, because the entire string needs to be generated first before being verified—
the number of generations until the verifier accepts is likely very large.
Definition 5 (Tokenwise rejection sampling). Tokenwise rejection sampling works by generating a
string one token at a time. To generate the next token t, given a prefix s, we sample t ∼ O(s), and
run the process verifier on V (s ◦ t). We repeat this, until V (s ◦ t) = 1, then proceed to the next token.

This algorithm requires a process verifier. However, since a partial string is accepted only if the
process verifier accepts, the number of generations needed is likely to be smaller. In fact, we provide
a very simple example in Section 4.

Finally, we consider a “backtracking” strategy, in which the model is allowed to erase some of its
generations. The reasons to consider such a strategy is to allow the model to get “unstuck”: if the
process verifier decides the current prefix cannot be completed to a valid string in A, it is possible
that erasing the last few tokens will make it easier for the model to correct its mistake, compared to
erasing just the last token. More formally, the framework of our algorithm is given by Algorithm 1
below. 1

Algorithm 1 Tokenwise rejection sampling with backtracking

1: Input: Prompt x, generator O, verifier V, length D ∈ N+, backtrack quota Q ∈ N, backtrack
stride B ∈ N+

2: s← ϵ
3: while |s| < D and s|s| ̸= <eos> do
4: Sample ŝ ∼ O(x ◦ s)
5: s← s ◦ ŝ
6: if Q > 0 and V(x ◦ s) = 0 then
7: s← s1:|s|−B

8: Q← Q− 1
9: for i in 1 · · ·B do

10: Choose ŝ ∈ argmaxO(x ◦ s)
11: s← s ◦ ŝ
12: end for
13: end if
14: end while

When arguing about lower bounds, a natural lower bound on the complexity of an algorithm is the
number of oracle calls needed2, particularly so when this dominates the cost of the algorithm, as is
frequently the case for language models:
Definition 6 (Oracle complexity). Given a (possibly randomized) algorithm A that solves the
constrained generation instance (Σ, A,O), the oracle complexity of A is defined as the expected
number of calls to the oracle made by A to solve (Σ, A,O), namely:

C(A) = E[#calls to O made by running A],
where the expectation is taken over the randomness of the oracle O and the randomness of the
algorithm A.

1The algorithm is a bit more involved, so we will describe it in pseudocode rather than text. Besides the
notations in Section 2, Algorithm 1 uses the following additional common conventions: <eos> denotes the
end-of-sequence token; s|s| ̸= <eos> is understood as True when s = ε; for any starting index i and ending
index j, if i > j, then si:j = ε. In line 10, why redoing the erased positions using argmax: our results in
Section 5.1.1 suggests that out-of-distribution prefix is a cause of generator mistakes. As a remedy, redoing
the erased positions using argmax is intended to increase the generator-predicted probability of the currently
sampled prefix. We include an ablation study in Appendix C.3 verifying that this improves the accuracy.

2In our case, the number of calls is a randomized quantity, so a natural quantity to consider is the expected
number of oracle calls. It is of course reasonable to consider finer-grained notions like tail bounds on the number
of calls.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a DeLTa Workshop Paper at ICLR 2025

Finally, we recall the classical knapsack problem, which will be used in a reduction to prove
computational intractability results for the constrained generation task:

Definition 7 (Knapsack problem). Given a set of weights {Xi ∈ Z≥0 | i ∈ [D]} and c ∈ Z≥0, the
knapsack problem seeks an assignment of the variables (ai)Di=1, with ai ∈ {0, 1} ∀i ∈ [D] such that
c =

∑D
i=1 aiXi.

The problem is (weakly) NP-hard, even for some very special choices of c,Xi.

3 CONSTRAINED GENERATION IS HARD WITHOUT A VERIFIER

First, we show that the constrained generation task (Definition 2), without access to a process verifier
can be intractable—even if the constraint set A is extremely simple (e.g. the parity of a binary string).

The source of intractability can be information-theoretic: namely, if the oracle does not have a
succinct description, the algorithm may need to query it prohibively many times to identify what
oracle it’s interacting with. We view this as a plausible obstruction in practice as well: language
models frequently behave unpredictably “in-the-tails”, which becomes increasingly more likely when
generating long strings. Thus, to inspect the behavior of the model on long strings, many queries are
needed.

The source of the intractabability can also be computational: namely, even if the oracle is very
simple (e.g., a uniform distribution), generating a member of A can be NP-hard, even if checking
membership in A can be done efficiently. Perhaps this should not come as a surprise: after all, easy
verification of membership, but hard generation is the hallmark of NP-hard problems.

Proceeding to the first result, we show the following:

Theorem 1. There exists a constrained generation task (Σ, A,O) for which Σ = {0, 1}, A ⊆ ΣD,
andO is an (unknown) member of a set of 2D−1 possible oracles, such that any (possibly randomized)
algorithm A has an (expected) oracle complexity of at least 2D−1.

Intuitively, the lower bound is shown by engineering a scenario such that the behavior of the oracle
on long strings is unknown to the algorithm—but success of the generation task relies on “guessing”
this behavior correctly. The proof is in Appendix B.1.

Proceeding to the computational lower bound, the theorem we show is as follows (proof is in
Appendix B.2):

Theorem 2. There exists a constrained generation task (Σ, A,O) for which Σ = {0, 1}, membership
in A ⊆ ΣD can be checked in time polynomial in D, and O is such that ∀s ∈ {0, 1}D, pO(s) > 0,
the generation task is NP-hard.

4 CONSTRAINED GENERATION WITH PROCESS VERIFIER GETS EASIER

While pessimistic, the message of Section 3 agrees with recent developments in inference-time
scaling: namely, many natural tasks of interest seem to require a verifier to be solved.

First, we show that the simplest “natural” algorithm with a process verifier, tokenwise rejection
sampling (Definition 5), can be much more efficient (exponentially so) in terms of oracle complexity
compared to the trivial baseline of rejection sampling (Definition 4).

Proposition 1. Consider the constrained generation task (Σ, A,O), s.t. Σ = {0, 1}, A = {0D} and
O is uniform over ΣD. Then:

1. The expected oracle complexity of rejection sampling (Definition 4) is 2DD.

2. The expected oracle complexity of tokenwise rejection sampling (Definition 5) with a perfect
process verifier is 2D.

The proof is in Appendix B.3. This proposition underscores the power of a process verifier — even in
extremely simple settings, and even when used in conjunction with a very simple algorithm.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a DeLTa Workshop Paper at ICLR 2025

In fact, one can easily see that with a perfect process verifier, one can easily solve the constrained
generation task with |Σ|D calls: at each position, one queries the process verifier for each possible
continuation of the string, and accepts only if the process verifier accepts. Of course, in practice, the
verifier is not perfect, and its accuracy likely depends on how “out-of-distribution” the prefix it’s
queried on is (See Section 5.1.3 and Appendix C.2.7)

We finally remark that a process verifier, as we defined it, is clearly useful to solve the generation task.
If we instead wanted to sample from the restricted distribution p(s) ∝ 1(s ∈ A)pO(s), it’s not clear
how useful the process verifier is. For instance, if we use the simple tokenwise rejection sampling
(Definition 5), it’s easy to see that the distribution we produce samples from is not the restricted
distribution (and proof is in Appendix B.4):
Proposition 2. Consider the constrained generation task (Σ, A,O), s.t. Σ = {0, 1}, A = {s ∈ ΣD :
∃i ∈ [D], si = 0} and O is uniform over ΣD. Then, tokenwise rejection sampling does not produce
samples from p(s) ∝ 1(s ∈ A)pO(s).

5 BACKTRACKING: A SURPRISINGLY EFFECTIVE REJECTION SAMPLING
STRATEGY

The flexibility of the tokenwise rejection sampling with backtracking (Algorithm 1) makes it a
very natural strategy to use in conjuction with trained verifies. We perform a thorough empirical
investigatation into the applicability of Tokenwise rejection sampling with backtracking in constrained
language generation, and benchmark it against common baselines, including rejection sampling
(Definition 4), nucleus sampling (Holtzman et al., 2020), temperature scaling, and “block best-of-N"
(Appendix C.2.3) sampling, on both synthetic data (Section 5.1) and more realistic data (Section 5.2).
We observe that across various settings, Tokenwise rejection sampling with backtracking reduces
query complexity, improves accuracy, and does not hurt diversity.

5.1 LANGUAGE MODELS TRAINED ON SYNTHETIC DATA

5.1.1 DYCK GRAMMAR AS A SANDBOX

Real-world LLM pretraining data (Li et al., 2024a) typically involves many diverse structures, so when
an LLM algorithm outperforms baselines on a benchmark, it is generally challenging to precisely
identify which component of the algorithm improved the handling of which structures of the data.

To have a quantitative control over the structure in the pretraining data distribution, and to derive
fine-grained observations about the effects of Tokenwise rejection sampling with backtracking , we
synthetically generate the pretraining data based on the Dyck grammar (Schützenberger, 1963), a
classic formal language (context-free grammar) consisting of balanced parentheses of multiple types
(for example, “[()]” is valid but “([)]” is not). Dyck serves as a useful sandbox, as it typifies features
such as long-range dependencies and a hierarchical, tree-like structure—characteristics often found
in both natural and programming language syntax—and has been a subject of interest in numerous
theoretical studies on Transformers (Yao et al., 2021; Liu et al., 2022; 2023b; Wen et al., 2023). More
formally:
Definition 8 (Dyck distribution). DyckD denotes the Dyck language 3 of length D defined over the
alphabet Σ = {[,],(,)}, whose length-N prefix set is denoted as DyckN ,∀N ∈ [D]. For a valid
prefix w1:N ∈ DyckN , the depth of w1:N is

d(w1:N) = #Open Brackets in w1:N

−#Closed Brackets in w1:N .

The distribution DDyck over DyckN , (parameterized by p, q ∈ (0, 1)) is defined such that ∀w1:N ∈
DyckN ,

P(w1:N) ∝ p|{i|wi=[,d(w1:i)=1}| · (1− p)|{i|wi=(,d(w1:i)=1}| (1)

· (pq)|{i|wi=[,d(w1:i)>1}| · ((1− p)q)|{i|wi=(,d(w1:i)>1}| (2)

· (1− q)|{i|wi∈{],)},d(w1:i)≤D−i}|.
3We follow a simplified version of Wen et al. (2023) in defining a probability distribution over strings in a

Dyck language.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a DeLTa Workshop Paper at ICLR 2025

Remark 1. Equation (1) defines an intuitive autoregressive generative process for DyckD: if the
current depth is 0, then sample the next token from [and (with probability p and 1− p respectively;
else if the current depth is D − i+ 1, implying that all the remaining positions have to be all closed
brackets, then deterministically close the last unmatched open bracket 4 ;else, sample the next token
from open or closed brackets with probability q and 1− q respectively. In other words, p controls the
proportion of square vs. round brackets, while q controls the tendency to predict an open bracket
when possible (a large q may result in a large depth at some position).

In our experiments, we pretrain autoregressive Transformer (Vaswani et al., 2017) Language models
(6 layers, 8 heads per layer, hidden dimension 512) from scratch on data sampled from DDyck with
D = 32, p = 0.2, q = 0.5. We use batch size 32, weight decay 0.1, learning rate 3e-4 with 100
warmup steps, and follow Block et al. (2024) to use exponential moving average to stabilize training.
We reached 100% training and (in-distribution) validation accuracy.

To search for stronger signals in benchmarking the accuracy of the trained model, we will prompt it
using the following type of out-of-distribution prompts. Note that since p < 0.5, the training data
contains less square brackets than round brackets, so long prefixes with many square brackets will
be out-of-distribution prompts for the trained model. We generated a set of such out-of-distribution
prompts DyckOOD from DyckN with p = 0.8 where the prefix length N is uniformly randomly
sampled from 25 ≤ N ≤ 31. We let the trained language model complete these prompts and check
whether the completed string is in DyckD. Quantitatively:
Definition 9 (Prompt completion accuracy). Given an autoregressive oracle O (Definition 1) and a
set of prefix prompts X , the accuracy of O in completing X is:

Acc(O, X) =
1

|X|
∑

x∈X,y∼pO(·|x)

1x◦y∈DyckD

We construct the autoregressive oracle Onucleus which predicts the next-token distribution based on
our trained model with nucleus sampling (Holtzman et al., 2020) top_p set to 0.9. We observed that
Acc(Onucleus,DyckOOD) = 94.23%. We will show that Overifier backtracking based on Algorithm 1 can
significantly reduce the remaining error rate.

5.1.2 TRAINING THE VERIFIER

We collect a set of 441 prompts in DyckOOD in which the trained model (denoted as LM) made
mistakes when completing them. We implement a rule-based error parser according to the grammars
of DyckD which identifies the first position of error in each model completion. Applying this parser
to the model mistakes, we obtain a set of model-generated strings Xerror ⊂ Σ∗ which contain errors.
By contrast, we sample another set of 441 strings Xcorrect ∼ DyckOOD such that Xerror and Xcorrect
have the same length distribution. We train a lightweight neural network verifier to distinguish Xerror
from Xcorrect.

Concretely, to maximally exploit the representations learned by LM, we train a 1-linear-layer verifier
V whose features are the last-layer-last-position representations by LM of strings in Xerror ∪Xcorrect,
and labels are 0 for strings in Xerror and 1 for strings in Xcorrect. Consequently, the trainable parameters
of V are a single matrix of dimensionality 512 by 2. Among the 882 strings in Xerror∪Xcorrect, we use
792 samples for training, and 90 samples for validation. Despite being slightly over-parameterized,
this minimal verifier V achieved on average 93% (with standard error 3.9%) validation accuracy
across 10 repetitions. Figure 1 in Appendix C.1.1 illustrates the intuition of why a lightweight
verifier may be surprisingly effective with a small number of labeled samples. In Appendix C.1.2 and
Appendix C.1.3, we verify that the backtracking approach and the trained verifier both effectively
improve the accuracy.

5.1.3 TOKENWISE REJECTION SAMPLING WITH BACKTRACKING REDUCES COMPLETION
ERRORS ON UNSEEN OOD PREFIXES

Table 2 in Appendix C.1.3 reported a significant improvement of accuracy by Tokenwise rejection
sampling with backtracking (Algorithm 1) when the prompts are Xerror-inducing, for which the language

4 At any position, there is at most one valid closing bracket.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a DeLTa Workshop Paper at ICLR 2025

model LM made mistakes during completion. Is the verifier V overfitted to these type of error-inducing
prompts? Can the accuracy improvement generalize to (average-case) out-of-distribution (OOD)
prefixes, i.e. independently sampled strings of the same distribution as DyckOOD (Section 5.1.1)?

We independently sampled 10000 such out-of-distribution prompts DyckunseenOOD , and benchmark the
accuracy of Tokenwise rejection sampling with backtracking (Algorithm 1) against the baselines
of nucleus sampling top_p = 0.9 (Holtzman et al., 2020) and standard autoregressive sampling
(equivalent to top_p = 1.0). Table 4 (Appendix C.1.5) shows that Tokenwise rejection sampling with
backtracking (Algorithm 1) significantly reduces completion errors. Crucially, the improvement does
not diminish on top of commonly used baselines. This verifies the desirable property that Tokenwise
rejection sampling with backtracking can be applied in combination with commonly used baselines
to further improve accuracy. Why does the model still make mistakes? We include additional error
analysis in Appendix C.1.6. We also verify that the accuracy improvement does not hurt diversity
(Appendix C.1.7).

5.2 GENERATING TEST CASES WITH PRETRAINED CODELLAMA

Motivated by our findings in Section 5.1, we apply essentially the same recipe of Tokenwise rejection
sampling with backtracking (Algorithm 1) to a real-data use case, and show that Algorithm 1 clearly
improves the quality vs. query complexity trade-off on top of commonly used baselines, such as
nucleus sampling (Holtzman et al., 2020), temperature scaling, best-of-n rejection sampling, and
block best-of-n with process reward model.

5.2.1 TASK SETUP

A natural practical constrained generation task that requires both accuracy and diversity is generating
test cases for a target function specified by the prompt. To have an unambiguous notion of groundtruth
regarding accuracy and diversity, we control the target function to be a simple implementation of the
append function for Python lists. Under this setting, we wrote a evaluator script which analyzes
model generated completions, measuring the accuracy by checking whether a test case correctly tests
list append, and measuring the diversity by checking how many distinct test cases are generated. 5

We write a program to systematically generate task prompts, randomizing over function names and
demonstration examples. Each prompt includes 1 demonstration example specifying the intended
output format, followed by a target function (implementing append), and finally requests 8 test
cases be generated. Two examples of the prompt are provided in Table 6, and correspondingly, two
examples of model completions of these prompts are provided in Table 7 in Appendix C.2.1.

Evaluation metrics The test prompts include 10 different target function names that are unseen
during training. Each target function name is independently tested 10 times. Since each prompt
requests 8 test cases, the total number of test cases requested for each run of a decoding algorithm is
8× 10× 10 = 800. We will measure the following metrics:

1. Ndistinct correct: the number of distinct correct test cases generated. This metric naturally
incorporates both accuracy and diversity.

2. Accdistinct := Ndistinct correct/800.

3. C: the query complexity (analogous to Definition 6). We measure the total number of queries
made to the generator LM when it completes the prompts. Each completion allows at most
384 tokens to be generated, so the max C is 384×10×10 = 38400 unless “block best-of-n"
(Appendix C.2.3) is used.

We use a pretrained CodeLlama (Roziere et al., 2023) as the generator language model LM, which we
freeze during our experiments. We discuss common baselines in Appendix C.2.2. We follow almost
the same approach as Section 5.1.2 to train our verifier on this coding task. We present technical
details and ablation experiments regarding design choices of verifier training in Appendix C.2.3.

5Two test cases are different if and only if they test different lists or different appended items.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a DeLTa Workshop Paper at ICLR 2025

5.2.2 TOKENWISE REJECTION SAMPLING WITH BACKTRACKING IMPROVES ACCURACY

In this section we show that Tokenwise rejection sampling with backtracking (Algorithm 1) achieves
higher Accdistinct than all the baselines described in Appendix C.2.2. Similar to our observations
based on the synthetic Dyck grammar data (Section 5.1.3), the improvement does not diminish on top
of commonly used baselines. This verifies the desirable property that Tokenwise rejection sampling
with backtracking (Algorithm 1) can be applied in combination with commonly used baselines to
further improve accuracy. The primary comparisons are reported in Table 12 (Appendix C.2.4), and
additional results are in Table 13 in Appendix C.2.5. Moreover, in Appendix C.2.7, we show that
analogous to our observations on the synthetic Dyck grammar (Section 5.1.3), Tokenwise rejection
sampling with backtracking (Algorithm 1) generalizes better to out-of-distribution prompts than
baselines.

5.2.3 TOKENWISE REJECTION SAMPLING WITH BACKTRACKING IS QUERY EFFICIENT

In this section we show that Tokenwise rejection sampling with backtracking (Algorithm 1) achieves
a better tradeoff between Accdistinct and query efficiency C than all the baselines described in Ap-
pendix C.2.2. The primary comparisons are visualized in Figure 3 and Figure 4 in Appendix C.2.6.
Numerical values of C are reported in Table 13 in Appendix C.2.5.

6 RELATED WORK

Incorporating a process reward model to assist language generation Among the vast design
space for inference-time scaling, process reward modeling has been proven to be an important
component common to many LLM systems (Polu & Sutskever, 2020; Uesato et al., 2022; Ma et al.,
2023; Lightman et al., 2023; Wang et al., 2024). The process verifier which we study (Definition 3) is
a special case of such process reward model if we restrict the output to be binary. However, there is
still challenging open problems around process reward modeling, such as how to properly define the
“blocks" (Guo et al., 2025) (see also our definitions in the “Block verifier" part of Appendix C.2.3).
Towards bringing more clarity to these open questions, our work develops a theoretical framework
for reasoning about the query complexity of process verifiers. Moreover, our experiments suggest the
potentials of a lightweight process verifier in improving the query complexity, accuracy, and diversity
of constrained generation. In particular, our theory and experiments suggest (1) the “blocks" do not
necessarily have to be carefully designed — setting each token as a block might potentially suffice, at
least in some more structured domains such as codes; (2) backtracking (Algorithm 1, Section 5) is a
robustly effective strategy that should be applied in combination with process verifiers. We discuss
additional related works in Appendix D.

7 CONCLUSION

We introduce a new theoretical framework for elucidating the design space of verifiers and correspond-
ingly a simple family of rejection-sampling-based inference algorithms. In particular, our theory
proves the computational benefits of incorporating a process verifier, measured by the query complex-
ity of calling the generator. On the other hand, our theory also reveals the subtleties: straightforwardly
applying a process verifier in a Tokenwise rejection sampling algorithm may unintentionally re-weigh
the distribution among sequences that satisfy the constraints, which could be undesirable for settings
that require a strong notion of distributional calibration. Empirically, through fine-grained experi-
ments on both synthetic and realistic data, we show that the Tokenwise rejection sampling algorithm,
when combined with backtracking, is a robustly effective recipe for reducing query complexity,
improving accuracy, and maintaining diversity. For future works, we hope the theoretical framework
and empirical observations can inspire systematic characterization of the strengths and weaknesses of
the diverse set of rejection-sampling-based inference-time algorithms. Concrete open problems at the
intersection of theory and experiments include investigating the realistic and necessary conditions on
the verifiers for the inference-time algorithm to achieve distributional calibration (e.g. it is unrealistic
in some language generation setting to assume that a verifier returns the calibrated acceptance proba-
bility in rejection sampling), and synergistically designing query-efficient verifier-assisted generation
algorithms.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a DeLTa Workshop Paper at ICLR 2025

REFERENCES

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147–169, 1985.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Ability and Limitations of Trans-
formers to Recognize Formal Languages. In Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pp. 7096–7116, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.576. URL
https://aclanthology.org/2020.emnlp-main.576.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36, 2023.

Adam Block, Dylan J Foster, Akshay Krishnamurthy, Max Simchowitz, and Cyril Zhang. Butterfly
effects of SGD noise: Error amplification in behavior cloning and autoregression. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=CgPs04l9TO.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. M. Lucas, Peter I. Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana, Spyridon Samothrakis, and Simon
Colton. A survey of monte carlo tree search methods. IEEE Transactions on Computational
Intelligence and AI in Games, 4:1–43, 2012. URL https://api.semanticscholar.org/
CorpusID:9316331.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2022.

Sehyun Choi, Tianqing Fang, Zhaowei Wang, and Yangqiu Song. Kcts: knowledge-constrained tree
search decoding with token-level hallucination detection. arXiv preprint arXiv:2310.09044, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish Vaswani, and Yi Tay. The efficiency
misnomer. arXiv preprint arXiv:2110.12894, 2021.

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. How can self-attention networks recognize
Dyck-n languages? In Findings of the Association for Computational Linguistics: EMNLP
2020, pp. 4301–4306, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.findings-emnlp.384. URL https://aclanthology.org/2020.
findings-emnlp.384.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and vari-
able creation in self-attention mechanisms. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
5793–5831. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/v162/
edelman22a.html.

9

https://aclanthology.org/2020.emnlp-main.576
https://openreview.net/forum?id=CgPs04l9TO
https://openreview.net/forum?id=CgPs04l9TO
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://api.semanticscholar.org/CorpusID:9316331
https://api.semanticscholar.org/CorpusID:9316331
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://aclanthology.org/2020.findings-emnlp.384
https://aclanthology.org/2020.findings-emnlp.384
https://proceedings.mlr.press/v162/edelman22a.html
https://proceedings.mlr.press/v162/edelman22a.html

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a DeLTa Workshop Paper at ICLR 2025

Alex Graves. Sequence transduction with recurrent neural networks. arXiv preprint arXiv:1211.3711,
2012.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

P Hayes-Roth, M Fox, G Gill, DJ Mostow, and R Reddy. Speech understanding systems: Summary
of results of the five-year research effort, 1976.

John Hewitt, Michael Hahn, Surya Ganguli, Percy Liang, and Christopher D. Manning. RNNs
can generate bounded hierarchical languages with optimal memory. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1978–2010,
Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.156. URL https://www.aclweb.org/anthology/2020.emnlp-main.
156.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rygGQyrFvH.

Samy Jelassi, Michael Eli Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=eMW9AkXaREI.

Daniel Jurafsky and James H Martin. Speech and language processing: An introduction to natural
language processing, computational linguistics, and speech recognition, 2000.

Richard Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations,
volume 40, pp. 85–103, 01 1972. ISBN 978-3-540-68274-5. doi: 10.1007/978-3-540-68279-0_8.

Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. 01 2004. ISBN 978-3-540-
40286-2. doi: 10.1007/978-3-540-24777-7.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. Revealing the dark secrets
of BERT. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 4365–4374, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1445. URL https://aclanthology.org/D19-1445.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, et al. Datacomp-lm: In search of the next generation of training
sets for language models. arXiv preprint arXiv:2406.11794, 2024a.

Yuchen Li and Andrej Risteski. The limitations of limited context for constituency parsing. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 2675–2687, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.acl-long.208. URL https://aclanthology.org/2021.acl-long.208.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards
a mechanistic understanding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
19689–19729. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
li23p.html.

10

https://www.aclweb.org/anthology/2020.emnlp-main.156
https://www.aclweb.org/anthology/2020.emnlp-main.156
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=eMW9AkXaREI
https://openreview.net/forum?id=eMW9AkXaREI
https://aclanthology.org/D19-1445
https://aclanthology.org/2021.acl-long.208
https://proceedings.mlr.press/v202/li23p.html
https://proceedings.mlr.press/v202/li23p.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a DeLTa Workshop Paper at ICLR 2025

Yuchen Li, Alexandre Kirchmeyer, Aashay Mehta, Yilong Qin, Boris Dadachev, Kishore Papineni,
Sanjiv Kumar, and Andrej Risteski. Promises and pitfalls of generative masked language modeling:
Theoretical framework and practical guidelines. In Forty-first International Conference on Machine
Learning, ICML’24. JMLR.org, 2024b.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Exposing attention
glitches with flip-flop language modeling. Advances in Neural Information Processing Systems,
36, 2023a.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representations,
2023b. URL https://openreview.net/forum?id=De4FYqjFueZ.

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better downstream:
Implicit bias matters for language models. arXiv preprint arXiv:2210.14199, 2022.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Don’t throw away your value model! generating more preferable text with value-
guided monte-carlo tree search decoding. In First Conference on Language Modeling, 2024.

Nelson F Liu. Linguistic knowledge and transferability of contextual representations. arXiv preprint
arXiv:1903.08855, 2019.

Bruce P Lowerre and B Raj Reddy. Harpy, a connected speech recognition system. The Journal of
the Acoustical Society of America, 59(S1):S97–S97, 1976.

Haoye Lu, Yongyi Mao, and Amiya Nayak. On the dynamics of training attention models. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=1OCTOShAmqB.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Let’s reward step by step: Step-level reward model as the navigators for reasoning. arXiv preprint
arXiv:2310.10080, 2023.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback, 2022. URL https://arxiv.
org/abs/2112.09332.

Andrew M. Odlyzko. The rise and fall of knapsack cryptosystems. In Proceedings of Symposia in
Applied Mathematics, 1998. URL https://api.semanticscholar.org/CorpusID:
115995195.

Peng Si Ow and Thomas E Morton. Filtered beam search in scheduling. The International Journal
Of Production Research, 26(1):35–62, 1988.

Thomas Plantard, Willy Susilo, and Zhenfei Zhang. Lattice reduction for modular knapsack. In
Selected Areas in Cryptography: 19th International Conference, SAC 2012, Windsor, ON, Canada,
August 15-16, 2012, Revised Selected Papers 19, pp. 275–286. Springer, 2013.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

11

https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=1OCTOShAmqB
https://openreview.net/forum?id=1OCTOShAmqB
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://api.semanticscholar.org/CorpusID:115995195
https://api.semanticscholar.org/CorpusID:115995195

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a DeLTa Workshop Paper at ICLR 2025

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know about
how bert works. Transactions of the Association for Computational Linguistics, 8:842–866, 2021.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in
the brain. Psychological review, 65(6):386, 1958.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

M.P. Schützenberger. On context-free languages and push-down automata. Informa-
tion and Control, 6(3):246–264, 1963. ISSN 0019-9958. doi: https://doi.org/10.
1016/S0019-9958(63)90306-1. URL https://www.sciencedirect.com/science/
article/pii/S0019995863903061.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Kaiyue Wen, Yuchen Li, Bingbin Liu, and Andrej Risteski. Transformers are uninterpretable with
myopic methods: a case study with bounded dyck grammars. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=OitmaxSAUu.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models. arXiv
preprint arXiv:2408.00724, 2024.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
Xie. Self-evaluation guided beam search for reasoning. Advances in Neural Information Processing
Systems, 36, 2024.

Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity. In 18th
Annual Symposium on Foundations of Computer Science (sfcs 1977), pp. 222–227. IEEE Computer
Society, 1977.

12

https://www.sciencedirect.com/science/article/pii/S0019995863903061
https://www.sciencedirect.com/science/article/pii/S0019995863903061
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=OitmaxSAUu
https://openreview.net/forum?id=OitmaxSAUu

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a DeLTa Workshop Paper at ICLR 2025

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention networks
can process bounded hierarchical languages. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 3770–3785, Online, August 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.292. URL https:
//aclanthology.org/2021.acl-long.292.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2023.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv
preprint arXiv:2308.10792, 2023a.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B Tenenbaum, and Chuang Gan.
Planning with large language models for code generation. arXiv preprint arXiv:2303.05510, 2023b.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task, 2022. URL https://arxiv.
org/abs/2206.04301.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while
predicting the masked word? In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 16513–16542,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.1029. URL https://aclanthology.org/2023.emnlp-main.1029.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

13

https://aclanthology.org/2021.acl-long.292
https://aclanthology.org/2021.acl-long.292
https://arxiv.org/abs/2206.04301
https://arxiv.org/abs/2206.04301
https://aclanthology.org/2023.emnlp-main.1029

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Supplementary Material

A DISCUSSIONS

A.1 IS QUERY EFFICIENCY A REASONABLE NOTION OF EFFICIENCY?

There are many reasonable efficiency metrics, and they do not always positively correlate with each
other (Dehghani et al., 2021).

Our paper focuses on query complexity (measured by the number of tokens generated by the language
model to satisfactorily complete the task 6), and we do not claim that the same conclusions apply
when we switch out query complexity for other metrics of efficiency, such as wall-clock time.

We think query complexity is one (but not necessarily the only, or the most) important aspect of
efficiency due to the following considerations:

• Many existing large language model (LLM) providers charge service fees to the users
according to the number of tokens generated by the language model for the user, i.e. query
complexity.

• In the single sequence generation setting, controlling all other conditions to be held the
same, query complexity positively correlates with the size of computation (the number of
decoder forward passes) and wall-clock time.

• In the batched generation setting, admittedly, the wall-clock time does not necessarily scale
linearly with query complexity 7 , meaning that the naive best-of-n rejection sampling is
not as slow as query complexity would indicate (if the LLM has sufficient bandwidth for it).
However, in many realistic LLM inference settings, the LLM receives a large number of
query requests per second, so there is no additional idle availability 8 for duplicating each
sequence generation request by n.

Although, as mentioned above, query complexity is partially indicative of a few practically important
efficiency metrics (e.g. monetary cost or wall-clock time), there are aspects of these metrics that
are not tracked by query complexity. For example, different types of hardware and cache may have
different efficiency best practices. In particular, on GPUs and TPUs, algorithms that better exploit
parallelization or tensorized computation tend be more efficient. Therefore, an important direction
for future work is to design and analyze hardware-aware algorithms that incorporate these important
aspects of the inference setup.

6This definition is natural since generating one token involves one forward pass of the (decoder-only
autoregressive) language model, i.e. one query.

7For example, the wall-clock time of generating n candidate responses (with batch size n) might be less than
n multiplying the wall-clock time of generating 1 candidate response.

8Unless more GPUs/TPUs are allocated to serve this LLM.

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a DeLTa Workshop Paper at ICLR 2025

A.2 ON THE HARDNESS OF THE KNAPSACK PROBLEM

The hardness of the knapsack problem have been subject of extensive study. Specificially, the
decision version of this problem have found application in the context of secure cryptosystems
Odlyzko (1998). Under no assumptions on the input structure, the best known algorithm is based on
dynamic programming Kellerer et al. (2004) and runs in pseudopolynomial time. This algorithm is
also used to obtain an FPTAS and its runtime is effectively polynomial if one futher assumes that the
weights are polynomially bounded in D. More exact or approximate algorithms achieve polynomial
runtime, under specific input structures. Specifically, when the weights form a superincreasing
sequence, that is

Xi ≥
i−1∑
j=1

Xj ∀i ∈ [2, D] ∩ Z,

a greedy algorithm solves the knapsack decision problem Odlyzko (1998) in linear time. On the other
hand, when the density of the knapsack

D

log2(maxi{Xi}di=1)

is small enough, knapsack is approximately solved in polynomial time by lattice reduction algorithms
Plantard et al. (2013). Our argument considers the most general setting, in which no assumptions
are made on the structure of the inputs {Xi}ti=1, c and the decision problem is NP-complete Karp
(1972).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a DeLTa Workshop Paper at ICLR 2025

B PROOF OF OUR THEOREMS

B.1 PROOF OF THEOREM 1: INFORMATION THEORETICAL LOWER BOUND

Proof. Consider the constrained generation task (Σ, A,Oŝ), such that Σ := {0, 1}, A := {s ∈
ΣD :

∑D
i=1 si mod 2 = 0} for some fixed D ∈ Z+. Moreover, the oracle Oŝ is indexed by an

(unknown to the algorithm) ŝ ∈ ΣD−1, and it specifies the autoregressive distribution defined s.t.
∀s ∈ Σ∗, |s| < D − 1, we have pOŝ

(1|s) = pOŝ
(0|s) = 1/2; while for s ∈ Σ∗, |s| = D − 1, it

satisfies: ∀s ̸= ŝ ∈ ΣD−1, sD ∈ {0, 1}, we have:

pOŝ
(sD | s) =

{
1, if

(∑D−1
j=1 sj + sD

)
mod 2 = 1

0, otherwise

For s = ŝ, sD ∈ {0, 1}, we have:

pOŝ
(sD | s) =

{
1, if

(∑D−1
j=1 sj + sD

)
mod 2 = 0

0, otherwise

Suppose first that the algorithm is deterministic, and we choose the prefix ŝ uniformly at random. Let
us denote by x1, x2, x3, . . . , xq ∈ Σ∗ the queries to O generated by the algorithm. The claim is that
expected number of queries q needed to ensure at least one xi, i ∈ [q] is in A is 2D−1. Indeed, the
xi s.t. |xi| < D − 1 reveal no information about ŝ: the output of O is a uniform Bernoulli random
variable regardless of the value of ŝ. On the other hand, if at some point the algorithm has queried a
set S of xi of length D − 1, the probability over ŝ is uniform over ΣD−1 \ S. Hence, the expected
number of queries q (expectation being over the choice of ŝ) a deterministic algorithm needs is lower
bounded by 2n−1.

By Yao’s minimax lemma (Yao, 1977), this means that for any (even possibly randomized) algorithm
A, there exists ŝ on which the algorithm makes at least 2n−1 queries in expectation.

B.2 PROOF OF THEOREM 2: COMPUTATIONAL LOWER BOUND

Proof. We construct a reduction from the knapsack problem (Definition 7). Let the set {X1, . . . , XD}
and the integer c specify an arbitrary instance of the knapsack problem. Consider the constrained
generation task specified by Σ := {0, 1}, A := {s ∈ ΣD : ∀i ∈ [D], si ∈ {0, 1};

∑D
i=1 siXi = c}.

Membership in this A can be clearly verified in polynomial time. Suppose we have a poly-time
algorithm that generates a solution ŝ to (Σ, A,O). Since ∀s ∈ ΣD, pO(s) > 0, ŝ provides a solution
to the knapsack problem, as we needed.

B.3 PROOF OF PROPOSITION 1: CONSTRAINED GENERATION WITH PROCESS VERIFIER GETS
EASIER

Proof. Both claims are straightforward. (1) follows as generating one guess for the string s takes D
oracle calls. Moreover, the probability of the full string matching the only string in A (i.e., 0D) is
1/2D. As the number of calls to generate 0D is a geometric random variable, the expected number of
full string generations is 2D.

For (2), since O is uniform, at each token, the probability of drawing 0 is 1/2. Hence, the expected
number of calls per coordinate needed is 2 — making the total number of expected calls for the entire
string 2D.

B.4 PROOF OF PROPOSITION 2: MAINTAINING CALIBRATION IS NON-TRIVIAL EVEN WITH A
PROCESS VERIFIER

Proof. By Definition 5, until the last token is being generated, the process verifier will always accept
(as there exists a string with at least one 0 coordinate in the coordinates that haven’t yet been sampled).
Now, for the prefix 1D−1, the only completion that is in A is 1D−1 ◦ 0. This means that 1D−1 ◦ 0 is

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a DeLTa Workshop Paper at ICLR 2025

assigned probability mass 1
2D−1 under the tokenwise rejection sampling schema. All other strings in

ΣD are assigned a probability 1
2D

. On the other hand, p(s) ∝ 1(s ∈ A)pO(s) assigns uniform mass
on all strings in A — proving the claim of the proposition.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a DeLTa Workshop Paper at ICLR 2025

C ADDITIONAL EXPERIMENTAL RESULTS

We complement Section 5 by providing additional technical details.

C.1 ADDITIONAL RESULTS ABOUT LANGUAGE MODELS TRAINED ON SYNTHETIC DATA

C.1.1 VISUALIZING THE LANGUAGE MODEL REPRESENTATIONS OF CORRECT VS. INCORRECT
SEQUENCES

Figure 1: TSNE plot for the LM last-layer-last-position representations of strings in Xerror ∪Xcorrect.
Red dots correspond to the representations of incorrect strings, whereas gray dots correspond to the
representations of correct strings of comparable lengths. The 2D projection of the representations of
incorrect strings form a small number of clusters. This intuitively justifies using a lightweight verifier
on top of these LM representations.

C.1.2 BACKTRACKING EFFECTIVELY REDUCES ERRORS

The trained language model LM made a mistake at the last position of each string x ∈ Xerror. We
therefore use “error-inducing prefixes" Xerror-inducing to denote {x1:|x|−1 | x ∈ Xerror}. Table 1 shows
that at prefixes in Xerror-inducing, if we backtrack only once for a small backtrack stride B, and continue
the autoregressive sampling process, the error rate can be significantly reduced.

generation configuration accuracy
baseline: nucleus sampling top_p = 0.9 0.331
baseline: greedy argmax sampling 0.334
B = 1, then nucleus sampling top_p = 0.9 0.366
B = 2, then nucleus sampling top_p = 0.9 0.438
B = 4, then nucleus sampling top_p = 0.9 0.591
B = 8, then nucleus sampling top_p = 0.9 0.790

Table 1: At error-inducing prefixes, a larger backtrack stride B significantly improves completion
accuracy (Definition 9).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a DeLTa Workshop Paper at ICLR 2025

C.1.3 VERIFIER EFFECTIVELY REDUCES ERRORS

In Appendix C.1.2, the sampling process forced a backtracking at error-inducing prefixes Xerror-inducing.
Can the error reduction effect be retained by a trained lightweight single-layer verifier V in Sec-
tion 5.1.2? Table 2 shows that Tokenwise rejection sampling with backtracking (Algorithm 1) using
the trained verifier is remarkably effective. Moreover, in Appendix C.1.4, we verify that the predicted
backtracks were necessary.

Q B accuracy
1 2 0.421

4 0.500
6 0.604

2 2 0.457
4 0.634
6 0.762

4 2 0.518
4 0.762
6 0.921

baseline: nucleus sampling top_p = 0.9 0.331
baseline: greedy argmax sampling 0.334

Table 2: When the prompts are error-inducing prefixes, a single-layer trained verifier significantly
improves completion accuracy using Tokenwise rejection sampling with backtracking (Algorithm 1).
A larger backtrack quota Q and a larger backtrack stride B are both helpful.

C.1.4 THE PREDICTED BACKTRACKS WERE NECESSARY

During the experiment in Appendix C.1.3, the trained verifier V predicted backtracks at many
positions. Were they really necessary? For each setting of backtrack quota Q and backtrack stride
B, we collect the set of prefixes Xpredicted backtracks where V predicted backtracks. Then, we let the
language model LM complete each string in Xpredicted backtracks without any backtracks, using common
decoding techniques such as nucleus sampling top_p = 0.9 (Holtzman et al., 2020) and argmax greedy
decoding. Table 3 shows that without backtracking, the completion accuracy is much lower than the
accuracy reported in Table 2. This implies that Xpredicted backtracks were indeed challenging prefixes for
the LM, which verifies that the backtracks predicted by verifier V were necessary.

Q B #backtracks accuracy without backtrack (nucleus sampling top_p = 0.9) accuracy without backtrack (argmax)
1 2 163 0.313 0.344

4 163 0.337 0.319
6 163 0.331 0.288

2 2 311 0.347 0.328
4 297 0.357 0.349
6 286 0.374 0.373

4 2 600 0.371 0.353
4 532 0.419 0.404
6 489 0.509 0.523

Table 3: Predicted backtracks were necessary. For each setting of backtrack quota Q and backtrack
stride B, we report the number of times that Tokenwise rejection sampling with backtracking (Algo-
rithm 1) backtracked. Moreover, we report the completion accuracy of letting the language model
LM complete these backtracked prefixes without any backtrack. For each setting, the completion
accuracy is much lower than the accuracy reported in Table 2. This implies that these backtracked
prefixes were indeed challenging prefixes for the LM.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a DeLTa Workshop Paper at ICLR 2025

C.1.5 TOKENWISE REJECTION SAMPLING WITH BACKTRACKING REDUCES COMPLETION
ERRORS ON UNSEEN OOD PREFIXES

This section presents the experimental results of Section 5.1.3.

nucleus sampling top_p Q B #errors ± std err
0.9 0 0 240.0 ± 5.177

4 4 179.4 ± 1.020
1.0 0 0 461.8 ± 8.304

4 4 200.0 ± 3.225

Table 4: Tokenwise rejection sampling with backtracking (Algorithm 1) reduces completion errors
on unseen out-of-distribution (OOD) prefixes. Crucially, the improvement does not diminish on top
of commonly used baselines, including nucleus sampling top_p = 0.9 (Holtzman et al., 2020). For
each setting of top_p, we compare Tokenwise rejection sampling with backtracking (Algorithm 1)
(using backtrack quota Q = 4 and backtrack stride B = 4) with the baseline (using backtrack quota
Q = 0 and backtrack stride B = 0). We report the number of completion errors that occur when
completing an unseen set of 10000 independently sampled out-of-distribution prompts DyckunseenOOD .
The experiment was repeated 5 times, and we report the standard errors.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a DeLTa Workshop Paper at ICLR 2025

C.1.6 ERROR ANALYSIS ON THE REMAINING MISTAKES

Given the improvement of accuracy (Section 5.1.3) as a result of our algorithm Tokenwise rejection
sampling with backtracking (Algorithm 1), why did the model still make mistakes?

We conducted an error analysis which parses all mistakes into error types, and examine the generated
token, the LM predicted most probable token, their predicted probabilities, and a few intermedi-
ate variables during the course of our algorithm Tokenwise rejection sampling with backtracking
(Algorithm 1).

In summary, the findings are:

1. Among 225 generated mistakes, 222 correspond to predicting an incorrect closing bracket,
and 3 correspond to pre-maturely predicting the end-of-sequence <eos> token.

2. In all 225 cases, the final state of the algorithm has used up all the backtrack quota Q
allocated to it, so even if the error predictor was perfect, the algorithm would not have been
had a chance to correct these mistakes. This suggests that suitably increasing backtrack quota
Q might be an effective approach in improving the accuracy (though there are trade-offs
with query efficiency).

A snapshot of our error analysis result is included in Figure 2, and we plan to open source the
experimental codes, which will include the full error analysis results.

Figure 2: Error analysis table for mistakes of language model trained on Dyck grammar and sampled
using Tokenwise rejection sampling with backtracking (Algorithm 1). The last column records the
remaining backtrack quota Q at the time of generating the incorrect token.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a DeLTa Workshop Paper at ICLR 2025

C.1.7 TOKENWISE REJECTION SAMPLING WITH BACKTRACKING MAINTAINS DIVERSITY

In this section, we show that the significant accuracy improvement is not at the cost of reducing
diversity.

Our experiment freshly samples 100 prompts following the same distribution as DyckOOD (Sec-
tion 5.1.1). For each prompt, we let the trained LM independently sample 10 completions, using
Tokenwise rejection sampling with backtracking (Algorithm 1) or the baseline algorithm, and will
compare how many (out of 10) samples were different, and report the mean and standard error across
the 100 prompts.

Table 5 shows that Tokenwise rejection sampling with backtracking (Algorithm 1) generates similarly
diverse samples as the baselines of nucleus sampling with top_p = 0.9 or 1.0.

Q B top_p diversity ± std err (out of 10)
4 4 1.0 5.52 ± 3.28
0 0 0.9 5.47 ± 3.06
0 0 1.0 5.84 ± 3.29

Table 5: Under the experiment setup described in Appendix C.1.7, Tokenwise rejection sampling
with backtracking (Algorithm 1) is similarly diverse as the baselines of nucleus sampling with top_p
= 0.9 or 1.0.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a DeLTa Workshop Paper at ICLR 2025

C.2 ADDITIONAL RESULTS ABOUT GENERATING TEST CASES WITH PRETRAINED
CODELLAMA

This section complements our results in Section 5.2.

C.2.1 EXAMPLES OF PROMPTS AND MODEL COMPLETIONS

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert f(5, 5) == 10
assert f(1, 5) == 6
assert f(2, 8) == 10
assert f(6, 2) == 8
assert f(6, 9) == 15
assert f(4, 5) == 9
assert f(9, 6) == 15
assert f(6, 1) == 7

def knk(l, item):
assert type(l) is list
l.append(item)
return l

List 8 test cases of the above function knk, one in each line:

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert f(5, 8) == 13
assert f(1, 5) == 6
assert f(8, 4) == 12
assert f(6, 2) == 8
assert f(3, 9) == 12
assert f(1, 7) == 8
assert f(5, 9) == 14
assert f(1, 7) == 8

def ovs(l, item):
assert type(l) is list
l.append(item)
return l

List 8 test cases of the above function ovs, one in each line:

Table 6: Two example prompts for generating test cases for a simple implementation of the append
function for Python lists. In these examples, the following components are randomly generated and
will be different for different prompts: (1) the numbers in the demonstrations (e.g. assert f(5,
8) == 13) as long as they are correct for addition; (2) the name of the target function (e.g. knk,
ovs).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a DeLTa Workshop Paper at ICLR 2025

assert knk([], 2) == [2]
assert knk([1], 2) == [1, 2]
assert knk([1, 3], 2) == [1, 3, 2]
assert knk([1, 3, 5], 2) == [1, 3, 5, 2]
assert knk([1, 3, 5, 7], 2) == [1, 3, 5, 7, 2]
assert knk([1, 3, 5, 7, 9], 2) == [1, 3, 5, 7, 9, 2]
assert knk([1, 3, 5, 7, 9, 11], 2) == [1, 3, 5, 7, 9, 11, 2]
def sum_list(l):

return sum(l)
List 8 test cases of the above function sum_list, one in each line:
assert sum_list([]) == 0
assert sum_list([1]) == 1
assert sum_list([1, 3]) == 4
assert sum_list([1, 3, 5]) == 9
assert sum_list([1, 3, 5, 7]) == 16
assert sum_list([1, 3, 5, 7, 9]) == 25
assert sum_list([1, 3, 5, 7, 9, 11]) == 36
def sublist(l, sub):

assert type

assert ovs([], 1) == [1]
assert ovs([2], 1) == [1, 2]
assert ovs([1, 2], 1) == [1, 1, 2]
assert ovs([1, 2], 3) == [1, 2, 3]
assert ovs([1, 2], 0) == [0, 1, 2]
assert ovs([1, 2, 3], 4) == [1, 2, 3, 4]
assert ovs([], 0) == [0]
assert ovs([1, 2], 0) == [0, 1, 2]

Table 7: Two example generations by CodeLlama corresponding to the prompts in Table 6. Note that
both generations are flawed: (1) the model only generated 7 test cases instead of 8, even though the
prompt requested 8. Then, it generated irrelevant contents, starting from def sum_list(l): (2)
more than one generated test cases were wrong (e.g. in assert ovs([2], 1) == [1, 2],
the correct right-hand-side should be [2, 1]). More generally, we implemented a rule-based parser
to analyze model generations and identify the error type (if any), and locate the first position of error.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a DeLTa Workshop Paper at ICLR 2025

C.2.2 BASELINES

We extensively tuned the hyperparameters in common baseline decoding algorithms, including

• nucleus sampling (Holtzman et al., 2020): we grid-searched top_p ∈
[0.0, 0.7, 0.8, 0.9, 0.95, 1.0].

• argmax greedy decoding: equivalent to top_p = 0.0.
• standard autoregressive sampling: equivalent to top_p = 1.0.
• temperature scaling (Ackley et al., 1985): we grid-searched temperature ∈
[0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2] (for each top_p).

Through the above grid search, we found that the best combination was top_p = 0.95, temperature
= 1.0.

Besides, we consider baselines based on the block-best-of-n rejection sampling approach to incorpo-
rate process rewards. More details about this baseline are provided in the “Block verifier" part of
Appendix C.2.3.

• block-best-of-n: we grid-searched n ∈ [2, 4, 8], fixing the best combination of top_p and
temperature found by the grid search above.

We will show that Tokenwise rejection sampling with backtracking (Algorithm 1) clearly outperforms
all these baselines in terms of the quality vs. query complexity trade-off.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a DeLTa Workshop Paper at ICLR 2025

C.2.3 TRAINING THE VERIFIER

We follow almost the same training approach as Section 5.1.2. The differences are described below.
The generator language model LM is a pretrained CodeLlama (Roziere et al., 2023), which we freeze
during our experiments.

An intermediate layer provides more informative representations for verifier training than the
last layer. Instead of training the verifier V on top of the last layer (i.e. layer 31) representations
of LM, we instead treat the layer index as a hyperparameter, and conducted a grid search over layer
index ∈ {3, 7, 11, 15, 19, 23, 27, 31}. Among these candidates, layer 27 representations resulted in
the best accuracy. We therefore exclusively used layer 27 representations in subsequent experiments,
and finally conducted an ablation study on the top-performing setting of the baseline to back-test
the impact of using other layers. Table 8 shows that layer 27 outperforms layer 31. We conjecture
that the layer 31 representations may be too specific for the next-token prediction task, which is
not necessarily the optimal for discriminating correct prefixes vs. incorrect ones. 9 We also include
results for a few other layers near the final layer. Note that even with a sub-optimally chosen layer,
the accuracy of Tokenwise rejection sampling with backtracking (Algorithm 1) still outperforms the
top-performing settings of the baseline found through grid search (Appendix C.2.2).

layer index Accdistinct± std err
27 0.714 ± 0.011
28 0.711 ± 0.016
26 0.708 ± 0.018
30 0.706 ± 0.036
24 0.701 ± 0.033
31 0.688 ± 0.028
29 0.676 ± 0.021
25 0.672 ± 0.030
23 0.709 ± 0.017
3 0.700 ± 0.028
15 0.700 ± 0.028
19 0.692 ± 0.028
7 0.691 ± 0.031
11 0.650 ± 0.041
ablation: random verifier 0.663 ± 0.027
baseline: nucleus sampling + temperature scaling 0.660 ± 0.042

Table 8: Ablation: layer 27 representations of CodeLlama outperform layer 31 (the last layer) in terms
of the quality of the error predictor trained based on these features. We control all other setting to be
the same as the top-performing settings of the baseline (nucleus sampling top_p = 0.95 (Holtzman
et al., 2020) and temperature 1.0), whose performance is also included in the table. The other rows in
this table (layer 27 and layer 31) refer to applying Tokenwise rejection sampling with backtracking
(Algorithm 1) using backtrack quota Q = 4, backtrack stride B = 4, and verifiers trained on layers
24, ..., 31 of the generator (CodeLlama), respectively. The row ablation: random verifier refers to a
verifier that returns Uniform[0, 1], and uses the same Q, B as the above. The experiment was repeated
5 times, and we report the standard errors. The rows are sorted by mean Accdistinct (Section 5.2.1).

With limited backtrack quota, it is better to more conservatively use them. The verifier V is
trained with binary labels (1 if correct, 0 if wrong). Although there are a roughly equal number of
training samples whose labels are 0 or are 1, using 0.5 as the error prediction threshold turned out
to be suboptimal. Since our Tokenwise rejection sampling with backtracking (Algorithm 1) only
allows a small backtrack quota Q = 4, it makes sense to only use backtrack quota when the error
predictor is very confident that the current intermediate generation is wrong. Moreover, compared
with our synthetic Dyck grammar setting (target length = 32) (Section 5.1), our code generation
setting allows much longer generations (up to 384), which further justifies conservatively spending
the small backtrack quota Q. Consequently, we consider decreasing the error prediction threshold to

9This is in line with some prior works that also observed that the final layers of language models tend to be
more task-specific than the intermediate layers (Liu, 2019; Kovaleva et al., 2019; Rogers et al., 2021).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a DeLTa Workshop Paper at ICLR 2025

0.1. Table 9 shows that 0.1 is a better error prediction threshold than the default 0.5 in all settings we
tried.

Q B top_p temperature error prediction threshold Accdistinct ± std err
4 4 0.95 1.0 0.1 0.714 ± 0.011
4 4 0.95 1.0 0.5 0.676 ± 0.019
4 4 1.0 1.0 0.1 0.639 ± 0.061
4 4 1.0 1.0 0.5 0.604 ± 0.047
4 4 1.0 1.2 0.1 0.440 ± 0.026
4 4 1.0 1.2 0.5 0.334 ± 0.013
4 10 1.0 1.0 0.1 0.622 ± 0.046
4 10 1.0 1.0 0.1 0.604 ± 0.030

Table 9: Ablation: 0.1 is a better error prediction threshold than the default 0.5 in all settings we tried,
including various nucleus sampling (Holtzman et al., 2020) top_p, temperature scaling, and backtrack
stride B. In this table, we divide the rows into groups of 2, separated by double horizontal lines, such
that within each group, the only difference is the error prediction threshold. In all groups, 0.1 leads to
higher Accdistinct than 0.5. The experiment was repeated 5 times, and we report the standard errors.

Block verifier. Our verifier applies to the token level, i.e. predicting an accept/reject action after the
generator LM generates each token. In many practical settings (including ours), it is natural to divide
the generated output into blocks (each block may contain multiple tokens), e.g. in writing math proofs,
each block may correspond to one reasoning step; in writing codes, each block may correspond to one
line of codes. Recent works achieved strong empirical performance by generating multiple candidates
for each block of intermediate model generations, train process reward models that evaluate each
candidate, and select the best-scoring candidate (see e.g. Wu et al. (2024) and references therein).
We refer to this as the “block-best-of-n" approach. To compare with such “block-best-of-n" baselines,
we train “block verifiers" Vblock which scores prefixes that are full lines of model output for our task.
We will show that this “block best-of-n" approach is helpful, but is outperformed by our Tokenwise
rejection sampling with backtracking (Algorithm 1) in terms of accuracy-efficiency trade-off.

Does a deeper verifier perform better? The above experiments follow Section 5.1.2 in training
a single-linear-layer verifier. In this section, we test the effects of scaling up the verifier depth.
Specifically, we test verifiers based on Multi-Layer Perceptrons (Rosenblatt, 1958) of depths 2, 4, 8,
with ReLU activations (Nair & Hinton, 2010) between adjacent parameterized layers. Table 10 shows
that more MLP layers did not outperform the 1-linear-layer verifier even though they can be trained
to similar error-predicting accuracies, measured by their accuracy in predicting whether a prefix is
correct or incorrect on a held-old validation set of prompts for our task (Section 5.2.1) followed by
partial generations by CodeLlama. In other sections of this paper, unless otherwise noted, we always
use a single-linear-layer verifier for Tokenwise rejection sampling with backtracking (Algorithm 1)
(and of course, no verifier for baselines).

Where are the potentials for further improving Accdistinct? How optimal are our verifiers, and
what are some ways to further improve them? To probe these potentials, we wrote a rule-based
groundtruth verifier for our task (Section 5.2.1) and used it as a drop-in replacement of our trained
verifier. Table 11 shows that the Accdistinct enabled by our trained verifier almost reached the Accdistinct
enabled by the groundtruth verifier, showing that improving verifier training may not be the most
fruitful direction for further improvement. Interestingly, using a much larger Q or B (increasing from
4 to 10) does not necessarily improve the accuracy (sometimes even decreasing the accuracy). We
conjecture that in these experiments, the (imperfect) generator oracle (CodeLlama), not the verifier,
was the bottleneck for Accdistinct. As a result, unnecessarily backtracking and forcing the model to
re-generate more tokens may increase the chance that the model makes mistakes.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a DeLTa Workshop Paper at ICLR 2025

verifier # MLP layers verifier validation accuracy Accdistinct± std err
1 0.96 0.714 ± 0.011
4 0.97 0.699 ± 0.038
2 0.97 0.687 ± 0.035
8 0.97 0.684 ± 0.015
ablation: random verifier 0.50 0.663 ± 0.027
baseline: nucleus sampling + temperature scaling N/A 0.660 ± 0.042

Table 10: Ablation: Deeper verifiers do not outperform the 1-linear-layer verifier even though they
can be trained to similar error-predicting accuracies on held-old validation set. We control all
other setting to be the same as the top-performing settings of the baseline (nucleus sampling top_p
= 0.95 (Holtzman et al., 2020) and temperature 1.0), whose performance is also included in the
table. The other rows in this table refer to applying Tokenwise rejection sampling with backtracking
(Algorithm 1) using backtrack quota Q = 4, backtrack stride B = 4, and verifiers with 1, 2, 4, 8
layers, respectively. The row ablation: random verifier refers to a verifier that returns Uniform[0,
1], and uses the same Q, B as the above. The experiment was repeated 5 times, and we report the
standard errors. The rows are sorted by mean Accdistinct (Section 5.2.1).

verifier type Q B Accdistinct ± std err
groundtruth 4 4 0.719 ± 0.022
groundtruth 10 4 0.717 ± 0.015
trained 4 4 0.714 ± 0.011
trained 10 4 0.692 ± 0.025
ablation: random verifier 4 4 0.663 ± 0.027
baseline: nucleus sampling + temperature scaling 0 0 0.660 ± 0.042
trained 4 10 0.622 ± 0.046

Table 11: Ablation: Our trained verifier approaches the accuracy of the groundtruth verifier, evaluated
by their ability to assist CodeLlama in completing our test case generation task (Section 5.2.1) using
Tokenwise rejection sampling with backtracking (Algorithm 1). In these experiments, we control the
nucleus sampling (Holtzman et al., 2020) top_p = 0.95 and temperature scaling = 1.0 which are the
optimal setting for baseline, found by grid search (Appendix C.2.2). The rows are sorted by Accdistinct.
The row ablation: random verifier refers to a verifier that returns Uniform[0, 1]. Interestingly,
using a much larger Q or B does not necessarily improve the accuracy (sometimes even decreasing
the accuracy). We conjecture that the generator model, CodeLlama, is imperfect, so unnecessarily
backtracking and forcing the model to re-generate more tokens may increase the chance that the
model makes mistakes. The experiment was repeated 5 times, and we report the standard errors.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a DeLTa Workshop Paper at ICLR 2025

C.2.4 TOKENWISE REJECTION SAMPLING WITH BACKTRACKING IMPROVES ACCURACY

The section presents the experimental results of Section 5.2.2.

Q B top_p T block BoN Accdistinct ± std err
4 4 0.95 1.0 0.714 ± 0.011
0 0.95 1.0 2 0.684 ± 0.038
0 0.95 1.0 0.660 ± 0.042
0 0.95 1.0 4 0.623 ± 0.036
0 0.95 1.0 8 0.559 ± 0.038
4 4 1.0 1.0 0.639 ± 0.061
4 10 1.0 1.0 0.622 ± 0.046
0 1.0 1.0 0.504 ± 0.025
4 4 1.0 1.2 0.440 ± 0.026
0 1.0 1.2 0.269 ± 0.025
0 0.0 1.0 0.013 ± 0.000

Table 12: Tokenwise rejection sampling with backtracking (Algorithm 1) improves accuracy and out-
performs nucleus sampling top_p, temperature scaling T, and block best-of-n (BoN) (Appendix C.2.3).
In this table, we divide the rows into groups, separated by double horizontal lines, such that each
group uses the same top_p and temperature. The backtrack quota Q = 0 means a baseline algorithm
that does not use the verifier. Q > 0 means Tokenwise rejection sampling with backtracking with
the corresponding Q and B. block BoN specifies the number of candidates generated for each block;
empty block BoN means not using block best-of-n. In all groups, Tokenwise rejection sampling with
backtracking leads to higher Accdistinct than all other methods. The last group corresponds to argmax
greedy decoding, which has low Accdistinct due to low diversity. The experiment was repeated 5 times,
and we report the standard errors. The complete set of experiments are reported in a larger Table 13
in Appendix C.2.5.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a DeLTa Workshop Paper at ICLR 2025

C.2.5 FULL RESULTS OF CODELLAMA EXPERIMENTS IN SECTION 5.2

(The table is on the next page.)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a DeLTa Workshop Paper at ICLR 2025

Q B layer idx err threshold top_p temp BBoN Accdistinct ± std err C
4 4 27 0.1 0.95 1.0 0.714 ± 0.011 39443 ± 235
4 4 31 0.5 0.95 1.0 0.688 ± 0.028 39629 ± 135
0 27 0.95 1.0 2 0.684 ± 0.038 39364 ± 1252
4 4 31 0.1 0.95 1.0 0.677 ± 0.033 39546 ± 98
4 4 27 0.5 0.95 1.0 0.676 ± 0.019 38555 ± 140
0 0.95 1.0 0.660 ± 0.042 38231 ± 165
4 4 27 0.1 1.0 1.0 0.639 ± 0.061 31274 ± 1559
0 0.9 1.0 0.634 ± 0.023 38393 ± 14
0 0.9 1.2 0.630 ± 0.028 38005 ± 232
0 0.8 1.2 0.627 ± 0.015 38343 ± 90
0 27 0.95 1.0 4 0.623 ± 0.036 65496 ± 7638
4 10 27 0.1 1.0 1.0 0.622 ± 0.046 32923 ± 1772
4 4 27 0.5 1.0 1.0 0.604 ± 0.047 31091 ± 968
4 10 27 0.5 1.0 1.0 0.604 ± 0.030 27287 ± 7580
0 0.95 1.2 0.584 ± 0.027 36601 ± 535
0 1.0 0.8 0.562 ± 0.021 36610 ± 669
0 27 0.95 1.0 8 0.559 ± 0.038 122933 ± 3832
0 0.7 1.2 0.531 ± 0.035 38400 ± 0
0 0.95 0.8 0.523 ± 0.029 38386 ± 28
0 0.8 1.0 0.511 ± 0.028 38400 ± 0
0 1.0 1.0 0.504 ± 0.025 30754 ± 1272
0 0.9 0.8 0.466 ± 0.032 38400 ± 0
4 4 27 0.1 1.0 1.2 0.440 ± 0.026 24916 ± 954
0 1.0 0.6 0.399 ± 0.070 38320 ± 73
0 0.7 1.0 0.353 ± 0.021 38400 ± 0
0 0.8 0.8 0.351 ± 0.039 38400 ± 0
0 0.95 0.6 0.337 ± 0.053 38400 ± 0
4 4 27 0.5 1.0 1.2 0.334 ± 0.013 24217 ± 1214
0 0.9 0.6 0.284 ± 0.044 38400 ± 0
0 1.0 1.2 0.269 ± 0.025 21906 ± 1780
0 0.7 0.8 0.239 ± 0.019 38400 ± 0
0 0.8 0.6 0.212 ± 0.011 38400 ± 0
0 1.0 0.4 0.207 ± 0.029 38400 ± 0
0 0.95 0.4 0.176 ± 0.013 38400 ± 0
0 0.9 0.4 0.147 ± 0.013 38400 ± 0
0 0.7 0.6 0.101 ± 0.028 38400 ± 0
0 1.0 0.2 0.080 ± 0.020 38400 ± 0
0 0.8 0.4 0.074 ± 0.027 38400 ± 0
0 0.95 0.2 0.057 ± 0.018 38400 ± 0
0 0.9 0.2 0.029 ± 0.015 38400 ± 0
0 0.7 0.4 0.025 ± 0.016 38400 ± 0
0 0.8 0.2 0.021 ± 0.014 38400 ± 0
0 0.7 0.2 0.018 ± 0.011 38400 ± 0
0 0.0 1.0 0.013 ± 0.000 38400 ± 0

Table 13: Tokenwise rejection sampling with backtracking (Algorithm 1) improves accuracy and
outperforms commonly used baselines, including various settings of nucleus sampling top_p,
temperature scaling (temp), and block best-of-n. Baselines are extensively hyperparameter tuned
(Appendix C.2.2). Backtrack quota Q = 0 means a baseline that without verifier. When Q > 0, the
row denotes Algorithm 1 with the corresponding Q and B. The column layer idx denotes which
layer of CodeLlama provided the representations for training the error predictor, and err threshold
denotes the cutoff below which the error predictor output is interpreted as a rejection (both were
experimented in Appendix C.2.3). When BBoN (block best-of-n) (Appendix C.2.3) is specified, the
row denotes the number of candidates generated for each block; otherwise, the row does not use
block best-of-n. The rows are sorted by Accdistinct. Controlling top_p and temperature, Algorithm 1
leads to better tradeoff between Accdistinct and query complexity C (both defined in Section 5.2.1)
than all other methods. The experiment was repeated 5 times, and we report the standard errors.

To help readers parse all these results, we included smaller tables, each analyzing a single aspect of our observations:
please refer to Table 12 in Section 5.2.2, Table 9 in Appendix C.2.3, Table 8 in Appendix C.2.3, and
Figure 3 in Section 5.2.3 .

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a DeLTa Workshop Paper at ICLR 2025

C.2.6 VISUALIZING THE QUERY EFFICIENCY OF TOKENWISE REJECTION SAMPLING WITH
BACKTRACKING

This section plots the query efficiency visualization discussed in Section 5.2.3.

Figure 3: Tokenwise rejection sampling with backtracking (Algorithm 1) is query-efficient. The
horizontal axis denotes query complexity C, and the vertical axis denotes the number of distinct
correct test cases generated Ndistinct correct, both defined in Section 5.2.1. Blue dashed lines correspond
to the baselines (described in Appendix C.2.2), whereas orange solid lines correspond to Tokenwise
rejection sampling with backtracking with various Q and B, both defined in Algorithm 1. Since
the slopes of the orange curves are visibly greater than the slopes of the blue curves, we conclude
that Tokenwise rejection sampling with backtracking is more query-efficient than baselines. The
experiment was repeated 5 times, and each dot is the average metric of these 5 runs. The specific
numbers and standard errors are reported in Table 13. A more zoomed-in version of this plot is in
Figure 4.

Remark 2. This visualization in Figure 3 slightly favors the "block best-of-n sampling" baseline,
because its implementation stops the decoding process once the requested number of test cases are
generated, whereas when running our algorithm or non-best-of-n baselines, the model is allowed to
(and in fact does indeed) generate irrelevant tokens afterwards, which hurts query complexity. Even
under this disadvantage, Tokenwise rejection sampling with backtracking still outperforms the "block
best-of-n sampling" baselines.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a DeLTa Workshop Paper at ICLR 2025

Figure 4: Similar to Figure 3, just more zoomed-in, excluding block best-of-n baselines (Ap-
pendix C.2.3).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a DeLTa Workshop Paper at ICLR 2025

C.2.7 TOKENWISE REJECTION SAMPLING WITH BACKTRACKING GENERALIZES BETTER TO
OUT-OF-DISTRIBUTION PROMPTS

In this section we show that Tokenwise rejection sampling with backtracking (Algorithm 1) gener-
alizes better to out-of-distribution prompts than the best nucleus sampling and temperature scaling
baseline in Appendix C.2.2. Unlike the synthetic Dyck grammar setting, on real-world LLMs we
do not have a precise quantitative control over how “out-of-distribution" a prompt is for the LLM.
We therefore assume that a sufficient condition for a prompt in our setup to be out-of-distribution
is that the name of the target function denotes some meaning which is different from the actual
implemented functionality (i.e. list append) (recall the task setup in Section 5.2.1). Two examples
of such out-of-distribution prompt are provided in Table 14. We validate this assumption by observing
that the accuracy indeed degrades on such “out-of-distribution" prompts, suggesting that the model is
indeed confused by the inconsistency between the function names and the function implementations.
However, analogous to our observations on the synthetic Dyck grammar (Section 5.1.3), Tokenwise
rejection sampling with backtracking (Algorithm 1) again suffers much less reduction in accuracy on
these “out-of-distribution" prompts. The detailed comparisons are reported in Table 15.

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert f(6, 5) == 11
assert f(3, 2) == 5
assert f(5, 4) == 9
assert f(1, 5) == 6
assert f(5, 4) == 9
assert f(3, 5) == 8
assert f(5, 6) == 11
assert f(2, 6) == 8

def add(l, item):
assert type(l) is list
l.append(item)
return l

List 8 test cases of the above function add, one in each line:

def f(a, b):
return a + b

List 8 test cases of the above function f, one in each line:
assert f(8, 7) == 15
assert f(8, 1) == 9
assert f(4, 7) == 11
assert f(8, 4) == 12
assert f(7, 4) == 11
assert f(8, 4) == 12
assert f(1, 1) == 2
assert f(5, 5) == 10

def exp(l, item):
assert type(l) is list
l.append(item)
return l

List 8 test cases of the above function exp, one in each line:

Table 14: Two example out-of-distribution prompts for generating test cases for a simple implemen-
tation of the append function for Python lists. Different from the prompts in Table 6, here the
function names denote a clear meaning (e.g. add or exp), which, however, is different from what
the function implements (i.e. append).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a DeLTa Workshop Paper at ICLR 2025

Q B err threshold in-distribution Accdistinct ± std err OOD Accdistinct ± std err
4 4 0.1 0.714 ± 0.011 0.710 ± 0.029
4 4 0.5 0.676 ± 0.019 0.687 ± 0.024
0 0.660 ± 0.042 0.606 ± 0.034

Table 15: Tokenwise rejection sampling with backtracking (Algorithm 1) generalizes better to
out-of-distribution prompts than the best nucleus sampling and temperature scaling baseline in
Appendix C.2.2, which we identified by grid search (Table 13) to be top_p = 0.95, and temperature =
1.0. We manually pick 10 target function names according to Appendix C.2.7 which were unseen
when training the verifier (Appendix C.2.3). When backtrack quota Q = 0, the row denotes a baseline
algorithm that does not use the verifier (and consequently the backtrack stride B will not matter).
The column err threshold denotes the cutoff below which the error predictor output is interpreted
as a rejection (Appendix C.2.3). When Q > 0, the row denotes Tokenwise rejection sampling with
backtracking (Algorithm 1) with the corresponding Q and B. Tokenwise rejection sampling with
backtracking (Algorithm 1) suffered minor or no drop between in-distribution and OOD Accdistinct,
whereas the baseline suffered a drop by more than one standard error. The experiment was repeated 5
times, and we report the standard errors.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a DeLTa Workshop Paper at ICLR 2025

C.3 ADDITIONAL ABLATION EXPERIMENTS ON THE TOKENWISE REJECTION SAMPLING WITH
BACKTRACKING ALGORITHM (ALGORITHM 1)

Besides the ablation experiments in Appendix C.2.3 which probe various aspects of verifier training,
in this section, we focus on one algorithmic component.

Concretely, line 10 of Tokenwise rejection sampling with backtracking (Algorithm 1) re-generates the
erased positions using argmax. This was motivated by our results in Section 5.1.1 which suggest that
out-of-distribution prefix is a cause of generator mistakes. As a remedy, redoing the erased positions
using argmax is intended to increase the generator-predicted probability of the partially sampled
generation, which (concatenated with the prompt) will be the prefix for subsequent generation steps.
We include an ablation study verifying that this improves the accuracy, significantly under the
synthetic data setting (Table 16), and only slightly (without hurting diversity) under the real data
setting (Table 17).

sampling algorithm #errors ± std err
Algorithm 1 179.4 ± 1.020
ablation: no argmax 245.8 ± 8.658

Table 16: Re-generating the erased positions using argmax in Tokenwise rejection sampling with
backtracking (Algorithm 1) reduces completion errors on unseen out-of-distribution (OOD) prefixes
in Dyck grammar. We fixed nucleus sampling (Holtzman et al., 2020) top_p = 0.9, backtrack quota
Q = 4, and backtrack stride B = 4 (the best settings in Table 4). The row “ablation: no argmax"
refers to removing lines 9-12 in Algorithm 1. We report the number of completion errors that
occur when completing an unseen set of 10000 independently sampled out-of-distribution prompts
DyckunseenOOD . The experiment was repeated 5 times, and we report the standard errors.

sampling algorithm err threshold Accdistinct ± std err
Algorithm 1 0.1 0.714 ± 0.011
ablation: no argmax 0.1 0.711 ± 0.032
Algorithm 1 0.5 0.676 ± 0.019
ablation: no argmax 0.5 0.663 ± 0.023

Table 17: Re-generating the erased positions using argmax in Tokenwise rejection sampling with
backtracking (Algorithm 1) slightly improves the accuracy-diversity tradeoff (Section 5.2.1) in our
test case generation task. We fixed nucleus sampling (Holtzman et al., 2020) top_p = 0.95, backtrack
quota Q = 4, and backtrack stride B = 4 (the best settings in Table 13). The row “ablation: no
argmax" refers to removing lines 9-12 in Algorithm 1. The column err threshold denotes the cutoff
below which the error predictor output is interpreted as a rejection (Appendix C.2.3). The experiment
was repeated 5 times, and we report the standard errors.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a DeLTa Workshop Paper at ICLR 2025

D ADDITIONAL RELATED WORKS

We expand on the discussion in Section 6.

Inference-time scaling for language models Practical language generation tasks typically impose
various task-specific constraints in addition to the general grammatical rules of language. One
effective way to improve the chance of satisfying such constraints is to increase the inference-time
compute through search and/or rejection sampling. There has been a long history of prior works that
employ inference-time scaling in the language generation context, dating as far back as beam search
(Lowerre & Reddy, 1976; Hayes-Roth et al., 1976; Ow & Morton, 1988; Jurafsky & Martin, 2000;
Graves, 2012). Much more recently, as researchers develop the techniques for language models to
follow instructions (see the survey by Zhang et al. (2023a) and references therein), more creative
designs for inference-time scaling algorithms have become viable (Wang et al., 2022; Yao et al.,
2023; Zhang et al., 2023b; Zhou et al., 2023; Choi et al., 2023; Liu et al., 2024; Xie et al., 2024; Snell
et al., 2024), and see Wu et al. (2024) for a recent survey on cost-performance tradeoffs of these
approaches.

Controlled synthetic data distribution as a sandbox for studying language models Our Dyck
grammar distribution most closely follows Wen et al. (2023) (though we switched to a fixed-sequence-
length setting, and used unbalanced bracket type probability, instead of length extrapolation, to define
the criteria for a prompt to be out-of-distribution). Dyck grammar was also used in other prior works
(Hewitt et al., 2020; Ebrahimi et al., 2020; Yao et al., 2021; Liu et al., 2022; 2023b) to study language
models. Other synthetic data distributions have been used to study various aspects of language
models in prior works, including representational capability (Bhattamishra et al., 2020; Li & Risteski,
2021; Zhang et al., 2022; Zhao et al., 2023), statistical sample complexity (Edelman et al., 2022),
optimization process (Lu et al., 2021; Jelassi et al., 2022; Li et al., 2023; Bietti et al., 2023), sampling
(Li et al., 2024b), and architectural limitations (Liu et al., 2023a), and references cited therein.

37

	Introduction
	Setup and notation
	Constrained generation is hard without a verifier
	Constrained generation with process verifier gets easier
	Backtracking: a surprisingly effective rejection sampling strategy
	Language models trained on synthetic data
	Dyck grammar as a sandbox
	Training the verifier
	Tokenwise rejection sampling with backtracking reduces completion errors on unseen OOD prefixes

	Generating test cases with pretrained CodeLlama
	Task setup
	Tokenwise rejection sampling with backtracking improves accuracy
	Tokenwise rejection sampling with backtracking is query efficient

	Related work
	Conclusion
	Discussions
	Is query efficiency a reasonable notion of efficiency?
	On the hardness of the knapsack problem

	Proof of our theorems
	Proof of thm:infotheoreticallowerbound: Information theoretical lower bound
	Proof of thm:computationallowerbound: Computational lower bound
	Proof of prop:easywithverifier: Constrained generation with process verifier gets easier
	Proof of prop:calibrationishard: Maintaining calibration is non-trivial even with a process verifier

	Additional experimental results
	Additional results about language models trained on synthetic data
	Visualizing the language model representations of correct vs. incorrect sequences
	Backtracking effectively reduces errors
	Verifier effectively reduces errors
	The predicted backtracks were necessary
	Tokenwise rejection sampling with backtracking reduces completion errors on unseen OOD prefixes
	Error analysis on the remaining mistakes
	Tokenwise rejection sampling with backtracking maintains diversity

	Additional results about generating test cases with pretrained CodeLlama
	Examples of prompts and model completions
	Baselines
	Training the verifier
	Tokenwise rejection sampling with backtracking improves accuracy
	Full results of CodeLlama experiments in sec:experiments:codellama
	Visualizing the query efficiency of Tokenwise rejection sampling with backtracking
	Tokenwise rejection sampling with backtracking generalizes better to out-of-distribution prompts

	Additional ablation experiments on the Tokenwise rejection sampling with backtracking algorithm (alg:samplingwithbacktracking)

	Additional related works

