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ABSTRACT

Many high-dimensional data modalities—including covariance descriptors, dif-
fusion tensors, and kernel matrices—naturally reside on Riemannian manifolds
such as the space of Symmetric Positive Definite (SPD) matrices. However,
conventional deep neural networks often fail to respect the intrinsic geometry
of such data, leading to suboptimal representations and generalization. We in-
troduce Equivariant Geodesic Networks (EGN), a novel architecture designed to
operate directly on Riemannian manifolds while preserving key geometric prop-
erties. EGN incorporates manifold-consistent operations, including equivariant
mappings, adaptive geometric bias, and structured low-rank updates that respect
the underlying topology. Unlike existing methods that either flatten or project SPD
data into Euclidean space, EGN directly learns on the manifold, preserving geo-
metric consistency throughout. We provide theoretical analysis of the manifold-
preserving properties of our layers and demonstrate significant empirical gains
on tasks involving SPD-valued data, such as EEG-based emotion recognition and
imagined speech classification. EGN outperforms existing Euclidean and pseudo-
manifold baselines, offering a principled approach to end-to-end learning on Rie-
mannian data manifolds.

1 INTRODUCTION

In deep learning, data is typically represented as vectors in Euclidean space Rn. However, high-
dimensional data types like covariance descriptors, diffusion tensors, and EEG connectivity matrices
naturally reside on curved spaces, specifically forming Symmetric Positive Definite (SPD) matrices
on Riemannian manifolds (Barachant et al., 2012). Unlike flat Euclidean spaces, these manifolds
impose structural constraints, making direct learning essential to preserve geometric consistency
(Fletcher et al., 2004). Projecting SPDmatrices to Euclidean space can distort relationships (Arsigny
et al., 2006). While leveraging the manifold’s intrinsic geometry ensures positive definiteness and
symmetry, leading to more accurate modeling in applications like EEG-based emotion recognition
and diffusion tensor imaging (Congedo et al., 2017).

A Symmetric Positive Definite (SPD) matrix is a symmetric square matrix that satisfies positive def-
initeness for any non-zero vector v  Rn(Arsigny et al., 2006). These matrices inherently preserve
geometry through positive eigenvalues and symmetry, capturing spatial and structural relationships
(Han et al., 2024).

Conventional deep learning methods, rooted in Euclidean geometry, face inherent challenges when
applied to Symmetric Positive Definite (SPD) matrices, S ++n, which naturally lie on a Rieman-
nian manifold (Pennec et al., 2006). Linear operations and distance metrics, when replaced with
Euclidean approximations, fail to preserve geometry, breaking positive definiteness and symmetry.
As a result, applying standard neural network layers to SPD data often distorts embeddings, failing
to capture the manifold’s curvature. Proper handling of SPD data requires Riemannian geometry to
maintain the manifold structure and preserve essential geometric properties, ensuring valid repre-
sentations (Tang et al., 2021).

In this study, we introduce the Equivariant Geodesic Network (EGN), a novel framework for learn-
ing directly on Riemannian manifolds, specifically targeting the space of SPD matrices, denoted
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as Sn
++. Unlike traditional methods that flatten manifold-valued data into Euclidean space, EGN

preserves the geometric structure throughout the learning process. The core innovation of EGN lies
in maintaining both equivariance and geodesic consistency, where equivariance ensures consistent
representations under geometric transformations, and geodesic consistency accurately measures dis-
tances on the manifold using the affine-invariant Riemannian metric (AIRM). This approach inher-
ently respects the curvature of SPD data, mitigating distortions from flattening. Additionally, EGN
incorporates a data-driven geometric bias mechanism to adapt to underlying distributions, enhanc-
ing its ability to model complex manifold relationships. We evaluate EGN on emotion recognition,
imagined speech classification, and Psychiatric disorder using different EEG datasets.

While previous methods have incorporated individual Riemannian components such as log-
Euclidean layers, manifold pooling, or SPD-preserving transformations, these have mostly been
limited to partial or shallow integrations. In contrast, EGN offers the first fully end-to-end geometry-
preserving deep network that coherently integrates equivariant mappings, learnable geometric bias,
true Riemannian pooling, and geodesic attention-based classification, all trained via manifold-
specific backpropagation. This level of integration ensures geometric consistency across all layers,
which we demonstrate leads to significant empirical gains.

Our main contributions are:

i. We propose the first fully-integrated Riemannian deep network (EGN) combining equiv-
ariant mapping, geometric bias, and geodesic attention in an end-to-end SPD-preserving
architecture.

ii. We introduce the Geometric Bias Block for learning adaptive, manifold-consistent bias
transformations.

iii. We design a geodesic attention classifier using affine-invariant distances and prototype
matching.

iv. We develop a Riemannian backpropagation strategy via gradient lifting to ensure geometry-
aware optimization.

v. We develop a Riemannian-specific backpropagation method for efficient training.

vi. While prior work explores isolated SPD components, our novelty lies in unifying them into
a scalable, coherent framework with theoretical guarantees.

2 BACKGROUND

In this section, we describe the fundamental concepts and mathematical foundations essential for
understanding the proposed Equivariant Geodesic Network (EGN).

2.1 RIEMANNIAN GEOMETRY

Riemannian geometry provides the foundational framework for analyzing curved manifolds, extend-
ing classical Euclidean concepts to non-Euclidean spaces. A Riemannian manifold (M, g) is a dif-
ferentiable manifold M endowed with a Riemannian metric gp at each point p  M, which defines
an inner product on the tangent space TpM. Formally, the metric is given by gp(v,w) = ⟨v,w⟩p,
which induces the norm ∥v∥p =


gp(v,v). The length of a smooth curve γ : [0, 1] → M con-

necting p and q is L(γ) =
 1

0
∥γ̇(t)∥γ(t)dt, and the geodesic distance d(p, q) is the infimum of L(γ)

over all such curves (Becigneul & Ganea, 2019).

2.2 SPD MANIFOLD

The set of symmetric positive definite matrices of order n, denoted as Sn
++, forms a Riemannian

manifold. A matrix X  Sn
++ satisfies:

1. Symmetry: X = XT 2. Positive Deniteness: vTXv > 0 ∀v  Rn \ 0
The space Sn

++ is equipped with a Riemannian metric defined as:

2
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gX(δX1, δX2) = Tr

(X−1δX1)(X

−1δX2)

. (1)

This metric respects the manifold structure, as opposed to the Euclidean inner product which disre-
gards symmetry and positive definiteness (Han et al., 2021). The tangent space at point X is:

TXSn
++ = δX  δX = δXT . (2)

2.3 EQUIVARIANT OPERATION

An operation ϕ on SPD matrices is said to be equivariant under a transformation group G if:

ϕ(g ·X) = g · ϕ(X) ∀ g  G, X  Sn
++. (3)

In the context of our architecture, equivariance ensures that transformations applied to input data are
reflected in the output without distortion (Zhouyin et al., 2025; Lin et al., 2024). This property is
critical for manifold-based learning as it maintains consistency when the data undergoes transforma-
tions that preserve the manifold structure. For instance, if g represents a congruence transformation,
the equivariance operation should satisfy:

ϕ(PXPT ) = Pϕ(X)PT . (4)

2.4 AFFINE-INVARIANT RIEMANNIAN METRIC AND GEODESIC DISTANCE

The Affine-Invariant Riemannian Metric (AIRM) defines a natural geometry over the space of sym-
metric positive definite (SPD) matrices. Given two SPD matrices X,Y  Sn

++, the AIRM-induced
geodesic distance is defined as:

δAIRM(X,Y) = ∥ log(X−1/2YX−1/2)∥F , (5)

where log(·) denotes the matrix logarithm, and ∥ · ∥F is the Frobenius norm. This distance captures
the shortest path betweenX andY on the Riemannian manifold, respecting its curvature and affine-
invariance. In EGN, we exploit this structure-preserving distance to ensure that all operations align
with the intrinsic geometry of SPD-valued data.

The AIRM is invariant under affine transformations:

δ(PXPT ,PYPT ) = δ(X,Y) ∀P  GL(n). (6)

This property is essential when the data represents covariance matrices or other structured forms
where affine transformations are natural.

2.5 RIEMANNIAN MEAN

The Riemannian mean of a set of SPD matrices XiNi=1 is the matrixG that minimizes the sum of
squared AIRM distances (Sra, 2012):

G = arg min
Y∈Sn

++

N

i=1

δ2AIRM(Xi,Y). (7)

An iterative formula for computing the mean is given by:

Gk+1 = Gk exp


1

N

N

i=1

log(G
−1/2
k XiG

−1/2
k )


. (8)

3
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This formulation ensures that the resulting mean remains on the SPD manifold, preserving its intrin-
sic geometry. We compute the Riemannian (or Karcher) mean using a fixed-point update, following
the formulation in (Pennec, 2006).

3 METHODOLOGY

In this section, we provide technical details behind Equivariant Geodesic Networks.

3.1 ARCHITECTURE OF EQUIVARIANT GEODESIC NETWORK (EGN)

The Equivariant Geodesic Network (EGN) is designed as a fully end-to-end architecture that op-
erates directly on Riemannian manifolds, specifically on the space of Symmetric Positive Definite
(SPD) matrices, denoted as Sd

++. The model leverages a sequence of manifold-preserving transfor-
mations, beginning with an SPD-forming operation F : Rd×d → Sd

++, which ensures that the input
matrices maintain their positive definiteness. This is followed by an equivariant bilinear transforma-
tion B : Sd

++ → Sm
++, which maps the input to a higher-dimensional SPD space while preserving

geometric properties. Subsequently, a manifold-aware activation function A : Sm
++ → Sm

++ is
applied, incorporating nonlinear geometric transformations that respect SPD constraints. To in-
troduce adaptive bias that respects the intrinsic structure, we employ a geometric bias operation
G : Sm

++ → Sm
++, followed by Riemannian mean aggregationM : (Sm

++)
k → Sm

++ to capture aver-
age geometric features. Attention mechanisms are then applied via a geodesic distance computation
D : Sm

++ × Sm
++ → Rc, which measures distances between data points and prototypes. Finally,

an attention-based prediction layer P : Rc → ∆c−1 generates classification probabilities by lever-
aging manifold-consistent softmax operations. The sequence of operations within the Equivariant
Geodesic Network (EGN) can be mathematically formulated as follows:

X
F−→ Σ

B−→ Σ′ A−→ Σ′′ G−→ Σ′′′ M−−→ µ
D−→ α

P−→ ŷ

X denotes the input data. Σ is the SPD-formatted matrix obtained after transformation F . Σ′ is
the equivariant mapping output via B, whileΣ′′ is the activated matrix post non-linear activationA.
Σ′′′ represents the geometric bias-adjusted output via G. µ is the Riemannian mean after pooling
operation M, and α denotes the attention scores from geodesic distance calculation D. ŷ is the
final predicted output after the classification layer P . This structur ensures that all intermediate
representations and learned parameters inherently respect the Riemannian manifold structure, thus
maintaining the geometric integrity throughout the forward pass.

SPD Formulation and Equivariant Bilinear Mapping To maintain the SPD structure, the first
transformation SPD formulation, denoted as F , converts the input matrix X  Rd×d into an SPD
matrix Σ  S ++d.

Σ = F(X) = XXT + ϵId (9)

Here, XXT ensures symmetry, and ϵId (with ϵ > 0) guarantees positive definiteness, addressing
rank deficiencies. This formulation ensures that subsequent layers operate within the SPD manifold
structure.

The SPD matrix Σ is then transformed through an Equivariant Bilinear Mapping, denoted as B,
which projects Σ from Sd

++ to Sm
++ while preserving geometric consistency:

Σ′ = B(Σ) = WTΣW +B. (10)

Where: W  Rd×m is a learnable orthogonal weight matrix andB  Sm
++ is an optional bias term.

Theorem 1 (Equivariance of Bilinear Mapping) Let Σ  Sd
++ be an SPD matrix, and let W 

Rd×d be an orthogonal matrix such that W⊤W = WW⊤ = I. The bilinear mapping Σ′ =
W⊤ΣW is equivariant under transformations from the orthogonal group O(d).

B(g ·Σ) = g · B(Σ) for any g  O(d) (11)

4
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Proof: The full proof is provided in the Appendix.

This property ensures that the representation remains consistent under orthogonal transformations.

Geometric Bias Block To account for intrinsic geometric variability, we introduce the Geometric
Bias Block, denoted as G. This block learns or estimates a bias matrix D  Sm

++ that respects the
manifold structure. The transformed output is expressed as:

Σ′′ = G(Σ′) = DΣ′DT , (12)

here, D can be a learnable global bias (D = D 0), fixed, or an adaptive matrix based on the input
(D = f(Σ′)). This block introduces flexibility by adjusting geometric bias according to input char-
acteristics while maintaining the SPD structure, ensured by enforcing D to be SPD. Configurations
ofD include fixed matrices, adaptive predictions, or low-rank approximations (details in Appendix).

After bias adjustment, we optionally apply a nonlinear activation to introduce geometric nonlinear-
ity. The activation function, denoted as A, is expressed as:

Σ′′′ = A(Σ′′) = QΛ(Λ)QT , (13)

where Σ′′ = QΛQT is the eigen-decomposition, and Λ(Λ) represents an element-wise function
(like ReEig, LogEig, or ExpEig) applied to the eigenvalues. This step preserves manifold geometry
while adding nonlinearity. Incorporating both blocks enhances model adaptability while maintaining
the geometric integrity of SPD matrices.

Riemannian Mean Pooling To aggregate SPD-valued features while preserving their manifold
structure, we employ the Riemannian Mean Pooling operation, denoted as M. Unlike conventional
Euclidean averaging, this method computes the Fréchet mean on the manifold Sm

++, which mini-
mizes the sum of squared geodesic distances between SPD matrices. Given a set of SPD matrices
Σiki=1, the Riemannian mean µ is defined as in Equation (10), as the point that minimizes the sum
of squared geodesic distances is µ = argminY∈Sm

++

k
i=1 δ

2
g(Σi,Y),where δg(Σi,Y) denotes the

geodesic distance on the manifold. The computation is performed iteratively using the fixed-point
update µ(t+1) = expµ(t)


1
k

k
i=1 logµ(t)(Σi)


. This iterative process ensures convergence to the

true Riemannian mean while preserving the SPD property throughout pooling. By employing Rie-
mannian Mean Pooling, the model effectively captures the central tendency of manifold-valued data
while maintaining geometric consistency, which is crucial for downstream tasks in EGN.

Lemma (Riemannian Mean Pooling Preservation) The Riemannian Mean Pooling operation, de-
ned as µ = argminY∈Sm

++

k
i=1 δ

2
g(Σi,Y), preserves positive deniteness and the intrinsic man-

ifold structure of the pooled output. (Proof in Appendix)

Riemannian Soft Dropout To introduce stochastic regularization while preserving manifold con-
sistency, we employ the Riemannian Soft Dropout. This operation selectively reduces the influence
of specific SPD matrices while maintaining the overall geometric structure. The dropout operation
is formulated as a convex combination of SPD matrices, ensuring that the output remains SPD.

Theorem 2 (Convex Combination of SPD Matrices) If X1 and X2 are SPD, then any convex
combination,

X = αX1 + (1− α)X2 for 0 ≤ α ≤ 1 (14)

is also SPD. (Proof in Appendix)

This theorem guarantees that the output of Riemannian Soft Dropout remains within the SPD mani-
fold, maintaining geometric integrity even under stochastic perturbations.

Geodesic Prototype Layer The Geodesic Prototype Layer in EGN is designed to perform classifi-
cation based on geodesic distances between input SPD matrices and learned class prototypes. Let
P = P1,P2, . . . ,PC be the set of class prototypes, where each prototype Pc  Sm

++ is an SPD
matrix representing the geometric mean of the data points belonging to class c.

To classify a SPD matrix Σ, we compute its geodesic distance to each class prototype Pc. The
geodesic distance between the input matrix Σ and a prototype Pc  Sm

++ is defined as:

5
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d(Σ,Pc) = ∥ log(Σ−1/2PcΣ
−1/2)∥F . (15)

This expression computes the shortest path on the manifold under the affine-invariant Riemannian
metric (AIRM). A key property of this distance is its invariance under affine transformations (Ar-
signy et al., 2007), meaning that for any invertible matrix A:

d(AXA⊤,AYA⊤) = d(X,Y).

This invariance guarantees that geometric relationships among SPD matrices remain consistent even
after affine transformations, which is critical for reliable classification in Riemannian space. A
formal statement and proof sketch are provided in the Appendix.

Geodesic Attention Layer

The Geodesic Attention Layer leverages the geometry-aware geodesic distance to compute the at-
tention weights for classification. Given a set of class prototypes PcCc=1, the attention weights αc

are computed as probabilities over the negative geodesic distances from the input SPD matrix Σ to
each prototype:

αc =
exp(−d(Σ,Pc))C
j=1 exp(−d(Σ,Pj))

, (16)

where d(Σ,Pc) represents the geodesic distance between the input SPD matrix and the prototype
for class c. The geodesic attention mechanism ensures that the attention weights respect the Rie-
mannian geometry, as the distance computation inherently preserves the structure of SPD matri-
ces. The output of the Geodesic Attention Layer is the weighted sum of prototype predictions as
ŷ =

C
c=1 αc · Pc. The soft decision from the prediction layer incorporates the attention weights,

providing a smooth probability distribution over classes while maintaining manifold consistency, i.e.
p̂(y = c  Σ) = αc.

Theorem 3 (Geometric Consistency of Geodesic Attention Weights) The geodesic attention
weights calculated as softmax over geodesic distances between the input SPD matrix Σ and class
prototypes Pc are invariant under afne transformations, i.e.,

αc(AΣAT ) = αc(Σ) (17)

for any invertible matrix A  Rm×m.

This layer, therefore, preserves the inherent geometry throughout the attention calculation and pre-
diction, maintaining the fundamental properties of SPD matrices while making the classification
decision.

3.2 TRAINING STRATEGY AND BACKPROPAGATION

Training deep neural networks on Riemannian manifolds, especially with SPD data, requires tech-
niques that preserve geometric integrity. We introduce a geometry-aware training strategy leverag-
ing Riemannian Prototype Cross Entropy (RPCE) loss and a Gradient Lifting Mechanism to ensure
manifold-consistent backpropagation.

To optimize the Equivariant Geodesic Network (EGN) while maintaining the Riemannian geometry
of the SPD manifold, we employ RPCE loss, where Σ i denotes the SPD matrix of the i-th sample,
and Pc represents the class c prototype on the SPD manifold Sm

++. The RPCE loss, calculated us-
ing geodesic distances between SPD matrices and prototypes, inherently preserves the Riemannian
structure. The final loss function for a batch of size B is given by:

LRPCE = − 1

B

B

i=1

log p(yi  Σi). (18)

6
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This loss function inherently respects the Riemannian structure by directly integrating the geodesic
distances. To optimize the model, we employ the GeoOpt library, ensuring that gradient updates
preserve SPD properties through manifold-aware optimization techniques.

To compute the gradient of the loss function with respect to the geodesic distance, we start by
considering the softmax probability formulation:

p(c  Σi) =
exp(−d(Σi, Pc))
k exp(−d(Σi, Pk))

. (19)

The geodesic distance between the input SPD matrix Σi and prototype Pc is given by:

d(Σi, Pc) = ∥ log(Σ−1/2
i PcΣ

−1/2
i )∥F . (20)

Taking the derivative of the loss function of equation 18 with respect to the distance d(Σi, Pc):

∂LRPCE

∂d(Σi, Pc)
= − 1

B

1

p(yi  Σi)

∂p(yi  Σi)

∂d(Σi, Pc)
. (21)

From the probability formulation, the derivative of the probability with respect to the distance is:

∂p(c  Σi)

∂d(Σi, Pc)
= −p(c  Σi) [1− p(c  Σi)] . (22)

Combining Equations 21 and 22:

∂LRPCE

∂d(Σi, Pc)
=

1

B

1

p(yi  Σi)
· p(c  Σi) [1− p(c  Σi)] . (23)

After calculating the partial derivative, the gradient on the manifold is computed as:

GradLRPCE =

C

c=1

∂LRPCE

∂d(Σi, Pc)
· ∂d(Σi, Pc)

∂Σi
. (24)

The derivative of the geodesic distance with respect to Σi involves the logarithmic map:

∂d(Σi, Pc)

∂Σi
= −Σ

−1/2
i · Log(Σ−1/2

i PcΣ
−1/2
i ) ·Σ−1/2

i . (25)

To maintain SPD structure, the parameter update is performed using the exponential map:

Σ
(t+1)
i = Exp

Σ
(t)
i

(−ηGradLRPCE) , (26)

where η is the learning rate, and the exponential map ensures that the updated matrix remains SPD.

To handle the transition from classification logits to the manifold gradient, we employ the Gradient
Lifting Bridge:

Lifted Gradient =


c

p(c|Σi) × Pc. (27)

This ensures that the backpropagation respects the manifold constraints, avoiding the projection into
Euclidean space.

The proposed optimization framework, combining RPCE and Gradient Lifting, ensures geometric
consistency during backpropagation while leveraging manifold-aware optimization to preserve the
intrinsic structure of SPD matrices.

7
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Inference

During inference, the Equivariant Geodesic Network (EGN) processes an SPD matrix through
manifold-preserving transformations, including SPD formation, equivariant bilinear mapping, geo-
metric bias adjustment, and optional non-linear activation. The resulting features are aggregated via
Riemannian mean pooling and geodesic attention. Finally, the geodesic distances to class prototypes
are calculated, and attention mechanisms produce soft classification probabilities. This geometry-
aware inference maintains SPD properties throughout the forward pass.

As shown in Table 4 in appendix, while prior works use some isolated SPD components, EGN is
the first to unify all key geometry-preserving operations in a single, end-to-end trainable framework.
Our architecture maintains SPD structure and equivariance at every stage, supported by theoretical
guarantees.

4 EXPERIMENTS

In this section, we evaluate the performance of the proposed Equivariant Geodesic Network (EGN)
on various EEG-based tasks, including emotion recognition, imagined speech recognition, and
psychiatric disorder detection. The experiments are conducted on multiple publicly available
EEG datasets, demonstrating the effectiveness of EGN in handling SPD-valued data within brain-
computer interface (BCI) applications.

Emotion Recognition. Emotion recognition from EEG signals is a key topic in Brain-Computer
Interface (BCI) research, aiming to decode emotional states from neural activity. One of the widely
used datasets for this task is DEAP dataset (Koelstra et al., 2012), which contains EEG recordings
from 32 participants watching 40 music video clips, collected from 32 channels and labeled on a
scale of 0 to 10 based on arousal, valence, and dominance. Another one is SEED dataset includes
EEG data from 15 participants over 45 trials from 62 channels, labeled as happy, sad, or neutral
based on reactions to movie clips (Zheng & Lu, 2015). These datasets are standard benchmarks for
EEG-based emotion recognition (Khan et al., 2025).

Inner Speech Recognition. Inner speech recognition from EEG signals is an emerging area within
Brain-Computer Interface (BCI) research, focusing on decoding imagined speech without vocaliza-
tion. The Inner Speech Dataset used in this study consists of EEG recordings from 10 subjects,
where each participant imagines four different words (Up, Down, Right, Left) (Nieto et al., 2022).
The dataset comprises 559 trials for each class, collected under controlled conditions. The EEG sig-
nals are captured from multiple channels to capture nuanced brain activity associated with imagined
speech. This dataset serves as a benchmark for assessing the performance of models aimed at inner
speech classification.

Psychiatric Disorder. Psychiatric disorder detection from EEG signals is a vital application at the
intersection of neuroscience and mental health. The Psychiatric Disorders dataset used in this study
includes EEG recordings from 945 subjects across seven classes, representing various psychiatric
conditions (Park, 2021). This dataset captures complex brain activity patterns, providing a valuable
resource for developing automated classification models using Riemannian geometry-preserving
techniques within the Equivariant Geodesic Network (EGN).

Table 1: Performance comparison (mean ± std) of various methods on five tasks: Emotion Recog-
nition (DEAP, SEED), Imagined Speech (Inner Speech), Psychiatric Disorder Detection, and Face
Verification (PaSC). The proposed EGN variants outperform baselines, highlighting the benefits of
geometry-preserving learning.
Method DEAP SEED Inner Speech Psychiatric Disorders PaSC
2D CNN 52.1 ± 2.3% 35.3 ± 3.0% 34.2 ± 2.5% 33.4 ± 1.8% 67.5 ± 2.0%
EEGNet 63.5 ± 2.1% 64.1 ± 1.9% 50.9 ± 2.7% 57.7 ± 1.6% 70.1 ± 1.5%
SPDNet 74.2 ± 1.8% 78.3 ± 2.0% 79.4 ± 1.7% 76.5 ± 2.2% 87.1 ± 1.4%
SPDNetBN 81.1 ± 1.4% 85.3 ± 1.5% 86.5 ± 1.8% 85.2 ± 1.9% 89.4 ± 1.2%
RResNet 86.5 ± 1.3% 88.4 ± 1.1% 91.2 ± 1.2% 88.3 ± 1.7% 90.1 ± 1.0%
EGN (fixed architecture) 91.3 ± 1.0% 90.7 ± 1.1% 92.4 ± 1.1% 91.5 ± 1.2% 92.0 ± 0.9%
EGN (true geodesic) 93.1 ± 0.9% 92.8 ± 1.0% 93.6 ± 1.0% 93.3 ± 0.8% 93.7 ± 0.8%
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Table 2: Ablation results on the DEAP
dataset.
Model Variant Accuracy
EGN (Full) 93.1%
- w/o Geodesic Attention 89.4%
- w/o Geometric Bias 88.6%
- w/o Riemannian Pooling 87.9%
EGN (Fixed Arch.) 91.3%
EGN (True Geodesic) 93.1%

Table 3: Normalized efficiency comparison on DEAP.
MTA: Memory-to-Accuracy ratio; MTTA: Memory-
Time-to-Accuracy ratio. Lower is better.
Model Acc.(%) Mem(GB) Time(s) MTA MTTA
EEGNet 63.5 1.2 12 0.0189 0.2267
SPDNet 74.2 1.3 14 0.0175 0.2453
RResNet 86.5 1.5 17 0.0173 0.2947
EGN (Fix.) 91.3 1.5 12 0.0164 0.1972
EGN (True) 93.1 2.1 28 0.0226 0.6319

The results of our experiments are summarized in Table 1, comparing the performance of the pro-
posed Equivariant Geodesic Network (EGN) with baseline models, including 2D CNN, EEGNet,
SPDNet, SPDNetBN, RResNet with Affine Invariant metric, and two EGN variants (fixed architec-
ture and true geodesic). EGN consistently outperforms baselines across all tasks, including emotion
recognition from EEG (DEAP, SEED), imagined speech recognition (Inner Speech), and psychiatric
disorder detection. The true geodesic variant achieves the highest accuracy, showcasing the effec-
tiveness of geometry-preserving operations, especially in fine-grained tasks like psychiatric disorder
classification.

Face Verication (PaSC). To assess EGN’s generalization beyond EEG-based biomedical data, we
evaluate it on the PaSC face verification benchmark. Each video is converted into a 401×401 SPD
matrix by combining the covariance of deep face features with their mean (Huang & Gool, 2017).
EGN achieves 91.3% accuracy, outperforming SPDNet (87.1%) and RResNet (90.1%), demonstrat-
ing strong performance in real-world vision settings.

4.1 ABLATION STUDY

We perform an ablation study on the DEAP dataset to evaluate the contribution of key components
in EGN. As shown in Table 2, removing geodesic attention leads to the largest drop in accuracy,
followed by geometric bias and Riemannian pooling. We also compare the fixed (GPU-friendly)
and true geodesic (exact) variants of EGN: while the fixed architecture is faster, the true geodesic
variant achieves the best accuracy. Full ablation across all datasets is reported in Appendix Table 5.

4.2 COMPUTATIONAL EFFICIENCY ANALYSIS

Inspired by compute-efficiency trade-offs used in model scaling literature (Hoffmann et al., 2022;
Tan & Le, 2019), we define two normalized ratios: MTA =Memory / Accuracy andMTTA = (Mem-
ory ×Time) / Accuracy. Both quantify cost per unit performance, where lower is better. As shown
in Table 3, EGN (Fixed) achieves the lowest MTTA and competitive MTA among high-performing
models, outperforming SPDNet and RResNet in both accuracy and efficiency. Though the true
geodesic variant attains slightly higher accuracy, its computational overhead makes the fixed ver-
sion a more practical trade-off.

5 SUMMARY

In this paper, we proposed the Equivariant Geodesic Network (EGN), an end-to-end geometry-
preserving framework for learning on Riemannian manifolds, particularly the space of Symmetric
Positive Definite (SPD) matrices. By leveraging manifold-consistent operations, including equivari-
ant mappings, geometric bias adjustment, Riemannian mean pooling, and geodesic attention, EGN
ensures all transformations respect the intrinsic geometry of SPD data. Our experiments on EEG-
based emotion recognition, imagined speech classification, psychiatric disorder detection, and face
verification demonstrated the superior performance of EGN over Euclidean and pseudo-manifold
baselines, highlighting its ability to capture the geometric structure of SPD-valued data. Normalized
MTTA analysis further shows that EGN (Fixed) achieves state-of-the-art performance with lower
computational cost per accuracy, making it a scalable solution. While transformer- and BiLSTM-
based architectures have advanced EEG benchmarks, EGN achieves competitive or better results
with the added benefit of theoretical consistency under SPD manifold constraints.
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