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Abstract

Commonsense reasoning (CSR) requires rationale beyond the explicit knowledge mentioned
in the context. Many existing methods use knowledge graphs (KGs) to generate rationale
as additional evidence for CSR. However, rationale extracted from KGs (e.g., ConceptNet)
often includes irrelevant information, which easily introduces noise and affects the evidential
quality generated. Similar to brainstorming to generate diverse ideas, we introduce a
synonym expansion method to expand input concepts, ultimately constructing a task-
relevant knowledge subgraph. Additionally, we propose a pruning model that learns to
score and prune the knowledge subgraph, removing parts that are not directly related to
the input context. The proposed method improves the quality and diversity of rationale,
which benefits generative commonsense reasoning tasks. Experiments on two datasets
validated the effectiveness of our method, which demonstrates comparable performance
with existing methods.
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Input：She   ate   an  essay
Outputs:
1. Essay is an inanimate piece of literature. 
2. An essay is not something that can be eaten.
3. She can not eat an essay because it is not edible.
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Figure 1: An example from ComVE (Wang et al., 2020). By adding synonyms and trimming
the subgraph, we obtain a subgraph containing important information. Dotted
lines indicate trimmed triples, while black solid lines connect the original sentence
concepts and the synonym concepts.
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1. Introduction

Applying knowledge graphs to text generation tasks is a common and effective method in the
domain of natural language generation (NLG). Recent studies have shown that integrating
commonsense knowledge can enhance the performance of generation models, enabling them
to generate text more accurately during reasoning processes (Wang et al., 2022; Nie et al.,
2023; Wang et al., 2024). An important goal of NLG is to produce outputs that are
both accurate and diverse (Tevet and Berant, 2020). Knowledge graphs have recently
gained popularity for enhancing NLG. Ji et al. (2020) and Yu et al. (2022) expanded their
methods using a predefined vocabulary of concepts and relationships, selecting nodes and
relationships based on frequency statistics and distance. Nonetheless, their approach tends
to overlook important but low-frequency relationships and is limited in expansion depth.
Liu et al. (2021) filtered entities using part-of-speech tags and cosine similarity of word
embeddings, which helps capture semantic connections but relies heavily on pre-trained
word embeddings, ignoring complex contextual relationships and being inefficient when
handling large-scale data. Yasunaga et al. (2021) and Tang et al. (2023) built knowledge
subgraphs using entity retrieval, but even with pre-trained models filtering nodes, noise
may still be introduced.

However, their method overlooks the fact that introducing knowledge graphs can also
bring irrelevant and redundant information, which increases noise and affects the perfor-
mance of the model.

Previous methods often introduce an external graph Gx to constrain the generation pro-
cess, such as P (yi|x,Gx), where x is the given sentence and yi is the generated sentence.
However, these graphs frequently contain redundant or irrelevant triples that can negatively
impact the diversity and quality of the generation. To enhance generative commonsense
reasoning, our method introduces synonym expansion and subgraph pruning techniques.
As shown in Figure 2, we incorporate synonym expansion from WordNet when extracting
subgraph concepts (Section 3.1). Subsequently, we train a subgraph pruning model to trim
the triples in the subgraph (Section 3.2), resulting in a more relevant subgraph. Then, a
multi-relational graph encoder updates the representation of each node by iteratively aggre-
gating information from neighboring nodes and edges. It generates output by integrating
the token embeddings of the input sequence and the top-ranked concepts (Section 3.3).

Figure 1 shows an example of the commonsense explanation generation (ComVE) task.
The goal is to generate an explanation for why the input sentence (“She ate an essay”)
violates commonsense. The concepts “term” and “digest” are semantically unrelated to the
input or reference output sentences. Including this irrelevant information introduces noise,
which may affect the performance of the model. To address the irrelevant information in
the extracted subgraph, we introduce a synonym expansion method to expand the input
concepts and build a task-relevant knowledge subgraph. Additionally, we propose a pruning
model that learns to score the knowledge subgraph and remove parts not directly related
to the input context.

The contributions of this paper can be summarized as follows:

• Building upon the MoE (Mixture of Experts) model, we introduced synonym expan-
sion for enhancing input concepts, ultimately expanding them into a task-specific
knowledge subgraph.
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• We propose a pruning model and introduce a balanced pruning strategy. This model
learns to score and prune the knowledge subgraph that is not directly relevant to the
input context.

• We show through experiments that our method achieves comparable or better perfor-
mance on various evaluation metrics for two GCR benchmark datasets, and matches
the quality and diversity of the large language model Vicuna-13b.

2. Related Work

Knowledge graphs (KGs) that structure human knowledge have garnered significant inter-
est in both academia and industry. They have been used in various applications such as
dialogue systems (Tang et al., 2023), story generation (Ji et al., 2020), and textual entail-
ment (Kapanipathi et al., 2020). Unlike the use of isolated, separate triples, using KGs can
enrich the semantics of text generation.

2.1. Mixture of Experts (MoE) Module

One approach is to use MoE combined with knowledge graphs to generate diverse out-
puts. MoE is a machine learning technique that integrates multiple expert models, each
specializing in generating specific types of outputs, thereby enhancing overall diversity in
generation. This method has been validated in various studies, as shown by Shen et al.
(2019) and Cho et al. (2019). By integrating with knowledge graphs, MoE can leverage rich
semantic information from the graphs, enabling each expert model to effectively generate
diverse outputs relevant to the task.

2.2. Optimizing Task-specific Knowledge Graph Information

However, not all relationships within a KG are equally relevant or useful for reasoning tasks.
Some concept-entity connections might introduce noise or lack informational value, and
mislead the understanding of the task by the model. Lin et al. (2019) used TransE (Wang
et al., 2014) to score each edge in a path, while Yasunaga et al. (2021) scored the generation
probability of nodes based on inputs from a pre-trained language model. Nonetheless, the
scoring mechanisms in these methods were not specifically trained to reflect the importance
of nodes for a particular task.

We focus on two datasets for commonsense explanation tasks: ComVE (Wang et al.,
2020) and α-NLG (Bhagavatula et al., 2019). Our goal is to produce outputs that are
both diverse and high-quality. Hwang et al. (2023) built on MoKGE (Yu et al., 2022)
by introducing a differentiable graph compression algorithm. This algorithm focuses on
more significant and relevant task knowledge. Our approach extends MoKGE, a model for
generating commonsense explanations. MoKGE diversifies the outputs of a MoE model by
combining knowledge from KGs. However, the knowledge retrieved from KGs by MoKGE
is unfiltered and may include loosely related, redundant, and irrelevant information, which
negatively impacts the model’s ability to generate high-quality, diverse outputs.
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[SEP]
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Figure 2: Overview of the proposed system.

3. Method

Problem Statement. Our goal is to generate diverse rationales for a given instance x in
a generative commonsense reasoning task. The generated sentences y1, y2, . . . , yk should be
both correct (or valid) and natural for the given context. To facilitate the reasoning process,
we utilize an external commonsense knowledge graph G = {(h, r, t) | h, t ∈ E, r ∈ R}, where
E and R represent the sets of entities and relations, respectively. This graph can be viewed
as auxiliary information. Within the instance x, there are k commonsense concepts x =
{c1, c2, . . . , ck}, where each concept ci ∈ E is an object (noun) or an action (verb). We
aim to maximize the generation probability P (yi|x) for each sentence yi, while ensuring
diversity in content, language style, and vocabulary.

3.1. Extraction of Concept Expansion Graph

To enrich the semantic representation of concepts and expand their semantic range, we
use knowledge bases like WordNet to obtain synonyms for each extracted concept during
subgraph extraction. This abundant synonym information enhances the ability of the model
to understand different expressions. For each concept word, we traverse its set of synonyms
and calculate the similarity of each synonym to the sentence. We use pre-trained word vector
models like GloVe to represent words. We measure the semantic similarity between a given
sentence x and a concept v using cosine similarity between their word vectors. Higher cosine
similarity indicates stronger semantic relevance. For example, given the sentence q = “She
ate an essay”, the key concepts in the sentence are vq = [eat, essay]. We select the top two
words with the highest similarity for each concept as synonyms. The synonyms for “eat” are
[feed, consume], and the synonyms for “essay” are [text, literature]. The integrated concept
set is vq′ = [eat, essay, feed, consume, text, literature]. Finally, we extract the concepts vq′

that are connected within two hops.
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3.2. Subgraph Pruning

We aim to first identify a subgraph relevant to the given sentence and then prune the
irrelevant triples from the identified subgraph. To accomplish the pruning, we use a model
to estimate the relevance of a sentence to its neighboring triples. As shown in Figure 2, the
subgraph pruning model consists of a BERT layer, a dropout layer, and a linear layer. For
each triple in the subgraph, the [CLS] token, representing the sentence as a set of tokens
{qt1 , . . . , qti}, and the triple as a set of tokens {tt1 , . . . , tti}, are concatenated and fed into the
BERT layer. The encoding of the [CLS] token, which represents the entire input, is passed
through the dropout layer and then through the linear layer. We evaluate the relevance
of a sentence to a triple each time. The output of the model is the pruning score for the
given triple. After scoring all triples in the given subgraph, we adopt a balanced pruning
strategy. We retain the top 70% and the bottom 20% of the triples to avoid over-pruning,
reduce the loss of useful information, and ensure that low-priority but important content is
not overlooked during the generation process.

The subgraph pruning model assigns high scores to relevant triples by fine-tuning a
pre-trained BERT model. The fine-tuned BERT can compare the text representations of
a given sentence and the triples (as shown in Figure 2) in the related subgraph. Given a
sentence Q and a triple T , we define the following scoring function. CosSim computes the
cosine similarity between the BERT embeddings of the sentence (represented as ENC(Q))
and the triple (represented as ENC(T )). This measures the similarity between the sentence
and the triple. We score the triples from both relevance and similarity perspectives, with λ
being a hyperparameter that balances the contribution of similarity and relevance in scoring
the triples.

Score = λ · CosSim(ENC(Q),ENC(T )) + (1− λ) · ρ(Q,T ) (1)

Where ρ is the Spearman’s rank correlation coefficient, which measures the strength and
direction of the monotonic relationship between two variables. Its range is [−1, 1]. The
closer the absolute value of the correlation coefficient is to 1, the stronger the monotonic
relationship between the two variables. Conversely, the closer it is to 0, the weaker the
monotonic relationship. This method effectively evaluates the monotonic relationship be-
tween high-dimensional vectors. The calculation formula for Spearman’s rank correlation
coefficient is as follows:

ρ = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
(2)

Given the sentence vector Q = [Q1, . . . , Qn] and the triple vector T = [T1, . . . , Tn], where
n = 768 dimensions, we rank the elements of vector Q and assign ranks R(Qi), and rank
the elements of vector T and assign ranks R(Ti). The rank difference is then calculated as:

di = R(Qi)−R(Ti) (3)

We then train the subgraph pruning model as a regression model. The loss function
we use is the Mean Squared Error (MSE) loss function, which is a standard regression loss
function:
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Lpruning =
1

n

n∑
i=1

(scorei − ˆscorei)
2 (4)

3.3. Graph Encoding, Training, and Generation

We follow the methodology outlined in previous work (Yu et al., 2022) for graph encoding,
training, and generation.

Graph Encoding. Graph encoding (as shown in Figure 2) is performed by applying
graph encoders, such as the method proposed by Wu et al. (2020), to the extracted sub-
graphs. We use the Relational Graph Convolutional Network R-GCN (Schlichtkrull et al.,
2018) as our tool. This approach follows the research strategy of Yu et al. (2022). R-GCN
generates concept node embeddings by iteratively aggregating the representations of neigh-
boring nodes and considering the types of relations, capturing the structural patterns of the
subgraph.

Training Loss Functions. For the commonsense explanation generation task, we use
a sequence-to-sequence (seq2seq) architecture based on the BART-base model (Lewis et al.,
2019) for training. The loss functions include a generation loss and an additional knowledge
graph (KG) concept loss.

Generation Loss. In the sentence generation process, we aim to maximize the prob-
ability of the target sequence y given the input sequence x and the selected KG concepts
v1, v2, . . . , vN . We use the standard autoregressive cross-entropy loss to measure generation
accuracy, as shown below:

Lgeneration = −
|y|∑
t=1

log p(yt|x, v1, . . . , vN , y<t) (5)

KG Concept Loss. The effectiveness of concept selection is measured by the presence
of selected concepts in the output sentence y (reference answer). For each concept c ∈ Vx

in the input sequence, we use a binary cross-entropy loss function yc = I(c ∈ Vx ∩ Cy).
I(·) is the indicator function, and Cy is the set of concepts present in the answer. We
use a Multi-Layer Perceptron (MLP) to compute the probability pc of each concept being
selected. The resulting KG concept loss is as follows:

Lconcept = −

 ∑
c∈Vx∩Cy

v log pc +
∑

c∈Vx−Cy

(1− v) log(1− pc)

 (6)

Overall, our model is trained using the combined loss functions:

L = Lgeneration + λ · Lconcept (7)

where λ = 0.3 is a hyperparameter used to balance the two loss functions.

MoE-based Diverse Generation. To promote diversity in the output of the genera-
tive model, we use a MoE module trained with the hard Expectation-Maximization (EM)
algorithm. Each expert is responsible for generating a set of unique KG concepts, priori-
tizing different key concepts during the generation process. We chose the EM algorithm to



Diverse Commonsense Generation

train the MoE mainly because it effectively distinguishes the task responsibilities of differ-
ent expert models, enhancing the diversity of the generated outputs. The EM algorithm
alternates between optimizing which experts to use and updating their parameters, allowing
each expert to focus on different generation patterns. This helps reduce conflicts and avoid
mode collapse. In contrast, training all expert models at once may be faster, but it can lead
to overfitting, which reduces the diversity of the generated results.

The algorithm aims to achieve diversified generation using a MoE model. Initially, the
algorithm initializes model parameters θ and responsibilities rz for each expert. Subse-
quently, training is conducted by alternately running the hard Expectation-Maximization
(EM) algorithm. During the E-step (lines 4 to 8), for each input-output pair (x, y), it
computes the responsibility rz for each expert z under the current model, utilizing the
knowledge graph Gx. In the M-step (lines 10 to 11), it updates the parameters θ, consid-
ering only those designated as responsible experts. This process iterates until convergence.
Finally, outputs yz are generated for each expert (lines 13 to 20), returned as K diversified
generation results y1, y2, . . . , yK .

Algorithm: MoE for Diverse Generation

Input: input x, knowledge graph Gx, number of experts K
Output: diverse outputs y1, y2, . . . , yK

1 Initialize model parameters θ.
2 Initialize experts’ responsibilities rz for each z ∈ {1, . . . ,K}.
3 while not converged do

Training using Hard EM:
4 E-step: Estimate responsibilities
5 for each example (x, y) do
6 Calculate p(z|x, y,Gx) for z = 1 to K using current θ.
7 if z maximizes p(z|x, y,Gx) then

Set rz = 1.
8 else

Set rz = 0.
9 end for
10 M-step: Update parameters
11 Update θ using examples where rz = 1 for expert z.
12 end while
13 Initialize empty list of outputs y1, y2, . . . , yK .
14 for z = 1 to K do
15 Initialize yz as an empty sequence.
16 for each token in input sequence x do
17 Greedily decode token yt using p(yt|y1:t−1, z, x,Gx).
18 Append yt to yz.
19 end for
20 Append yz to outputs y1, y2, . . . , yK .
21 end for
22 return y1, y2, . . . , yK as K diverse outputs.
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4. Experiments

4.1. Datasets

We used two commonsense generation tasks (Zhang et al., 2024) to evaluate the performance
of our generative model: ComVE and α-NLG. ComVE (Wang et al., 2020) is part of the
SemEval 2020 commonsense validation task, which focuses on generating explanations for
absurd sentences. The main goal of this dataset is to generate explanations for given absurd
sentences, explaining why they are nonsensical. α-NLG (Bhagavatula et al., 2019) dataset
is used for hypothetical commonsense reasoning tasks. The goal of this task is to generate
explanations for reasonable events that could have happened between given past and future
observations.

4.2. Baselines

In the experimental section of this paper, we selected various baseline methods, following
the baseline methods from previous work (Hwang et al., 2023).

MoE-based Methods. First, we compared our approach with two methods based
on MoE, which generate diverse outputs by sampling from different mixture components.
Specifically, we used the MoE-prompt method proposed by Shen et al. (2019) and the MoE-
embed method proposed by Cho et al. (2019). These methods provide an effective approach
to generate diverse responses using multiple expert models.

Methods for Improving Diversity. To further demonstrate the advantages of our
subgraph pruning method, we considered common pruning methods that remove irrele-
vant paths from potentially noisy subgraphs, such as KagNet (Lin et al., 2019). KagNet
decomposes paths into a set of triples, scores each triple using the scoring function from
the knowledge graph embedding technique TransE, and uses the product of the scores
of each triple as the overall score of the path. We also compared our method with the
MoKGE+SAG+OT method based on compressed graphs (Hwang et al., 2023).

Large Language Model (LLM). Finally, we compared our model with Vicuna-13b
(Chiang et al., 2023), a representative of modern large-scale pre-trained language models
that perform excellently in generation tasks. Vicuna-13b is a large language model built
on LLaMA-13b (Touvron et al., 2023), which is based on the transformer architecture, and
specifically trained to handle trillions of tokens from open datasets.

4.3. Implementation Details

For a fair comparison, our method and all baseline methods use BART-base to initialize
the Transformer parameters, while R-GCN parameters are randomly initialized.

The model training used a batch size of 50, a learning rate of 3e-5, and L2 weight decay of
0.01. The learning rate was warmed up for the first 10,000 steps and then linearly decayed.
Training was conducted on a single Nvidia 4090 GPU (24GB memory) using PyTorch and
the Huggingface Transformers library (Wolf et al., 2020). All Transformer-based methods
were trained for 30 epochs on the ComVE dataset, taking about 2 hours on the ComVE
dataset and 2-4 hours on the α-NLG dataset.
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4.4. Metrics

We follow evaluation setup as in previous work (Yu et al., 2022; Hwang et al., 2023). We
evaluate the performance of the generative model based on diversity and quality using
common evaluation metrics: Self-BLEU-3/4, Distinct-k, BLEU, ROUGE, and Entropy.

Quality Evaluation. BLEU score is an N-gram precision metric used to evaluate
the similarity between generated sentences and reference sentences. It calculate the N-
gram overlap between each generated sentence and its corresponding reference sentence.
A higher BLEU score indicates a better match between generated and reference sentences.
The ROUGE score is another N-gram-based metric that measures the coverage and recall of
generated text by comparing the N-gram overlap between generated and reference sentences.
A higher ROUGE score indicates that the generated sentences better cover the content of
the reference sentences.

Diversity Evaluation. Self-BLEU (Zhu et al., 2018) evaluates the diversity within
a set of generated sentences. Self-BLEU-3/4 measures the similarity between generated
sentences based on 3-gram and 4-gram overlaps. It calculates the BLEU score for each
generated sentence against all other generated sentences and averages them. Lower Self-
BLEU scores indicate higher diversity, with less repetition and similarity among sentences.
Distinct-k (Li et al., 2015) measures the number of unique k-grams in the generated sen-
tences, normalizing by the total number of words to prevent bias toward longer sentences.
Higher Distinct-k values indicate higher lexical diversity, with less repetition of common
words. Entropy-k (Zhang et al., 2018) evaluates the diversity and uniformity of generated
sentences by calculating the entropy of the k-gram distribution within the sentences. Higher
Entropy-k values indicate greater uniformity and diversity.

5. Results and Analysis

Comparison with Baseline Methods (Table 1). Our method shows similar trends
across two datasets and two model series (embedding-based and prompt-based). In terms
of diversity, our approach (including synonym addition and subgraph pruning) significantly
outperforms the Mixture of Experts methods, while also achieving comparable or better
performance in quality. Compared to MoKGE+SAG+OT (Hwang et al., 2023), our method
also demonstrates comparable or superior results in both diversity and quality.

Our method shows clear advantages when compared to filtering and pruning baselines.
By adding synonyms and pruning subgraphs, our approach effectively suppresses redundant
information in the knowledge graph and introduces more relevant knowledge in the given
context, thereby enhancing overall performance.

We compared our method with Vicuna-13b, and the experimental results are presented
in Table 2. Compared to MoKGE+SAG+OT (Hwang et al., 2023), our method also out-
performs Vicuna-13b in terms of Distinct-2 and Entropy-4 metrics.

We focused on investigating the impact of using different types of concept expansion
methods on model performance during training. Specifically, we explored three types of
expansion methods: hypernyms, hyponyms, and synonyms. We evaluated the effectiveness
of each method through multiple comparative tests.

The appropriate addition of synonyms can effectively enhance model performance, while
adding too many or too few synonyms can have the opposite effect. Using synonyms for
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Table 1: Evaluation of diversity and quality on the ComVE and α-NLG datasets. Each
experiment is conducted three times with different random seeds, and the stan-
dard deviations are reported as subscripts. The symbol ‡ represents the results
of previous studies. The best results are bold, and the second best results are
underlined.

ComVE self-bleu-3 (⇓) self-bleu-4 (⇓) distinct-2 (⇑) entropy-4 (⇑) bleu-4 (⇑) rouge-l (⇑)

MoE, embed ‡ 33.640.20 28.210.10 46.570.20 9.610.10 18.660.50 43.720.20
MoKGE, embed ‡ 35.361.10 29.711.20 47.510.40 9.630.10 19.130.10 43.700.10
+ SAG + OT ‡ 32.190.60 26.280.60 49.050.10 9.690.00 19.080.20 43.650.30
+ pruning(ours) 33.290.91 27.200.94 48.320.32 9.680.00 18.920.57 43.780.44
+ 2 synonyms(ours) 33.080.34 27.570.38 47.620.02 9.630.01 19.210.40 43.460.01
+ 2 synonyms+pruning(ours) 33.040.56 27.150.69 48.300.36 9.660.00 18.940.15 43.930.13

MoE, prompt ‡ 33.420.30 28.400.30 46.930.20 9.600.20 18.910.40 43.710.50
MoKGE, prompt ‡ 30.930.90 25.301.10 48.440.02 9.670.20 19.130.10 43.830.30
+ filtering ‡ 34.010.50 28.920.50 47.490.90 9.640.10 19.020.40 43.480.60
+ pruning ‡ 33.432.00 28.272.20 48.260.70 9.640.00 18.670.20 43.100.30
+ SAG + OT ‡ 27.320.30 21.940.40 48.940.10 9.690.00 19.310.30 44.160.10
+ pruning(ours) 29.540.14 24.500.20 47.930.04 9.660.00 20.200.02 44.390.16
+ 2 synonyms(ours) 27.930.37 22.140.43 48.420.08 9.690.05 19.640.15 44.360.02
+ 2 synonyms+pruning(ours) 27.430.20 21.820.20 48.330.04 9.660.00 19.550.39 44.410.25

α-NLG self-bleu-3 (⇓) self-bleu-4 (⇓) distinct-2 (⇑) entropy-4 (⇑) bleu-4 (⇑) rouge-l (⇑)

MoE, embed ‡ 29.021.00 24.191.00 36.220.30 10.840.00 14.310.20 38.910.20
MoKGE, embed ‡ 29.171.50 24.041.60 38.150.30 10.900.10 13.740.20 38.060.20
+ SAG + OT ‡ 24.980.20 19.830.20 38.930.30 10.930.00 13.060.30 37.770.30
+ pruning(ours) 27.090.43 21.930.39 39.060.14 10.930.00 13.470.06 38.330.12
+ 2 synonyms(ours) 28.380.12 23.130.11 38.50.05 10.90.0 12.740.06 37.830.05
+ 2 synonyms+pruning(ours) 27.670.07 22.450.10 38.660.05 10.910.00 13.270.03 37.960.05

MoE, prompt ‡ 28.052.00 23.181.90 36.710.10 10.850.00 14.260.30 38.780.40
MoKGE, prompt ‡ 27.402.00 22.432.40 38.010.60 10.880.20 14.170.20 38.820.70
+ filtering ‡ 31.382.90 26.362.80 37.950.60 10.780.60 13.890.20 38.070.10
+ pruning ‡ 31.842.30 26.722.40 38.210.20 10.780.00 13.730.10 38.010.20
+ SAG + OT ‡ 23.990.70 18.800.60 39.020.70 10.880.00 14.210.50 38.930.20
+ pruning(ours) 23.700.23 18.440.22 39.600.02 10.920.02 13.910.00 39.080.04
+ 2 synonyms(ours) 24.690.01 19.430.01 39.430.02 10.920.00 13.900.01 38.880.03
+ 2 synonyms+pruning(ours) 30.210.65 24.970.68 38.680.16 10.830.01 13.730.18 38.320.24

Table 2: Following the settings of prior work (Hwang et al., 2023), Vicuna-13b is compared
with our method under the prompts of MoKGE.

ComVE self-bleu-3 (⇓) self-bleu-4 (⇓) distinct-2 (⇑) entropy-4 (⇑) bleu-4 (⇑) rouge-l (⇑)

Vicuna-13b ‡ 18.100.00 12.740.00 48.400.00 9.650.00 17.650.00 43.970.00
MoKGE + SAG + OT ‡ 27.320.30 21.940.40 48.940.10 9.690.00 19.310.30 44.160.10
MoKGE + pruning (ours) 29.540.14 24.500.20 47.930.04 9.660.00 20.200.02 44.390.16
MoKGE + 2 synonyms (ours) 27.930.37 22.140.43 48.420.08 9.690.05 19.640.15 44.360.02
MoKGE + 2 synonyms + pruning (ours) 27.430.20 21.820.20 48.330.04 9.660.00 19.550.39 44.410.25

α-NLG self-bleu-3 (⇓) self-bleu-4 (⇓) distinct-2 (⇑) entropy-4 (⇑) bleu-4 (⇑) rouge-l (⇑)

Vicuna-13b ‡ 33.230.00 27.390.00 37.970.00 10.380.00 17.300.00 40.580.00
MoKGE + SAG + OT ‡ 23.990.70 18.800.60 39.020.70 10.880.00 14.210.50 38.930.20
MoKGE + pruning (ours) 23.700.23 18.440.22 39.600.02 10.920.02 13.910.00 39.080.04
MoKGE + 2 synonyms (ours) 24.690.01 19.430.01 39.430.02 10.920.00 13.900.01 38.880.03
MoKGE + 2 synonyms + pruning (ours) 30.210.65 24.970.68 38.680.16 10.830.01 13.730.18 38.320.24

concept expansion is more effective than hypernyms and hyponyms. In particular, adding
around two synonyms yields the best improvement in model performance.
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Table 3: Ablation Study. Concept expansion was performed separately using two hyper-
nyms, hyponyms, and synonyms.

ComVE α-NLG

SB-3 (⇓) SB-4 (⇓) D-2 (⇑) E-4 (⇑) B-4 (⇑) R-L (⇑) SB-3 (⇓) SB-4 (⇓) D-2 (⇑) E-4 (⇑) B-4 (⇑) R-L (⇑)

MoKGE, prompt ‡ 30.930.90 25.301.10 48.440.20 9.670.20 19.130.10 43.830.30 27.402.00 22.432.40 38.010.60 10.880.20 14.170.20 38.820.70
+ 2 hypernyms 34.450.39 29.500.36 48.060.22 9.600.0 19.000.03 43.520.0 31.720.19 26.520.16 38.750.09 10.740.00 15.030.00 38.900.03
+ 2 hyponyms 35.410.31 30.040.32 48.030.10 9.650.0 18.630.15 43.350.04 31.480.32 26.250.31 39.200.34 10.780.03 14.430.52 38.710.19
+ 2 synonyms 27.930.37 22.140.43 48.420.08 9.690.05 19.640.15 44.360.02 24.690.01 19.430.01 39.430.02 10.920.00 13.900.01 38.880.03

Impact of Synonyms. Experimental results (Table 3) indicate that using synonyms
for concept expansion significantly improves model performance. By adding synonyms, the
model can acquire more semantic information about sentences, resulting in more accurate
understanding and processing of natural language. This improvement is likely due to the
high semantic relatedness of synonyms, which provides more information about semantic
similarity, enabling the model to handle different expressions of the same concept more
flexibly and robustly.

Impact of Hypernyms and Hyponyms. In comparison to synonyms, the use of
hypernyms and hyponyms for concept expansion did not meet expectations. The experi-
mental results (Table 3 and 4) show that these methods introduce more noise, leading to a
decrease in model performance. This may be because hypernyms generally represent more
abstract concepts, while hyponyms represent more specific concepts. The semantic distance
between hypernyms and hyponyms from the original concept increases the complexity of
understanding and processing, interfering with the judgment of the model and resulting in
decreased performance.

Table 4: Ablation Study. Concept expansion was performed using 1 to 3 hypernyms, hy-
ponyms, and synonyms.

ComVE self-bleu-3 (⇓) self-bleu-4 (⇓) distinct-2 (⇑) entropy-4 (⇑) bleu-4 (⇑) rouge-l (⇑)

MoKGE, prompt ‡ 30.930.90 25.301.10 48.440.20 9.670.20 19.130.10 43.830.30
+ 1 hypernyms 35.710.23 30.850.34 47.500.02 9.650.00 17.020.11 41.320.02
+ 2 hypernyms 34.450.39 29.500.36 48.060.22 9.600.00 19.000.03 43.520.00
+ 3 hypernyms 30.710.16 25.670.23 48.510.13 9.640.00 18.320.06 43.000.09

+ 1 hyponyms 35.000.12 29.880.10 47.290.02 9.620.00 18.540.05 43.230.10
+ 2 hyponyms 35.410.31 30.040.32 48.030.10 9.650.00 18.630.15 43.350.04
+ 3 hyponyms 34.100.53 29.320.60 47.050.18 9.610.01 18.070.08 42.720.09

+ 1 synonyms 32.840.05 27.640.02 48.240.05 9.610.00 18.200.14 42.830.14
+ 2 synonyms 27.930.37 22.140.43 48.420.08 9.690.05 19.640.15 44.360.02
+ 3 synonyms 37.130.24 31.750.18 46.590.27 9.630.00 18.750.11 43.710.08

Impact of the Number of Synonyms. In further experiments (Table 4), we com-
pared the effects of adding different numbers of synonyms on model performance. Specifi-
cally, we tested the addition of 1, 2, and 3 synonyms. The results show that the addition
of 2 synonyms yields the best performance, while the addition of 1 or 3 synonyms results
in decreased performance.
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This phenomenon can be explained for the following reasons: When using synonyms for
concept expansion, the model treats synonyms as source concepts and searches for neighbor-
ing concepts in the knowledge graph. Adding 1 synonym may provide insufficient informa-
tion to significantly enhance the semantic understanding of the model. Adding 3 synonyms,
on the other hand, may introduce too much noise, reducing the number of neighboring con-
cepts found by the model and potentially encountering more interfering information during
the expansion process. This reduces the coverage of knowledge by the model. Therefore, an
optimal number of synonyms can effectively improve model performance, while too many
or too few synonyms can have the opposite effect.
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Figure 3: The scores of Self-BLEU-3, Distinct-2, ROUGE-L, and Tok-BLEU-4 on the
ComVE dataset. The experiment uses MoKGE-prompt after pruning triples with
the pruning model.

Pruning Strategy. As shown in Figure 3, we experimented with retaining the top
90% highest-scoring triples, the top 85% highest-scoring triples, both the top 70% highest-
scoring triples and the bottom 20% lowest-scoring triples, and retaining both the top 45%
highest-scoring triples and the bottom 45% lowest-scoring triples.

During the subgraph pruning process, selecting to retain the top k highest-scoring triples
and pruning the rest does not always yield optimal performance. Compared to only retaining
the top k triples, the strategy of retaining the top 70% of triples avoids over-pruning,
thereby reducing the loss of valuable information. Retaining the bottom 20% of triples
provides balance, ensuring that the generation process does not overlook lower-priority but
still important content.
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6. Conclusions and Future Work

This paper introduces a method to expand input concepts using synonym expansion and
constructing a task-specific knowledge subgraph. We also develop a pruning model to assess
and remove knowledge subgraph parts irrelevant to the input context. These methods
significantly enhance the quality and diversity of generated text, offering a new solution
for generative commonsense reasoning tasks. They demonstrate that effectively leveraging
knowledge graphs to optimize the selection of nodes and their relations can notably improve
task performance.

Future work can further optimize the expansion and pruning model algorithms, explore
their applications in other natural language generation tasks, and investigate the dynamic
adjustments of knowledge subgraphs to adapt to different contexts and task requirements.
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