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ABSTRACT

Reliable estimation of predictive uncertainty is crucial for machine learning appli-
cations, particularly in high-stakes scenarios where hedging against risks is essen-
tial. Despite its significance, a consensus on the correct measurement of predictive
uncertainty remains elusive. In this work, we return to first principles to develop a
fundamental framework of information-theoretic predictive uncertainty measures.
Our proposed framework categorizes predictive uncertainty measures according
to two factors: (I) The predicting model (II) The approximation of the true pre-
dictive distribution. Examining all possible combinations of these two factors, we
derive a set of predictive uncertainty measures that includes both known and newly
introduced ones. We empirically evaluate these measures in typical uncertainty
estimation settings, such as misclassification detection, selective prediction, and
out-of-distribution detection. The results show that no single measure is universal,
but the effectiveness depends on the specific setting. Thus, our work provides clar-
ity about the appropriateness of predictive uncertainty measures by clarifying their
implicit assumptions and relationships.

1 INTRODUCTION

Integrating machine learning models into high-stakes scenarios, such as autonomous driving or
managing critical healthcare systems, introduces substantial risks. To hedge against these risks, we
need to quantify the uncertainty associated with each prediction to prevent models from making
decisions that carry both significant risk and uncertainty. In such cases, it is better to defer uncertain
decisions to human experts or opt for a safer, though potentially less advantageous, alternative decision.
Consequently, it is vital to employ reliable measures of predictive uncertainty and provide estimates for
them when implementing machine learning models for decision making in high-stakes applications.

The entropy of the posterior predictive distribution has become the standard information-theoretic
measure to assess predictive uncertainty (Houlsby et al., 2011; Gal, 2016; Depeweg et al., 2018; Smith
and Gal, 2018; Mukhoti et al., 2023). Despite its widespread use, this measure has drawn criticism
(Malinin and Gales, 2021; Wimmer et al., 2023), prompting the proposal of alternative information-
theoretic measures (Malinin and Gales, 2021; Schweighofer et al., 2023b;a; Kotelevskii and Panov,
2024; Hofman et al., 2024b). The relationship between those measures is still not well understood,
although their similarities suggest that they are special cases of a more general formulation.

We show that all these measures are approximations of the cross-entropy between the predicting
model and the true model. However, since the true model is not known in general, this fundamental
measure is intractable to compute directly. By considering different assumptions about the predicting
model and approximations of the true model, we develop a framework to categorize information-
theoretic measures of predictive uncertainty. Our framework includes existing measures, introduces
new ones, and clarifies the relationship between these measures. Furthermore, our empirical analysis
reveals that the effectiveness of different measures varies depending on the task and the posterior
sampling method used. In sum, our contributions are as follows:

1. We introduce a unifying framework to categorize measures of predictive uncertainty according to
assumptions about the predicting model and how the true model is approximated. This framework
not only encompasses existing measures but also suggests new ones and clarifies their relationship.
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2. We derive our framework from first principles, based on the cross-entropy between the predicting
model and the true model as the fundamental yet intractable measure of predictive uncertainty.

3. We empirically evaluate these measures across various typical uncertainty estimation tasks and
show that their effectiveness depends on the setting and the posterior sampling method used.

2 QUANTIFYING PREDICTIVE UNCERTAINTY

We consider the canonical classification setting with inputs x ∈ RD and targets y ∈ Y , where Y is
the set of all K possible targets. The dataset D is given, sampled i.i.d according to the data generating
distribution. We consider deep neural networks as a class of probabilistic models that map an input
x to the K − 1 dimensional probability simplex ∆K−1 = {θ ∈ RK | θk ≥ 0 ∀k,

∑K
k=1 θk = 1}.

This mapping is defined as fw : RD → ∆K−1 for a model with parameters w. The output of this
mapping defines the distribution parameters of a categorical distribution, in the following referred to
as the model’s predictive distribution p(y | x,w) = Cat(y; fw(x)) = Cat(y;θ).

The predictive distribution of a probabilistic model represents the uncertainty inherent in its predic-
tions. When the probability mass is uniformly distributed across all possible outcomes, it denotes
complete uncertainty about the prediction, whereas concentration on a single class indicates com-
plete certainty. If we have access to the true data-generating model, denoted by parameters w∗,
the predictive distribution p(y | x,w∗) captures the inherent and irreducible uncertainty in the pre-
diction, often referred to as aleatoric uncertainty (AU) (Gal, 2016; Kendall and Gal, 2017). This
assumes that the chosen model class can accurately represent the true predictive distribution, thus
p(y | x) = p(y | x,w∗), which is a common and often necessary assumption (Hüllermeier and
Waegeman, 2021). The information-theoretic entropy H(·) of the true predictive distribution is a
natural and universally accepted measure of aleatoric uncertainty, defined as

H(p(y | x,w∗)) := −
K∑

k=1

p(y = k | x,w∗) log p(y = k | x,w∗) . (1)

However, we generally don’t know the true model and have to choose parameters w out of all possible
ones. Consequently, uncertainty arises due to the lack of knowledge about the true parameters of the
model. This is called epistemic uncertainty (EU) (Apostolakis, 1990; Helton, 1993; 1997; Gal, 2016).
An effective measure of predictive uncertainty should be consistent with Eq. (1) and capture both AU
and EU, usually assumed to sum up to a total predictive uncertainty (TU).

2.1 STANDARD MEASURE: ENTROPY OF THE POSTERIOR PREDICTIVE DISTRIBUTION

Given a dataset D and prior p(w) on the model parameters, Bayes’ theorem yields the posterior
distribution p(w | D). The posterior distribution denotes the probability that the parameters w match
the true parameters w∗ of the model that generated the dataset D. Instead of committing to a single
model, the posterior distribution allows marginalizing over all possible models, which is known as
Bayesian model averaging. This gives rise to the posterior predictive distribution

p(y | x,D) = Ep(w|D) [p(y | x,w)] . (2)

The entropy of the posterior predictive distribution is the currently most widely accepted approach to
measure predictive uncertainty (Houlsby et al., 2011; Gal, 2016; Depeweg et al., 2018; Smith and
Gal, 2018; Hüllermeier and Waegeman, 2021; Mukhoti et al., 2023). According to a well-known
result from information theory (Cover and Thomas, 2006), this entropy can be additively decomposed
into the conditional entropy and the mutual information I between y and w:

H(p(y | x,D)) = Ep(w|D) [H(p(y | x,w))]︸ ︷︷ ︸
aleatoric

+ I(p(y,w | x,D))︸ ︷︷ ︸
epistemic

. (3)

Furthermore, Eq. (3) is equivalent to a decomposition of expected cross-entropy CE(· ; ·) into
conditional entropy and expected KL-divergence KL(· ∥ ·) (Schweighofer et al., 2023b;a):

Ep(w|D) [CE(p(y | x,w) ; p(y | x,D))] (4)

= Ep(w|D) [H(p(y | x,w))]︸ ︷︷ ︸
aleatoric

+ Ep(w|D) [KL(p(y | x,w) ∥ p(y | x,D))]︸ ︷︷ ︸
epistemic

.
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If the parameters of the true model are known, EU vanishes and Eq. (3) as well as Eq. (4) simplify
to Eq. (1), thus are consistent with it. However, the entropy of the posterior predictive distribution
has been found to be inadequate for specific scenarios, such as autoregressive predictions (Malinin
and Gales, 2021) or for a given predicting model (Schweighofer et al., 2023b) and was criticised
on grounds of not fulfulling certain expected theoretical properties (Wimmer et al., 2023). In
response, alternative information-theoretic measures have been introduced (Malinin and Gales, 2021;
Schweighofer et al., 2023b;a; Kotelevskii and Panov, 2024; Hofman et al., 2024b). Although the
relationship between these measures is not well understood, their structure similar to Eq. (4) suggests
a connection between them. We next propose a fundamental, though generally intractable, predictive
uncertainty measure, where all of these measures are special cases under specific assumptions.

2.2 PROPOSED MEASURE: CROSS-ENTROPY BETWEEN SELECTED AND TRUE DISTRIBUTION

An effective measure of total predictive uncertainty should incorporate epistemic uncertainty and
be consistent with Eq. (1). Considering this, we propose to measure predictive uncertainty with the
cross-entropy between the predictive distributions of a selected predicting model and the true model.
Let p(y | x, ·) be the predictive distribution of any selected model for some new input x, which we
will refer to as predicting model. We will examine different cases for the predicting model later; for
now, it suffices to consider it to be a specific model with parameters w. The cross-entropy between
the predictive distributions of the predicting model and the true model is given by

CE(p(y | x, ·) ; p(y | x,w∗)) := −
K∑

k=1

p(y = k | x, ·) log p(y = k | x,w∗) (5)

= H(p(y | x, ·))︸ ︷︷ ︸
aleatoric

+ KL(p(y | x, ·) ∥ p(y | x,w∗))︸ ︷︷ ︸
epistemic

.

If the predictive distribution of the predicting model is equal to the predictive distribution of the
true model, the epistemic component is zero by definition and Eq. (5) simplifies to Eq. (1). Thus, as
expected, if the parameters of the true model are known, the epistemic uncertainty vanishes. Eq. (5)
is a fundamental, though generally intractable, measure of predictive uncertainty. To obtain tractable
measures, assumptions about the predicting model and about how to approximate the true model are
necessary. This gives rise to our framework, which we introduce in detail in Sec. 3. As an example,
comparing the standard measure in Eq. (4) with our proposed measure in Eq. (5), we observe that for
the standard measure, the predicting model is any model according to its posterior probability, and
the posterior predictive distribution is considered to be the true predictive distribution.

Interpretation of aleatoric and epistemic uncertainty. An important distinction compared to
previous work is in our interpretation of aleatoric and epistemic uncertainty, which aligns with the
understanding of Apostolakis (1990); Helton (1993; 1997) as follows. The aleatoric component is not
generally understood as a property of the true predictive distribution, but of the selected predicting
model used to make a prediction. Thus, it is the uncertainty that arises due to predicting with the
selected probabilistic model. The epistemic component is defined as the additional uncertainty due
to predicting with the selected predicting model instead of the true model. Thus, it is the additional
uncertainty that arises due to selecting a model from the given model class.

3 PROPOSED FRAMEWORK OF PREDICTIVE UNCERTAINTY MEASURES

Our proposed measure of predictive uncertainty (Eq. (5)) allows for different assumptions about (I)
the selected predicting model and (II) how to approximate the true model. For both of them, we
consider three different assumptions. This yields nine different measures of predictive uncertainty
within our proposed framework. An overview of all measures is given in Tab. 1, summarizing the
total predictive uncertainties as well as their aleatoric and epistemic components.

(A,B,C): PREDICTING MODEL

The most obvious choice of a predicting model is (A) a pre-selected given model with parameters
w. This is the standard case in machine learning, where model parameters are selected, e.g. by
maximizing the likelihood on the training dataset or downloaded from a model hub.
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Table 1: Our proposed framework of information-theoretic measures of predictive uncertainty.
Each measure denotes a different instantiation of the fundamental measure given by Eq. (5) for
different assumptions about the predicting model and how the true model is approximated. For brevity,
we define pw := p(y | x,w), pD := p(y | x,D), and Ew := Ep(w|D) (the same for w̃). Expressions
with the same cell coloring are equivalent to each other. Each measure of total predictive uncertainty
additively decomposes into an aleatoric and epistemic component by CE(p ; q) = H(p)+KL(p ∥ q).

Predicting model
Approximation of the true predictive distribution

(1) w̃ (2) Ew̃ (3) w̃ ∼ p(w̃ | D)

T
U

(A) w CE(pw ; pw̃) CE(pw ; pD) Ew̃ [CE(pw ; pw̃)]

(B) Ew CE(pD ; pw̃) CE(pD ; pD) Ew̃ [CE(pD ; pw̃)]

(C) w ∼ p(w | D) Ew [CE(pw ; pw̃)] Ew [CE(pw ; pD)] Ew [ Ew̃ [CE(pw ; pw̃)]]

A
U

(A) w H(pw) H(pw) H(pw)

(B) Ew H(pD) H(pD) H(pD)

(C) w ∼ p(w | D) Ew [H(pw)] Ew [H(pw)] Ew [H(pw)]

E
U

(A) w KL(pw ∥ pw̃) KL(pw ∥ pD) Ew̃ [KL(pw ∥ pw̃)]

(B) Ew KL(pD ∥ pw̃) �������: 0

KL(pD ∥ pD) Ew̃ [KL(pD ∥ pw̃)]

(C) w ∼ p(w | D) Ew [KL(pw ∥ pw̃)] Ew [KL(pw ∥ pD)] Ew [ Ew̃ [KL(pw ∥ pw̃)]]

Another widely used method is (B) the Bayesian model average (c.f. Eq. (2)). Here, instead of
predicting with a single model, the predictive distribution is marginalized over all possible models
according to their posterior probability. In practice, exact marginalization is often intractable and
therefore approximated by posterior sampling.

Finally, it is possible to (C) consider every possible model as the predicting model, weighted by
their posterior probabilities. This might seem counterintuitive, as it means that the predicting model
is not fixed but is sampled anew for each prediction. Nevertheless, the aleatoric component of the
resulting uncertainty measures, denoted Ep(w|D) [H(p(y | x,w))], is the best approximation of the
aleatoric uncertainty under the true model for a given posterior distribution. However, as pointed out
by Wimmer et al. (2023), it is neither a lower nor an upper bound on the aleatoric uncertainty under
the true model and is highly dependent on the posterior distribution.

(1,2,3): APPROXIMATION OF THE TRUE PREDICTIVE DISTRIBUTION

The simplest but probably biased choice to approximate the true predictive distribution is (1) the
predictive distribution under a single given model with parameters w̃. Although this might be a poor
approximation, it might be the only feasible choice in specific settings. For example, it is used in
speculative decoding (Stern et al., 2018; Leviathan et al., 2023), where a small model is used to predict
and its predictive distribution is compared against a large model that serves as the ground truth.

Another possibility is to use (2) the posterior predictive distribution as an approximation of the true
predictive distribution. Although intuitively appealing, Schweighofer et al. (2023a) criticized this
as there is no guarantee that these distributions coincide, even for a perfect estimate of the posterior
predictive distribution. Furthermore, there are degenerate cases where the posterior predictive
distribution can’t be represented by any model with non-vanishing posterior probability. However, it
is often a well performing approximation empirically for expressive models such as neural networks.
Additionally, (2) is the only option that guarantees finite EU and as a result TU.

Finally, perhaps the most intuitive solution is to consider (3) all possible models according to their
posterior probability. Any model could be the true model according to its posterior distribution.

4
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Therefore, we should consider the mismatch between the predictive distribution of the selected
predicting model and all other models, weighted by their posterior probability.

3.1 RELATIONSHIPS BETWEEN MEASURES

Importantly, the aleatoric components of the uncertainty measures depend only on the predicting
model and do not depend on the approximation of the true predictive distribution. Thus, they are the
same for cases (1), (2) and (3). Furthermore, the aleatoric component of case (B) is an upper
bound of the aleatoric component of case (C), i.e. H(p(y | x,D)) ≥ Ep(w|D) [H(p(y | x,w))],
which directly follows from Eq. (3) as the mutual information is non-negative.

Due to the linearity in the first argument of the cross-entropy, the total uncertainties for cases (B) and
(C) are equal. Furthermore, as already discussed, the aleatoric components for cases (B) and (C)
differ by the mutual information Ep(w|D) [KL(p(y | x,w) ∥ p(y | x,D))]. Therefore, the epistemic
components for cases (B) and (C) also differ by this factor. This is trivial to see for cases (B2) and
(C2), where the epistemic component of case (B2) cancels to zero and the epistemic component
of case (C2) is the mutual information. For cases (B3) and (C3), this was already mentioned by
(Malinin and Gales, 2021) and a proof was given by (Schweighofer et al., 2023a), which we include
for completeness in Sec. A.1 in the appendix, together with a version for cases (B1) and (C1).

3.2 CATEGORIZATION OF PREVIOUSLY KNOWN MEASURES

The standard measure (Eq. (4)) introduced by Houlsby et al. (2011) and popularized, for instance, by
Gal (2016); Depeweg et al. (2018); Smith and Gal (2018) is the measure (C2). In the context of
autoregressive predictions, Malinin and Gales (2021) introduced measure (B3), due to the feasibility
of a Monte Carlo (MC) approximation compared to the standard measure (C2). Schweighofer et al.
(2023b) introduced measure (A3) together with a posterior sampling algorithm that is explicitly
taylored to this measure. Schweighofer et al. (2023a) introduced measure (C3) as an improvement
over the standard measure (C2) for certain settings. Hofman et al. (2024b) also derived measure
(C3) for the logarithmic strictly proper scoring rule (log score). Furthermore, Kotelevskii and Panov
(2024) discussed measures (B2), (B3), (C2) and (C3) as Bayesian approximations under the
log score. Our work thus generalizes and gives a new perspective on those measures.

4 RELATED WORK

Measures of predictive uncertainty. The currently most widely used information-theoretic measure
of predictive uncertainty is the entropy of the posterior predictive distribution (Eq.(3)). In Sec. (3.2),
we discuss the relationship of previous work based on this measure and our proposed framework.
However, there are also other measures of predictive uncertainty, not based on information-theoretic
quantities. Depeweg et al. (2018) introduced variance-based measures, based on the law of total
variance. This perspective was recently developed further for specific settings (Duan et al., 2024;
Sale et al., 2023b). Furthermore, Sale et al. (2024b) introduced label-wise measures of predictive
uncertainty, formulating both information-theoretic and variance-based measures. Another idea
recently proposed by Sale et al. (2024a) is quantifying uncertainty through distances to reference
(second-order) distributions for TU, AU, and EU, respectively, which represent complete certainty.
Thus, the higher the distance from the reference distribution, the more uncertain the prediction. All
measures discussed so far operate on a distributional representation of uncertainty. Orthogonal to that,
there are also set-based approaches (Hüllermeier et al., 2022; Sale et al., 2023a; Hofman et al., 2024a).

Posterior sampling methods. All measures proposed by our framework, except (A1), contain
a posterior expectation. Those are generally approximated by sampling models according to the
posterior distribution. An obvious choice are MCMC algorithms, for example HMC (Neal, 1995; Neal
et al., 2011), which has recently been investigated on modern neural network architectures (Izmailov
et al., 2021). Scaling HMC to large datasets and architectures is computationally costly. However,
more efficient approximate variants using stochastic gradients are also available (Welling and Teh,
2011; Chen et al., 2014; Zhang et al., 2020). Furthermore, it is possible to learn a simpler variational
distribution that approximates the posterior distribution. Widely known examples are the mean-field
approach of Blundell et al. (2015) or MC Dropout (Gal and Ghahramani, 2016). Another approach is
the Laplace approximation (MacKay, 1992) around a maximum a posteriori (MAP) model (Ritter

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

et al., 2018; Daxberger et al., 2021). A commonly used approximation to the Bayesian ideal are
Deep Ensembles (Lakshminarayanan et al., 2017), which despite their algorithmic simplicity are
widely recognized to provide high-quality samples (Wilson and Izmailov, 2020; Izmailov et al., 2021).
Furthermore, Schweighofer et al. (2023b) introduced adversarial models to explicitly search for
models with a large contribution to approximating expectations of the epistemic component for case
(3). For a more extensive overview, see, e.g. Gawlikowski et al. (2023) or Papamarkou et al. (2024).

5 EXPERIMENTS

In this section, we evaluate the performance of the proposed measures across various experimental sce-
narios that leverage uncertainty, including tasks like misclassification detection, selective prediction,
and out-of-distribution (OOD) detection. In addition, we assess the impact of various posterior sam-
pling methods, which is a crucial factor in real-world applications. We do not intend to identify the op-
timal measure for a specific task or posterior sampling method; all of them can be evaluated, and the
best chosen in practice. Our primary aim is to deepen the understanding of our proposed framework.

Datasets. Our experiments are performed on the CIFAR10/100 (Krizhevsky and Hinton, 2009),
SVHN (Netzer et al., 2011), Tiny-ImageNet (TIN) (Le and Yang, 2015) and LSUN (Yu et al., 2015)
datasets. For TIN, we resize the inputs to 32x32 to match the other datasets. We train models on all
datasets except LSUN, which is used solely as an OOD dataset.

Models and training. We used three different model architectures for our experiments: ResNet-18
(He et al., 2016), DenseNet-169 (Huang et al., 2017) and RegNet-Y 800MF (Radosavovic et al., 2020).
Individual models were trained for 100 epochs using SGD with momentum of 0.9 with a batch size of
256 and an initial learning rate of 1e-2. Furthermore, a standard combination of linear (from factor 1
to 0.1) and cosine annealing schedulers was used. The results discussed in the main paper are obtained
using ResNet-18 as the model architecture. For the other two architectures, results are provided in
Sec. B.4 of the appendix. Those are consistent with the findings presented in the main paper.

Predictive uncertainty measures. We consider all measures proposed by our framework, c.f. Tab. 1.
For example, the (total) measure (A1) is referred to as TU (A1), its aleatoric component as AU
(A) and its epistemic component as EU (A1). Here, AU (A) is used over AU (A1) to emphasize
the independence of the aleatoric component from the approximation of the true model.

Posterior sampling methods. We consider three methods to sample models according to the posterior
p(w | D), Deep Ensembles (DE) (Lakshminarayanan et al., 2017), Laplace Approximation (LA)
(MacKay, 1992) on the last layer with Kronecker-factored approximate curvature (Ritter et al., 2018)
using the implementation of Daxberger et al. (2021) and MC Dropout (MCD) (Gal and Ghahramani,
2016). Those samples are used to approximate posterior expectations. For example, the posterior
predictive distribution given by Eq. (2) is approximated by

p(y | x,D) ≈ 1

N

N∑
n=1

p(y | x,wn) , wn ∼ p(w | D) (6)

with N samples. Posterior expectations within the proposed measures are approximated in the same
way. We provide formulas for the MC approximations for all measures as well as their aleatoric and
epistemic components in Sec. A.2 in the appendix. For all three methods, we sample 10 models for the
MC approximations of the uncertainty measures. Measures based on a single model (combinations
with (A) and (1)) use the first member of the ensemble for DE, the maximum a posteriori (MAP)
model for LA, and the model without dropout activated for MCD.

Figure 1: Posterior sampling methods.

There is a distinction between multi- and single-basin poste-
rior sampling techniques (Wilson and Izmailov, 2020), some-
times also referred to as multi- and single-mode approaches
(Hoffmann and Elster, 2021). We refer to them as global and
local posterior sampling techniques for simplicity. In this
categorization, DE is a global method, while LA and MCD
are local methods (Fort et al., 2019). We hypothesize that dif-
ferent methods for posterior sampling have a strong impact
on which uncertainty measure performs well empirically, es-
pecially given whether they are global or local methods.
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5.1 CHARACTERISTICS OF POSTERIOR SAMPLES
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Figure 2: Comparison of posterior sampling methods. Results are obtained on the test split of
the respective dataset. We compare the NLLs (a) and accuracies (c) for different models obtained
through DE, LA and MCD. Similarly, (b) the normalized AU (C) and (d) the normalized EU (C2)
are shown per sampling method. All three methods yield similar results for CIFAR10 and SVHN, but
differ greatly on CIFAR100 and TIN. Models sampled using LA have higher NLL and lower accuracy.
Furthermore, they lead to higher epistemic uncertainty and lack predictions with very low aleatoric
uncertainty. Additionally, the average model does not improve over the single model in terms of NLL
and accuracy for those two datasets. The results in (a) and (c) show single models, posterior samples
and average models of five independent runs, those in (b) and (d) uncertainties for a single run.

To better understand the performance of different posterior sampling methods, we examine the
characteristics of their sampled models. The results in Fig. 2 show that these methods perform
differently across datasets. For the global sampling method DE, the average model consistently
outperforms individual sampled models with a lower negative log-likelihood (NLL) and higher
accuracy across all datasets. In contrast, for local sampling methods LA and MCD, individual
sampled models exhibit higher NLL than both the single model and the average model. Additionally,
the accuracy of individual sampled models is lower than that of the single model. Specifically, for
MCD, the single model’s accuracy is comparable to the average model, while for LA, the single
model’s accuracy exceeds that of the average model.

We further analyze the predictive uncertainties estimated by different posterior sampling methods
using measure (C2), which incorporates posterior samples and is upper-bounded. To ensure
comparability across datasets, we normalize the uncertainties by the maximal predictive uncertainty
TU (C2), equal to the entropy of the uniform distribution log(|Y|). The results in Fig. 2b and d show
that these methods yield similar distributions of uncertainties for CIFAR10 and SVHN. However, for
CIFAR100 and TIN, DE exhibits many more datapoints with very low EU and AU.

5.2 MISCLASSIFICATION DETECTION

We sampled models on the CIFAR10/100, SVHN and TIN datasets using DE, LA and MCD and obtain
predictions on the respective test datasets. This was done with (i) the single model, (ii) the average
model and (iii) some model according to the posterior distribution to investigate the impact of aligning
the measure of uncertainty with the predicting model - (A) for (i), (B) for (ii) and (C) for (iii).
The single model for (i) is a random but fixed model for DE, the MAP model for LA, and the model
without dropout for MCD. The average model for (ii) is defined by Eq. (6), averaging over all sampled
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Figure 3: Misclassification detection under different predicting models. AUROC for distinguish-
ing correct from incorrect predictions under different predicting models, using the different proposed
measures of uncertainty as score. The global method DE performs best for EU (A3) when predict-
ing with the single model. Otherwise it performs best for TU (B/C3). The local methods LA and
MCD perform best for TU (A2) and TU (A3) no matter the predicting model. AUROCs are aver-
ages over all datasets with statistics over five independent runs.

models. For (iii), one model from the sampled models was randomly selected for each prediction.
Note that (iii) does not make much sense in practice, as individual models are performing worse
than the average model in terms of accuracy for all considered methods, the same as a single model
for DE and worse than the single model for LA and MCD (see Fig. 2c). We compare the AUROC
for distinguishing between correctly and incorrectly predicted datapoints for the different proposed
measures of predictive uncertainty as scoring functions. Alternative measures commonly used to
evaluate misclassification such as AUPR or FPR@TPR95 were also considered. Those induced the
same ordering of uncertainty measures, thus we report the AUROC throughout all experiments.

The results are given in Fig. 3. We average over the four considered datasets and report means and
standard deviations over five independent runs. The results for individual datasets are reported in
Fig. 10 - Fig. 12 in the appendix. To detect misclassifications of (i) the single model, EU (A3)
performs best (Fig. 3a). However, when predicting with (ii) the average or (iii) a model according to
the posterior, TU (B/C3) performs best (Fig. 3d,g). For the local method LA, TU (A3) performs
best regardless of the predicting model (Fig. 3b,e,h). The same effect is observed for MCD (Fig. 3c,f,i),
yet TU (A2) slightly outperforms TU (A3) in this case. We hypothesize that this effect occurs
because the local methods fail to provide high-quality samples for some datasets, resulting in high
variance of posterior estimates and thus low accuracy. In sum, we find that TU (A2) and TU (A3)
perform well for local posterior sampling methods regardless of the predicting model, but for global
posterior sampling methods aligning the measure with the predicting model makes a strong difference.

5.3 SELECTIVE PREDICTION

Another commonly considered task is selective prediction, where the model’s predictions are limited
to a specific subset, and its performance is evaluated on that subset. The setup in this experiment
is identical to the misclassification setup. We evaluated the accuracy for a subset of predictions of
(i) the single model, (ii) the average model, and (iii) a model according to the posterior distribution.
Subsets between 50% of the most certain datapoints and the entire dataset were considered. The
area under the accuracy retention curve (AUARC) was used as performance measure to compare the
efficacy of uncertainty measures to provide a ranking to select those subsets.

We focus on (i) the single model and (ii) the average model using DE with the results given in Fig. 4.
Additional results are provided in Sec. B.2 in the appendix. The results show a similar picture as for
misclassification detection, where the optimal measure depends on the model used for prediction.
For (i) the single model, TU (A3) performs best, while for (ii) the average model, TU (B/C3)
performs best. Again, the best measures are those aligned to the predicting model.
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Figure 4: Selective prediction for single and average model for DE. Accuracies per fraction
of datapoints the single model (top row), the average model (bottom row) predicts on, as well as
area under the accuracy retention curve (tabulated in legend) using different predictive uncertainty
measures as score. Accuracies are averaged over all datasets with statistics over five independent runs.

5.4 OOD DETECTION

We sampled models on CIFAR10/100, SVHN and TIN using DE, LA and MCD. Therefore, we use
the respective test dataset as in-distribution (ID) datasets and the test datasets for the others, as well
as LSUN, as OOD datasets. OOD detection does not involve a prediction by the model. Thus, it
is not possible to align the uncertainty measure with the predicting model, as in misclassification
detection and selective prediction. We compare the AUROC for distinguishing between ID and OOD
datapoints for each measure within our framework as a scoring function. Alternative commonly
used measures such as the AUPR and the FPR@TPR95 were also considered. However, since they
induced the same ordering of measures, we report the AUROC for all OOD detection experiments.

The results are shown in Fig. 5. We observe that throughout all measures, the total and the aleatoric
components perform much better than the epistemic components, which is contrary to assumptions
commonly formulated in the literature (Mukhoti et al., 2023; Kotelevskii and Panov, 2024). However,
this might depend on the datasets. For example, with MCD, the epistemic components perform
best on the pairs TIN/CIFAR10 and TIN/CIFAR100 (Fig. 16 c,f). We hypothesize that the strong
performance of the aleatoric components is due to the low levels of noise in the considered datasets.
Furthermore, for the local method LA, all measures and their aleatoric components perform equally
well. For DE and MCD, TU (B/C2) and TU (B/C3) perform best.

5.5 ADDITIONAL EXPERIMENTS

Our experiments aim to investigate the performance of the proposed framework on a wide range of
tasks. Due to space limitations, we moved the following additional experiments to the appendix:

We investigated the performance of the provided measures for detecting distribution shifts on CI-
FAR10 using the CIFAR10-C (Hendrycks and Dietterich, 2019) dataset. This is a conceptually similar
task to OOD detection, as our results provided in Sec. B.5 confirm. We observe that for smaller shifts,
the epistemic components perform much better than the others; for larger shifts, this effect vanishes.

Furthermore, we investigated the efficacy of our measures for detecting adversarial examples under
FGSM (Goodfellow et al., 2015) and PGD (Madry et al., 2018) attacks. We do not intend to claim
any level of adversarial robustness to these attacks, but use them as a tool to understand the behaviour
of our measures. The results are discussed in Sec. B.6.

Finally, we conducted active learning experiments on MNIST (Lecun et al., 1998) and FMNIST
(Xiao et al., 2017) using DE and MCD as posterior sampling methods for a small convolutional neural
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Figure 5: OOD detection. AUROC for distinguishing between ID and OOD datapoints using the
different proposed measures of uncertainty as score. For the local method LA, all measures and their
aleatoric components perform equally well, for DE and MCD, TU (B/C2) and TU (B/C3) perform
best. AUROCs are averaged over all ID / OOD combinations with statistics over five independent runs.

network. Prior work (Gal et al., 2017; Mukhoti et al., 2023) suggests that the optimal acquisition
function is a measure of epistemic uncertainty. Our results indicate, that a good acquisition function
must capture the mutual information between y and w faithfully rather than the epistemic uncertainty
as defined by our framework. The results and an in-depth discussion are given in Sec. B.7.

6 CONCLUSION

We have proposed a framework that categorizes measures of predictive uncertainty according to
assumptions about the predicting model and how the true model is approximated. This framework
has been derived from first principles, based on the cross-entropy between the predicting model and
the true model (Eq. (5)). Most importantly, it clarifies the relationships between information-theoretic
measures of predictive uncertainty and uncovers their implicit assumptions. Our empirical evaluation
shows that the effectiveness of the different measures depends on the task and the posterior sampling
method used. As there is no best-performing measure under all conditions, it is crucial to not consider
only a single one to benchmark posterior sampling methods for uncertainty quantification.

Our proposed framework for estimating predictive uncertainty requires an approximation of posterior
expectations through samples. However, obtaining samples is generally expensive, although many
improvements in efficiency have already been made. To avoid this issue, deterministic methods that
require only a single forward pass have been proposed. The most prominent directions are evidential
models (Sensoy et al., 2018; Amini et al., 2020), prior networks (Malinin and Gales, 2018), as well
as feature distance / density based models (Bradshaw et al., 2017; Liu et al., 2020; Van Amersfoort
et al., 2020; Mukhoti et al., 2023). Those methods generally utilize different measures of predictive
uncertainty than those discussed in this work, and their relation is not thoroughly understood so far.

The information-theoretic framework presented in this work considers individual predictions. How-
ever, there is currently a lot of interest around autoregressive predictions, especially for large lan-
guage models. For such models, uncertainty estimation has been considered as a way to detect hallu-
cinations (Xiao and Wang, 2021). Extending the framework presented in this work to autoregressive
predictions comes with a set of challenges (Malinin and Gales, 2021; Kuhn et al., 2023; Aichberger
et al., 2024), such as the necessity to sample output sequences to obtain entropy estimates, output
sequences of varying length, and semantic equivalences between output sequences. We believe that
tackling those issues is an important direction for future work.

ETHICS STATEMENT

This work considers the foundations of predictive uncertainty estimation. Our primary goal is to
increase the robustness and reliability of machine learning models applied to real-world settings. We
do not forsee any negative societal impact arising from the findings of this paper and hope to have a
positive societal impact by aiding decision making in safety-critical applications.

REPRODUCIBILITY STATEMENT

We provide a detailed description of our experimental setup, sufficient to be independently reproduced,
in Sec. 5. Descriptions for additional experiments are provided in Sec. B.5, Sec. B.6 and Sec. B.7.
Furthermore, we provide our implementation as supplementary material and will publicly release the
code upon acceptance.
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A TECHNICAL DETAILS

A.1 RELATIONSHIPS BETWEEN EPISTEMIC COMPONENTS

Schweighofer et al. (2023a) proved the relationship that the sum of the epistemic components of C2
and B3 is equivalent to the epistemic component of C3. For completeness, we provide a version of
the proof as follows:

EU (C2) - Mutual Information︷ ︸︸ ︷
Ep(w|D) [KL(p(y | x,w) ∥ p(y | x,D))] +

EU (B3)︷ ︸︸ ︷
Ep(w̃|D) [KL(p(y | x,D) ∥ p(y | x, w̃))] (7)

= Ep(w|D)

[
Ep(y|x,w)

[
log

p(y | x,w)

p(y | x,D)

]]
+ Ep(w̃|D)

[
Ep(y|x,D)

[
log

p(y | x,D)

p(y | x, w̃)

]]
(8)

= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)] − Ep(y|x,w) [log p(y | x,D)]

]
+ (9)

Ep(w̃|D)

[
Ep(y|x,D) [log p(y | x,D)] − Ep(y|x,D) [log p(y | x, w̃)]

]
= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)]

]
−

(((((((((((
Ep(y|x,D) [log p(y | x,D)] + (10)

(((((((((((
Ep(y|x,D) [log p(y | x,D)] − Ep(w̃|D)

[
Ep(y|x,D) [log p(y | x, w̃)]

]
= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)]

]
− (11)

Ep(w̃|D)

[
Ep(w|D)

[
Ep(y|x,w) [log p(y | x, w̃)]

]]
= Ep(w|D)

[
Ep(w̃|D)

[
Ep(y|x,w) [log p(y | x,w)]

]]
− (12)

Ep(w|D)

[
Ep(w̃|D)

[
Ep(y|x,w) [log p(y | x, w̃)]

]]
= Ep(w|D)

[
Ep(w̃|D)

[
Ep(y|x,w)

[
log

p(y | x,w)

p(y | x, w̃)

]]]
(13)

= Ep(w|D)

[
Ep(w̃|D) [KL(p(y | x,w) ∥ p(y | x, w̃))]

]︸ ︷︷ ︸
EU (C3)

, (14)

which is what we wanted to show. The step from (9) to (10) is due to additivity and linearity of
expectations. The step from (11) to (12) is due to the fact that we can insert the expectation Ep(w̃|D)

in the first term as it does not depend on w̃ and due to the fact that p(w̃ | D) = p(w | D).

Furthermore, a similar proof can be constructed for EU (C1) = EU (C2) + EU (B1) as follows:

EU (C2) - Mutual Information︷ ︸︸ ︷
Ep(w|D) [KL(p(y | x,w) ∥ p(y | x,D))] +

EU (B1)︷ ︸︸ ︷
KL(p(y | x,D) ∥ p(y | x, w̃)) (15)

= Ep(w|D)

[
Ep(y|x,w)

[
log

p(y | x,w)

p(y | x,D)

]]
+ Ep(y|x,D)

[
log

p(y | x,D)

p(y | x, w̃)

]
(16)

= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)] − Ep(y|x,w) [log p(y | x,D)]

]
+ (17)

Ep(y|x,D)[log p(y|x,D)] − Ep(y|x,D) [log p(y | x, w̃)]

= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)]

]
−

(((((((((((
Ep(y|x,D) [log p(y | x,D)] + (18)

(((((((((((
Ep(y|x,D) [log p(y | x,D)] − Ep(y|x,D) [log p(y | x, w̃)]

= Ep(w|D)

[
Ep(y|x,w) [log p(y | x,w)]

]
− Ep(w|D)

[
Ep(y|x,w) [log p(y | x, w̃)]

]
(19)

= Ep(w|D)

[
Ep(y|x,w)

[
log

p(y | x,w)

p(y | x, w̃)

]]
(20)

= Ep(w|D) [KL(p(y | x,w) ∥ p(y | x, w̃))]︸ ︷︷ ︸
EU (C1)

, (21)

which is what we wanted to show. Again, the step from (17) to (18) is due to additivity and linearity
of expectations. The linearity property is used to get to (19), after which elementary algebra leads to

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the result.

In the same fashion, it is possible to construct a proof for EU (C2) = EU (C2) + EU (B2).
However, as we know that EU (B2) = 0, this is trivial.

A.2 MONTE CARLO APPROXIMATIONS

The measures we proposed through our framework, except for measure (A1), incorporate posterior
expectations Ep(w|D) [·]. These are generally intractable to calculate exactly and are thus approxi-
mated through samples drawn from the distribution - a Monte Carlo approximation of the expectation.
In this section we provide those approximations explicitly and discuss efficient ways to implement
them, utilizing relationships between individual measures.

We assume that the posterior p(w | D) models to predict are drawn from and the posterior p(w̃ | D)
approximations of the true model are drawn from are the same. However, in practice it is generally
the case that models for averaging are selected based on their accuracy on a validation set, or more
generally that they are selected in a way optimal for predicting well. When sampling potential true
models that are likely under the data, the functional diversity of samples is often of concern, e.g. as
done with the sampling algorithm in Schweighofer et al. (2023b). This can be seen as either having
different posteriors due to different priors or having different algorithms to obtain samples from the
same posterior. However, for simplicity we state the MC approximations using only a single set
of samples. The provided implementation however is able to handle also the case where different
samples are used for the MC approximation.

TU (A2):

CE(p(y | x,w) ; p(y | x,D)) = CE(p(y | x,w) ; Ew̃ [p(y | x, w̃)]) (22)

≈ CE(p(y | x,w) ;
1

M

M∑
m=1

p(y | x, w̃m)), w̃m ∼ p(w̃ | D)

TU (A3):

Ew̃ [CE(p(y | x,w) ; p(y | x, w̃))] (23)

≈ 1

M

M∑
m=1

CE(p(y | x,w) ; p(y | x, w̃m)), w̃m ∼ p(w̃ | D)

TU (B/C1):

CE(p(y | x,D) ; p(y | x, w̃)) = Ew [CE(p(y | x,w) ; p(y | x, w̃))] (24)

≈ 1

N

N∑
n=1

CE(p(y | x,wn) ; p(y | x, w̃)), wn ∼ p(w | D)

TU (B/C2):

CE(p(y | x,D) ; p(y | x,D)) = Ew [CE(p(y | x,w) ; p(y | x,D))] (25)
= H(p(y | x,D)) = H(Ew [p(y | x,w)])

≈ H(
1

N

N∑
n=1

p(y | x,wn)), wn ∼ p(w | D)

TU (B/C3):

Ew̃ [CE((p(y | x,D) ; p(y | x, w̃))] = Ew [Ew̃ [CE(p(y | x,w) ; p(y | x, w̃))]] (26)

≈ 1

NM

N∑
n=1

M∑
m=1

CE(p(y | x,wn) ; p(y | x, w̃m)), wn ∼ p(w | D), w̃m ∼ p(w̃ | D)
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AU (B):

H(p(y | x,D)) = H(Ew [p(y | x,w)]) (27)

≈ H(
1

N

N∑
n=1

p(y | x,wn)), wn ∼ p(w | D)

AU (C):

Ew [H(p(y | x,w))] ≈ 1

N

N∑
n=1

H(p(y | x,wn)), wn ∼ p(w | D) (28)

EU (A2):

KL(p(y | x,w) ∥ p(y | x,D)) = KL(p(y | x,w) ∥ Ew̃ [p(y | x, w̃)]) (29)

≈ KL(p(y | x,w) ∥ 1

M

M∑
m=1

p(y | x,wm)), w̃m ∼ p(w̃ | D)

EU (A3):

Ew̃ [KL(p(y | x,w) ∥ p(y | x, w̃))] (30)

≈ 1

M

M∑
m=1

KL(p(y | x,w) ∥ p(y | x,wm)), w̃m ∼ p(w̃ | D)

EU (B1):

KL(p(y | x,D) ∥ p(y | x, w̃)) = KL(Ew [p(y | x,w)] ∥ p(y | x, w̃)) (31)

≈ KL(
1

N

N∑
n=1

p(y | x,wn) ∥ p(y | x, w̃)), wn ∼ p(w | D)

EU (B3):

Ew̃ [KL(p(y | x,D) ∥ p(y | x, w̃))] = Ew̃ [KL(Ew [p(y | x,w)] ∥ p(y | x, w̃))] (32)

≈ 1

M

M∑
m=1

KL(
1

N

N∑
n=1

p(y | x,wn) ∥ p(y | x,wm)), wn ∼ p(w | D), w̃m ∼ p(w̃ | D)

EU (C1):

Ew [KL(p(y | x,w) ∥ p(y | x, w̃))] (33)

≈ 1

N

N∑
n=1

KL(p(y | x,wn) ∥ p(y | x,w)), wn ∼ p(w | D)

EU (C2):

Ew [KL(p(y | x,w) ∥ p(y | x,D))] = Ew [KL(p(y | x,w) ∥ Ew̃ [p(y | x, w̃)])] (34)

≈ 1

N

N∑
n=1

KL(p(y | x,wn) ∥
1

M

M∑
m=1

p(y | x,wm)), wn ∼ p(w | D), w̃m ∼ p(w̃ | D)

EU (C3):

Ew [Ew̃ [KL(p(y | x,w) ∥ p(y | x, w̃))]] (35)

≈ 1

NM

N∑
n=1

M∑
m=1

KL(p(y | x,wn) ∥ p(y | x,wm)), wn ∼ p(w | D), w̃m ∼ p(w̃ | D)
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A.3 GENERALIZATION TO RENYI CROSS-ENTROPY

In this section we review the Rényi cross-entropy which is a generalization of the cross-entropy
discussed in the main paper. This allows to directly transfer our proposed measure of predictive
uncertainty in Eq. (5) and the framework we introduced based on it (overview in Tab. 1) to other
instances of Rényi cross-entropies.

Let us start with the Rényi entropy, which was proposed as a generalization of the Shannon entropy,
in that for the limit of the Rényi parameter α → 1 the Rényi entropy becomes the Shannon entropy.
For two discrete distributions p and q on the same support Y it is defined as

Hα(p) =
1

1− α
log
∑
i

pαi (36)

Similarly, the Rényi divergence is a generalization of the Kullback-Leibler (KL) divergence, in that
for the limit of the Rényi parameter α → 1 the Rényi divergence becomes the KL divergence. It is
defined as

Dα(p || q) =
1

α− 1
log
∑
i

pαi q1−α
i (37)

Note that there are also versions of both for continuous distributions, basically exchanging the sum
with an integral. However, the resulting Rényi differential entropy shares the same deficiencies as the
Shannon differential entropy.

What is left is defining the Rényi cross-entropy. Motivated by the additive decomposition of Shannon
cross-entropy into the entropy and KL divergence, Sarraf and Nie (2021) proposed to define the Rényi
cross-entropy as

CEα(p ; q) := Hα(p) + Dα(p || q) (38)

Multiple closed form solutions for different values of α are already known for the Rényi entropy
and divergence, making this a very simple solution. Furthermore, Valverde-Albacete and Peláez-
Moreno (2019) introduced a closed form solution, which has been simplified to the following form
by Thierrin et al. (2022):

CEα(p ; q) :=
1

1− α
log
∑
i

pi q
α−1
i (39)

Furthermore, Thierrin et al. (2022) proposes closed form solutions for this form of the Rényi
differential cross-entropy for various continuous distributions.

In the following we stick to the definition of the Rényi cross-entropy by Sarraf and Nie (2021)
(Eq. (38)) and state the respective entropy and divergence for special cases of α. By defining the
arbitrary discrete distributions as p := p(y | x, ·) and q := p(y | x,w∗) each value of α yields
a variant our proposed measure of predictive uncertainty (Eq. (5)), giving rise to variants of our
proposed framework.

α = 0: The measure of entropy is called the Hartley or max-entropy, which is the cardinality of
possible events Y . It is given by

H0(p) := log |Y| . (40)

The divergence is called max-divergence and is given by

D0(p || q) := − logQ({i : pi > 0}) . (41)

α = 1
2 : The measure of entropy is referred to as Bhattacharyya-entropy. It is given by

H 1
2
(p) := 2 log

∑
i

√
pi . (42)

The divergence is called Bhattacharyya-divergence (minus twice the logarithm of the Bhattacharyya
coefficient) and is given by

D 1
2
(p || q) := −2 log

∑
i

√
piqi . (43)
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α = 1: This case is the well known Shannon-entropy, given by

H1(p) = H(p) := −
∑
i

pi log pi . (44)

The divergence is known as Kullback-Leibler divergence, given by

D1(p || q) = KL(p ∥ q) :=
∑
i

pi log
pi
qi

. (45)

α = 2: This case is called the collision entropy, which is closely related to the index of coincidence.
It is given by

H2(p) := − log
∑
i

p2i . (46)

The corresponding divergence is based upon the chi-square divergence

D2(p || q) := log

(
N∑
i=1

p2i
qi

)
= log

(
1 +

N∑
i=1

(pi − qi)
2

qi

)
. (47)

α = ∞: The entropy is known as the min-entropy. It is given by

H∞(p) := − logmax
i

pi . (48)

The divergence

D∞(p || q) := log sup
i

pi
qi

. (49)

Notes. Realizations of Renyi entropy satisfy the inequalities

H0(p) ≥ H1(p) ≥ H2(p) ≥ H∞(p) (50)

Also Theorem 7 in van Erven and Harremos (2014) states that Renyi divergences are continuous in
the order of α.

A.4 GENERALIZATION TO OTHER STRICTLY PROPER SCORING RULES

Another perspective on our measure of uncertainty (Eq. (5)) was recently proposed by Kotelevskii
and Panov (2024) and Hofman et al. (2024b). They consider the zero-one, Brier, and Spherical
score in addition to the log-score, which is the cross-entropy upon which the information-theoretic
measures we discussed in the main paper are based (c.f. Eq. (5)). For the zero-one score, the resulting
framework of measures is given in Tab. 2, for the Brier score in Tab. 3 and for the spherical score it is
given in Tab. 4.

A.5 ALTERNATIVE MEASURE

The reverse order of the arguments for the cross-entropy in Eq. (5), that is, CE(p(y | x,w∗) ; p(y |
x, ·)), gives rise to an alternative measure that is consistent with Eq. (1). This measure, also known
as “pointwise risk” under the log score at an input (point) x, has been considered as a measure of
predictive uncertainty (Gruber and Buettner, 2023; Lahlou et al., 2023; Kotelevskii and Panov, 2024;
Hofman et al., 2024b). However, we argue that our proposed measure (Eq. (5)) is more meaningful.
Our measure considers the uncertainty inherent to predicting with the selected model, plus the
uncertainty due to any potential mismatch with the true model. The alternative measure considers
the uncertainty inherent to predicting with the true model, plus the uncertainty due to any potential
mismatch with the selected model. However, we generally don’t know the true model, thus can’t
actually use it to predict and have to resort to an approximation of the true model anyways.
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Table 2: Our proposed framework applied under the zero-one score. Each measure denotes
a different instantiation of our proposed measure given by Eq. (5), but using the zero-one score
instead of the cross-entropy (log score) for different assumptions about the predicting model and
how the true model is approximated. For brevity, we define pw := p(y | x,w), pD := p(y | x,D),
Ew := Ep(w|D) (the same for w̃) and p•(p̂◦) := p(y = argmax p(y | x, ◦) | x, •). Expressions
with the same cell coloring are equivalent to each other. Each measure of total uncertainty additively
decomposes into an aleatoric and epistemic component.

Predicting model
Approximation of true predictive distribution

(1) w̃ (2) Ew̃ (3) w̃ ∼ p(w̃ | D)

T
U

(A) w 1 − pw(p̂w̃) 1 − pw(p̂D) Ew̃ [1 − pw(p̂w̃)]

(B) Ew 1 − pD(p̂w̃) 1 − pD(p̂D) Ew̃ [1 − pD(p̂w̃)]

(C) w ∼ p(w | D) Ew [1 − pw(p̂w̃)] Ew [1 − pw(p̂D)] Ew [ Ew̃ [1 − pw(p̂w̃)]]

A
U

(A) w 1 − max pw 1 − max pw 1 − max pw

(B) Ew 1 − max pD 1 − max pD 1 − max pD

(C) w ∼ p(w | D) 1 − Ew [max pw] 1 − Ew [max pw] 1 − Ew [max pw]

E
U

(A) w max pw − pw(p̂w̃) max pw − pw(p̂D) Ew̃ [max pw − pw(p̂w̃)]

(B) Ew max pD − pD(p̂w̃)
��������: 0

max pD − pD(p̂D) Ew̃ [max pD − pD(p̂w̃)]

(C) w ∼ p(w | D) Ew [max pw − pw(p̂w̃)] Ew [max pw − pw(p̂D)] Ew [ Ew̃ [max pw − pw(p̂w̃)]]

Table 3: Our proposed framework applied under the Brier score. Each measure denotes a different
instantiation of our proposed measure given by Eq. (5), but using the Brier score instead of the cross-
entropy (log score) for different assumptions about the predicting model and how the true model is
approximated. For brevity, we define pw := p(y | x,w), pD := p(y | x,D), and Ew := Ep(w|D)

(the same for w̃). The 2-norm is defined as ∥p(y | x, •)∥2 :=

√∑K
k=1 p(y = k | x, •)2. Expressions

with the same cell coloring are equivalent to each other. Each measure of total uncertainty additively
decomposes into an aleatoric and epistemic component.

Predicting model
Approximation of true predictive distribution

(1) w̃ (2) Ew̃ (3) w̃ ∼ p(w̃ | D)

T
U

(A) w 1 − ∥pw∥2
2
+ ∥pw − pw̃∥2

2
1 − ∥pw∥2

2
+ ∥pw − pD∥2

2
Ew̃

[
1 − ∥pw∥2

2
+ ∥pw − pw̃∥2

2

]
(B) Ew 1 − ∥pD∥2

2
+ ∥pD − pw̃∥2

2
1 − ∥pD∥2

2
+�����: 0

∥pD − pD∥2
2

Ew̃

[
1 − ∥pD∥2

2
+ ∥pD − pw̃∥2

2

]
(C) w ∼ p(w | D) Ew

[
1 − ∥pw∥2

2
+ ∥pw − pw̃∥2

2

]
Ew

[
1 − ∥pw∥2

2
+ ∥pw − pD∥2

2

]
Ew

[
Ew̃

[
1 − ∥pw∥2

2
+ ∥pw − pw̃∥2

2

]]

A
U

(A) w 1 − ∥pw∥2
2

1 − ∥pw∥2
2

1 − ∥pw∥2
2

(B) Ew 1 − ∥pD∥2
2

1 − ∥pD∥2
2

1 − ∥pD∥2
2

(C) w ∼ p(w | D) Ew

[
1 − ∥pw∥2

2

]
Ew

[
1 − ∥pw∥2

2

]
Ew

[
1 − ∥pw∥2

2

]

E
U

(A) w ∥pw − pw̃∥2
2

∥pw − pD∥2
2

Ew̃

[
∥pw − pw̃∥2

2

]
(B) Ew ∥pD − pw̃∥2

2 �����: 0

∥pD − pD∥2
2

Ew̃

[
∥pD − pw̃∥2

2

]
(C) w ∼ p(w | D) Ew

[
∥pw − pw̃∥2

2

]
Ew

[
∥pw − pD∥2

2

]
Ew

[
Ew̃

[
∥pw − pw̃∥2

2

]]

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 4: Our proposed framework applied under the spherical score. Each measure denotes a
different instantiation of our proposed measure given by Eq. (5), but using the spherical score instead
of the cross-entropy (log score) for different assumptions about the predicting model and how the
true model is approximated. For brevity, we define pw := p(y | x,w), pD := p(y | x,D), and

Ew := Ep(w|D) (the same for w̃). The 2-norm is defined as ∥p•∥2 :=

√∑K
k=1 p(y = k | x, •)2.

Furthermore, the scalar product is defined as ⟨p•, p◦⟩ :=
∑K

k=1 p(y = k | x, •) · p(y = k | x, ◦).
Expressions with the same cell coloring are equivalent to each other. Each measure of total uncertainty
additively decomposes into an aleatoric and epistemic component.

Predicting model
Approximation of true predictive distribution

(1) w̃ (2) Ew̃ (3) w̃ ∼ p(w̃ | D)

T
U

(A) w 1− ⟨pw,pw̃⟩
∥pw̃∥2

1− ⟨pw,pD⟩
∥pD∥2

Ew̃

[
1− ⟨pw,pw̃⟩

∥pw̃∥2

]
(B) Ew 1− ⟨pD,pw̃⟩

∥pw̃∥2
1− ⟨pD,pD⟩

∥pD∥2
Ew̃

[
1− ⟨pD,pw̃⟩

∥pw̃∥2

]
(C) w ∼ p(w | D) Ew

[
1− ⟨pw,pw̃⟩

∥pw̃∥2

]
Ew

[
1− ⟨pw,pD⟩

∥pD∥2

]
Ew

[
Ew̃

[
1− ⟨pw,pw̃⟩

∥pw̃∥2

]]

A
U

(A) w 1− ∥pw∥2 1− ∥pw∥2 1− ∥pw∥2

(B) Ew 1− ∥pD∥2 1− ∥pD∥2 1− ∥pD∥2

(C) w ∼ p(w | D) Ew [1− ∥pw∥2] Ew [1− ∥pw∥2] Ew [1− ∥pw∥2]

E
U

(A) w ∥pw∥2 − ⟨pw,pw̃⟩
∥pw̃∥2

∥pw∥2 − ⟨pw,pD⟩
∥pD∥2

Ew̃

[
∥pw∥2 − ⟨pw,pw̃⟩

∥pw̃∥2

]
(B) Ew ∥pD∥2 − ⟨pD,pw̃⟩

∥pw̃∥2 �������: 0

∥pD∥2 − ⟨pD,pD⟩
∥pD∥2

Ew̃

[
∥pD∥2 − ⟨pD,pw̃⟩

∥pw̃∥2

]
(C) w ∼ p(w | D) Ew

[
∥pw∥2 − ⟨pw,pw̃⟩

∥pw̃∥2

]
Ew

[
∥pw∥2 − ⟨pw,pD⟩

∥pD∥2

]
Ew

[
Ew̃

[
∥pw∥2 − ⟨pw,pw̃⟩

∥pw̃∥2

]]

A.6 REGRESSION

For a probabilistic regression model, e.g. under a Gaussian assumption, the distribution parameters
are estimated, i.e. mean and variance for the Gaussian predictive distribution. The model is then
trained by minimizing the negative log-likelihood under the training dataset.

Many works follow Depeweg et al. (2018) and utilize a variance decomposition for uncertainty
quantification, where the aleatoric component is the expected variance and the epistemic component
is the variance of means, where expectation and variance are over the model posterior. However,
Depeweg et al. (2018) also consider the uncertainty measure given by Eq. (3), using differential
entropies for the continuous predictive distributions. The same can be done in order to adapt our
framework in Tab. 1 for continuous predictive distributions.

Nevertheless, there are two important drawbacks one need to consider when doing this. First,
differential entropy can be unbounded, depending on the nature of the predictive distribution. For
the example of a Gaussian, it can be between −∞ and ∞. In addition, it is not invariant to a change
of variables, making it a relative rather than an absolute measure. Second, the posterior predictive
distribution as defined in Eq. (2) is generally a mixture of individual distributions, unlike in the
discrete case. This makes MC approximations of the resulting measures more involved.
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B ADDITIONAL EXPERIMENTS

In this section, we provide additional empirical results of our evaluation of the proposed framework
of uncertainty measures.
The code to reproduce our experiments will be made public upon acceptance.

B.1 ILLUSTRATIVE EXAMPLE

Here, we provide an illustrative synthetic example often discussed in the literature (Wimmer et al.,
2023; Schweighofer et al., 2023a; Sale et al., 2023b). We consider a predictor defined as a Bernoulli
distribution leading to the predictive distribution p(y | θ). Thus, there is no model involved for
mapping from the input space to the Bernoulli parameter. The only free parameter is the Bernoulli
parameter. Therefore, the posterior distribution is defined as p(θ | D) = p(D | θ)p(θ)/p(D). To
examplify our framework, we consider a Beta posterior distribution Beta(θ; 2, 3). The true Bernoulli
parameter θ∗ is not known.

Results are shown in Fig. 6, depicting what is considered as predicting model (green) and what is
compared to as approximation of the true model. The green line for measures (A1/2/3) and the
violet line for measures (A/B/C1) were chosen arbitrarily, but different to the expected Bernoulli
parameter to exemplify the differences between measures.
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Figure 6: Uncertainty measures given by the predicting model and the approximation of the true
model. We consider the posterior distribution Beta(θ; 2, 3), shaded in gray.

B.2 SELECTIVE PREDICTION

We provide the additional results for selective prediction as discussed in the main paper.

The results for predicting under a single model are shown in Fig. 7. We observe, that the best measure
for DE and LA is TU (A3), as well as TU (A2) in the case of MCD. Overall, measures that consider
the single model as predicting model perform well throughout comparing within TU, AU and EU.
Again, EU (A2) performs surprisingly bad for LA as posterior sampling method. For the local
methods LA and MCD, AU (A) is better than AU (B) and AU (C), which is not the case for DE.

The additional results for predicting under the average model with MCD are shown in Fig. 8. Overall,
the results are very similar to the other local posterior sampling method LA provided in Fig. 4.
However, TU (A2) is the best measure for MCD, while it is TU (A3) for LA. For the global
posterior sampling method DE however, TU (B/C3) performs best.

Finally, the results for predicting under a model according to the posterior are given in Fig. 9. The
results are very similar to the results under the average model in Fig. 4 and Fig. 8. However, the
difference between the different AU measures for LA and MCD is extremely tight. This is also the
case for the TU measures, yet to a lesser extent.
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Figure 7: Selective prediction results under a single model. Accuracies per fraction of datapoints
a single model predicts on, as well as area under the accuracy retention curve (tabulated in legend)
using different proposed measures of uncertainty as score. Uncertainty measures are approximated by
DE (top row), LA (middle row) and MCD (bottom row) as posterior sampling method. Accuracies are
averaged over all datasets. Means and standard deviations are calculated using five independent runs.
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Figure 8: Selective prediction results under the average model. Accuracies per fraction of
datapoints the average model predicts on, as well as area under the accuracy retention curve (tabulated
in legend) using different proposed measures of uncertainty as score. Uncertainty measures are
approximated by DE (top row), LA (middle row) and MCD (bottom row) as posterior sampling
method. Accuracies are averaged over all datasets. Means and standard deviations are calculated
using five independent runs.
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Figure 9: Selective prediction results under a model according to the posterior. Accuracies per
fraction of datapoints a model drawn according to the posterior predicts on, as well as area under the
accuracy retention curve (tabulated in legend) using different proposed measures of uncertainty as
score. Uncertainty measures are approximated by DE (top row), LA (middle row) and MCD (bottom
row) as posterior sampling method. Accuracies are averaged over all datasets. Means and standard
deviations are calculated using five independent runs.

B.3 DETAILED RESULTS

The results for misclassification detection and OOD detection in the main paper show aggregate
performances over multiple datasets to provide more robust conclusions about the performance of
individual measures of uncertainty. In this section we provide individual results for completeness.

Misclassification detection. The detailed results for misclassification detection are given in Fig. 10
for a single predicting model, in Fig. 11 for the average predicting model as well as in Fig. 12 for
predicting with a model according to the posterior. Although there are nuanced differences between
datasets, conclusions translate very well between them for a given posterior sampling method.

OOD detection The detailed results for OOD detection for CIFAR10 as ID dataset are given in
Fig. 13, for CIFAR100 as ID dataset in Fig. 14, for SVHN as ID dataset in Fig. 15 and for TIN
as ID dataset in Fig. 16. We observe the highest variability of experiments for TIN as ID dataset,
where there is high variability for both the OOD dataset as well as for the posterior sampling method
used. For the other ID datasets, the main variability comes from the posterior sampling methods and
different OOD datasets lead to very similar results.
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Figure 10: Misclassification detection results under single predicting model. AUROC for dis-
tinguishing between correctly and incorrectly predicted datapoints under a single predicting model,
using the different proposed measures of uncertainty as score. Means and standard deviations are
calculated using five independent runs.
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Figure 11: Misclassification detection results under average predicting model. AUROC for
distinguishing between correctly and incorrectly predicted datapoints under the average predicting
model, using the different proposed measures of uncertainty as score. Means and standard deviations
are calculated using five independent runs.
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Figure 12: Misclassification detection results under model according to posterior predicting.
AUROC for distinguishing between correctly and incorrectly predicted datapoints under a model
according to posterior predicting, using the different proposed measures of uncertainty as score.
Means and standard deviations are calculated using five independent runs.
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Figure 13: OOD detection results for CIFAR10. AUROC for distinguishing between ID and
OOD datapoints using the different proposed measures of uncertainty as score. Means and standard
deviations are calculated using five independent runs.
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Figure 14: OOD detection results for CIFAR100. AUROC for distinguishing between ID and
OOD datapoints using the different proposed measures of uncertainty as score. Means and standard
deviations are calculated using five independent runs.
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Figure 15: OOD detection results for SVHN. AUROC for distinguishing between ID and OOD
datapoints using the different proposed measures of uncertainty as score. Means and standard
deviations are calculated using five independent runs.
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Figure 16: OOD detection results for TIN. AUROC for distinguishing between ID and OOD
datapoints using the different proposed measures of uncertainty as score. Means and standard
deviations are calculated using five independent runs.
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B.4 DIFFERENT NETWORK ARCHITECTURE

We want to assess the influence of the network architecture on the ranking of the results. To that
end, we also trained DEs of DenseNet169 and RegNet-Y 800MF, using the same training recipe as
for ResNet-18 described in Sec. 5. A comparison of the sampled models is given in Fig. 17. We
observe, that ResNet-18 performs a bit better than the two other models, with RegNet-Y 800MF
being the worst models in terms of NLL and accuracies. In terms of AU and EU, we observe only
minor differences in the upper tails of the distributions for CIFAR100 and TIN. For CIFAR10 and
SVHN, we observe no differences. Next, we analyze the influence of the network architecture on the
misclassification and OOD detection tasks.

Misclassification detection. The results for misclassification detection using DEs with different
model architectures are given in Fig. 18. We observe no major differences for different models (per
column) under a given predicting model (per row).

OOD detection. The results for OOD detection using DEs with different model architectures are
given in Fig. 19. We observe that the AU (C) is the best measure for DenseNet-169 and RegNet-Y
800MF, while it is AU (B) which is equivalent to TU (B/C2) for ResNet-18. However, the general
trends are the same across all architectures.
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Figure 17: Comparison of network architectures. Results are obtained on the test split of the
respective dataset. We compare the negative log-likelihoods (a) and accuracies (c) for different
models obtained through DEs on ResNet-18, DenseNet-169 and RegNet-Y 800MF. The single model
is randomly selected among all sampled models. We depict all models sampled in five independent
runs. Furthermore, (b) the normalized AU (C) and (d) the normalized EU (C2) are given per
sampling method. All three network architectures lead to similar results on all considered datasets.
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Figure 18: Misclassification detection results for DE with different model architectures and
under different predicting models. AUROC for distinguishing between correctly and incorrectly
predicted samples under different predicting models, using the different proposed measures of
uncertainty as score. Means and standard deviations are calculated using five independent runs.
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Figure 19: OOD detection results for DE with different model architectures. AUROC for
distinguishing between ID and OOD datapoints using the different proposed measures of uncertainty
as score. AUROCs are averaged over all ID / OOD combinations. Means and standard deviations are
calculated using five independent runs.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

B.5 DISTRIBUTION SHIFT DETECTION

Next we want to assess the behavior of our framework of measures to detect varying levels of
distribution shift. In this experiment, DE, LA and MCD are applied to CIFAR10 as training dataset.
We use CIFAR10-C (Hendrycks and Dietterich, 2019) which contains corrupted versions of the test
dataset of CIFAR10 to assess the performance of detecting distribution shifts. Therefore, we utilize
the uncertainty as score to calculate the AUROC of distinguishing between the clean test dataset
and the corrupted versions. We also investigated the AUPR and FPR@TPR95 as alternative metrics,
which lead to equivalent conclusions. We utilized the 15 main corruptions and excluded the four
additional corruptions intended for hyperparameter tuning by the authors of the dataset. Results
are averages over all 15 corruptions. However, all corruptions are available in 5 different levels of
severity, which we distinguish in our experiments.

The results in Fig. 20 show the AUROC of distinguishing between the clean and corrupted versions
of the test dataset (y-axis) for different posterior sampling methods (rows), for different uncertainty
measures (columns) under different corruption severities (x-axis). Furthermore, the inset shows a
comparison akin to those done for OOD detection for the highest severity corrupted datapoints. We
observe similar trends to those observed for the OOD detection experiments, which is not surprising
given the similar nature of those experiments. However, comparing the best performing measure
of uncertainty under DE for different severities shows, that EU is more effective than AU or TU at
intermediate severities, but become equally effective for the highest severity. For LA, TU and AU
measures all perform very similar across all severities. For MCD, we observe similar trends as for
DE, albeit less pronounced.
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Figure 20: Distribution shift detection on CIFAR10-C. AUROC for distinguishing between clean
and corrupted test datapoints, using the different proposed measures of uncertainty as score, under
posterior sampling methods DE, LA and MCD. Black dashed line shows the maximum AUROC over
all measures per severity. Insets show a comparison auf AUROCs uncer different uncertainty measures
for the highest severity. Means and standard deviations are calculated using five independent runs.
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B.6 ADVERSARIAL EXAMPLE DETECTION

We want to investigate the effect of adversarially created inputs on the uncertainty estimates. Through-
out this experiments, we consider adversarial attacks on the single network. However, it would also
be possible to attack the average model, albeit more computationally expensive. As adversarial ex-
amples are known to transfer well between models of similar architecture (Goodfellow et al., 2015),
results for attacking the average model are expected to be relatively similar to those presented here.

We consider two different adversarial attacks, (i) FGSM (Goodfellow et al., 2015) and (ii) PGD under
infinity norm perturbation (Madry et al., 2018). For our experiments, we only consider the subset of
the test datasets that are predicted correctly. This we refer to as the original dataset. Then we apply the
adversarial attacks the datapoints in the original dataset and select those datapoints where the model
was successfully fooled to predict incorrectly. This we refer to as the adversarial dataset. We utilize
the different uncertainty scores to calculate the AUROC of distinguishing between the original and
the adversarial dataset, akin to the OOD detection experiments reported in the main paper. We also
investigated the AUPR and FPR@TPR95 as alternative metrics, which lead to equivalent conclusions.

FGSM. We start with the results obtained through the FGSM attack with ϵ = 8/255. Histograms
of the AU (A), the entropy of the predictive distribution of the single attacked model and the AU
(B), the entropy of the predictive distribution under the average model, are shown in Fig. 21 for DE,
in Fig. 22 for LA and in Fig. 23 for MCD. For all methods, we observe a shift towards higher AUs for
the adversarial datapoints compared to the original datapoints. This effect is strongest for the global
posterior sampling method DE, which is expected. Furthermore, the shift appears more pronounced
for AU (B), which makes sense as the adversarial examples have been obtained with the single model.

The main results are shown in Fig. 24, denoting the AUROC of distinguishing between the original
and the adversarial datapoints using the different measures of uncertainty as score. We observe
qualitatively very similar results to the OOD detection experiments, in that TU and AU measures for
cases (B) and (C) are the most effective. The same we observe for MCD, albeit less pronounced
than for DE. For LA, all TU and AU measures perform basically on par. Surprisingly, EU measures
underperform for adversarial example detection, irrespective of the posterior sampling method.
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Figure 21: Histogram of AU (A) and AU (B) for original and adversarial datapoints obtained
through applying FGSM, using DE. Aleatoric uncertainties are normalized with log(|Y|) to be
more comparable across datasets with different number of classes.
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Figure 22: Histogram of AU (A) and AU (B) for original and adversarial datapoints obtained
through applying FGSM, using LA. Aleatoric uncertainties are normalized with log(|Y|) to be
more comparable across datasets with different number of classes.
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Figure 23: Histogram of AU (A) and AU (B) for original and adversarial datapoints obtained
through applying FGSM, using MCD. Aleatoric uncertainties are normalized with log(|Y|) to be
more comparable across datasets with different number of classes.
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Figure 24: Adversarial example detection (FGSM). Means and standard deviations are calculated
using five independent runs.
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PGD. Next, we conduct the same investigation using the L∞-PGD attack with ϵ = 8/255. His-
tograms of the AU (A), the entropy of the predictive distribution of the single attacked model and the
AU (B), the entropy of the predictive distribution under the average model, are shown in Fig. 25 for
DE, in Fig. 26 for LA and in Fig. 27 for MCD. For all methods, we observe a shift towards lower AUs
for the adversarial datapoints compared to the original datapoints. The only exception is for AU (B)
under DE, where adversarial datapoints exhibit slightly higher values than the original datapoints.

The results are given in Fig. 28, denoting the AUROC of distinguishing between the original and the
adversarial datapoints using the different measures of uncertainty as score. For DE we observe that all
measures except TU (A1) and AU (A) perform better than random. The very bad performance of
AU (A) stems from the fact that adversarial datapoints exhibit lower uncertainties than the original
datapoints (c.f. Fig. 25). The local posterior sampling methods LA and MCD exhibit worse than
random performance for all considered measures of uncertainty. However, contrary to the experiments
with PGD, measures of EU perform best.

The two experiments for adversarial example detection were conducted under the assumption that
adversarial datapoints should exhibit higher uncertainty than the original datapoints. Finally, we
investigate a special variant of our experiments with L∞-PGD adversarial examples, where we
assume that adversarial datapoints exhibit lower uncertainty than the original datapoints. The results
are shown in Fig. 29. We observe, that using AU (A) leads to the best results for all three posterior
sampling methods. However this results do not help to attain a mechanism for adversarial robustness,
as we leverage additional side information that the single model was fooled into being very confident
about the adversarial examples. Attackers could add constraints on the deviation between the AU
(A) under the original and the adversarial datapoint in an improved version of the L∞-PGD attack,
rendering this detection mechanism useless.
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Figure 25: Histogram of AU (A) and AU (B) for original and adversarial datapoints obtained
through applying L∞-PGD, using DE. Aleatoric uncertainties are normalized with log(|Y|) to be
more comparable across datasets with different number of classes.
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Figure 26: Histogram of AU (A) and AU (B) for original and adversarial datapoints obtained
through applying L∞-PGD, using LA. Aleatoric uncertainties are normalized with log(|Y|) to be
more comparable across datasets with different number of classes.
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Figure 27: Histogram of AU (A) and AU (B) for original and adversarial datapoints obtained
through applying L∞-PGD, using MCD. Aleatoric uncertainties are normalized with log(|Y|) to
be more comparable across datasets with different number of classes.
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Figure 28: Adversarial example detection (L∞-PGD). Means and standard deviations are calculated
using five independent runs.
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Figure 29: Adversarial example detection (L∞-PGD), switching clean and adversarial dataset.
Means and standard deviations are calculated using five independent runs.
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B.7 ACTIVE LEARNING

Finally, we investigated the proposed framework of uncertainty measures on active learning tasks.
We conducted experiments on the MNIST and FMNIST datasets. A small CNN (5x5 conv [1 to 6
channels], 2x2 max-pool, 5x5 conv [6 to 12 channels], 2x2 max-pool, two linear layers with hidden
size 32 and a final output linear layer; ReLU activations after each max-pool and linear layer except
the last as well as dropout with dropout between linear layers) was utilized. For DE, the dropout
rate was set to zero, for MCD it was set to 0.2 for experiments on both datasets. Training of the
models utilized the Adam optimizer (Kingma and Ba, 2015) for 50 epochs with a learning rate of
1e-3, a batch size of 32 and l2 weight decay of 1e-4. Early stopping was performed on the official
validation split of the respective datasets, the evaluation of the performance per step was conducted
on the official test splits. Note that even though the size of the training dataset increases each step, the
effective size, thus the number of gradient steps per epoch, was kept constant at 1000 for the MNIST
and 1600 for the FMNIST experiments. For DE, we obtain 5 posterior samples (ensemble members),
for MCD we obtain 50 posterior samples. The average over those samples, the approximated posterior
predictive, was used to calculate the accuracies for each acquisition step, as well as for selecting the
next datapoints to add to the training dataset from the pool dataset.

MNIST. We started with 20 datapoints in the training dataset and the remaining 49,980 datapoints
in the pool dataset. Those 20 datapoints were balanced, such that two datapoints from each class were
contained. Each iteration, the five samples with the highest uncertainty are transferred from the pool
dataset to the training dataset. We considered TU, AU and EU for measures (B2), (B3), (C2)
and (C3) as acquisition functions, as well as random selection as a baseline. We did not investigate
measures (A1), (A2), (A3), (B1) and (C1) due to the long runtimes of the experiments, but
would expect them to perform worse than the considered ones in light of the other experiments we
conducted. An interesting situation could be the EU (A1) however, when training a single model on
the dataset in the current iteration and compare the model from the previous iteration. Future work
should investigate this setting, e.g. in transfer learning settings.

The results are given in Fig. 30. We observe, that for both DE as well as MCD, EU (C2), the
mutual information, leads to the best performance at the final iteration, as well as performs very well
throughout all iterations. Interestingly, we find TU (B/C2) which is identical to AU (B) to be
equally well performing for both cases. The same is found for TU (B/C3). Interestingly, the EU
(B3) and EU (C3) are the worst performing acquisition functions for both DE and MCD, contrary
to the sentiment that estimators of EU should perform best in this task. Similarly surprising, AU (C),
which is an asymptotically unbiased estimator of the aleatoric uncertainty of the true model, performs
very good as acquisition function for DE. It is the worst acquisition function though for MCD. The
random sampling baseline is also extremely effective until around a training dataset size of around
100 samples, more effective than any of the considered uncertainty measures. We hypothesize, that
until a certain dataset size, models sampled from the posterior are not specified enough and provide
too little signal of what datapoints to add next, which would be interesting to investigate in more
details in future experiments.

FMNIST. We started with 1000 datapoints in the training dataset and the remaining 49,000 dat-
apoints in the pool dataset. Those 1000 datapoints were balanced, such that 100 datapoints from
each class were contained. Each iteration, the 15 samples with the highest uncertainty are transferred
from the pool dataset to the training dataset. As for the MNIST experiment, we considered TU, AU
and EU for measures (B2), (B3), (C2) and (C3) as acquisition functions, as well as random
selection as a baseline.

The results are provided in Fig. 31. For MCD, we do not see a clear trend of outperforming the
random acquisition baseline with any uncertainty measure. For DE, we again observe that EU (C2),
the mutual information, leads to very good performance throughout all acquisition steps. Also, TU
(B/C2) which is identical to AU (B) and AU (C) perform very good. Again, EU (B3) and
EU (C3) are the worst performing acquisition functions, especially towards the final steps. This
seemingly similar task to MNIST proved to be surprisingly difficult for an active learning pipeline,
potentially due to the higher difficulty of the task where class boundaries are known to be much
harder to learn.
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Figure 30: Active learning results on MNIST. TU, AU and EU for measures (B2), (B3), (C2)
and (C3) were considered as acquisition functions. The accuracy is those of the average model.
Means and standard deviations are calculated using five independent runs.
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Figure 31: Active learning results on FMNIST. TU, AU and EU for measures (B2), (B3), (C2)
and (C3) were considered as acquisition functions. The accuracy is those of the average model.
Means and standard deviations are calculated using five independent runs.
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