
Is Your Benchmark Still Useful?
Dynamic Benchmarking for Code Language Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

In this paper, we tackle a critical challenge in model evaluation: how to keep code1

benchmarks useful when models might have already seen them during training.2

We introduce a novel solution, dynamic benchmarking framework, to address this3

challenge. Given a code understanding or reasoning benchmark, our framework dy-4

namically transforms each input, i.e., programs, with various semantic-preserving5

mutations to build a syntactically new while semantically identical benchmark. We6

evaluated 10 popular language models on our dynamic benchmarks. Our evaluation7

reveals several interesting or surprising findings: (1) all models perform signifi-8

cantly worse than before, (2) the ranking between some models shifts dramatically,9

and (3) dynamic benchmarks can resist against the data contamination problem.10

1 Introduction11

During the past period, the emergence of advanced Large Language Models (LLMs) such as the12

GPT [27], Llama [6], and DeepSeek [5] series have revolutionized the field of software development13

through their exceptional performance in various code-related tasks, including but not limited to14

code generation [17], debugging [21], and optimization [16]. Rapid integration of LLM-driven15

development tools and plugins into mainstream programming environments, exemplified by GitHub16

Copilot [7] and Cursor [4], not only validates the practical utility of these models, but also significantly17

enhances the productivity of developers in the software industry. This widespread adoption ultimately18

underscores the transformative potential of LLMs in code understanding and reasoning, where LLMs19

are expected to comprehend the underlying semantics in the input code [24].20

During the rapid advancement of LLMs, the community has developed various benchmarks to21

evaluate the code reasoning capabilities of the model. For instance, CRUXEval [9] specifically targets22

code execution proficiency, while Code Lingua [28] and TransCoder [19, 33] focus on evaluating23

code translation skills. The successful completion of these tasks requires LLMs to demonstrate24

accurate comprehension of code semantics; hence, these benchmarks serve as effective indicators of25

the LLMs’ code reasoning capabilities to a certain extent.26

There are a few common practices to collect code for a benchmark. Some benchmarks automatically27

crawl code from public databases such as GitHub [15, 26], while others take advantage of advanced28

LLMs, such as ChatGPT, to generate new code [9]. In some cases, human experts are involved29

in the manual writing of the code. Regardless of how the code is collected, all these open-source30

benchmarks will eventually be available to the public for fair model evaluation. Modern LLMs are31

trained on large amounts of data, both public and private. For instance, Qwen2.5-Coder’s report states32

that they collect publicly available repositories on GitHub for training and remove key datasets using33

a 10-gram overlap method [15]. However, removing key datasets does not guarantee that all data34

used for evaluation is eliminated, and there is still a risk of data contamination. This raises a crucial35

concern:36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

def f(lists):
 lists[1].clear()
 lists[2] += lists[1]
 return lists[0]
assert f([[395, 666, 7, 4], [],\
[4223, 111]]) == [395, 666, 7, 4]

 [395, 666, 7, 4]
(a) Original Version

def f(var1):
 var1[1].clear()
 var1[2] += var1[1]
 return var1[0]
assert f([[395, 666, 7, 4], [],\
[4223, 111]]) == 395

 [395, 666, 7, 4]
(b) Mutated Version

Figure 1: Answers produced by GPT-4o mini and DeepSeek V3 . The modified variables are
highlighted in blue for identification.

Are these benchmarks still useful for evaluating models if they are unavoidably included in the37

training data?38

Take Figure 1 as an example. On the left is a test case from the CRUXEval benchmark [9]. The test39

case consists of a function f together with the input ([[395, 666, 7, 4], [], [4223, 111]])40

— a list of lists — encoded in an assert. Models are tasked to predict the function’s output. The41

function f executes a sequence of operations: first erasing the value in lists[1], then adding this42

value to lists[2], and finally outputting the value of lists[0]. GPT-4o mini successfully emits the43

correct output in this scenario. However, as shown in Figure 1(b), after we change the variable name44

into var1, GPT-4o mini produces an incorrect result with even the wrong type (an integer instead of45

a list of integers). This behavioral shift suggests that in Figure 1(a), the descriptive variable name46

lists may have assisted the model’s comprehension, potentially due to the contamination of variable47

name lists in the training data. In Figure 1(b), however, the absence of such hints, combined48

with the common pattern of var1[0] typically representing integer indices, likely led the model to49

erroneously infer an integer return type. DeepSeek V3, on the other hand, successfully handles both50

cases, indicating its reasoning beyond variable names. Nevertheless, the original benchmark fails to51

differentiate these two models’ reasoning capabilities with this test case.52

When the code in Figure 1(a) appears in the training set of a model, such code cannot be effectively53

used to measure the code understanding and reasoning capability of the model. Unfortunately, publicly54

accessible benchmarks are persistently plagued by the issue of training data contamination, which55

fundamentally compromises the integrity and reliability of evaluation results [1]. This phenomenon56

is particularly problematic given the remarkable memorization capacity of LLMs [11], where models57

may have already been exposed to substantial portions of the evaluation data1, which are open source58

online, during their training phase. Such exposure enables models to potentially reproduce or closely59

approximate memorized patterns rather than demonstrating genuine reasoning or generalization60

capabilities. Consequently, this leads to inflating performance metrics that fail to accurately reflect61

the models’ true ability to handle novel, unseen data, thereby undermining the validity of benchmark62

comparisons and the meaningful assessment of model capabilities.63

In this paper, we present dynamic benchmarking2, a new benchmarking framework to address the64

aforementioned challenge. Our framework takes an established code benchmark and mutates each65

test case with a set of semantic-preserving mutations. All the mutated code snippets are syntactically66

different from the original benchmark while having identical code semantics. For instance, Figure 1(b)67

is a mutant of Figure 1(a) — despite being syntactically different, both test cases have identical68

execution behaviors. We instantiate our framework using a set of mutations that work on both the69

code syntax and code structure levels. At the code syntax level, we focus on variable naming, i.e.,70

normalizing or randomizing variable names, to remove irrelevant assistance information from them.371

At the code structure level, we focus on three core code structures, i.e., assignment, conditional72

branching, and loops. By requiring models to process these mutated versions, we ensure that the73

evaluation accurately measures the model’s capacity for code understanding and reasoning, rather74

than its ability to recall specific code patterns from its training data.75

1Or code corpus of similar syntactic patterns.
2Released at: https://www.kaggle.com/datasets/aspartic/dynamic-benchmark
3We do not use adversarially mutated variable names to deliberately mislead models.

2

https://www.kaggle.com/datasets/aspartic/dynamic-benchmark

We evaluate our mutations on four benchmarks covering two coding tasks. The results show that76

in our new benchmarks, all models’ performance declines significantly, up to 40% lower than the77

original benchmarks. In order to evaluate whether or not our dynamic benchmarking approach can78

resist the data contamination problem, we fine-tuned a model with the original benchmark. The79

results show that our dynamically constructed benchmarks are moderately affected and are still useful80

in evaluating the fine-tuned model.81

2 Methodology82

2.1 Dynamic Benchmarking Framework83

LLM-based code reasoning generates outcomes based on high-level instructions and source code.84

Typically, the instructions describe the specific reasoning task in natural language, while the source85

code represents the program to be analyzed. Generally, we expect the LLM to derive results86

through reasoning based on the provided instructions and source code. Formally, for a given87

benchmark with n test cases {< insi, pi, oi >}, i ∈ [1, n] and a model LLM under evaluation. The88

benchmark evaluates how correct LLM(insi, pi) is compared to the reference result oi. Ideally,89

all {< insi, pi, oi >} should be unknown to the model. However, due to the data contamination90

problem, {< insi, pi, oi >} are often leaked.91

Mutations

Mutated Codes
Original Codes

LLM

[4223,111]

395

[395,666,7,4]

LLM Responses Eval & Scores

Figure 2: The dynamic benchmarking framework.

Figure 2 shows the high-level workflow of our dynamic benchmarking framework. Given one
< insi, pi, oi >, our framework applies a set of semantics-preserving mutations Mk to transform the
test case into multiple ones as follows:

< insi, p
′
i = Mk1(· · ·Mkm(pi)), oi >,

where Mkj
is one of the available mutations. The new program p′i is sequentially mutated from the92

original program p. Since all Mkj
are semantics-preserving, the final reference result is still oi. All93

the new test cases are dynamically generated from the existing benchmark and are then used for94

evaluating models. To ensure the usability of newly generated test cases, each mutation method is95

governed by the following two fundamental requirements:96

Semantic Equivalence. The mutated program p′ must maintain execution behavior identical to the
original program p. Formally, for all possible inputs x of program p, the following condition should
be satisfied:

∀x, [[p]]x = [[Mkj
(p)]]x,

where [[p]]x denotes the execution result of program p on the input x. This requirement guarantees97

the mutation preserves the program’s semantics.98

Syntactic Divergence. The mutated program p′ should be syntactically different from the original99

program p in a non-trivial manner. This property ensures that even if p is included in the training set100

of a model, p′ can still be used to evaluate the model.101

In the following sections, we will propose a series of mutation methods at two levels: code syntax102

and code structure.103

2.2 Code Syntax Mutations104

In the process of models’ reasoning about code, conventional static benchmarks typically employ105

meaningful variable names, which inadvertently provide models with additional cues that may106

influence their reasoning process. This phenomenon allows models to potentially utilize syntactic107

sugar information, particularly through variable naming patterns, as auxiliary features to facilitate108

3

def f(lst: list):
 length = len(lst)
 for i in range(length):
 if i == 3:
 lst[i] = 5
 return lst

(a) Original Code

def f(var1: list):
 var2 = len(var1)
 for var3 in range(var2):
 if var3 == 3:
 var1[var3] = 5
 return var1

(b) Variable Normalization I

def f(QxL: list):
 Rjm = len(QxL)
 for kpN in range(Rjm):
 if kpN == 3:
 QxL[kpN] = 5
 return QxL

(c) Variable Normalization II

def f(lst: list):
 length = len(lst)
 for i in range(length):
 if i == 3:
 lst[i] = 7 - 2
 return lst

(d) Constant Unfolding

def f(lst: list):
 length = len(lst)
 i = 0
 while i < length:
 if i == 3:
 lst[i] = 5
 i += 1
 return lst

(e) For to While

def f(lst: list):
 length = len(lst)
 for i in range(length):
 if i == 3 and \

((8 > 6)or(8 < 6)):
 lst[i] = 5
 return lst

(f) Condition Augmentation

Figure 3: Illustrative examples of our code syntax and code structure mutations. (a) is the code from
the original benchmark, while (b)-(f) are new codes by applying one of our mutations.

code comprehension and reasoning. As demonstrated in Figure 1, models can leverage semantically109

rich variable names to infer program functionality without fully grasping the underlying algorithmic110

logic. Moreover, once the static benchmark is leaked into the training set, variable names will become111

convenient objects that can be easily memorized.112

Variable Normalization. To address these critical issues, we propose implementing Variable Nor-113

malization as a methodological solution to build a dynamic benchmark. Specifically, we implement114

two distinct normalization schemes: VarNormI, a sequential naming convention (e.g., var1, var2,115

var3, ...) that maintains variable uniqueness while eliminating semantic cues, and VarNormII, a116

fixed-length randomized string generation system that ensures complete obfuscation of any potential117

naming-related information. Figure 3(a) presents a piece of original code with a format similar to118

CRUXEval. Figure 3(b) and Figure 3(c) are the new mutants after applying VarNormI and VarNormII119

mutations. As the figure illustrates, variable normalization effectively eliminates the syntactic sugar120

information embedded in descriptive variable names such as lists and length. By obfuscating the121

semantic information contained in variable names, this technique effectively forces LLMs to focus on122

the underlying structural and logical relationships within the code rather than relying on superficial123

naming patterns. Furthermore, since variable normalization exclusively modifies variable names124

without altering the underlying code structure, it inherently guarantees both semantic equivalence125

and syntactic divergence between the original and mutated code.126

2.3 Code Structure Mutation127

Understanding code involves more than just syntactic information. It also involves understanding128

how data moves through code (data flow) and how it makes decisions (control flow). To address129

data contamination in such code structures, we present a structural transformation approach for130

dynamic benchmark construction. Our approach systematically changes the structure of code samples131

while preserving their semantic equivalence and functional integrity. Specifically, we focus on three132

fundamental and ubiquitous code structures that represent core programming constructs: Assignment,133

Loop, and Branch. We employ Python syntax as our demonstration framework to systematically134

illustrate the implementation of our mutation methodology.135

Assignment. Our analysis specifically targets the fundamental case of constant variable assignment,136

as exemplified by basic statements like a = 5. To address this, a mutation technique termed137

Constant Unfolding has been developed, which systematically decomposes constants (e.g., integers)138

into equivalent arithmetic expressions while rigorously preserving semantic equivalence throughout139

the transformation process. This transformation is a reversion of the classical constant folding140

optimization in compiler design [31]. As demonstrated in Figure 3(d), Constant Unfolding transforms141

the assignment statement lists[i] = 5 into lists[i] = 7 - 2. This mutation method only142

transforms an integer to an expression, so the semantic equivalence is maintained. Moreover, the143

proportion of text requiring modification remains minimal. By transforming straightforward integer144

4

assignments into equivalent arithmetic expressions, we create a subtle yet effective barrier against145

simple pattern recognition while preserving the essential reasoning challenges.146

Loop. In the domain of iterative control structures, two primary loop paradigms exist: for loops147

and while loops. These loop constructs, while syntactically distinct, achieve comparable computa-148

tional complexity and can be mutually transformed through systematic restructuring. Our mutation149

framework incorporates the For to While strategy, which transforms all for loops into functionally150

equivalent while loops and vice versa, as exemplified in Figure 3(e). This mutation strategy also151

meets our requirements for mutation methods. Firstly, the semantic equivalence between for loops152

and while loops is guaranteed due to their interchangeable nature in representing iterative processes.153

This transformation maintains identical program behavior while introducing syntactic variations.154

Secondly, the modification scope is significantly limited, as only the loop header requires alteration.155

Branch. Within conditional branching structures, we implement a transformation technique called
Condition Augmentation, which introduces tautological expressions into existing conditions while
preserving the original logical outcome. At a high level, given an if condition, it can always be
equivalently transformed in the following way:

if(C) ⇔ if(C & True) ⇔ if(C || False)

Guided by this principle, our implementation instantiates the condition True or False with pre-156

determined yet complex expressions. For example, as illustrated in Figure 3(f), we augment the157

condition i == 3 by incorporating a tautological expression (8 > 6) or (8 < 6), resulting in the158

modified condition i == 3 and ((8 > 6) or (8 < 6)) while maintaining the original logical159

equivalence. In addition, there are some optional tautology expressions, such as True or False. In160

actual experiments, we will use these tautology expressions in combination. The mutation approach161

solely introduces tautological conditions in the branching part, leaving the code semantics unaffected.162

Thus, it meets our requirements.163

Discussion: The “naturalness” of mutated code. We deliberately exclude considerations of code164

“naturalness” in our evaluation framework for several reasons. First, existing naturalness metrics, such165

as language model likelihoods [18, 32], are inherently biased towards their training data distributions166

and fail to capture the nuanced aspects of code quality, such as idiomatic usage, coding conventions,167

and style consistency. More fundamentally, there exists no precise or universally accepted metric168

for evaluating code naturalness, making such assessments inherently subjective and potentially169

misleading. This limitation is particularly relevant given that many benchmarks, such as CRUXEval’s170

test functions which are generated using Code Llama, are deliberately constructed rather than derived171

from real-world code. In this context, the pursuit of naturalness becomes a secondary concern. For172

code language models, the true value of a benchmark lies in its ability to rigorously evaluate a model’s173

fundamental capabilities: its understanding of code semantics and its capacity for logical reasoning,174

rather than the superficial syntax.175

2.4 Multi-Mutation176

All the aforementioned mutation methods operate independently of each other. As a result, these177

methods can be combined for use, enabling multi-mutation. This combined approach still satisfies178

our two key requirements for mutation methods. Firstly, since none of the individual mutations affect179

the program’s execution outcome, multi-mutation likewise preserves the program’s original behavior.180

Secondly, while individual mutations introduce minimal changes to the code text, the cumulative181

impact of multi-mutation remains limited and manageable. Therefore, this approach can be utilized182

effectively to build dynamic benchmarks and further test the code reasoning capabilities of LLMs.183

3 Experimental Setup184

Our evaluation aims to answer the following Research Questions (RQs):185

1. (Impact of single mutation) How does models’ performance change under each single mutation?186

2. (Impact of multi-mutation) How does models’ performance change under multi-mutation?187

3. (Mitigation of data contamination) Can dynamic benchmarking mitigate data contamination?188

4. (Complexity of dynamic benchmarks) How much additional complexity does our approach189

introduce to the original benchmarks?190

We selected a variety of both closed and open-source LLMs. Specifically, we chose models including191

GPT-4o mini [27], DeepSeek V3 [5], Llama 3.1 series [8], Qwen2.5-Coder series [14], and StarCoder2192

5

series [26]. Our models are sourced from the APIs provided by OpenRouter4 and the open-source193

models available on Hugging Face5. In our experiments, we select two popular tasks: code execution194

and code translation. For code execution, we selected the CRUXEval benchmark [9], while for code195

translation, we selected the Code Lingua benchmark (which includes two sub-datasets, Avatar and196

CodeNet) [28] and the TransCoder benchmark [19, 33], on which we conduct experiment on Python197

to Java translation.198

For all LLMs, we set the temperature to 0.2 to evaluate their Pass@1 metric [2]. We generate 5 results199

for each sample in the benchmarks. On the aforementioned four datasets, we applied five distinct200

mutation methods to each program within the datasets. These methods, as outlined in Section 2,201

include two types of Variable Normalization (VarNormI and VarNormII), Constant Unfolding202

(ConstUnfold), For to While (For2While), and Condition Augmentation (CondAug).203

As for multi-mutation, since we have five different mutation methods, there are dozens of combina-204

tions in theory. For a practical evaluation overhead, we randomly select three mutation combinations205

that cover all mutation methods from different categories: FUV (For2While (F) + ConstUnfold (U) +206

VarNormII (V)), AUV (CondAug (A) + ConstUnfold (U) + VarNormI (V)) and AFU (CondAug (A)207

+ For2While (F) + ConstUnfold (U)).208

4 Results and Analysis209

4.1 RQ1: Impact of Single Mutation210

Due to space constraints, we present only the model Pass@1 performance results on both original211

static and our dynamic CRUXEval and CodeNet benchmarks in the main text. Table 1 shows the212

results.213

Origin VarNormI VarNormII ConstUnfold For2While CondAug
Mutation Type

30

40

50

60

70

80

90

100

Pa
ss

@
1

Sc
or

e

Origin Mutation

Figure 4: Comparison of model performance dis-
tributions under different mutations of CodeNet.

General Tendency. The table reveals a consis-214

tent performance degradation tendency across215

most mutations, indicating that models demon-216

strate significantly reduced comprehension ca-217

pabilities when processing mutated code com-218

pared to their performance on original code.219

For instance, after applying the Constant Un-220

folding method, the performance of many mod-221

els dropped by more than 10% compared to222

their performance on the original benchmark.223

This significant decline clearly demonstrates224

that models exhibit reduced code reasoning ca-225

pabilities on dynamic benchmarks, thereby val-226

idating the effectiveness of our approach. More-227

over, we observe that in a small number of cases,228

models exhibit slightly improved reasoning ca-229

pabilities on the mutated benchmark compared230

to the original benchmark, particularly in the231

StarCoder2 series. This phenomenon may be attributed to the fact that the StarCoder2 models are not232

instruction-tuned, resulting in weaker adherence to instructions. As a consequence, their performance233

on the benchmark may not fully reflect their potential and is more susceptible to randomness, leading234

to such reversals.235

Benchmark Effectiveness Enhancement. The significant performance drop of models on the dynamic236

benchmark also enhances the usability of certain benchmarks. For example, as shown in Table 1,237

on the original CodeNet benchmark, the GPT-4o mini model achieves a performance of 90.20%,238

indicating that the original CodeNet benchmark is relatively simple and no longer suitable for239

evaluating highly advanced models. However, after applying the Constant Unfolding mutation, the240

Pass@1 performance of GPT-4o mini drops to 72.49%. This demonstrates that our method makes this241

benchmark useful again by reintroducing meaningful differentiation among state-of-the-art models.242

4https://openrouter.ai/
5https://huggingface.co/

6

https://openrouter.ai/
https://huggingface.co/

Table 1: Model Pass@1 performance on original and single mutated CRUXEval and CodeNet
benchmarks. Performance drops of more than 10% are highlighted.
Type Model Origin VarNormI VarNormII ConstUnfold For2While CondAug

C
R

U
X

E
va

l
DeepSeek V3 65.80 63.91 (-1.89) 63.01 (-2.79) 46.70 (-19.10) 58.01 (-7.79) 63.07 (-2.73)

GPT-4o mini 53.60 51.80 (-1.80) 52.08 (-1.52) 34.51 (-19.09) 47.61 (-5.99) 54.71 (-3.89)

Llama 3.1 70B 53.20 51.21 (-1.99) 51.94 (-1.26) 34.95 (-18.25) 45.95 (-7.25) 53.10 (-0.10)

Llama 3.1 8B 31.20 30.10 (-1.10) 28.46 (-2.74) 21.80 (-9.40) 20.46 (-10.74) 23.96 (-7.24)

Qwen2.5 32B 65.50 63.59 (-1.91) 63.02 (-2.48) 40.26 (-25.24) 57.22 (-8.28) 60.43 (-5.07)

Qwen2.5 14B 58.30 57.27 (-1.03) 57.10 (-1.20) 39.21 (-19.09) 53.01 (-5.29) 58.98 (+0.68)

Qwen2.5 7B 45.70 43.77 (-1.93) 43.97 (-1.73) 26.55 (-19.15) 42.03 (-3.67) 42.14 (-3.56)

StarCoder2 15B 33.10 12.43 (-20.67) 17.07 (-16.03) 21.45 (-11.65) 31.37 (-1.73) 29.20 (-3.90)

StarCoder2 7B 33.80 24.64 (-9.16) 25.27 (-8.53) 20.84 (-12.96) 33.27 (-0.53) 32.94 (-0.86)

StarCoder2 3B 30.00 25.32 (-4.68) 24.94 (-5.06) 20.79 (-9.21) 27.97 (-2.03) 31.76 (+1.76)

C
od

eN
et

Deepseek V3 94.70 96.73 (+2.03) 96.87 (+2.17) 86.98 (-7.72) 89.80 (-4.90) 95.22 (+0.52)

GPT-4o mini 90.20 92.20 (+2.00) 91.80 (+1.60) 72.49 (-17.71) 83.10 (-7.10) 88.43 (-1.77)

Llama 3.1 70B 88.00 79.80 (-8.20) 80.86 (-7.14) 74.32 (-13.68) 75.80 (-12.20) 81.34 (-6.66)

Llama 3.1 8B 66.70 64.00 (-2.70) 65.87 (-0.83) 43.67 (-23.03) 44.20 (-22.50) 56.27 (-10.43)

Qwen2.5 32B 92.70 92.80 (+0.10) 92.27 (-0.43) 74.32 (-18.38) 79.40 (-13.30) 86.57 (-6.13)

Qwen2.5 14B 86.30 86.20 (-0.10) 85.09 (-1.21) 71.66 (-14.64) 71.90 (-14.40) 80.60 (-5.70)

Qwen2.5 7B 84.10 84.00 (-0.10) 82.40 (-1.70) 63.31 (-20.79) 61.80 (-22.30) 81.04 (-3.06)

StarCoder2 15B 58.60 55.20 (-3.40) 47.60 (-11.00) 40.95 (-17.65) 41.60 (-17.00) 62.54 (+3.94)

StarCoder2 7B 43.00 41.07 (-1.93) 38.13 (-4.87) 26.18 (-16.82) 40.00 (-3.00) 47.46 (+4.46)

StarCoder2 3B 50.70 43.87 (-6.83) 42.93 (-7.77) 30.06 (-20.64) 24.80 (-25.90) 51.94 (+1.24)

Performance Differentiation. Moreover, the dynamic benchmark enhances the differentiation of243

performance among various models by applying mutations to the benchmark. Figure 4 presents box244

plots illustrating the performance distribution of different models on the CodeNet benchmark before245

and after mutation. As shown in the figure, the performance distribution of models after mutation is246

significantly more spread out compared to the original static benchmark, which facilitates a better247

distinction between the capabilities of different models. This is also evident in specific examples. On248

the original CodeNet benchmark, the DeepSeek V3 model achieves a performance of 94.70%, while249

the GPT-4o mini model reaches 90.20%, indicating a relatively small gap between the two. However,250

after applying the Constant Unfolding mutation, the Pass@1 performance of DeepSeek V3 drops to251

86.98%, whereas GPT-4o mini’s performance declines significantly to 72.49%, resulting in a much252

larger gap. This demonstrates that the dynamic benchmark enables a more effective evaluation of the253

performance differences among models.254

4.2 RQ2: Impact of Multi-Mutation255

Here, we present a comparison between static and dynamic CRUXEval and CodeNet benchmarks256

based on multi-mutation, as shown in Table 2. By combining different mutation methods, the results257

show some new variations compared to using a single mutation method. We will explain these258

changes in detail below.259

Drastic Performance Drop. From the table, it can be observed that the performance drop caused by260

multi-mutation is more significant than that of a single mutation. On CRUXEval, the performance261

drop can reach as high as 20% or even close to 30%. On CodeNet, many models incur 30% to 50%262

performance drop. These phenomena indicate that our method achieves even better results when263

applied in combination.264

Ranking Changes. In Table 1, although the absolute performance of the models has declined, the265

relative ranking changes are not significant. However, after applying multi-mutation, the relative266

rankings of the models have undergone observable changes. For example, in the CodeNet benchmark,267

the rankings of the three models from the Qwen2.5-Coder series experienced significant changes.268

The original ranking is 32B >14B >7B, but after applying the FUV method, the ranking becomes 14B269

>32B >7B, and with the AUV method, the ranking shifts to 7B >14B >32B. These ranking changes270

also suggest that, when using the original static benchmark, the inference performance of these271

models might not have been accurately evaluated due to issues like data contamination. Additionally,272

the CodeNet Benchmark was released in January 2024, while the data collection for Qwen2.5-Coder273

7

Table 2: Model Pass@1 performance on original and multiple mutated CRUXEval and CodeNet
benchmarks. Performance drops of more than 20% are highlighted.

Type Model Origin FUV AUV AFU

CRUXEval

DeepSeek V3 65.80 45.93 (-19.87) 52.21 (-13.59) 50.63 (-15.17)

GPT-4o mini 53.60 31.28 (-22.32) 42.18 (-11.42) 37.94 (-15.66)
Llama 3.1 70B 53.20 36.79 (-16.41) 40.89 (-12.31) 37.57 (-15.63)
Llama 3.1 8B 31.20 15.93 (-15.27) 23.26 (-7.94) 20.48 (-10.72)

Qwen2.5-Coder 32B 65.50 37.25 (-28.25) 47.82 (-17.68) 39.58 (-25.92)

Qwen2.5-Coder 14B 58.30 33.90 (-24.40) 47.71 (-10.59) 39.15 (-19.15)
Qwen2.5-Coder 7B 45.70 31.61 (-14.09) 32.02 (-13.68) 31.96 (-13.74)

StarCoder2 15B 33.10 12.07 (-21.03) 8.57 (-24.53) 28.36 (-4.74)
StarCoder2 7B 33.80 20.33 (-13.47) 20.05 (-13.75) 32.49 (-1.31)
StarCoder2 3B 30.00 16.59 (-13.41) 20.11 (-9.89) 25.19 (-4.81)

CodeNet

DeepSeek V3 94.70 78.93 (-15.77) 89.68 (-5.02) 78.54 (-16.16)

GPT-4o mini 90.20 70.71 (-19.49) 75.48 (-14.72) 56.58 (-33.62)

Llama 3.1 70B 88.00 43.21 (-44.79) 74.41 (-13.59) 53.17 (-34.83)

Llama 3.1 8B 66.70 25.00 (-41.70) 30.11 (-36.59) 16.10 (-50.60)

Qwen2.5-Coder 32B 92.70 58.21 (-34.49) 63.66 (-29.04) 51.95 (-40.75)

Qwen2.5-Coder 14B 86.30 58.93 (-27.37) 69.89 (-16.41) 50.00 (-36.30)

Qwen2.5-Coder 7B 84.10 40.71 (-43.39) 73.55 (-10.55) 40.24 (-43.86)

StarCoder2 15B 58.60 32.86 (-25.74) 56.34 (-2.26) 25.12 (-33.48)

StarCoder2 7B 43.00 18.21 (-24.79) 35.05 (-7.95) 16.34 (-26.66)

StarCoder2 3B 50.70 19.29 (-31.41) 43.01 (-7.69) 19.27 (-31.43)

was completed by February 2024. Our results indicate that some models may be implicitly affected274

by the data contamination issue.275

4.3 RQ3: Mitigation of Data Contamination276

Original FUV AUV AFU
Type

0

10

20

30

40

50

60

Pa
ss

@
1

Pe
rfo

rm
an

ce

w/o FT FT

Figure 5: Comparison of Pass@1 scores on
static and dynamic CRUXEval, with and with-
out(w/o) fine-tuning the model.

In this section, we further illustrate the significant im-277

pact of data contamination and how our method can278

effectively mitigate these issues. In RQ1 and RQ2,279

we find that the performance trends of different mod-280

els under our dynamic benchmark are generally con-281

sistent. Due to computational resource constraints,282

in this section, we select the Qwen2.5-Coder 1.5B283

Instruct model and fine-tune it using the CRUX-284

Eval dataset to simulate the data contamination is-285

sue. In this experiment, we use a learning rate of286

1e-4, a batch size of 2, and 20 training epochs. We287

then evaluate the model on both the original static288

CRUXEval benchmark and our dynamic benchmark.289

Since the previous evaluation shows the strong ca-290

pability of multi-mutation, we use multi-mutation as291

the dynamic benchmarking approach. The results are292

shown in Figure 5.293

It shows that the fine-tuned model achieves approxi-294

mately three times higher Pass@1 scores than the original model, indicating that it has memorized the295

dataset. This demonstrates that data contamination can severely undermine the ability of traditional296

static benchmarks to accurately reflect a model’s true code reasoning capabilities. Moreover, when the297

fine-tuned model is evaluated on the dynamic benchmark, the Pass@1 scores also decline compared298

to those on the static benchmark. Particularly for the FUV method, the impact of fine-tuning on its299

evaluation is almost negligible. This effectively demonstrates that our approach maintains its efficacy300

in assessing the model’s genuine reasoning capabilities, even in scenarios where test data has been301

incorporated into the training dataset, thereby meeting the criteria for syntactic divergence.302

8

4.4 RQ4: Complexity of Dynamic Benchmarks303

Table 3: BLEU scores of different mutated bench-
marks compared to the original benchmarks.
Benchmark VI VII CU F2W CA
CRUXEval 43.35 40.70 70.41 44.45 55.64
Avatar 50.28 50.22 70.36 63.19 72.43
CodeNet 56.46 56.91 69.55 59.92 67.45
TransCoder 37.53 37.50 61.03 52.21 64.93

In Table 3, we compare the similarity be-304

tween benchmarks obtained by different mu-305

tated methods and original benchmarks, using306

the BLEU score [29] to measure the similar-307

ity. The results show that the BLEU score of308

the vast majority of dynamic benchmarks com-309

pared to the original benchmarks reaches above310

50, indicating that our method effectively re-311

duced the model’s reasoning performance with-312

out significantly altering benchmarks.313

5 Related Work314

5.1 Code Reasoning315

In the domain of code, various benchmarks are developed to evaluate the code reasoning abilities of316

LLMs. For example, CRUXEval [9] concentrates on code execution challenges by supplying LLMs317

with a function and asking them either to produce outputs corresponding to given inputs or to identify318

a set of inputs that would yield a specified output. Meanwhile, benchmarks such as Code Lingua [28]319

and TransCoder [19, 33] are geared towards code translation, aiming to assess LLMs’ ability to320

convert code from one language to another. Several other benchmarks have also been developed to321

assess the code reasoning capabilities of LLMs across diverse tasks. For instance, QuixBugs [23]322

evaluates models’ proficiency in program repair, while CoDesc [12] and similar benchmarks focus323

on assessing models’ ability to code summarization.324

5.2 Mutation Testing325

Mutation testing has been extensively studied as a powerful technique for evaluating the effectiveness326

of test suites and improving software quality. A representative example can be found in compiler327

testing, where mutation testing of input programs has been effectively employed to identify subtle328

bugs and optimization issues in modern compilers [20, 30, 22]. In the domain of LLM testing, Hooda329

et al. [13] conduct a comparative analysis of LLMs’ performance on code generation tasks using both330

original and mutated datasets, revealing that current models demonstrate a limited understanding of331

fundamental programming concepts such as data flow and control flow. Moreover, Chen et al. [3]332

enhances the evaluation accuracy of large language models by modifying the meaning and context of333

the natural language descriptions in programming problems.334

5.3 Benchmark Reliability335

Benchmark reliability has been a persistent issue throughout the development of deep learning, espe-336

cially since LLMs became mainstream in the academic community. The remarkable generalization337

capabilities and task-handling abilities of LLMs have led to the creation of numerous benchmarks338

tailored to various tasks. However, the quality of these benchmarks varies significantly, and prior339

research has already highlighted this problem. For example, Gulati et al. [10] proposed Putnam-340

AXIOM, demonstrating that current large models still perform poorly on mathematical problems.341

Similarly, Liu et al. [25] introduced EvalPlus, which rigorously evaluates LLMs’ code generation342

capabilities through mutation-based methods. Our work further advances LLM evaluation by focusing343

on code reasoning tasks, thereby contributing to a more comprehensive assessment system.344

6 Conclusion345

In this paper, we tackle a critical challenge in model evaluation: how to keep code benchmarks346

meaningful when models might have already seen them during training. Our solution, dynamic347

benchmarking, automatically transforms test programs while keeping their semantics intact. Our348

experiments show this approach works remarkably well — models struggle more with our transformed349

benchmarks, and even when a model is fine-tuned on the original benchmark, our dynamic versions350

still provide reliable evaluation. This opens up new possibilities for keeping model evaluation fair351

and meaningful as models continue to advance.352

9

References353

[1] Rachith Aiyappa, Jisun An, Haewoon Kwak, and Yong-Yeol Ahn. Can we trust the evaluation354

on chatgpt? arXiv preprint arXiv:2303.12767, 2023.355

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,356

Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul357

Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke358

Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad359

Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias360

Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex361

Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,362

William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant363

Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie364

Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and365

Wojciech Zaremba. Evaluating large language models trained on code, 2021. URL https:366

//arxiv.org/abs/2107.03374.367

[3] Simin Chen, Pranav Pusarla, and Baishakhi Ray. Dynamic benchmarking of reasoning368

capabilities in code large language models under data contamination, 2025. URL https:369

//arxiv.org/abs/2503.04149.370

[4] Cursor. Cursor: The ai-first code editor, 2023. URL https://www.cursor.com/. Accessed:371

2023-10-30.372

[5] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu,373

Chenggang Zhao, Chengqi Deng, et al. Deepseek-v3 technical report, 2024. URL https:374

//arxiv.org/abs/2412.19437.375

[6] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,376

Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd377

of models. arXiv preprint arXiv:2407.21783, 2024.378

[7] Nat Friedman. Introducing github copilot: your ai pair programmer. https://github.blog/2021-379

06-29-introducing-github-copilot-ai-pair-programmer, 2021.380

[8] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,381

Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, et al. The llama 3 herd of models, 2024. URL382

https://arxiv.org/abs/2407.21783.383

[9] Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and384

Sida I Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv385

preprint arXiv:2401.03065, 2024.386

[10] Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno de Moraes Dumont,387

and Sanmi Koyejo. Putnam-axiom: A functional and static benchmark for measuring higher388

level mathematical reasoning. In The 4th Workshop on Mathematical Reasoning and AI at389

NeurIPS’24, 2024.390

[11] Valentin Hartmann, Anshuman Suri, Vincent Bindschaedler, David Evans, Shruti Tople, and391

Robert West. Sok: Memorization in general-purpose large language models, 2023. URL392

https://arxiv.org/abs/2310.18362.393

[12] Masum Hasan, Tanveer Muttaqueen, Abdullah Al Ishtiaq, Kazi Sajeed Mehrab, Md. Mahim An-394

jum Haque, Tahmid Hasan, Wasi Ahmad, Anindya Iqbal, and Rifat Shahriyar. CoDesc: A large395

code–description parallel dataset. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli,396

editors, Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages397

210–218, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/398

2021.findings-acl.18. URL https://aclanthology.org/2021.findings-acl.18/.399

[13] Ashish Hooda, Mihai Christodorescu, Miltiadis Allamanis, Aaron Wilson, Kassem Fawaz, and400

Somesh Jha. Do large code models understand programming concepts? a black-box approach.401

arXiv preprint arXiv:2402.05980, 2024.402

10

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2503.04149
https://arxiv.org/abs/2503.04149
https://arxiv.org/abs/2503.04149
https://www.cursor.com/
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2310.18362
https://aclanthology.org/2021.findings-acl.18/

[14] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jia-403

jun Zhang, Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint404

arXiv:2409.12186, 2024.405

[15] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun406

Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei407

Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng408

Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL https:409

//arxiv.org/abs/2409.12186.410

[16] Yoichi Ishibashi and Yoshimasa Nishimura. Self-organized agents: A llm multi-agent framework411

toward ultra large-scale code generation and optimization, 2024. URL https://arxiv.org/412

abs/2404.02183.413

[17] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large414

language models for code generation, 2024. URL https://arxiv.org/abs/2406.00515.415

[18] Ahmed Khanfir, Matthieu Jimenez, Mike Papadakis, and Yves Le Traon. Codebert-nt: code416

naturalness via codebert, 2022. URL https://arxiv.org/abs/2208.06042.417

[19] Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lample. Unsuper-418

vised translation of programming languages, 2020. URL https://arxiv.org/abs/2006.419

03511.420

[20] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence modulo inputs.421

ACM Sigplan Notices, 49(6):216–226, 2014.422

[21] Kyla Levin, Nicolas van Kempen, Emery D. Berger, and Stephen N. Freund. Chatdbg: An423

ai-powered debugging assistant, 2024. URL https://arxiv.org/abs/2403.16354.424

[22] Shaohua Li, Theodoros Theodoridis, and Zhendong Su. Boosting compiler testing by injecting425

real-world code. Proc. ACM Program. Lang., 8(PLDI), June 2024. doi: 10.1145/3656386. URL426

https://doi.org/10.1145/3656386.427

[23] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. Quixbugs: A multi-428

lingual program repair benchmark set based on the quixey challenge. In Proceedings Companion429

of the 2017 ACM SIGPLAN international conference on systems, programming, languages, and430

applications: software for humanity, pages 55–56, 2017.431

[24] Changshu Liu, Shizhuo Dylan Zhang, Ali Reza Ibrahimzada, and Reyhaneh Jabbarvand. Code-432

mind: A framework to challenge large language models for code reasoning, 2024. URL433

https://arxiv.org/abs/2402.09664.434

[25] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated435

by chatgpt really correct? rigorous evaluation of large language models for code generation.436

Advances in Neural Information Processing Systems, 36, 2024.437

[26] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-438

mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian,439

Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,440

Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo,441

Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan442

Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang,443

Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra,444

Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen445

Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Car-446

olyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite,447

Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro448

von Werra, and Harm de Vries. Starcoder 2 and the stack v2: The next generation, 2024. URL449

https://arxiv.org/abs/2402.19173.450

[27] OpenAI, Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan451

Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv452

preprint arXiv:2410.21276, 2024.453

11

https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2404.02183
https://arxiv.org/abs/2404.02183
https://arxiv.org/abs/2404.02183
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2208.06042
https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2403.16354
https://doi.org/10.1145/3656386
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.19173

[28] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi,454

Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. Lost455

in translation: A study of bugs introduced by large language models while translating code.456

In 2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE), pages457

866–866. IEEE Computer Society, 2024.458

[29] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic459

evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association460

for Computational Linguistics, pages 311–318, 2002.461

[30] Chengnian Sun, Vu Le, and Zhendong Su. Finding compiler bugs via live code mutation. In Pro-462

ceedings of the 2016 ACM SIGPLAN international conference on object-oriented programming,463

systems, languages, and applications, pages 849–863, 2016.464

[31] Niklaus Wirth, Niklaus Wirth, Niklaus Wirth, Suisse Informaticien, and Niklaus Wirth. Compiler465

construction, volume 1. Addison-Wesley Reading, 1996.466

[32] Chen Yang, Junjie Chen, Jiajun Jiang, and Yuliang Huang. Dependency-aware code naturalness.467

Proc. ACM Program. Lang., 8(OOPSLA2), October 2024. doi: 10.1145/3689794. URL468

https://doi.org/10.1145/3689794.469

[33] Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan Hong, Xiaoxue470

Ma, Zhi Jin, and Ge Li. Exploring and unleashing the power of large language models in471

automated code translation, 2024. URL https://arxiv.org/abs/2404.14646.472

A Benchmark Test Case Counts473

Table 4 enumerates the number of test cases in each benchmark and mutation method. Note that not474

all test cases can be mutated by each method. For example, out of all 800 test cases in CRUXEval,475

there are 306 cases containing for loops and thus can be mutated by For2While. In our evaluation, we476

only count the mutated test cases when evaluating each mutation method.477

Table 4: #test cases in the original benchmarks and #test cases that can be mutated by each mutation
method.

Mutation CRUXEval Avatar CodeNet TransCoder

Original 800 250 200 568
VarNormI 785 131 150 568
VarNormII 785 131 150 568
ConstUnfold 455 239 169 546
For2While 306 181 100 349
CondAug 374 191 134 396

B Detailed Experimental Results478

In this section, we present all of our experimental results, which generally align with the trends479

reported in Section 4.480

B.1 More Results on Single Mutated Experiments481

More experimental results on single mutated benchmark are displayed in Table 5.482

B.2 More Results on Multiple Mutated Experiments483

More experimental results on single mutated benchmark are displayed in Table 6.484

12

https://doi.org/10.1145/3689794
https://arxiv.org/abs/2404.14646

Table 5: Model Pass@1 performance on original and single mutated Avatar and TransCoder bench-
marks. Performance drops of more than 10% are highlighted.
Type Model Origin VarNormI VarNormII ConstUnfold For2While CondAug

A
va

ta
r

DeepSeek V3 80.64 85.42 (+4.78) 81.98 (+1.34) 72.68 (-7.96) 73.48 (-7.16) 81.68 (+1.04)

GPT-4o mini 72.48 82.13 (+9.65) 74.05 (+1.57) 54.77 (-17.71) 67.90 (-4.58) 73.25 (+0.77)

Llama 3.1 70B 72.80 64.35 (-8.45) 72.6 (-0.20) 57.87 (-14.93) 62.71 (-10.09) 70.16 (-2.64)

Llama 3.1 8B 46.48 49.01 (+2.53) 52.98 (+6.50) 29.87 (-16.61) 36.24 (-10.24) 43.04 (-3.44)

Qwen2.5 32B 75.64 78.76 (+3.12) 76.64 (+1.00) 59.42 (-16.22) 65.08 (-10.56) 70.68 (-4.96)

Qwen2.5 14B 65.20 70.08 (+4.88) 70.53 (+5.33) 54.31 (-10.89) 57.46 (-7.74) 64.08 (-1.12)

Qwen2.5 7B 64.60 61.83 (-2.77) 65.80 (+1.20) 43.18 (-21.42) 51.27 (-13.33) 58.12 (-6.48)

StarCoder2 15B 58.12 43.66 (-14.46) 45.95 (-12.17) 25.86 (-32.26) 26.52 (-31.60) 30.68 (-27.44)

StarCoder2 7B 40.00 30.84 (-9.16) 28.85 (-11.15) 16.40 (-23.60) 20.88 (-19.12) 27.54 (-12.46)

StarCoder2 3B 41.80 32.06 (-9.74) 32.37 (-9.43) 17.49 (-24.31) 17.90 (-23.90) 23.14 (-18.66)

Tr
an

sC
od

er

Deepseek V3 79.36 75.84 (-3.52) 74.69 (-4.67) 69.73 (-9.63) 65.39 (-13.97) 67.95 (-11.41)

GPT-4o mini 78.11 72.28 (-5.83) 71.82 (-6.29) 69.56 (-8.55) 82.96 (+4.85) 70.95 (-7.16)

Llama 3.1 70B 78.88 73.36 (-5.52) 72.57 (-6.31) 52.69 (-26.19) 61.55 (-17.33) 64.82 (-14.06)

Llama 3.1 8B 72.56 62.66 (-9.90) 64.23 (-8.33) 59.04 (-13.52) 77.80 (+5.24) 64.55 (-8.01)

Qwen2.5 32B 73.24 55.48 (-17.76) 67.88 (-5.36) 71.34 (-1.90) 75.27 (+2.03) 70.89 (-2.35)

Qwen2.5 14B 78.88 71.45 (-7.43) 71.08 (-7.80) 74.11 (-4.77) 77.95 (-0.93) 71.26 (-7.62)

Qwen2.5 7B 67.87 65.60 (-2.27) 57.47 (-10.40) 58.01 (-9.86) 62.76 (-5.11) 57.66 (-10.21)

StarCoder2 15B 51.33 49.05 (-2.28) 42.07 (-9.26) 38.40 (-12.93) 29.68 (-21.65) 34.89 (-16.44)

StarCoder2 7B 54.71 40.08 (-14.63) 45.31 (-9.40) 33.90 (-20.81) 22.32 (-32.39) 34.52 (-20.19)

StarCoder2 3B 48.15 36.31 (-11.84) 34.56 (-13.59) 19.91 (-28.24) 10.74 (-37.41) 18.28 (-29.87)

Table 6: Model Pass@1 performance on original and multiple mutated Avatar and TransCoder
benchmarks. Performance drops of more than 20% are highlighted.

Type Model Origin FUV AUV AFU

Avatar

DeepSeek V3 80.64 70.24 (-10.40) 74.75 (-5.89) 64.39 (-16.25)

GPT-4o mini 72.48 51.95 (-20.53) 61.62 (-10.86) 41.16 (-31.32)

Llama 3.1 70B 72.80 48.29 (-24.51) 54.34 (-18.46) 42.58 (-30.22)

Llama 3.1 8B 46.48 20.73 (-25.75) 18.79 (-27.69) 12.65 (-33.83)

Qwen2.5-Coder 32B 75.64 57.32 (-18.32) 52.32 (-23.32) 39.48 (-36.16)

Qwen2.5-Coder 14B 65.20 49.02 (-16.18) 46.06 (-19.14) 36.39 (-28.81)

Qwen2.5-Coder 7B 64.60 34.88 (-29.72) 41.01 (-23.59) 24.13 (-40.47)

StarCoder2 15B 58.12 19.76 (-38.36) 25.25 (-32.87) 20.16 (-37.96)

StarCoder2 7B 40.00 14.39 (-25.61) 15.15 (-24.85) 12.00 (-28.00)

StarCoder2 3B 41.80 10.00 (-31.80) 16.57 (-25.23) 8.00 (-33.80)

TransCoder

DeepSeek V3 79.36 62.47 (-16.89) 66.22 (-13.79) 72.91 (-6.45)

GPT-4o mini 78.11 45.16 (-32.95) 49.05 (-29.06) 57.09 (-21.44)

Llama 3.1 70B 78.88 51.94 (-26.94) 58.34 (-20.54) 59.27 (-24.89)

Llama 3.1 8B 72.56 25.16 (-47.40) 31.51 (-41.05) 22.82 (-49.74)

Qwen2.5-Coder 32B 73.24 56.25 (-17.00) 54.58 (-25.48) 58.55 (-20.04)

Qwen2.5-Coder 14B 78.88 52.36 (-26.52) 57.72 (-21.16) 58.55 (-20.33)

Qwen2.5-Coder 7B 67.87 27.30 (-40.57) 42.75 (-25.12) 45.98 (-21.89)

StarCoder2 15B 51.33 12.79 (-38.54) 29.97 (-21.36) 23.64 (-27.69)

StarCoder2 7B 54.71 7.56 (-47.15) 8.92 (-45.79) 11.27 (-43.44)

StarCoder2 3B 48.15 3.32 (-44.83) 9.41 (-38.74) 13.84 (-34.31)

13

C Prompts485

In this section, we present the prompts we use to instruct the model to do code execution tasks and486

code translation tasks in our experiments.487

Based on the given Python code, which may contain errors, complete the assert statement
with the output when executing the code on the given test case. Do NOT output any extra
information, even if the function is incorrect or incomplete. Output “# done” after the
assertion.

488

You are a code translation expert. Translate the Python code below to Java. Do NOT output
any extra information.489

D Case Study490

In this section, we present some cases generated in our experiments in Figure 6 and Figure 7.491

Figure 6 shows two examples of code execution tasks performed by the GPT-4o mini and Qwen2.5-492

Coder 32B models. In Figure 6(a), the LLM was originally able to make the correct judgment, but493

after applying the Constant Unfolding mutation, it made an incorrect judgment. Figure 6(b) presents494

a slightly more complex example. After the FUV mutation, the model incorrectly evaluated the495

isalpha condition and output an erroneous result.496

Figure 7 shows two examples of code translation tasks performed by the DeepSeek V3 and Llama497

3.1 8B models. In Figure 7(a), the key to correct translation lies in paying attention to the sign of498

the numbers in the array. Since Python and Java define the modulo operation for negative numbers499

differently, this detail must be carefully considered when translating from Python to Java. In the500

original code, the LLM successfully recognized this aspect. However, after applying the Constant501

Unfolding mutation, the LLM overlooked this detail and ultimately produced code that could not pass502

the test. Additionally, since Python does not explicitly specify types, correctly determining the type is503

also a crucial aspect of translating from Python to Java. In Figure 7(b), the original code successfully504

identifies the most suitable type for the code. However, after the FUV mutation, the model makes an505

incorrect judgment.506

def f(x):
 n = len(x)
 i = 0
 while i < n and x[i].isdigit():
 i += 1
 return i == n
assert f('1') == True

def f(x):
 n = len(x)
 i = (3 + -3)
 while i < n and x[i].isdigit():
 i += (66 + -65)
 return i == n
assert f('1') == False

(a) CRUXEval example generated by GPT-4o mini.

def f(doc):
 for x in doc:
 if x.isalpha():
 return x.capitalize()
 return '-'
assert f('raruwa') == 'R'

def iXN(aRL):
 jLn = (25 + -25)
 Fbd = aRL
 while jLn < len(Fbd):
 XBu = Fbd[jLn]
 if XBu.isalpha():
 return XBu.capitalize()
 jLn = jLn + (21 + -20)
 return '-'
assert iXN('raruwa') == '-'

(b) CRUXEval example generated by Qwen2.5-Coder 32B

Figure 6: Case studies of code execution.

14

A, B, C, D = map(int, input().split())
m = 998244353
d = [[0] * (D + 1) for _ in range(C + 1)]
d[A][B] = 1
for i in range(A, C + 1):
 for j in range(B, D + 1):
 d[i][j] += (d[i][j - 1] * i + d[i - 1][j] * j -
 d[i - 1][j - 1] * (i - 1) * (j - 1)) %
m
print(d[C][D])

import java.util.Scanner;

public class Main {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);
 int A = scanner.nextInt();
 int B = scanner.nextInt();
 int C = scanner.nextInt();
 int D = scanner.nextInt();
 int m = 998244353;
 long[][] d = new long[C + 1][D + 1];
 d[A][B] = 1;
 for (int i = A; i <= C; i++) {
 for (int j = B; j <= D; j++) {
 if (i == A && j == B) continue;
 d[i][j] = (d[i][j - 1] * i + d[i - 1][j] *
j - d[i - 1][j - 1] * (i - 1) * (j - 1)) % m;
 if (d[i][j] < 0) d[i][j] += m;
 }
 }
 System.out.println(d[C][D]);
 }
}

A, B, C, D = map(int, input().split())
m = (79 + 998244274)
d = [[(19 + -19)] * (D + (20 + -19)) for _ in range(C +
(57 + -56))]
d[A][B] = (2 + -1)
for i in range(A, C + (99 + -98)):
 for j in range(B, D + (48 + -47)):
 d[i][j] += (d[i][j - (44 + -43)] * i + d[i - (25 +
-24)][j] * j -
 d[i - (76 + -75)][j - (6 + -5)] * (i -
(35 + -34)) * (j - (15 + -14))) % m
print(d[C][D])

import java.util.Scanner;

public class Main {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);
 int A = scanner.nextInt();
 int B = scanner.nextInt();
 int C = scanner.nextInt();
 int D = scanner.nextInt();
 int m = 79 + 998244274;
 int[][] d = new int[C + 1][D + 1];
 d[A][B] = 1;
 for (int i = A; i <= C; i++) {
 for (int j = B; j <= D; j++) {
 if (i == A && j == B) continue;
 d[i][j] = (d[i][j - 1] * i + d[i - 1][j] *
j - d[i - 1][j - 1] * (i - 1) * (j - 1)) % m;
 }
 }
 System.out.println(d[C][D]);
 }
}

(a) Avatar example generated by DeepSeek V3.

def repeat (s , n) :
 s1 = s
 for i in range (1 , n) :
 s += s1
 return s

public static String f_filled(String s, int n) {
 String s1 = s;
 for (int i = 1; i < n; i++) {
 s += s1;
 }
 return s;
}

def VoU (api , kDU) :
 AFe = api
 cWi = (91 + -91)
 bYk = range ((42 + -41) , kDU)
 while cWi < len(bYk):
 qQd = bYk[cWi]
 api += AFe
 cWi = cWi + (64 + -63)
 return api

public static int f_filled(int[] api, int kDU) {
 int AFe = api[0];
 int cWi = (91 + -91);
 int[] bYk = new int[kDU];
 for (int i = (42 + -41); i < kDU; i++) {
 bYk[i] = i;
 }
 while (cWi < kDU) {
 int qQd = bYk[cWi];
 api[0] += AFe;
 cWi = cWi + (64 + -63);
 }
 return api[0];
}

(b) TransCoder example generated by Llama 3.1 8B.

Figure 7: Case studies of code translation.

15

NeurIPS Paper Checklist507

1. Claims508

Question: Do the main claims made in the abstract and introduction accurately reflect the509

paper’s contributions and scope?510

Answer: [Yes]511

Justification: Abstract and Section 1.512

Guidelines:513

• The answer NA means that the abstract and introduction do not include the claims514

made in the paper.515

• The abstract and/or introduction should clearly state the claims made, including the516

contributions made in the paper and important assumptions and limitations. A No or517

NA answer to this question will not be perceived well by the reviewers.518

• The claims made should match theoretical and experimental results, and reflect how519

much the results can be expected to generalize to other settings.520

• It is fine to include aspirational goals as motivation as long as it is clear that these goals521

are not attained by the paper.522

2. Limitations523

Question: Does the paper discuss the limitations of the work performed by the authors?524

Answer: [Yes]525

Justification: Section 4.526

Guidelines:527

• The answer NA means that the paper has no limitation while the answer No means that528

the paper has limitations, but those are not discussed in the paper.529

• The authors are encouraged to create a separate "Limitations" section in their paper.530

• The paper should point out any strong assumptions and how robust the results are to531

violations of these assumptions (e.g., independence assumptions, noiseless settings,532

model well-specification, asymptotic approximations only holding locally). The authors533

should reflect on how these assumptions might be violated in practice and what the534

implications would be.535

• The authors should reflect on the scope of the claims made, e.g., if the approach was536

only tested on a few datasets or with a few runs. In general, empirical results often537

depend on implicit assumptions, which should be articulated.538

• The authors should reflect on the factors that influence the performance of the approach.539

For example, a facial recognition algorithm may perform poorly when image resolution540

is low or images are taken in low lighting. Or a speech-to-text system might not be541

used reliably to provide closed captions for online lectures because it fails to handle542

technical jargon.543

• The authors should discuss the computational efficiency of the proposed algorithms544

and how they scale with dataset size.545

• If applicable, the authors should discuss possible limitations of their approach to546

address problems of privacy and fairness.547

• While the authors might fear that complete honesty about limitations might be used by548

reviewers as grounds for rejection, a worse outcome might be that reviewers discover549

limitations that aren’t acknowledged in the paper. The authors should use their best550

judgment and recognize that individual actions in favor of transparency play an impor-551

tant role in developing norms that preserve the integrity of the community. Reviewers552

will be specifically instructed to not penalize honesty concerning limitations.553

3. Theory assumptions and proofs554

Question: For each theoretical result, does the paper provide the full set of assumptions and555

a complete (and correct) proof?556

Answer: [NA]557

16

Justification: The paper does not include theoretical results.558

Guidelines:559

• The answer NA means that the paper does not include theoretical results.560

• All the theorems, formulas, and proofs in the paper should be numbered and cross-561

referenced.562

• All assumptions should be clearly stated or referenced in the statement of any theorems.563

• The proofs can either appear in the main paper or the supplemental material, but if564

they appear in the supplemental material, the authors are encouraged to provide a short565

proof sketch to provide intuition.566

• Inversely, any informal proof provided in the core of the paper should be complemented567

by formal proofs provided in appendix or supplemental material.568

• Theorems and Lemmas that the proof relies upon should be properly referenced.569

4. Experimental result reproducibility570

Question: Does the paper fully disclose all the information needed to reproduce the main ex-571

perimental results of the paper to the extent that it affects the main claims and/or conclusions572

of the paper (regardless of whether the code and data are provided or not)?573

Answer: [Yes]574

Justification: Section 3, Section 4 and Appendix.575

Guidelines:576

• The answer NA means that the paper does not include experiments.577

• If the paper includes experiments, a No answer to this question will not be perceived578

well by the reviewers: Making the paper reproducible is important, regardless of579

whether the code and data are provided or not.580

• If the contribution is a dataset and/or model, the authors should describe the steps taken581

to make their results reproducible or verifiable.582

• Depending on the contribution, reproducibility can be accomplished in various ways.583

For example, if the contribution is a novel architecture, describing the architecture fully584

might suffice, or if the contribution is a specific model and empirical evaluation, it may585

be necessary to either make it possible for others to replicate the model with the same586

dataset, or provide access to the model. In general. releasing code and data is often587

one good way to accomplish this, but reproducibility can also be provided via detailed588

instructions for how to replicate the results, access to a hosted model (e.g., in the case589

of a large language model), releasing of a model checkpoint, or other means that are590

appropriate to the research performed.591

• While NeurIPS does not require releasing code, the conference does require all submis-592

sions to provide some reasonable avenue for reproducibility, which may depend on the593

nature of the contribution. For example594

(a) If the contribution is primarily a new algorithm, the paper should make it clear how595

to reproduce that algorithm.596

(b) If the contribution is primarily a new model architecture, the paper should describe597

the architecture clearly and fully.598

(c) If the contribution is a new model (e.g., a large language model), then there should599

either be a way to access this model for reproducing the results or a way to reproduce600

the model (e.g., with an open-source dataset or instructions for how to construct601

the dataset).602

(d) We recognize that reproducibility may be tricky in some cases, in which case603

authors are welcome to describe the particular way they provide for reproducibility.604

In the case of closed-source models, it may be that access to the model is limited in605

some way (e.g., to registered users), but it should be possible for other researchers606

to have some path to reproducing or verifying the results.607

5. Open access to data and code608

Question: Does the paper provide open access to the data and code, with sufficient instruc-609

tions to faithfully reproduce the main experimental results, as described in supplemental610

material?611

17

Answer: [Yes]612

Justification: We show it in OpenReview.613

Guidelines:614

• The answer NA means that paper does not include experiments requiring code.615

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/616

public/guides/CodeSubmissionPolicy) for more details.617

• While we encourage the release of code and data, we understand that this might not be618

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not619

including code, unless this is central to the contribution (e.g., for a new open-source620

benchmark).621

• The instructions should contain the exact command and environment needed to run to622

reproduce the results. See the NeurIPS code and data submission guidelines (https:623

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.624

• The authors should provide instructions on data access and preparation, including how625

to access the raw data, preprocessed data, intermediate data, and generated data, etc.626

• The authors should provide scripts to reproduce all experimental results for the new627

proposed method and baselines. If only a subset of experiments are reproducible, they628

should state which ones are omitted from the script and why.629

• At submission time, to preserve anonymity, the authors should release anonymized630

versions (if applicable).631

• Providing as much information as possible in supplemental material (appended to the632

paper) is recommended, but including URLs to data and code is permitted.633

6. Experimental setting/details634

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-635

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the636

results?637

Answer: [Yes]638

Justification: Section 3, Section 4 and Appendix.639

Guidelines:640

• The answer NA means that the paper does not include experiments.641

• The experimental setting should be presented in the core of the paper to a level of detail642

that is necessary to appreciate the results and make sense of them.643

• The full details can be provided either with the code, in appendix, or as supplemental644

material.645

7. Experiment statistical significance646

Question: Does the paper report error bars suitably and correctly defined or other appropriate647

information about the statistical significance of the experiments?648

Answer: [No]649

Justification: Error bars are not reported because it would be too computationally expensive.650

Guidelines:651

• The answer NA means that the paper does not include experiments.652

• The authors should answer "Yes" if the results are accompanied by error bars, confi-653

dence intervals, or statistical significance tests, at least for the experiments that support654

the main claims of the paper.655

• The factors of variability that the error bars are capturing should be clearly stated (for656

example, train/test split, initialization, random drawing of some parameter, or overall657

run with given experimental conditions).658

• The method for calculating the error bars should be explained (closed form formula,659

call to a library function, bootstrap, etc.)660

• The assumptions made should be given (e.g., Normally distributed errors).661

• It should be clear whether the error bar is the standard deviation or the standard error662

of the mean.663

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should664

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis665

of Normality of errors is not verified.666

• For asymmetric distributions, the authors should be careful not to show in tables or667

figures symmetric error bars that would yield results that are out of range (e.g. negative668

error rates).669

• If error bars are reported in tables or plots, The authors should explain in the text how670

they were calculated and reference the corresponding figures or tables in the text.671

8. Experiments compute resources672

Question: For each experiment, does the paper provide sufficient information on the com-673

puter resources (type of compute workers, memory, time of execution) needed to reproduce674

the experiments?675

Answer: [Yes]676

Justification: Section 3.677

Guidelines:678

• The answer NA means that the paper does not include experiments.679

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,680

or cloud provider, including relevant memory and storage.681

• The paper should provide the amount of compute required for each of the individual682

experimental runs as well as estimate the total compute.683

• The paper should disclose whether the full research project required more compute684

than the experiments reported in the paper (e.g., preliminary or failed experiments that685

didn’t make it into the paper).686

9. Code of ethics687

Question: Does the research conducted in the paper conform, in every respect, with the688

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?689

Answer: [Yes]690

Justification: All the paper.691

Guidelines:692

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.693

• If the authors answer No, they should explain the special circumstances that require a694

deviation from the Code of Ethics.695

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-696

eration due to laws or regulations in their jurisdiction).697

10. Broader impacts698

Question: Does the paper discuss both potential positive societal impacts and negative699

societal impacts of the work performed?700

Answer: [NA]701

Justification: This paper primarily examines issues related to benchmarks and does not have702

a direct connection to social impact.703

Guidelines:704

• The answer NA means that there is no societal impact of the work performed.705

• If the authors answer NA or No, they should explain why their work has no societal706

impact or why the paper does not address societal impact.707

• Examples of negative societal impacts include potential malicious or unintended uses708

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations709

(e.g., deployment of technologies that could make decisions that unfairly impact specific710

groups), privacy considerations, and security considerations.711

19

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied712

to particular applications, let alone deployments. However, if there is a direct path to713

any negative applications, the authors should point it out. For example, it is legitimate714

to point out that an improvement in the quality of generative models could be used to715

generate deepfakes for disinformation. On the other hand, it is not needed to point out716

that a generic algorithm for optimizing neural networks could enable people to train717

models that generate Deepfakes faster.718

• The authors should consider possible harms that could arise when the technology is719

being used as intended and functioning correctly, harms that could arise when the720

technology is being used as intended but gives incorrect results, and harms following721

from (intentional or unintentional) misuse of the technology.722

• If there are negative societal impacts, the authors could also discuss possible mitigation723

strategies (e.g., gated release of models, providing defenses in addition to attacks,724

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from725

feedback over time, improving the efficiency and accessibility of ML).726

11. Safeguards727

Question: Does the paper describe safeguards that have been put in place for responsible728

release of data or models that have a high risk for misuse (e.g., pretrained language models,729

image generators, or scraped datasets)?730

Answer: [NA]731

Justification: The paper poses no such risks.732

Guidelines:733

• The answer NA means that the paper poses no such risks.734

• Released models that have a high risk for misuse or dual-use should be released with735

necessary safeguards to allow for controlled use of the model, for example by requiring736

that users adhere to usage guidelines or restrictions to access the model or implementing737

safety filters.738

• Datasets that have been scraped from the Internet could pose safety risks. The authors739

should describe how they avoided releasing unsafe images.740

• We recognize that providing effective safeguards is challenging, and many papers do741

not require this, but we encourage authors to take this into account and make a best742

faith effort.743

12. Licenses for existing assets744

Question: Are the creators or original owners of assets (e.g., code, data, models), used in745

the paper, properly credited and are the license and terms of use explicitly mentioned and746

properly respected?747

Answer: [Yes]748

Justification: Section 3.749

Guidelines:750

• The answer NA means that the paper does not use existing assets.751

• The authors should cite the original paper that produced the code package or dataset.752

• The authors should state which version of the asset is used and, if possible, include a753

URL.754

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.755

• For scraped data from a particular source (e.g., website), the copyright and terms of756

service of that source should be provided.757

• If assets are released, the license, copyright information, and terms of use in the758

package should be provided. For popular datasets, paperswithcode.com/datasets759

has curated licenses for some datasets. Their licensing guide can help determine the760

license of a dataset.761

• For existing datasets that are re-packaged, both the original license and the license of762

the derived asset (if it has changed) should be provided.763

20

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to764

the asset’s creators.765

13. New assets766

Question: Are new assets introduced in the paper well documented and is the documentation767

provided alongside the assets?768

Answer: [Yes]769

Justification: We show it in OpenReview.770

Guidelines:771

• The answer NA means that the paper does not release new assets.772

• Researchers should communicate the details of the dataset/code/model as part of their773

submissions via structured templates. This includes details about training, license,774

limitations, etc.775

• The paper should discuss whether and how consent was obtained from people whose776

asset is used.777

• At submission time, remember to anonymize your assets (if applicable). You can either778

create an anonymized URL or include an anonymized zip file.779

14. Crowdsourcing and research with human subjects780

Question: For crowdsourcing experiments and research with human subjects, does the paper781

include the full text of instructions given to participants and screenshots, if applicable, as782

well as details about compensation (if any)?783

Answer: [NA]784

Justification: The paper does not involve crowdsourcing nor research with human subjects.785

Guidelines:786

• The answer NA means that the paper does not involve crowdsourcing nor research with787

human subjects.788

• Including this information in the supplemental material is fine, but if the main contribu-789

tion of the paper involves human subjects, then as much detail as possible should be790

included in the main paper.791

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,792

or other labor should be paid at least the minimum wage in the country of the data793

collector.794

15. Institutional review board (IRB) approvals or equivalent for research with human795

subjects796

Question: Does the paper describe potential risks incurred by study participants, whether797

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)798

approvals (or an equivalent approval/review based on the requirements of your country or799

institution) were obtained?800

Answer: [NA]801

Justification: The paper does not involve crowdsourcing nor research with human subjects.802

Guidelines:803

• The answer NA means that the paper does not involve crowdsourcing nor research with804

human subjects.805

• Depending on the country in which research is conducted, IRB approval (or equivalent)806

may be required for any human subjects research. If you obtained IRB approval, you807

should clearly state this in the paper.808

• We recognize that the procedures for this may vary significantly between institutions809

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the810

guidelines for their institution.811

• For initial submissions, do not include any information that would break anonymity (if812

applicable), such as the institution conducting the review.813

16. Declaration of LLM usage814

21

Question: Does the paper describe the usage of LLMs if it is an important, original, or815

non-standard component of the core methods in this research? Note that if the LLM is used816

only for writing, editing, or formatting purposes and does not impact the core methodology,817

scientific rigorousness, or originality of the research, declaration is not required.818

Answer: [Yes]819

Justification: Section 3.820

Guidelines:821

• The answer NA means that the core method development in this research does not822

involve LLMs as any important, original, or non-standard components.823

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)824

for what should or should not be described.825

22

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methodology
	Dynamic Benchmarking Framework
	Code Syntax Mutations
	Code Structure Mutation
	Multi-Mutation

	Experimental Setup
	Results and Analysis
	RQ1: Impact of Single Mutation
	RQ2: Impact of Multi-Mutation
	RQ3: Mitigation of Data Contamination
	RQ4: Complexity of Dynamic Benchmarks

	Related Work
	Code Reasoning
	Mutation Testing
	Benchmark Reliability

	Conclusion
	Benchmark Test Case Counts
	Detailed Experimental Results
	More Results on Single Mutated Experiments
	More Results on Multiple Mutated Experiments

	Prompts
	Case Study

