© ©® N o O~ W N =

o

Is Your Benchmark Still Useful?
Dynamic Benchmarking for Code Language Models

Anonymous Author(s)
Affiliation
Address

email

Abstract

In this paper, we tackle a critical challenge in model evaluation: how to keep code
benchmarks useful when models might have already seen them during training.
We introduce a novel solution, dynamic benchmarking framework, to address this
challenge. Given a code understanding or reasoning benchmark, our framework dy-
namically transforms each input, i.e., programs, with various semantic-preserving
mutations to build a syntactically new while semantically identical benchmark. We
evaluated 10 popular language models on our dynamic benchmarks. Our evaluation
reveals several interesting or surprising findings: (1) all models perform signifi-
cantly worse than before, (2) the ranking between some models shifts dramatically,
and (3) dynamic benchmarks can resist against the data contamination problem.

1 Introduction

During the past period, the emergence of advanced Large Language Models (LLMs) such as the
GPT [27]], Llama [6]], and DeepSeek [5]] series have revolutionized the field of software development
through their exceptional performance in various code-related tasks, including but not limited to
code generation [17], debugging [21], and optimization [[16]. Rapid integration of LLM-driven
development tools and plugins into mainstream programming environments, exemplified by GitHub
Copilot [[7] and Cursor [4]], not only validates the practical utility of these models, but also significantly
enhances the productivity of developers in the software industry. This widespread adoption ultimately
underscores the transformative potential of LLMs in code understanding and reasoning, where LLMs
are expected to comprehend the underlying semantics in the input code [24].

During the rapid advancement of LLMs, the community has developed various benchmarks to
evaluate the code reasoning capabilities of the model. For instance, CRUXEval [9]] specifically targets
code execution proficiency, while Code Lingua [28]] and TransCoder [[19}|33]] focus on evaluating
code translation skills. The successful completion of these tasks requires LLMs to demonstrate
accurate comprehension of code semantics; hence, these benchmarks serve as effective indicators of
the LLMs’ code reasoning capabilities to a certain extent.

There are a few common practices to collect code for a benchmark. Some benchmarks automatically
crawl code from public databases such as GitHub [15| [26], while others take advantage of advanced
LLMs, such as ChatGPT, to generate new code [9]. In some cases, human experts are involved
in the manual writing of the code. Regardless of how the code is collected, all these open-source
benchmarks will eventually be available to the public for fair model evaluation. Modern LLMs are
trained on large amounts of data, both public and private. For instance, Qwen2.5-Coder’s report states
that they collect publicly available repositories on GitHub for training and remove key datasets using
a 10-gram overlap method [15]. However, removing key datasets does not guarantee that all data
used for evaluation is eliminated, and there is still a risk of data contamination. This raises a crucial
concern:

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75

def f(lists): def f(varil):

lists[1].clear() var1[1].clear()
lists[2] += lists[1] var1[2] += var1[1]
return lists[0] return vari1[0]
assert f([[395, 666, 7, 41, [1,\ assert f([[395, 666, 7, 41, [1,\
[4223, 11111) == [395, 666, 7, 41 @ @ [4223, 11111) == 395 (GYx]
[395, 666, 7, 4] ¥ & [395, 666, 7, 4] ¥ ®
(a) Original Version (b) Mutated Version

Figure 1: Answers produced by GPT-40 mini ® and DeepSeek V3 & The modified variables are
highlighted in blue for identification.

Are these benchmarks still useful for evaluating models if they are unavoidably included in the
training data?

Take Figure[I]as an example. On the left is a test case from the CRUXEval benchmark [9]. The test
case consists of a function f together with the input ([[395, 666, 7, 41, [1, [4223, 111]1]1)
— a list of lists — encoded in an assert. Models are tasked to predict the function’s output. The
function f executes a sequence of operations: first erasing the value in 1ists[1], then adding this
value to 1ists [2], and finally outputting the value of 1ists[0]. GPT-40 mini successfully emits the
correct output in this scenario. However, as shown in Figure[I(b)] after we change the variable name
into var1l, GPT-40 mini produces an incorrect result with even the wrong type (an integer instead of
a list of integers). This behavioral shift suggests that in Figure[I(a)| the descriptive variable name
lists may have assisted the model’s comprehension, potentially due to the contamination of variable
name lists in the training data. In Figure however, the absence of such hints, combined
with the common pattern of var1 [0] typically representing integer indices, likely led the model to
erroneously infer an integer return type. DeepSeek V3, on the other hand, successfully handles both
cases, indicating its reasoning beyond variable names. Nevertheless, the original benchmark fails to
differentiate these two models’ reasoning capabilities with this test case.

When the code in Figure(l(a)|appears in the training set of a model, such code cannot be effectively
used to measure the code understanding and reasoning capability of the model. Unfortunately, publicly
accessible benchmarks are persistently plagued by the issue of training data contamination, which
fundamentally compromises the integrity and reliability of evaluation results [1]]. This phenomenon
is particularly problematic given the remarkable memorization capacity of LLMs [[11]], where models
may have already been exposed to substantial portions of the evaluation datéﬂ which are open source
online, during their training phase. Such exposure enables models to potentially reproduce or closely
approximate memorized patterns rather than demonstrating genuine reasoning or generalization
capabilities. Consequently, this leads to inflating performance metrics that fail to accurately reflect
the models’ true ability to handle novel, unseen data, thereby undermining the validity of benchmark
comparisons and the meaningful assessment of model capabilities.

In this paper, we present dynamic benchmarkinﬁ a new benchmarking framework to address the
aforementioned challenge. Our framework takes an established code benchmark and mutates each
test case with a set of semantic-preserving mutations. All the mutated code snippets are syntactically
different from the original benchmark while having identical code semantics. For instance, Figure[T(b)]
is a mutant of Figure [I(a)] — despite being syntactically different, both test cases have identical
execution behaviors. We instantiate our framework using a set of mutations that work on both the
code syntax and code structure levels. At the code syntax level, we focus on variable naming, i.e.,
normalizing or randomizing variable names, to remove irrelevant assistance information from themE]
At the code structure level, we focus on three core code structures, i.e., assignment, conditional
branching, and loops. By requiring models to process these mutated versions, we ensure that the
evaluation accurately measures the model’s capacity for code understanding and reasoning, rather
than its ability to recall specific code patterns from its training data.

'Or code corpus of similar syntactic patterns.
Released at: https://www.kaggle.com/datasets/aspartic/dynamic-benchmark
3We do not use adversarially mutated variable names to deliberately mislead models.

https://www.kaggle.com/datasets/aspartic/dynamic-benchmark

76
77
78
79
80
81

82

83

84
85
86
87
88
89
90
91

92
93
94
95
96

97
98

99
100
101

102
103

104

105
106
107
108

We evaluate our mutations on four benchmarks covering two coding tasks. The results show that
in our new benchmarks, all models’ performance declines significantly, up to 40% lower than the
original benchmarks. In order to evaluate whether or not our dynamic benchmarking approach can
resist the data contamination problem, we fine-tuned a model with the original benchmark. The
results show that our dynamically constructed benchmarks are moderately affected and are still useful
in evaluating the fine-tuned model.

2 Methodology

2.1 Dynamic Benchmarking Framework

LLM-based code reasoning generates outcomes based on high-level instructions and source code.
Typically, the instructions describe the specific reasoning task in natural language, while the source
code represents the program to be analyzed. Generally, we expect the LLM to derive results
through reasoning based on the provided instructions and source code. Formally, for a given
benchmark with n test cases {< ins;, p;, 0; >},¢ € [1,n] and a model LLM under evaluation. The
benchmark evaluates how correct LLM (ins;, p;) is compared to the reference result o;. Ideally,
all {< ins;,p;,0; >} should be unknown to the model. However, due to the data contamination

problem, {< ins;, p;, 0; >} are often leaked.
[4223,111] Q
Ié: -_395 e
@ Mutati LLM | !
utations [395,666,7,4] O
Original Codes T

Mutated Codes LLM Responses Eval & Scores

Figure 2: The dynamic benchmarking framework.

Figure [2] shows the high-level workflow of our dynamic benchmarking framework. Given one
< ins;, p;, 0; >, our framework applies a set of semantics-preserving mutations M}, to transform the
test case into multiple ones as follows:

< ’LTLS“p; = Mkl(. 'Mkm(Pi))aOi >,

where M}, is one of the available mutations. The new program p; is sequentially mutated from the
original program p. Since all M, are semantics-preserving, the final reference result is still o;. All
the new test cases are dynamically generated from the existing benchmark and are then used for
evaluating models. To ensure the usability of newly generated test cases, each mutation method is
governed by the following two fundamental requirements:

Semantic Equivalence. The mutated program p’ must maintain execution behavior identical to the
original program p. Formally, for all possible inputs = of program p, the following condition should

be satisfied:
va, [[plle = [[Mk; (p)]]a

where [[p]], denotes the execution result of program p on the input 2. This requirement guarantees
the mutation preserves the program’s semantics.

Syntactic Divergence. The mutated program p’ should be syntactically different from the original
program p in a non-trivial manner. This property ensures that even if p is included in the training set
of a model, p’ can still be used to evaluate the model.

In the following sections, we will propose a series of mutation methods at two levels: code syntax
and code structure.

2.2 Code Syntax Mutations

In the process of models’ reasoning about code, conventional static benchmarks typically employ
meaningful variable names, which inadvertently provide models with additional cues that may
influence their reasoning process. This phenomenon allows models to potentially utilize syntactic
sugar information, particularly through variable naming patterns, as auxiliary features to facilitate

109
110
111
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126

127

128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144

def f(lst: list): def f(varl: list): def f(OxL: list):

length = len(lst) var2 = len(varl) Rjm = len(QxL)
for i in range(length): for var3 in range(var2): for kpN in range(Rjm):
if i == 3: if var3 == 3: if kpN == 3:
Ist[i]l =5 var1[var3] = 5 QxLLkpN] = 5
return lst return varl return QxL
(a) Original Code (b) Variable Normalization I (c) Variable Normalization II

def f(lst: list): def f(Ist: list):

def f(lst: list): length = len(lst) -
length = len(lst) i=0 ieng?h‘— len(lii) hy:
for i in range(length): while i < length: or 1f1? i?nieanznst :
if 1 == 3: if i == 3: -

Ist[il =7 - 2 1st[i] = 5 ((81>tﬁ?§r585< 6))

return 1lst i 4= 1 stiil=
return lst
return 1lst

(d) Constant Unfolding (e) For to While (f) Condition Augmentation

Figure 3: Illustrative examples of our code syntax and code structure mutations. (a) is the code from
the original benchmark, while (b)-(f) are new codes by applying one of our mutations.

code comprehension and reasoning. As demonstrated in Figure[I] models can leverage semantically
rich variable names to infer program functionality without fully grasping the underlying algorithmic
logic. Moreover, once the static benchmark is leaked into the training set, variable names will become
convenient objects that can be easily memorized.

Variable Normalization. To address these critical issues, we propose implementing Variable Nor-
malization as a methodological solution to build a dynamic benchmark. Specifically, we implement
two distinct normalization schemes: VarNorml, a sequential naming convention (e.g., varl, var2,
var3, ...) that maintains variable uniqueness while eliminating semantic cues, and VarNormlI, a
fixed-length randomized string generation system that ensures complete obfuscation of any potential
naming-related information. Figure [3(a)| presents a piece of original code with a format similar to
CRUXEval. Figure and Figure are the new mutants after applying VarNormlI and VarNormII
mutations. As the figure illustrates, variable normalization effectively eliminates the syntactic sugar
information embedded in descriptive variable names such as 1ists and length. By obfuscating the
semantic information contained in variable names, this technique effectively forces LLMs to focus on
the underlying structural and logical relationships within the code rather than relying on superficial
naming patterns. Furthermore, since variable normalization exclusively modifies variable names
without altering the underlying code structure, it inherently guarantees both semantic equivalence
and syntactic divergence between the original and mutated code.

2.3 Code Structure Mutation

Understanding code involves more than just syntactic information. It also involves understanding
how data moves through code (data flow) and how it makes decisions (control flow). To address
data contamination in such code structures, we present a structural transformation approach for
dynamic benchmark construction. Our approach systematically changes the structure of code samples
while preserving their semantic equivalence and functional integrity. Specifically, we focus on three
fundamental and ubiquitous code structures that represent core programming constructs: Assignment,
Loop, and Branch. We employ Python syntax as our demonstration framework to systematically
illustrate the implementation of our mutation methodology.

Assignment. Our analysis specifically targets the fundamental case of constant variable assignment,
as exemplified by basic statements like a = 5. To address this, a mutation technique termed
Constant Unfolding has been developed, which systematically decomposes constants (e.g., integers)
into equivalent arithmetic expressions while rigorously preserving semantic equivalence throughout
the transformation process. This transformation is a reversion of the classical constant folding
optimization in compiler design [31]]. As demonstrated in Figure[3(d)] Constant Unfolding transforms
the assignment statement lists[i] = 5 into lists[i] = 7 - 2. This mutation method only
transforms an integer to an expression, so the semantic equivalence is maintained. Moreover, the
proportion of text requiring modification remains minimal. By transforming straightforward integer

145
146

147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162
163

164
165

167
168
169
170
171
172
173
174
175

176

177
178
179
180
181
182
183

184

185

186

187

189

190

191
192

assignments into equivalent arithmetic expressions, we create a subtle yet effective barrier against
simple pattern recognition while preserving the essential reasoning challenges.

Loop. In the domain of iterative control structures, two primary loop paradigms exist: for loops
and while loops. These loop constructs, while syntactically distinct, achieve comparable computa-
tional complexity and can be mutually transformed through systematic restructuring. Our mutation
framework incorporates the For to While strategy, which transforms all for loops into functionally
equivalent while loops and vice versa, as exemplified in Figure This mutation strategy also
meets our requirements for mutation methods. Firstly, the semantic equivalence between for loops
and while loops is guaranteed due to their interchangeable nature in representing iterative processes.
This transformation maintains identical program behavior while introducing syntactic variations.
Secondly, the modification scope is significantly limited, as only the loop header requires alteration.

Branch. Within conditional branching structures, we implement a transformation technique called
Condition Augmentation, which introduces tautological expressions into existing conditions while
preserving the original logical outcome. At a high level, given an if condition, it can always be
equivalently transformed in the following way:

if(C) < if(C & True) < if(C || False)

Guided by this principle, our implementation instantiates the condition True or False with pre-
determined yet complex expressions. For example, as illustrated in Figure 3(f)} we augment the
condition i == 3 by incorporating a tautological expression (8 > 6) or (8 < 6), resulting in the
modified condition i == 3 and ((8 > 6) or (8 < 6)) while maintaining the original logical
equivalence. In addition, there are some optional tautology expressions, such as True or False. In
actual experiments, we will use these tautology expressions in combination. The mutation approach
solely introduces tautological conditions in the branching part, leaving the code semantics unaffected.
Thus, it meets our requirements.

Discussion: The ‘“naturalness” of mutated code. We deliberately exclude considerations of code
“naturalness” in our evaluation framework for several reasons. First, existing naturalness metrics, such
as language model likelihoods [18}132], are inherently biased towards their training data distributions
and fail to capture the nuanced aspects of code quality, such as idiomatic usage, coding conventions,
and style consistency. More fundamentally, there exists no precise or universally accepted metric
for evaluating code naturalness, making such assessments inherently subjective and potentially
misleading. This limitation is particularly relevant given that many benchmarks, such as CRUXEval’s
test functions which are generated using Code Llama, are deliberately constructed rather than derived
from real-world code. In this context, the pursuit of naturalness becomes a secondary concern. For
code language models, the true value of a benchmark lies in its ability to rigorously evaluate a model’s
fundamental capabilities: its understanding of code semantics and its capacity for logical reasoning,
rather than the superficial syntax.

2.4 Multi-Mutation

All the aforementioned mutation methods operate independently of each other. As a result, these
methods can be combined for use, enabling multi-mutation. This combined approach still satisfies
our two key requirements for mutation methods. Firstly, since none of the individual mutations affect
the program’s execution outcome, multi-mutation likewise preserves the program’s original behavior.
Secondly, while individual mutations introduce minimal changes to the code text, the cumulative
impact of multi-mutation remains limited and manageable. Therefore, this approach can be utilized
effectively to build dynamic benchmarks and further test the code reasoning capabilities of LLMs.

3 Experimental Setup
Our evaluation aims to answer the following Research Questions (RQs):

1. (Impact of single mutation) How does models’ performance change under each single mutation?

2. (Impact of multi-mutation) How does models’ performance change under multi-mutation?

3. (Mitigation of data contamination) Can dynamic benchmarking mitigate data contamination?

4. (Complexity of dynamic benchmarks) How much additional complexity does our approach
introduce to the original benchmarks?

We selected a variety of both closed and open-source LLMs. Specifically, we chose models including
GPT-40 mini [27], DeepSeek V3 [3]], Llama 3.1 series [8]], Qwen2.5-Coder series [[14]], and StarCoder2

193
194
195
196
197
198

199
200
201
202
203

204
205
206
207
208

209

210

211
212
213

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

237
238
239
240
241
242

series [26]. Our models are sourced from the APIs provided by OpenRouteIE] and the open-source
models available on Hugging Faceﬂ In our experiments, we select two popular tasks: code execution
and code translation. For code execution, we selected the CRUXEval benchmark [9]], while for code
translation, we selected the Code Lingua benchmark (which includes two sub-datasets, Avatar and
CodeNet) [28] and the TransCoder benchmark [19}33]], on which we conduct experiment on Python
to Java translation.

For all LLMs, we set the temperature to 0.2 to evaluate their Pass@ 1 metric [2]]. We generate 5 results
for each sample in the benchmarks. On the aforementioned four datasets, we applied five distinct
mutation methods to each program within the datasets. These methods, as outlined in Section [2}
include two types of Variable Normalization (VarNormlI and VarNormlII), Constant Unfolding
(ConstUnfold), For to While (For2While), and Condition Augmentation (CondAug).

As for multi-mutation, since we have five different mutation methods, there are dozens of combina-
tions in theory. For a practical evaluation overhead, we randomly select three mutation combinations
that cover all mutation methods from different categories: FUV (For2While (F) + ConstUnfold (U) +
VarNormlI (V)), AUV (CondAug (A) + ConstUnfold (U) + VarNormlI (V)) and AFU (CondAug (A)
+ For2While (F) + ConstUnfold (U)).

4 Results and Analysis
4.1 RQI1: Impact of Single Mutation

Due to space constraints, we present only the model Pass@1 performance results on both original
static and our dynamic CRUXEval and CodeNet benchmarks in the main text. Table [I] shows the
results.

General Tendency. The table reveals a consis-
tent performance degradation tendency across

. . . . Origin ¢ Mutation
most mutations, indicating that models demon- 1,

strate significantly reduced comprehension ca- N
pabilities when processing mutated code com- .

pared to their performance on original code.) T
For instance, after applying the Constant Un- g *
folding method, the performance of many mod- 2 '

els dropped by more than 10% compared to e

their performance on the original benchmark. & l

This significant decline clearly demonstrates

that models exhibit reduced code reasoning ca- 30 J‘
pablhtles on dynamic benChmarkS’ thereby Val- Origin VarNorml VarNormll ConstUnfold For2While CondAug
idating the effectiveness of our approach. More- Mutation Type

over, we observe that in a small number of cases,

models exhibit slightly improved reasoning ca- Figure 4: Comparison of model performance dis-
pab]]ltles on the mutated benchmark Compared tributions under different mutations of CodeNet.
to the original benchmark, particularly in the

StarCoder2 series. This phenomenon may be attributed to the fact that the StarCoder2 models are not
instruction-tuned, resulting in weaker adherence to instructions. As a consequence, their performance
on the benchmark may not fully reflect their potential and is more susceptible to randomness, leading
to such reversals.

Benchmark Effectiveness Enhancement. The significant performance drop of models on the dynamic
benchmark also enhances the usability of certain benchmarks. For example, as shown in Table [T}
on the original CodeNet benchmark, the GPT-40 mini model achieves a performance of 90.20%,
indicating that the original CodeNet benchmark is relatively simple and no longer suitable for
evaluating highly advanced models. However, after applying the Constant Unfolding mutation, the
Pass@1 performance of GPT-40 mini drops to 72.49%. This demonstrates that our method makes this
benchmark useful again by reintroducing meaningful differentiation among state-of-the-art models.

*https://openrouter.ai/
https://huggingface.co/

https://openrouter.ai/
https://huggingface.co/

243
244
245
246
247
248
249
250
251
252
253
254

255

Table 1: Model Pass@1 performance on original and single mutated CRUXEval and CodeNet
benchmarks. Performance drops of more than 10% are highlighted.

Type[Model |Origin|VarNormI VarNormII ConstUnfold For2While CondAug

DeepSeek V3 | 65.80 |63.91 (-1.89) 63.01 (2799 46.70 (-19.10) 58.01 (-7.79) 63.07 (-2.73)
GPT-40 mini 53.60 |51.80 -1.80) 52.08 (-1.52) 34.51 (-19.09) 47.61 (-599) 54.71 (-3.89)
Llama 3.1 70B | 53.20 |51.21 -199) 51.94 -126) 34.95 (-18.25) 45.95 (-725) 53.10 (-0.10)
T;‘ Llama 3.1 8B | 31.20 |30.10 -1.100 28.46 (2.74) 21.80 (-9.40) 20.46 (-10.74) 23.96 (-7.24)
a Qwen2.5 32B | 65.50 [63.59 -1.91) 63.02 (-2.48) 40.26 (2524) 57.22 (-828) 60.43 (-5.07)
D |Qwen2.514B | 58.30 |57.27 -1.03) 57.10 -1200 39.21 (-19.09) 53.01 (-5.29) 58.98 (+0.68)
6 Qwen2.5 7B 4570 |43.77 193 43.97 (-1.73) 26.55 (-1915)42.03 (3.67) 42.14 (:356)
StarCoder2 15B| 33.10 (12.43 (-20.67) 17.07 (-16.03) 21.45 (-11.65) 31.37 -1.73) 29.20 (-3.90)
StarCoder2 7B | 33.80 [24.64 (9.16) 25.27 (-853) 20.84 (-12.96) 33.27 (-053) 32.94 (-0.86)
StarCoder2 3B | 30.00 |25.32 (4.68) 24.94 (-5.06) 20.79 (921) 27.97 (2.03) 31.76 (+1.76)
Deepseek V3 | 94.70 [96.73 (+2.03) 96.87 (+2.17) 86.98 (-7.72) 89.80 (-4.90) 95.22 (+0.52)
GPT-40 mini 90.20 [92.20 +2.000 91.80 (+1.60) 72.49 (-17.71) 83.10 (-7.100 88.43 (-1.77)
Llama 3.1 70B | 88.00 [{79.80 (-820) 80.86 (-7.14) 74.32 (-13.68) 75.80 (-12.20) 81.34 (-6.66)
¢ |Llama 3.1 8B | 66.70 |64.00 (2700 65.87 (0.83) 43.67 (-23.03) 44.20 (2250) 56.27 (-10.43)
% Qwen2.532B | 92.70 92.80 (+0.10) 92.27 (-0.43) 74.32 (-18.38) 79.40 (-13.30) 86.57 (-6.13)
B |Qwen2.514B | 86.30 |86.20 -0.10) 85.09 (-121) 71.66 (-14.64) 71.90 (-14.40) 80.60 (-5.70)
®) Qwen2.5 7B 84.10 |84.00 -0.100 82.40 -1.700 63.31 (-20.79) 61.80 (-22.30) 81.04 (-3.06)
StarCoder2 15B| 58.60 |55.20 (-3.40) 47.60 (-11.00) 40.95 (-17.65) 41.60 (-17.00) 62.54 (+3.94)
StarCoder2 7B | 43.00 |41.07 (-193) 38.13 (4.87) 26.18 (-16.82) 40.00 (-3.00) 47.46 (+4.46)
StarCoder2 3B | 50.70 |43.87 (-6.83) 42.93 7777 30.06 (-20.64) 24.80 (-25.90) 51.94 (+1.24)

Performance Differentiation. Moreover, the dynamic benchmark enhances the differentiation of
performance among various models by applying mutations to the benchmark. Figure] presents box
plots illustrating the performance distribution of different models on the CodeNet benchmark before
and after mutation. As shown in the figure, the performance distribution of models after mutation is
significantly more spread out compared to the original static benchmark, which facilitates a better
distinction between the capabilities of different models. This is also evident in specific examples. On
the original CodeNet benchmark, the DeepSeek V3 model achieves a performance of 94.70%, while
the GPT-40 mini model reaches 90.20%, indicating a relatively small gap between the two. However,
after applying the Constant Unfolding mutation, the Pass@1 performance of DeepSeek V3 drops to
86.98%, whereas GPT-40 mini’s performance declines significantly to 72.49%, resulting in a much
larger gap. This demonstrates that the dynamic benchmark enables a more effective evaluation of the
performance differences among models.

4.2 RQ2: Impact of Multi-Mutation

Here, we present a comparison between static and dynamic CRUXEval and CodeNet benchmarks
based on multi-mutation, as shown in Table @} By combining different mutation methods, the results
show some new variations compared to using a single mutation method. We will explain these
changes in detail below.

Drastic Performance Drop. From the table, it can be observed that the performance drop caused by
multi-mutation is more significant than that of a single mutation. On CRUXEval, the performance
drop can reach as high as 20% or even close to 30%. On CodeNet, many models incur 30% to 50%
performance drop. These phenomena indicate that our method achieves even better results when
applied in combination.

Ranking Changes. In Table [I] although the absolute performance of the models has declined, the
relative ranking changes are not significant. However, after applying multi-mutation, the relative
rankings of the models have undergone observable changes. For example, in the CodeNet benchmark,
the rankings of the three models from the Qwen2.5-Coder series experienced significant changes.
The original ranking is 32B >14B >7B, but after applying the FUV method, the ranking becomes 14B
>32B >7B, and with the AUV method, the ranking shifts to 7B >14B >32B. These ranking changes
also suggest that, when using the original static benchmark, the inference performance of these
models might not have been accurately evaluated due to issues like data contamination. Additionally,
the CodeNet Benchmark was released in January 2024, while the data collection for Qwen2.5-Coder

Table 2: Model Pass@1 performance on original and multiple mutated CRUXEval and CodeNet
benchmarks. Performance drops of more than 20% are highlighted.

Type | Model | Origin | FUV AUV AFU
DeepSeek V3 65.80 45.93 (-19.87) 52.21 (-13.59) 50.63 (-15.17)
GPT-40 mini 53.60 31.28 (-22.32) 42.18 (-11.42) 37.94 (-15.66)
Llama 3.1 70B 53.20 36.79 (-16.41) 40.89 (-12.31) 37.57 (-15.63)
Llama 3.1 8B 31.20 15.93 (-15.27) 23.26 (-7.94) 20.48 (-10.72)

CRUXEval Qwen2.5-Coder 32B 65.50 37.25 (-2825) 47.82 (-17.68) 39.58 (-25.92)
Qwen2.5-Coder 14B 58.30 33.90 (-24.40) 47.71 (-10.59) 39.15 (-19.15)
Qwen2.5-Coder 7B 45.70 31.61 (-14.09) 32.02 (-13.68) 31.96 (-13.74)
StarCoder2 15B 33.10 12.07 (-21.03) 8.57 (-24.53) 28.36 (-4.74)
StarCoder2 7B 33.80 20.33 (-13.47) 20.05 (-13.75) 32.49 (-1.31)
StarCoder2 3B 30.00 16.59 (-13.41) 20.11 (-9.89) 25.19 (-4.81)
DeepSeek V3 94.70 78.93 (-15.77) 89.68 (-5.02) 78.54 (-16.16)
GPT-40 mini 90.20 T70.71 (-19.49) 75.48 (-14.72) 56.58 (-33.62)
Llama 3.1 70B 88.00 43.21 (-44.79) 74.41 (-13.59) 53.17 (-34.83)
Llama 3.1 8B 66.70 25.00 (-41.70) 30.11 (-36.59) 16.10 (-50.60)

CodeNet Qwen2.5-Coder 32B 92.70 58.21 (-34.49) 63.66 (-29.04) 51.95 (-40.75)
Qwen2.5-Coder 14B 86.30 58.93 (-27.37) 69.89 (-16.41) 50.00 (-36.30)
Qwen2.5-Coder 7B 84.10 40.71 (-43.39) 73.55 (-10.55) 40.24 (-43.86)
StarCoder2 15B 58.60 32.86 (-25.74) 56.34 (-2.26) 25.12 (-33.48)
StarCoder2 7B 43.00 18.21 (-24.79) 35.05 (-7.95) 16.34 (-26.66)
StarCoder2 3B 50.70 19.29 (-31.41) 43.01 (-7.69) 19.27 (-31.43)

274 was completed by February 2024. Our results indicate that some models may be implicitly affected

275 by the data contamination issue.

276 4.3 RQ3: Mitigation of Data Contamination

277 In this section, we further illustrate the significant im-

278 pact of data contamination and how our method can I ———

279 effectively mitigate these issues. In RQ1 and RQ2,

280 we find that the performance trends of different mod- ©°]

281 els under our dynamic benchmark are generally con- g5

282 sistent. Due to computational resource constraints, é

283 in this section, we select the Qwen2.5-Coder 1.5B 5;:40

28¢ Instruct model and fine-tune it using the CRUX- <30

285 Eval dataset to simulate the data contamination is- ¢

286 sue. In this experiment, we use a learning rate of &

287 le-4, a batch size of 2, and 20 training epochs. We 10 m rﬂ

288 then evaluate the model on both the original static oo o e o

289 CRUXEval benchmark and our dynamic benchmark. Type

290 Since the previous evaluation shows the strong ca-

201 pability of multi-mutation, we use multi-mutation as Figure 5: Comparison of Pass@1 scores on
292 the dynamic benchmarking approach. The results are ~static and dynamic CRUXEval, with and with-
203 shown in Figure E} out(w/o0) fine-tuning the model.

294 It shows that the fine-tuned model achieves approxi-

295 mately three times higher Pass@ 1 scores than the original model, indicating that it has memorized the
296 dataset. This demonstrates that data contamination can severely undermine the ability of traditional
297 static benchmarks to accurately reflect a model’s true code reasoning capabilities. Moreover, when the
298 fine-tuned model is evaluated on the dynamic benchmark, the Pass@1 scores also decline compared
299 to those on the static benchmark. Particularly for the FUV method, the impact of fine-tuning on its
300 evaluation is almost negligible. This effectively demonstrates that our approach maintains its efficacy
301 in assessing the model’s genuine reasoning capabilities, even in scenarios where test data has been
302 incorporated into the training dataset, thereby meeting the criteria for syntactic divergence.

303

305
306
307
308
309
310
311
312
313

314

315

316
317
318
319
320
321
322
323
324

325

326
327

329
330
331
332
333
334

335

336
337
338
339
340
341
342
343
344

345

346
347
348
349
350
351
352

4.4 RQ4: Complexity of Dynamic Benchmarks

In Table we compare the similarity be- Table 3: BLEU scores of different mutated bench-
tween benchmarks obtained by different mu- marks compared to the original benchmarks

tated methods and original benchmarks, using
the BLEU score [29] to measure the similar- Benchmark VI~ VII CU F2W CA

ity. The results show that the BLEU score of CRUXEval 43.35 40.70 70.41 44.45 55.64
the vast majority of dynamic benchmarks com- Avatar 50.28 50.22 70.36 63.19 72.43
pared to the original benchmarks reaches above CodeNet 56.46 56.91 69.55 59.92 67.45

50, indicating that our method effectively re- TransCoder 37.53 37.50 61.03 5221 64.93
duced the model’s reasoning performance with-

out significantly altering benchmarks.

5 Related Work

5.1 Code Reasoning

In the domain of code, various benchmarks are developed to evaluate the code reasoning abilities of
LLMs. For example, CRUXEval [9] concentrates on code execution challenges by supplying LLMs
with a function and asking them either to produce outputs corresponding to given inputs or to identify
a set of inputs that would yield a specified output. Meanwhile, benchmarks such as Code Lingua [28]]
and TransCoder [[19, [33] are geared towards code translation, aiming to assess LLMs’ ability to
convert code from one language to another. Several other benchmarks have also been developed to
assess the code reasoning capabilities of LLMs across diverse tasks. For instance, QuixBugs [23]]
evaluates models’ proficiency in program repair, while CoDesc [12] and similar benchmarks focus
on assessing models’ ability to code summarization.

5.2 Mutation Testing

Mutation testing has been extensively studied as a powerful technique for evaluating the effectiveness
of test suites and improving software quality. A representative example can be found in compiler
testing, where mutation testing of input programs has been effectively employed to identify subtle
bugs and optimization issues in modern compilers [20} 130, [22]. In the domain of LLM testing, Hooda
et al. [13]] conduct a comparative analysis of LLMs’ performance on code generation tasks using both
original and mutated datasets, revealing that current models demonstrate a limited understanding of
fundamental programming concepts such as data flow and control flow. Moreover, Chen et al. [3]
enhances the evaluation accuracy of large language models by modifying the meaning and context of
the natural language descriptions in programming problems.

5.3 Benchmark Reliability

Benchmark reliability has been a persistent issue throughout the development of deep learning, espe-
cially since LLMs became mainstream in the academic community. The remarkable generalization
capabilities and task-handling abilities of LLMs have led to the creation of numerous benchmarks
tailored to various tasks. However, the quality of these benchmarks varies significantly, and prior
research has already highlighted this problem. For example, Gulati et al. [10] proposed Putnam-
AXIOM, demonstrating that current large models still perform poorly on mathematical problems.
Similarly, Liu et al. [25] introduced EvalPlus, which rigorously evaluates LLMs’ code generation
capabilities through mutation-based methods. Our work further advances LLM evaluation by focusing
on code reasoning tasks, thereby contributing to a more comprehensive assessment system.

6 Conclusion

In this paper, we tackle a critical challenge in model evaluation: how to keep code benchmarks
meaningful when models might have already seen them during training. Our solution, dynamic
benchmarking, automatically transforms test programs while keeping their semantics intact. Our
experiments show this approach works remarkably well — models struggle more with our transformed
benchmarks, and even when a model is fine-tuned on the original benchmark, our dynamic versions
still provide reliable evaluation. This opens up new possibilities for keeping model evaluation fair
and meaningful as models continue to advance.

353

354
355

356
357
358
359
360
361
362
363
364
365
366
367

368
369
370

371
372

373
374
375

377
378

379
380

381
382
383

384
385
386

387
388
389
390

391
392
393

394
395
396
397
398
399

401
402

References

[1] Rachith Aiyappa, Jisun An, Haewoon Kwak, and Yong-Yeol Ahn. Can we trust the evaluation
on chatgpt? arXiv preprint arXiv:2303.12767, 2023.

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models trained on code, 2021. URL https:
//arxiv.org/abs/2107.03374,

[3] Simin Chen, Pranav Pusarla, and Baishakhi Ray. Dynamic benchmarking of reasoning
capabilities in code large language models under data contamination, 2025. URL https:
//arxiv.org/abs/2503.04149,

[4] Cursor. Cursor: The ai-first code editor, 2023. URL https://www.cursor.com/. Accessed:
2023-10-30.

[5] DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu,
Chenggang Zhao, Chengqi Deng, et al. Deepseek-v3 technical report, 2024. URL https:
//arxiv.org/abs/2412.19437,

[6] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783,2024.

[7] Nat Friedman. Introducing github copilot: your ai pair programmer. https.//github.blog/2021-
06-29-introducing-github-copilot-ai-pair-programmer, 2021.

[8] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, et al. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783|

[9] Alex Gu, Baptiste Roziere, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and
Sida I Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv
preprint arXiv:2401.03065, 2024.

[10] Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno de Moraes Dumont,
and Sanmi Koyejo. Putnam-axiom: A functional and static benchmark for measuring higher
level mathematical reasoning. In The 4th Workshop on Mathematical Reasoning and Al at
NeurlPS’24, 2024.

[11] Valentin Hartmann, Anshuman Suri, Vincent Bindschaedler, David Evans, Shruti Tople, and
Robert West. Sok: Memorization in general-purpose large language models, 2023. URL
https://arxiv.org/abs/2310.18362.

[12] Masum Hasan, Tanveer Muttaqueen, Abdullah Al Ishtiaq, Kazi Sajeed Mehrab, Md. Mahim An-
jum Haque, Tahmid Hasan, Wasi Ahmad, Anindya Igbal, and Rifat Shahriyar. CoDesc: A large
code—description parallel dataset. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli,
editors, Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages
210-218, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.findings-acl.18. URL https://aclanthology.org/2021.findings-acl.18/,

[13] Ashish Hooda, Mihai Christodorescu, Miltiadis Allamanis, Aaron Wilson, Kassem Fawaz, and
Somesh Jha. Do large code models understand programming concepts? a black-box approach.
arXiv preprint arXiv:2402.05980, 2024.

10

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2503.04149
https://arxiv.org/abs/2503.04149
https://arxiv.org/abs/2503.04149
https://www.cursor.com/
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2310.18362
https://aclanthology.org/2021.findings-acl.18/

403
404
405

406
407
408
409
410

411
412
413

414
415

416
417

418
419
420

421
422

423
424

425
426
427

428
429
430
431

432
433
434

435

437

438
439
440
441
442
443
444
445
446
447
448
449

451
452
453

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jia-
jun Zhang, Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei
Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng
Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL https:
//arxiv.org/abs/2409.12186,

Yoichi Ishibashi and Yoshimasa Nishimura. Self-organized agents: A 1lm multi-agent framework
toward ultra large-scale code generation and optimization, 2024. URL https://arxiv.org/
abs/2404.02183|

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large
language models for code generation, 2024. URL https://arxiv.org/abs/2406.00515.

Ahmed Khanfir, Matthieu Jimenez, Mike Papadakis, and Yves Le Traon. Codebert-nt: code
naturalness via codebert, 2022. URL https://arxiv.org/abs/2208.06042.

Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lample. Unsuper-
vised translation of programming languages, 2020. URL https://arxiv.org/abs/2006.
03511.

Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence modulo inputs.
ACM Sigplan Notices, 49(6):216-226, 2014.

Kyla Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund. Chatdbg: An
ai-powered debugging assistant, 2024. URL https://arxiv.org/abs/2403.16354.

Shaohua Li, Theodoros Theodoridis, and Zhendong Su. Boosting compiler testing by injecting
real-world code. Proc. ACM Program. Lang., 8(PLDI), June 2024. doi: 10.1145/3656386. URL
https://doi.org/10.1145/3656386.

Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. Quixbugs: A multi-
lingual program repair benchmark set based on the quixey challenge. In Proceedings Companion
of the 2017 ACM SIGPLAN international conference on systems, programming, languages, and
applications: software for humanity, pages 55-56, 2017.

Changshu Liu, Shizhuo Dylan Zhang, Ali Reza Ibrahimzada, and Reyhaneh Jabbarvand. Code-
mind: A framework to challenge large language models for code reasoning, 2024. URL
https://arxiv.org/abs/2402.09664.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatgpt really correct? rigorous evaluation of large language models for code generation.
Advances in Neural Information Processing Systems, 36, 2024.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian,
Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,
Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo,
Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauf}, Naman Jain, Yixuan
Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang,
Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra,
Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen
Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite,
Carlos Mufioz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. Starcoder 2 and the stack v2: The next generation, 2024. URL
https://arxiv.org/abs/2402.19173|

OpenAl, Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o0 system card. arXiv
preprint arXiv:2410.21276, 2024.

11

https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2404.02183
https://arxiv.org/abs/2404.02183
https://arxiv.org/abs/2404.02183
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2208.06042
https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2403.16354
https://doi.org/10.1145/3656386
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.19173

454
455
456
457
458

459

460

461

462

464

465
466

467

468

469

470

471
472

473

474
475
476
477

478

479
480

481

482

483

484

[28] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi,
Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. Lost
in translation: A study of bugs introduced by large language models while translating code.
In 2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE), pages
866-866. IEEE Computer Society, 2024.

[29] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pages 311-318, 2002.

[30] Chengnian Sun, Vu Le, and Zhendong Su. Finding compiler bugs via live code mutation. In Pro-
ceedings of the 2016 ACM SIGPLAN international conference on object-oriented programming,
systems, languages, and applications, pages 849—-863, 2016.

[31] Niklaus Wirth, Niklaus Wirth, Niklaus Wirth, Suisse Informaticien, and Niklaus Wirth. Compiler
construction, volume 1. Addison-Wesley Reading, 1996.

[32] Chen Yang, Junjie Chen, Jiajun Jiang, and Yuliang Huang. Dependency-aware code naturalness.
Proc. ACM Program. Lang., 8(OOPSLA2), October 2024. doi: 10.1145/3689794. URL
https://doi.org/10.1145/3689794,

[33] Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan Hong, Xiaoxue
Ma, Zhi Jin, and Ge Li. Exploring and unleashing the power of large language models in
automated code translation, 2024. URL https://arxiv.org/abs/2404.14646.

A Benchmark Test Case Counts

Table] enumerates the number of test cases in each benchmark and mutation method. Note that not
all test cases can be mutated by each method. For example, out of all 800 test cases in CRUXEval,
there are 306 cases containing for loops and thus can be mutated by For2While. In our evaluation, we
only count the mutated test cases when evaluating each mutation method.

Table 4: #test cases in the original benchmarks and #test cases that can be mutated by each mutation
method.

Mutation CRUXEval Avatar CodeNet TransCoder

Original 800 250 200 568
VarNorml 785 131 150 568
VarNormlI 785 131 150 568
ConstUnfold 455 239 169 546
For2While 306 181 100 349
CondAug 374 191 134 396

B Detailed Experimental Results

In this section, we present all of our experimental results, which generally align with the trends
reported in Section 4]

B.1 More Results on Single Mutated Experiments

More experimental results on single mutated benchmark are displayed in Table 5]

B.2 More Results on Multiple Mutated Experiments

More experimental results on single mutated benchmark are displayed in Table [6]

12

https://doi.org/10.1145/3689794
https://arxiv.org/abs/2404.14646

Table 5: Model Pass@ 1 performance on original and single mutated Avatar and TransCoder bench-
marks. Performance drops of more than 10% are highlighted.

Type[Model |Origin|VarNormI VarNormII ConstUnfold For2While CondAug
DeepSeek V3 | 80.64 [85.42 (+4.78) 81.98 (+1.34) 72.68 (-7.96) 73.48 (-7.16) 81.68 (+1.04)
GPT-40 mini 72.48 |82.13 (+9.65) 74.05 (+157) 54.77 (-17.71) 67.90 (-458) 73.25 (+0.77)
Llama 3.1 70B | 72.80 (64.35 (-8.45) 72.6 (-0.20) 57.87 (-14.93) 62.71 (-10.09) 70.16 (-2.64)

- Llama 3.1 8B | 46.48 [49.01 +2.53) 52.98 (+6.50) 29.87 (-16.61) 36.24 (-10.24) 43.04 (-3.44)

g Qwen2.532B | 75.64 [78.76 (+3.12) 76.64 (+1.00) 59.42 (-16.22) 65.08 (-10.56) 70.68 (-4.96)

Z Qwen2.5 14B | 65.20 [70.08 (+4.88) 70.53 (+533) 54.31 (-10.89) 57.46 (-7.74) 64.08 (-1.12)
Qwen2.5 7B 64.60 |61.83 2777 65.80 (+1.200 43.18 (-21.42)51.27 (-13.33) 58.12 (-6.48)
StarCoder2 15B| 58.12 |43.66 (-14.46) 45.95 (-12.17) 25.86 (-32.26) 26.52 (-31.60) 30.68 (-27.44)
StarCoder2 7B | 40.00 |30.84 (9.16) 28.85 (-11.15) 16.40 (-23.60) 20.88 (-19.12) 27.54 (-12.46)
StarCoder2 3B | 41.80 |32.06 (-9.74) 32.37 (-9.43) 17.49 (-24.31) 17.90 (-23.90) 23.14 (-18.66)
Deepseek V3 79.36 [75.84 (3520 74.69 (4679 69.73 (9.63) 65.39 (-13.97) 67.95 (-11.41)
GPT-40 mini 78.11 72.28 (-5.83) 71.82 (-629) 69.56 (-855 82.96 (+4.85) 70.95 (-7.16)

- Llama 3.1 70B | 78.88 (73.36 (-5.52) 72.57 (-631) 52.69 (-26.19) 61.55 (-17.33) 64.82 (-14.06)

2 [Llama3.1 8B |72.56 |62.66 (9900 64.23 (833) 59.04 (-1352)77.80 (+524) 64.55 (-8.01)

8 Qwen2.532B | 73.24 |55.48 (-17.76) 67.88 (-536) 71.34 (-1.90) 75.27 (+2.03) 70.89 (-2.35)

& |Qwen2.514B |78.88 (71.45 (-743) 71.08 (-7.80) 74.11 (-477) 77.95 -093) 71.26 (-7.62)

E Qwen2.5 7B 67.87 165.60 (-227) 57.47 (-10.40) 58.01 (-9.86) 62.76 (-5.11) 57.66 (-10.21)
StarCoder2 15B| 51.33 |49.05 (-2.28) 42.07 (-926) 38.40 (-12.93) 29.68 (-21.65) 34.89 (-16.44)
StarCoder2 7B | 54.71 |40.08 (-14.63)45.31 (9400 33.90 (-20.81) 22.32 (-32.39) 34.52 (-20.19)
StarCoder2 3B | 48.15 |36.31 (-11.84) 34.56 (-13.59) 19.91 (-28.24) 10.74 (-37.41) 18.28 (-29.87)

Table 6: Model Pass@1 performance on original and multiple mutated Avatar and TransCoder
benchmarks. Performance drops of more than 20% are highlighted.

Type | Model | Origin | FUV AUV AFU
DeepSeek V3 80.64 | 70.24 (-10.40) 74.75 (-5.89) 64.39 (-16.25)
GPT-40 mini 72.48 51.95(-2053) 61.62 (-10.86) 41.16 (-31.32)
Llama 3.1 70B 72.80 48.29 (2451) 54.34 (-18.46) 42.58 (-30.22)
Llama 3.1 8B 46.48 20.73 (-2575) 1879 (-27.69) 12.65 (-33.83)

Avatar Qwen2.5-Coder 32B 75.64 5732 (-1832) 52.32(-2332) 39.48 (-36.16)
Qwen2.5-Coder 14B 65.20 49.02 (-16.18) 46.06 (-19.14) 36.39 (-28.81)
Qwen2.5-Coder 7B 64.60 3488 (-2972) 41.01 (-2359) 24.13 (-4047)
StarCoder2 15B 58.12 19.76 (-3836) 25.25(-3287) 20.16(-37.96)
StarCoder2 7B 40.00 14.39 (2561) 15.15(-2485) 12.00 (-28.00)
StarCoder2 3B 41.80 10.00 (-31.80) 16.57 (-2523) 8.00 (-33.80)
DeepSeek V3 79.36 | 62.47 (-16.89) 66.22 (-13.79) 72.91 (-6.45)
GPT-40 mini 78.11 45.16 (-3295) 49.05 (-29.06) 57.09 (-21.44)
Llama 3.1 70B 78.88 51.94 (2694) 58.34 (-2054) 59.27 (-24.89)
Llama 3.1 8B 72.56 2516 (-4740) 31.51 (-4105) 22.82(-49.74)
Qwen2.5-Coder 32B 73.24 56.25 (-17.00) 54.58 (2548) 58.55 (-20.04)

TransCoder Qwen2.5-Coder 14B 78.88 52.36 (2652) 5772 (-2116) 58.55(-2033)
Qwen2.5-Coder 7B 67.87 27.30 (-4057) 4275 (-2512) 45.98 (-21.89)
StarCoder2 15B 51.33 12.79 (-3854) 29.97 (21.36) 23.64 (-27.69)
StarCoder2 7B 54.71 7.56 (-47.15) 8.92 (-4579) 11.27 (-43.44)
StarCoder2 3B 48.15 3.32 (-44.83) 9.41 (-3874) 13.84 (-34.31)

13

485

486
487

489

490

491

492
493
494
495
496

497
498

500
501
502
503
504
505
506

C Prompts

In this section, we present the prompts we use to instruct the model to do code execution tasks and
code translation tasks in our experiments.

Based on the given Python code, which may contain errors, complete the assert statement
with the output when executing the code on the given test case. Do NOT output any extra
information, even if the function is incorrect or incomplete. Output “# done” after the
assertion.

You are a code translation expert. Translate the Python code below to Java. Do NOT output
any extra information.

D Case Study

In this section, we present some cases generated in our experiments in Figure[6|and Figure

Figure 6] shows two examples of code execution tasks performed by the GPT-40 mini and Qwen2.5-
Coder 32B models. In Figure[6(a)] the LLM was originally able to make the correct judgment, but
after applying the Constant Unfolding mutation, it made an incorrect judgment. Figure [6(b)| presents
a slightly more complex example. After the FUV mutation, the model incorrectly evaluated the
isalpha condition and output an erroneous result.

Figure[/|shows two examples of code translation tasks performed by the DeepSeek V3 and Llama
3.1 8B models. In Figure the key to correct translation lies in paying attention to the sign of
the numbers in the array. Since Python and Java define the modulo operation for negative numbers
differently, this detail must be carefully considered when translating from Python to Java. In the
original code, the LLM successfully recognized this aspect. However, after applying the Constant
Unfolding mutation, the LLM overlooked this detail and ultimately produced code that could not pass
the test. Additionally, since Python does not explicitly specify types, correctly determining the type is
also a crucial aspect of translating from Python to Java. In Figure[7(b)] the original code successfully
identifies the most suitable type for the code. However, after the FUV mutation, the model makes an
incorrect judgment.

def f(x): def f(x):
n = len(x) n = len(x)
i=0 i=(3+-3)
while i < n and x[i].isdigit(): while i < n and x[i].isdigit():
i+=1 i += (66 + -65)
return i == n return i == n
assert f('1') == True assert f('1') == False

(a) CRUXEval example generated by GPT-40 mini.

def f(doc): def iXN(aRL):
for x in doc: jLn = (25 + -25)
if x.isalpha(): Fbd = aRL
return x.capitalize() while jLn < len(Fbd):
return '-' XBu = Fbd[jLn]
assert f('raruwa') == 'R’ if XBu.isalpha():

return XBu.capitalize()
jln = jLn + (21 + -20)

return '-
assert iXN('raruwa') == '-

(b) CRUXEval example generated by Qwen2.5-Coder 32B

Figure 6: Case studies of code execution.

14

A, B, C, D = map(int, input().split())

m = 998244353

d = [[0] * (D + 1) for _ in range(C + 1)]

dfAI[B] =1
for i in range(A, C + 1):
for j in range(B, D + 1):

dlilCj] += (d[il0j - 1] * i + d[i - 11031 % § -

dfi - 1303
m
print(d[C1[DI)

import java.util.Scanner

public class Main {

S1IxE - x (G- %

public static void main(String[] args) {
Scanner scanner = new Scanner(System.in)
int A = scanner.nextInt()
int B = scanner.nextInt()
int C = scanner.nextInt()
int D = scanner.nextInt()

int m = 998244353;

long[1[] d = new long[C + 11[D + 11;

d[AI[B] = 1;

for (int i = A; i <= C;

i++) {

for (int j = B; j <= D; j++) {
if (i == A & j == B) continue;
dlil[j] = (d[i10j - 1] = i + d[i - 11037 *
Joodli - 1103 -1 x G -1 %G - 1)) %m;
if (d[i1[j] < @) d[i1[j] += m;

3
}

System.out.println(d[CI[D])

def repeat (s, n) :
sl =s

A, B, C, D = map(int, input().split())
m = (79 + 998244274)
d=[[C19 + -19)] * (D + (20 + -19)) for _ in range(C +
(57 + -56))1
d[AI[B] = (2 + -1)
for i in range(A, C + (99 + -98)):
for j in range(B, D + (48 + -47)):
dLil[j] += (d[il[j - (44 + -43)]1 * i + d[i - (25 +
-24)1031 * § -
dli - (76 + -75)1[F - (6 + -5)1 x (i -
(35 + -34)) * (j - (15 + -14))) % m
print(d[C][D])

import java.util.Scanner;

public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in)
int A = scanner.nextInt();
int B = scanner.nextInt();
int C = scanner.nextInt();
int D = scanner.nextInt();
int m = 79 + 998244274,
int[1[] d = new int[C + 11[D + 11;
d[A1[B] = 1
for (int i = A; 1 <= C; i++) {
for (int j = B; j <= D; j++) {
if (i == A & j == B) continue;
dlil[j] = (d[i10j - 11 * i + d[i - 11031 *
jo-dli - 131G -1 x G -1 %G -1))%m;
}
3
System.out.println(d[C][D]);

3

(a) Avatar example generated by DeepSeek V3.

for i in range (1, n)

s += sl
return s

public static String f_filled(String s, int n) {

String s1 = s;

for (int i = 1; i < n; i++) {

s += s1;
}

return s;

def VoU (api , kDU) :
AFe = api
cWi = (91 + -91)
bYk = range ((42 + -41) , kDU)
while cWi < len(bYk):
qQd = bYk[cWi]
api += AFe
cWi = cWi + (64 + -63)
return api

public static int f_filled(int[] api, int kDU) {
int AFe = api[0];
int cWi = (91 + -91);
int[] bYk = new int[kDUJ;
for (int i = (42 + -41); i < kDU; i++) {
bYk[i] i;

}

while (cWi < kDU) {
int gQd = bYk[cWil;
api[@] += AFe;
cWi = cWi + (64 + -63);

3

return api[0];

3

(b) TransCoder example generated by Llama 3.1 8B.

Figure 7: Case studies

15

of code translation.

507

508

509
510

511

512

513

514

515

516
517
518
519
520
521
522

523

524

525

526

527

528

529

530
531

533
534
535

536
537
538

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553

554

555
556

557

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Abstract and Section 1.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 4.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

16

558

559

560
561

563
564
565
566
567
568

569

570

571
572
573

574

575

576

577
578
579
580
581
582
583
584
585
586

588
589
590
591
592
593
594
595
596

598
599
600
601

603
604
605
606
607

608

609
610
611

Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Section 3, Section 4 and Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17

612

613

614

615

616
617

618
619
620
621

622

624

625
626

627
628
629

630
631

632
633
634

635
636
637

638

639

640

641

642
643

644
645
646

647
648

649

650

651

652
653

655
656

658

659
660

661

662
663

Answer: [Yes]
Justification: We show it in OpenReview.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section 3, Section 4 and Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

664
665
666

667
668
669

670
671

672

673
674

676

677

678

679

680
681

682
683

684
685
686

687

688
689

690

691

692

693

694
695

696
697

698

699

701

702
703

704

705

706
707

708

710
71

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section 3.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: All the paper.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper primarily examines issues related to benchmarks and does not have
a direct connection to social impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19

https://neurips.cc/public/EthicsGuidelines

712
713
714
715
716
717
718

719
720
721
722

723
724
725
726

727

728
729
730

731

732

733

734

735
736
737
738

740

741
742
743

744

745
746
747

748

749

750

751
752

753
754
755
756
757
758
759
760
761
762
763

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Section 3.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

20

paperswithcode.com/datasets

764
765

766

767
768

769

770

771

772
773
774
775
776
777
778
779

781
782
783

784

785

786

787

788

789
790
791
792
793
794

795
796

797
798
799
800

801

802

803

804

805
806
807
808
809
810
811
812
813

814

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We show it in OpenReview.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

21

815
816
817
818

819

820

821

822
823
824
825

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: Section 3.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methodology
	Dynamic Benchmarking Framework
	Code Syntax Mutations
	Code Structure Mutation
	Multi-Mutation

	Experimental Setup
	Results and Analysis
	RQ1: Impact of Single Mutation
	RQ2: Impact of Multi-Mutation
	RQ3: Mitigation of Data Contamination
	RQ4: Complexity of Dynamic Benchmarks

	Related Work
	Code Reasoning
	Mutation Testing
	Benchmark Reliability

	Conclusion
	Benchmark Test Case Counts
	Detailed Experimental Results
	More Results on Single Mutated Experiments
	More Results on Multiple Mutated Experiments

	Prompts
	Case Study

