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Abstract
Collaborative multi-armed bandits (MAB) has
emerged as a promising framework that allows
multiple agents to share the burden of exploration
and find optimal actions for a common problem.
While several recent results demonstrate the ben-
efit of collaboration in minimizing per-agent re-
gret, prior work on collaborative MABs primar-
ily rely on the assumption that all participating
agents behave truthfully. The case of strategic
agent behavior where an agent may free-ride on
the information shared by others without per-
forming exploration has received limited atten-
tion in the collaborative MAB setting; such free-
riding strategies can lead to a collapse in ex-
ploration resulting in high regret for all honest
agents.

This paper addresses the problem of collabora-
tive multi-armed bandits in the presence of strate-
gic agent behavior. Our main contribution is to
design mechanisms for penalizing agents so that
truthful behavior, i.e., performing sufficient ex-
ploration and reporting feedback accurately, is a
Nash equilibrium. Furthermore, under this Nash
equilibrium, the per-agent regret with collabora-
tion is

√
M -factor smaller than the per-agent re-

gret without collaboration, where M is the num-
ber of agents. Our results establish that it is pos-
sible to achieve the benefit of collaboration even
in the presence of strategic agents who may want
to free-ride. Semi-synthetic experiments show
that our theoretical results hold empirically, as
well.

1. Introduction
Multi-armed bandits is a framework to study problems
where an agent is repeatedly faced with the explore-exploit
dilemma, i.e., to acquire new information or to select op-
timal actions based on existing information (Lattimore &
Szepesvári, 2020). This framework is used in a wide range
of applications including clinical trials (Thompson, 1933;

Villar et al., 2015), recommendation systems (Li et al.,
2010), advertising (Buccapatnam et al., 2013), dynamic
pricing in markets (Trovò et al., 2018), portfolio selection
(Huo & Fu, 2017), hedging (Cannelli et al., 2023), spon-
sored search auctions (Sharma et al., 2012) and resource
allocation (Krishnasamy et al., 2021). In recent years there
has been increasing interest in collaborative multi-armed
bandits (Dubey & Pentland, 2020; Wang et al., 2019; Li
& Wang, 2022; He et al., 2022). This interest is fuelled
by the promise of data sharing and interoperability lead-
ing to better individual and societal utility (Mancini, 2021).
In this setting, multiple agents can collaborate on a com-
mon bandit task by sharing data across a communication
channel. This allows the agents to divide the burden of
exploration amongst themselves, and find optimal actions
based on the collective information. For example, multi-
ple hospitals can perform joint exploration in the clinical
trial of a new vaccine (Rieke et al., 2020; Flores et al.,
2021), several NGOs and government agencies can col-
laborate with each other to perform better mobile inter-
ventions for healthcare (Ou et al., 2022), multiple city ad-
ministrations can collaborate to solve common challenges
such as health inspections and waste management (Mao &
Perrault, 2024), autonomous driving providers can benefit
from joint exploration of routes and safety conditions (Fer-
dowsi et al., 2019), and finally, several recommendation
platforms can share aggregate information to improve ex-
ploration and better optimize their content using the ban-
dit framework (Bouneffouf et al., 2020). Recent work has
shown that this ability to collaborate leads to a signifi-
cant reduction in per-agent regret in various settings (Wang
et al., 2019).

However, almost all these results rely on the assumption
that all agents duly contribute in exploration and share their
feedback truthfully. This assumption is presumably idealis-
tic and can be easily violated in practice due to the presence
of self-interested strategic agents which might be tempted
to ‘free-ride’ on the information shared by others. In par-
ticular, these agents might purely rely on exploitation of ac-
tions that are explored by other agents. In fact, (Jung et al.,
2020) showed that if an agent is able to observe the actions
and rewards of another regret-minimizing agent, then there
exists a ‘free-riding’ strategy which suffers negligible re-
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gret. Hence, the existence of such strategies can lead to a
collapse in exploration as many agents might be tempted
to adopt this strategy. Moreover, agents might be unwill-
ing to report their accurate reward estimates without the
presence of any incentives. Despite its practical relevance,
the presence of “free-riding” strategic agents has been rela-
tively unexplored in the collaborative multi-armed bandits
literature. In this work, we ask therefore the following:

Research Question. Is it possible to incentivize
strategic agents to participate truthfully, and not
“free-ride” in a collaborative multi-armed ban-
dits setup?

To understand this question, we combine two areas of re-
search: mechanism design and multi-agent multi-armed
bandits. In particular, we consider mechanisms for a princi-
pal to incentivize truthful participation in a linear stochas-
tic multi-armed bandits setup with M agents. Each agent
is faced with the same linear bandit instance with time-
horizon T and the goal of each agent is to minimize their
own regret (Abbasi-Yadkori et al., 2011). We use monetary
penalty as the main device by which the principal can in-
centivize truthful behavior. The principal acts as a central
coordinator who shares/collects information to/from agents
and also enforces the mechanism to penalize the agents.
The goal of the principal is to minimize the social regret,
i.e., the cumulative regret of all agents. The communication
between the agents and principal happen in synchronous
rounds of communication.

1.1. Our contributions

Mechanism. We design provable mechanisms, LSHON
(Low-Switching Honest protocol) for the agent and
MONPEN (Monetary Penalty protocol) for the prinicpal, such
that truthful behavior, i.e., duly exploring the required actions
and reporting the correct information, is a Nash equilibrium
(Theorem 1).
Theorem 1 (Informal, see Thm. 3). When Principal fol-
lows MONPEN in common knowledge, all agents following
LSHON is a Nash Equilibrium.
To our knowledge, this is the first mechanism to disincentivize
‘free-riding’ in collaborative multi-armed bandits. LSHON
prescribes truthful behaviour to the agents. Thus, this result
shows that our protocols are Bayesian-Nash Incentive Com-
patible. Furthermore, we show that under this Nash equilib-
rium, each agent achieves an orderwise-optimal regret (Theo-
rem 2).
Theorem 2 (Informal, see Thm. 4). When all agents fol-
lowing LSHON, every agent enjoys order-wise optimal regret
bound of Õ(d

√
T/M) and arbitrarily small expected penalty.

Here, d is the ambient dimension for actions. In contrast to
the Õ(d

√
T ) per-agent regret achievable without any collabo-

ration (Abbasi-Yadkori et al., 2011), our results imply a
√
M

reduction in per-agent regret with collaboration, even in the
presence of strategic agents. This shows that our protocol
mechanism is Individually Rational, i.e., the agents are bet-
ter off by participating in this collaboration, despite the threat
of a monetary penalty, than abstaining.
Moreover, the optimality of the per-agent regret bound im-
plies that this Nash equilibrium is order-wise socially opti-
mal in terms of regret, i.e., there are no hand-crafted strategy
profiles for the set of agents (even among those that do not
constitute an equilibrium) that can lead to a better order-wise
social regret.
Methods. Our results are built upon several novel tech-
niques: Firstly, MONPEN performs carefully chosen statis-
tical manipulations and employs a penalty function designed
such that the expected penalty converges for an honest agent
and diverges to infinity for a strategic agent. Secondly, we
have LSHON make use of a low-switching bandit policy
(Abbasi-Yadkori et al., 2011) for each agent that allows us to
synchronize arm play so that per-agent regret of Õ(d

√
T/M)

is possible.
Experiments. We complement our theoretical results with
empirical results in a semi-synthetic environment which show
that while “free-riding” agents can enjoy a smaller regret
than truthful agents, the penalty levied by our mechanism de-
creases the overall utility of this behavior, to a value lower
than the utility of an honest agent.

2. Setting & Preliminaries
We describe our setting and setup notation in this section.

Communication setup. We consider M agents and a sin-
gle principal. The communication network between these
agents and principal is setup according to a star topology.
More specifically, every agents can communicate with the
principal by sending and receiving packets, but the agents
cannot communicate amongst themselves. The communi-
cation happens synchronous over rounds, i.e., the principal
will coordinate upon a time at which all agents will send
packets to the principal and the principal will respond to
these packets.

Multi-agent linear bandit setting. Each agent a ∈ A
is faced with the same linear bandit instance with time-
horizon T . At each trial/time-step t ∈ [T ], the agent needs
to choose an action xa,t from the decision set Xt ⊆ Rd.
Note that Xt is identical across all agents, but can vary over
time. Upon playing action xg,t the agent observes then its
reward

ya,t = ⟨θ∗, xa,t⟩+ ηa,t

where θ∗ ∈ Rd is an unknown parameter and ηa,t ∼
N (0, 1) is zero-mean random noise. Given the knowl-
edge of θ∗, the optimal action at trial t is x∗

t =

2
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argmaxx∈Xt
⟨θ∗, x⟩ and the expected cumulative reward

of this action is given by
∑T

t=1 ⟨θ∗, x∗
t ⟩. We will measure

the regret of the agent against this optimal strategy, i.e.,1

Ra(T ) =
∑T

t=1 ⟨θ∗, x∗
t ⟩ − ⟨θ∗, xa,t⟩ .

We make the standard assumption that ∥θ∗∥∞ ≤ 1 and
∥x∥2 ≤ 1 for all x ∈ Xt for all t.

Strategic Agent. A rational agent shall be tempted to not
truthfully follow the given protocol LSHON and can devi-
ate in two aspects : first, he can deliberately misreport his
parameter estimate θa,t, second, he can ignore the arm play
algorithm and instead play actions of his choice. Specif-
ically, the agent is said to free-ride if he explores ‘lesser’
than LSHON requires him to. (See Defn. 1)

Agent-principal contract. The goal of the principal is
to minimize the social regret, i.e., the cumulative regret∑

a∈A Ra(T ) across all agents. However, to guard against
such free-riding strategies and ensure agents act truthfully,
we consider a setting where there is a contract between the
agents and the principal. Under this contract the principal
can levy a monetary penalty on the agent at every com-
munication round based on their assessment of the agent’s
honesty. In this case, the goal of every agent a is to maxi-
mize his utility, i.e., minimize the sum of his regret and the
penalty levied on him:

Ua(T ) = −Ra(T )− Pa(T ),

where Pa(T ) is the overall penalty levied on agent a.

3. Algorithm and Protocol Sketch
We defer the thorough descriptions and pseudocodes of our
protocols/algorithms to the Appendix D in the interest of
space, and present rough sketches of their salient aspects
briefly in this section.

Agent protocol. Consider any agent a. The agent proto-
col LSHON (Low-Switching Honest protocol) prescribes
the agent to report truthfully it’s parameter estimate θa,τ at
all communication events τ . Further, it prescribes the agent
to follow the low-switching arm play algorithm of (Abbasi-
Yadkori et al., 2011) which is similar to the LinUCB algo-
rithm except that it changes/updates its parameter estimate
very infrequently. At any time t, the agent shall maintain
a confidence set Ca,τ (as in eqn. 3) around the parameter
estimate θa,τ (as in eqn. 2) from all statistics from both
self-play and collaboration as of the previous communica-
tion event at time τ . This is said to be ‘low-switching’ as

1This notion of regret is sometimes referred to as pseudo-
regret in the literature.

the parameter estimate and confidence sets are not updated
at every time-step, but only during communication events.
Then, this algorithm balances exploration and exploitation
by selecting an optimistic action based on this confidence
set:

xa,t = argmax
(x,θ′)∈Xt×Ca,τ

⟨x, θ′⟩ . (1)

This low-switching aspect ensures that the trajectory of
arm plays is deterministic without being affected by reward
noises between any two communication events, and also
ensures that all agents perform similar amounts of explo-
ration. These are crucial to show the

√
M benefit in regret

reduction. We refer the reader to Appendix E for more de-
tails.

Principal protocol. As per MONPEN (Monetary Penalty
protocol), the principal shall initiate communication events
at appropriate times (line 4). During a communication
event, the principal receives the parameter estimates θεa,τ s
from all agents a, that is possibly corrupted. The princi-
pal does two things: first, he facilitates complete sharing of
information. To every agent, he sends the aggregate statis-
tics from all other agents without withholding any. This
shall ensure all agents get optimal regret. Second, he shall
impose a penalty such that when all other agents are hon-
est, agent a suffers O(1) penalty if he is also honest, but
the penalty tends to +∞ if he free-rides. This primarily
hinges on the principal’s ability to distinguish and honest
agent and free-rider, probabilistically, without knowing the
true parameter value θ∗. Towards this, the principal com-
putes agent-wise intermediate quantities, zas, as a function
of all agents’ estimates (see Appn D.2 for full details), that
is shown to follow a standard normal distribution if a is
honest, but some component of za has a marginal variance
strictly more than 1 if a free-rides. Taking advantage of
this distinction, the principal computes the penalty of agent
a as function of these components x as follows:

P =

√
2πx

(x+ 1)1+c2
· exp

(x
2

)
− 1

c2
,

which is specifically hand-crafted such that it’s expected
value converges to zero for variance 1 (for an honest agent)
and doesn’t converge and tends to +∞ for variance more
than 1 (for a dishonest agent).

4. Experiments
We demonstrate the effectiveness of our approach in dis-
incentivizing ‘free-riding’ under two different linear bandit
environments: (1) synthetically generated (deferred to Ap-
pendix H), (2) based on the Movielens dataset (Harper &
Konstan, 2015).

3
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(a) (b) (c)

Figure 1: MovieLens problem instance (a) Regret of agents as a function of time t. (b) Penalty of agents as a function of
communication rounds. (c) Negative utility of agents.

Bandit environment setup. The Movielens environment
is motivated by a real-world movie recommendation set-
ting where multiple recommendation platforms can share
the burden of exploration while being robust to the pres-
ence of strategic agents. The action sets {Xt} are gener-
ated by jointly embedding users and movies in a d = 100
dimensional space such that each Xt corresponds to the set
of movies that the platform can recommend to a given user
with |Xt| = 1682. The true θ∗ ∈ R100 for our linear ban-
dits setup is the minimizer of the least square error between
the predicted ratings and the true ratings.

We have an agent, say a, who is a free-rider. Specifically,
he plays xa,t = argmaxx∈Xt

⟨x, θa,τ ⟩ completely exploit-
ing on the current knowledge of parameter θa,τ , while all
other agents fulfill the exploration duty (as in eqn. 1).

In the experiment, the reward for playing an arm x ∈ Xt

is ⟨x, θ∗⟩ + η where η ∼ N (0, 0.1). We set the number
of agents to M = 10. We simulate our Protocol for a time
horizon of T = 4096 for 3 repetitions. We use the linear
bandits implementation provided in the Pearl library (Zhu
et al., 2023) and extend it to our multi-agent setting. We
set λ = 1, c2 = 0.1 and c1 = 1.4d. The result of the
Movielens experiment is plotted in Fig. 1.

Experiment outcome. Comparing the regret of the free-
rider and a number of honest agents, we observe that the re-
gret of the free-rider is lower than that of the honest agents.
The exploration information that the free-rider obtains dur-
ing the communication events more than sufficiently com-
pensates for his own lack of exploration, thereby letting
him enjoy a better regret. At this juncture, we note that
the algorithms in the literature (whose goals were different
to that of handling strategic agents) such as (Wang et al.,
2019) are not immune this phenomenon of agents free-
riding.

However, in our Protocol, we observe that the penalty
levied by our algorithm is significantly higher for the free-

rider. The principal’s protocol 3 correctly penalizes the
free-rider more than it does the honest agents. Hence, this
combination of regret and penalty (which we refer to as
the negative utility) is higher for the free-rider than for the
honest agent, which makes free-riding undesirable.

It is also interesting to note the variation of penalty across
the different communication events. The free-rider incurs
a lot more penalty than the honest agent in the initial few
rounds, whereas their penalties appear to become similar
towards the later stages. This can be attributed to the inher-
ent nature of the arm play algorithms employed by the two.
The free-rider always exploits. The honest agent balances
his exploration and exploitation, inherently leaning towards
exploring more in the early stages and towards exploiting
more in the later part. Thus, while the exploitative arm play
of the free-rider starkly differs from the highly exploratory
arm play of the honest agent in the initial stages resulting
in heavier penalties for the free-rider, their arm plays get
‘closer’ to that of each other towards the later stages when
both predominantly (and rightly) exploit, resulting in simi-
lar penalties.

5. Conclusion
This paper considers the problem of collaborative multi-
armed bandits under strategic behavior and describes new
multi-arm bandit protocols for the principal that induce the
Nash equilibrium of desirable truthful agent behaviour. We
show that one can obtain nearly the full benefit of altru-
istic collaboration despite strategic behaviour from agents
by establishing minimax optimal regret guarantees at this
equilibrium. As future work, we aim to expand our work to
consider an asymmetric set of agents with different action
sets and alternative communication frameworks to study
the dichotomy between the benefits of collaboration and
ill-effects of strategic agent behaviour.

4
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algorithms for linear stochastic bandits. Advances in
neural information processing systems, 24, 2011.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time anal-
ysis of the multiarmed bandit problem. Machine learn-
ing, 47:235–256, 2002.

Awerbuch, B. and Kleinberg, R. Competitive collaborative
learning. Journal of Computer and System Sciences, 74
(8):1271–1288, 2008.

Bistritz, I. and Leshem, A. Distributed multi-player
bandits-a game of thrones approach. Advances in Neural
Information Processing Systems, 31, 2018.

Bouneffouf, D., Rish, I., and Aggarwal, C. Survey on appli-
cations of multi-armed and contextual bandits. In 2020
IEEE Congress on Evolutionary Computation (CEC),
pp. 1–8. IEEE, 2020.

Boursier, E. and Perchet, V. Selfish robustness and equilib-
ria in multi-player bandits. In Conference on Learning
Theory, pp. 530–581. PMLR, 2020.

Bubeck, S., Li, Y., Peres, Y., and Sellke, M. Non-stochastic
multi-player multi-armed bandits: Optimal rate with col-
lision information, sublinear without. In Conference on
Learning Theory, pp. 961–987. PMLR, 2020.

Buccapatnam, S., Eryilmaz, A., and Shroff, N. B. Multi-
armed bandits in the presence of side observations in so-
cial networks. In 52nd IEEE conference on decision and
control, pp. 7309–7314. IEEE, 2013.

Cannelli, L., Nuti, G., Sala, M., and Szehr, O. Hedging
using reinforcement learning: Contextual k-armed ban-
dit versus q-learning. The Journal of Finance and Data
Science, 9:100101, 2023.

Chu, W., Li, L., Reyzin, L., and Schapire, R. Contextual
bandits with linear payoff functions. In Proceedings of
the Fourteenth International Conference on Artificial In-
telligence and Statistics, pp. 208–214. JMLR Workshop
and Conference Proceedings, 2011.

Dani, V., Hayes, T. P., and Kakade, S. M. Stochastic linear
optimization under bandit feedback. In COLT, volume 2,
pp. 3, 2008.

Dubey, A. and Pentland, A. Differentially-private federated
linear bandits. Advances in Neural Information Process-
ing Systems, 33:6003–6014, 2020.

Ferdowsi, A., Ali, S., Saad, W., and Mandayam, N. B.
Cyber-physical security and safety of autonomous con-
nected vehicles: Optimal control meets multi-armed

bandit learning. IEEE Transactions on Communications,
67(10):7228–7244, 2019.

Flores, M., Dayan, I., Roth, H., Zhong, A., Harouni, A.,
Gentili, A., Abidin, A., Liu, A., Costa, A., Wood, B.,
et al. Federated learning used for predicting outcomes in
sars-cov-2 patients. Research Square, 2021.

Ghosh, A., Sankararaman, A., and Ramchandran, K. Multi-
agent heterogeneous stochastic linear bandits. In Joint
European Conference on Machine Learning and Knowl-
edge Discovery in Databases, pp. 300–316. Springer,
2022.

Harper, F. M. and Konstan, J. A. The movielens datasets:
History and context. ACM Trans. Interact. Intell. Syst., 5
(4), dec 2015. ISSN 2160-6455. doi: 10.1145/2827872.
URL https://doi.org/10.1145/2827872.

He, J., Wang, T., Min, Y., and Gu, Q. A simple and prov-
ably efficient algorithm for asynchronous federated con-
textual linear bandits. Advances in neural information
processing systems, 35:4762–4775, 2022.

Hillel, E., Karnin, Z. S., Koren, T., Lempel, R., and
Somekh, O. Distributed exploration in multi-armed ban-
dits. Advances in Neural Information Processing Sys-
tems, 26, 2013.

Huo, X. and Fu, F. Risk-aware multi-armed bandit prob-
lem with application to portfolio selection. Royal Society
open science, 4(11):171377, 2017.

Jung, C., Kannan, S., and Lutz, N. Quantifying the bur-
den of exploration and the unfairness of free riding. In
Proceedings of the Fourteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 1892–1904. SIAM,
2020.

Kalathil, D., Nayyar, N., and Jain, R. Decentralized learn-
ing for multiplayer multiarmed bandits. IEEE Transac-
tions on Information Theory, 60(4):2331–2345, 2014.

Karimireddy, S. P., Guo, W., and Jordan, M. Mechanisms
that incentivize data sharing in federated learning. In
Workshop on Federated Learning: Recent Advances and
New Challenges (in Conjunction with NeurIPS 2022),
2022.

Karpov, N. and Zhang, Q. Collaborative best arm iden-
tification with limited communication on non-iid data.
arXiv preprint arXiv:2207.08015, 2022.

Korda, N., Szorenyi, B., and Li, S. Distributed clustering of
linear bandits in peer to peer networks. In International
conference on machine learning, pp. 1301–1309. PMLR,
2016.

5

https://doi.org/10.1145/2827872


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Collaborative Learning under Strategic Behavior: Mechanisms for Eliciting Feedback in Principal-Agent Bandit Games

Krishnasamy, S., Sen, R., Johari, R., and Shakkottai, S.
Learning unknown service rates in queues: A multi-
armed bandit approach. Operations research, 69(1):
315–330, 2021.
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A. Preliminaries

Table 1: Description of notations frequently used in the document.

Notation Description

A The set of all M agents.
V ε
a,t The actual design matrix of agent a at time t including samples from both self-play and collaboration.

V self
a,t The actual design matrix of agent a at time t including samples from only self-play.

Va,t The hypothetical design matrix (from self-play and collaboration) agent a will have at time t when all agents
adhere to LSHON.

θa,t Agent a’s actual estimate of θ∗ from both collaboration and self-play, at time t.
τ Arbitrary time-step of communication.
θεa,t The estimate that agent g reports to the Principal in a communication event at time t.

A.1. Math Fundamentals

Claim 1 (Probability density of Generalized χ2(1)). Let X ∼ N
(
µ, σ2

)
be a univariate gaussian random variable. The

probability density function of Y = X2 is given by

fY (y) =
1

σ
√
2πy

exp

(
−1

2
· y + µ2

σ2

)
×
[
exp

(√
yµ

σ2

)
+ exp

(
−√

yµ

σ2

)]
,

when y ≥ 0, and 0 otherwise.

Proof. The PDF of X is given by fX(x) = 1
σ
√
2π

exp
(

−1
2

(
x−µ
σ

)2)
. The CDF of Y can be written as

FY (y) = P {Y ≤ y} = P {−√
y ≤ X ≤ √

y} = FX(
√
y)− FX(−√

y),

for any y ≥ 0, and 0 otherwise (when y < 0). Then, the PDF of Y can be derived as follows:

fY (y) =
d

dy
[FX(

√
y)− FX(−√

y)]

=
1

2
√
y
[fX(

√
y) + fX(−√

y)]

=
1

2
√
y

[
1

σ
√
2π

exp

(
−1

2

(√
y − µ

σ

)2
)

+
1

σ
√
2π

exp

(
−1

2

(
−√

y − µ

σ

)2
)]

=
1

2
√
y

[
1

σ
√
2π

exp

(
−1

2

(√
y − µ

σ

)2
)

+
1

σ
√
2π

exp

(
−1

2

(
−√

y − µ

σ

)2
)]

=
1

2σ
√
2πy

[
exp

(
−1

2σ2

(
y + µ2 − 2

√
yµ
))

+ exp

(
−1

2σ2

(
y + µ2 + 2

√
yµ
))]

=
1

2σ
√
2πy

exp

(
−1

2σ2

(
y + µ2

))[
exp

(√
yµ

σ2

)
+ exp

(
−√

yµ

σ2

)]
.

This completes the proof of the Claim. Additionally, the final expression can be concisely written using the hyperbolic
cosine function as follows.

fY (y) =
1

σ
√
2πy

exp

(
−1

2σ2

(
y + µ2

))
. cosh

(√
yµ

σ2

)
.
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The corollary follows.

Corollary 1 (Probability density of χ2(1)). When X ∼ N (0, 1) is a standard normal random variable, Y = X2 follows
a chi-squared distribution of 1 degree of freedom whose probability density is given by

fY (y) =
1√
2πy

exp

(
−y

2

)
,

when y ≥ 0, and 0 otherwise.

B. Technical Lemmas
In this section, we restate some lemmas from the literature that we shall use.

Lemma 2 (Lemma 11 of (Abbasi-Yadkori et al., 2011)). Write Vt := γI +
∑t−1

s=1 xsx
⊤
s for all t ∈ [T ], where ∥xs∥2 ≤ 1

for all s ∈ [T ]. Then,

T∑
t=1

min
(
1, ∥xt∥2V −1

t

)
≤ 2 log

(
det(VT+1)

det(V0)

)
≤ 2d log

(
dγ + T

dγ

)
= Õ (d log T ) .

Lemma 3 (Lemma 12 of (Abbasi-Yadkori et al., 2011)). Let A,B, and C be positive semi-definite matrices such that
A = B + C. Then,

sup
x ̸=0

x⊤Ax

x⊤Bx
≤ det(A)

det(B)
.

C. Related Work
Stochastic linear bandits. The stochastic multi-armed bandits problem has a rich history of development dating back to
the work of (Thompson, 1933). The seminal result of (Auer et al., 2002) shows that the UCB algorithm which is based on
the principle of ‘optimism in the face of uncertainty’ achieves a Õ(

√
KT ) regret bound for K-armed bandits. The linear

bandits problem has also received significant attention due to applications where each arm/action has side information
which can be utilized in reward estimation (Wang et al., 2021; Moradipari et al., 2021). In the stochastic linear bandits
problem, each action is embedded in a d dimensional space and the rewards are a linear (stochastic) function of these action
embeddings. The principle of optimism has been extended to this setting to obtain a Õ(

√
dT lnK) regret bound (Chu et al.,

2011), and a Θ̃(d
√
T ) regret bound (Dani et al., 2008). The latter bound is independent of the number of actions K and

allows for an infinite number of arms. Finally, (Abbasi-Yadkori et al., 2011) proposed the OFUL algorithm (also loosely
referred to as LinUCB) which is based on the same principle of optimism and achieves a bound of Õ(d

√
T ) even when the

(possibly infinite) set of actions changes over time.

Multi-agent settings. Multi-agent multi-armed bandits have similarly been studied under different settings. Motivated
by applications in wireless communication (Kalathil et al., 2014) study a multi-agent bandits with ‘collision’ problem. In
this,if several agents play the same arm at any given time (collide), then these agents receive no reward (or sometimes a
shared reward). The agents are oblivious to each other’s presence with no explicit/reliable communication channel, and
perceive the presence of other agents only through such collisions from their observe rewards.

Many other works have considered variations of this basic setup, for example, allowing agents to enter and exit at dif-
ferent times (Rosenski et al., 2016), and allowing arms to be heterogeneous (with different reward means to different
agents) (Bistritz & Leshem, 2018), explicitly informing agents of collision occurrence (Bubeck et al., 2020), and designed
algorithms with regret guarantees.

Another rich line of work assumes agents are co-operative and communicate via an orchestrating Principal to share helpful
information towards achieving a common goal such as regret minimization, best-arm identification etc. (Hillel et al., 2013)
introduced collaborative learning in stochastic bandits in the the best-arm-identification (or pure exploration) problem.
With M agents who can get together only once to communicate (i.e., R = 2 rounds2 of play), a

√
M speed-up (in terms

2Typically, the word time-step and round are used interchangeably to denote one arm play and observation. However, here, we
reserve round to mean the series of time-steps between two communication events.
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of sample complexity) per agent is achieved. (Tao et al., 2019) formalize this setting further and generalize this result to
achieve a speed-up of MR/R−1 with R rounds of play. (Wang et al., 2019) comprehensively cover the regret minimization
problem in multi-agent (or distributed) linear bandits with communication guarantees. They show an arm elimination-
based protocol for a fixed action set that achieves Õ(d

√
TM) regret (overall across all M agents). Further, similar to

our setting, they also look at time-varying action sets and propose a Distributed Linear UCB (DisLinUCB) algorithm that
extends the OFUL algorithm of (Abbasi-Yadkori et al., 2011) and achieves a regret bound of Õ(d

√
MT ). DisLinUCB

is shown to have a communication cost of O(M1.5d3) that is independent of T by using a specific dynamic condition to
trigger communication events.

In addition, there have been several variants and extensions of the communication model, for example, peer-peer messaging
(instead of a full broad-cast) (Korda et al., 2016; Szorenyi et al., 2013), restricted message sizes (Sankararaman et al., 2019)
which prohibits sharing information about all arms, and asynchronous communication (Li & Wang, 2022; He et al., 2022)
where each agent independently and individually communicates with the Principal at different times based on their local
information, as opposed to having a dedicated communication event for all agents.

Furthermore, several works have considered environments that are heterogeneous to different agents, i.e., where each agent,
say a, faces a different bandit instance, like, different linear models θ∗a (Moradipari et al., 2022; Ghosh et al., 2022) or sets
of independent arms (Shi et al., 2021; Karpov & Zhang, 2022).

Finally, there has also been work on the collaborative multi-armed bandits in the presence of adversarial agents who actively
try to disrupt the collaboration (Awerbuch & Kleinberg, 2008; Vial et al., 2021; Mitra et al., 2022). The work of (Mitra
et al., 2022) considers a linear bandit setup similar to ours. However, there are differences in motivation/techniques between
our work and (Mitra et al., 2022): they design an algorithm that is robust to adversarial agents by computing robust reward
statistics, while we consider the design of mechanisms for incentivizing strategic agents to perform sufficient exploration
and report truthfully.

Strategic agents. A more recent theme in multi-armed bandits is to study strategic behavior of agents in a collaborative
environment. In collaborative learning setups, the presence of such strategic agents brings about a notion of ‘free-riding’
where an agent gains from the effort of others and doesn’t contribute back to the collaboration. Specifically, if an agent x
is permitted to observe the actions, contexts, and rewards of other agents (all of whom are assumed to be running no-regret
algorithms themselves) at every time-step, (Jung et al., 2020) show that x can achieve O(1) regret (w.r.t. T , but with an
1/∆ factor otherwise) by estimating its own reward means from observations from other agents alone. They further argue
that the knowledge of other agents’ contexts are necessary for constant order regret by showing an Ω(log T ) lower bound
in that case.

In the multi-agent bandits with ‘collision’ problem, if several agents play the same arm (collide), the reward from that
arm is ‘shared’ among those agents. (Xu et al., 2023; Boursier & Perchet, 2020) show existence of ε-Nash Equilibrium
behaviours with regret guarantees in such settings. (Wei et al., 2023) suppose that every agent incurs some private cost
to share information with the Principal and compares it against it’s utility from getting information from other agents and
consequently decides if it should participate in data sharing or not. They show that there exists private cost sequences
which make any data sharing mechanism of the Principal not individually rational to participate in. To overcome this, (Wei
et al., 2023; 2024) propose additional monetary payouts (that add to an agent’s utility) based on honestly reported private
costs of the agents to make all agents participate and achieve optimal O (d/

√
TM) per-agent per-time-step regret rate.

Beyond multi-armed bandits, a closely related line of work (Karimireddy et al., 2022; Murhekar et al., 2024) considers
mechanisms to incentivize data sharing in a supervised learning setting. However, these works consider the cost of acquir-
ing and sharing data and designs mechanisms with payments to incentivize agents towards desired behaviour of acquiring
and sharing data.

D. Complete Description of Our Mechanism and Algorithm
In this section, we introduce protocol LSHON for the agent behaviour (Algorithm 2) and the protocol MONPEN for princi-
pal behaviour (Algorithm 3) that fit into the specifications of our setting Framework 1, and give a complete description of
them.
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Algorithm 1 A multi-agent linear bandits framework with rational agents
1: for time-step t = 1, 2, . . . , T do
2: for all agents a ∈ A do
3: [Agent] Chooses and plays arm xa,t and observes reward ya,t.
4: if Communication event occurs then
5: τ ← t.
6: [Agent] Sends current estimate θa,τ to principal.
7: [Principal] Sends aggregated statistics V P

a,τ , B
P
a,τ to agent a.

8: [Principal] Levies penalty Pa,τ on agent a.
9: end if

10: end for
11: end for

Framework illustration. We illustrate in Framework 1 the interaction between various components of our system and
the data transferred. Here, all agents individually play the bandit instance with their locally then available statistics (line
3). The actual arms played and feedback/reward observed are the private information of that agent and is not automatically
known to other agents or the principal. At certain time-steps, say τ , the principal initiates communication events (line
4). During a communication event, the agents are to send their current parameter estimates θa,τ s (line 6) to the principal,
and then, the principal sends back aggregated statistics (design and results matrices) back to the agents and also levies
a monetary penalty Pa,τ (lines 7-8). Note that each agent receives identical information but different penalties from
the principal. Further, note that this framework is similar to (Wang et al., 2019), with some differences in the way a
communication event is initiated.

D.1. Agent Protocol

As part of the contract, the agent is required to adhere to LSHON, which prescribes to the agent to report his current param-
eter estimate θa,τ truthfully to the principal (line 6), and prescribes to choose and play actions in the following way. The
choice of actions is based on the low-switching algorithm of (Abbasi-Yadkori et al., 2011) which is similar to the LinUCB
algorithm except that it changes/updates its parameter estimate very infrequently. This algorithm balances exploration and
exploitation by constructing a confidence set around the current parameter estimate and selecting an optimistic action based
on this confidence set.

Algorithm 2 LSHON - Agent’s truthful Protocol with low-switching arm play.
Output: The arm xa,t to play at time t. The parameter estimate θεa,τ to report during communication events.
1: Most recent communication time τ = 0.
2: for time-step t = 1, 2, . . . , T do
3: Compute θa,τ and Ca,τ using Eqn. 2 and 3 based on statistics as of last communication event.
4: [Agent] Choose to play arm

xa,t = argmax(x,θ′)∈Xt×Ca,τ
⟨x, θ′⟩ .

5: if Communication round is initiated then
6: [Agent] Report θεa,t = θa,t true parameter estimate to the principal.
7: Update statistics V col

a and Bcol
a as provided by the principal.

8: end if
9: end for

We now set up notation (see Table 1 for a summary of notations) and describe the protocol/algorithm in more detail.

At any time t, we use τ to denote the time-step at which the last communication event occurred. We represent separately
the statistics from self-play and from communication as follows: V self

a,t =
∑t

s=1 xa,sx
⊤
a,s is the design matrix of agent a

from samples from self-play only. V col
a,t is the design matrix obtained from the principal during communication (line 7).

The quantities Bself
a,t and Bcol

a,t are analogously defined. The total statistics (from both self-play and communication) that
is available to agent a at time t is the total design Va,t = V self

a,t + V col
a,τ , and total results Ba,t = Bself

a,t + Bcol
a,τ . The agent

shall use the total statistics as of the last communication event time Va,τ , Ba,τ to choose and play actions for the entire
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round until the next communication event. Specifically, the agent computes the parameter estimate

θa,τ = (λI + Va,τ )
−1(Ba,τ ) . (2)

Then, the agent constructs the confidence set

Ca,τ =
{
θ′ ∈ Rd : ∥θ′ − θa,τ∥λI+Va,τ

≤ βt(δ)
}
, (3)

where βt(δ) is the radius for a confidence parameter δ (see Appendix Eq. 7). The agent uses this confidence set Cg,τ

to choose the arm to play at all time-steps before the next communication event (line 4). Since, we do not update the
confidence set every single time-step, the algorithm is said to follow a ‘low-switching’ or ‘deferred update’ paradigm
where feedback from playing arms is processed in batches only during communication events.

A strategic agent might, however, not follow algorithm to play arms and instead devise their own strategy to ‘free-ride’
(defn. 1) on the information provided by the principal. Let Va,τ be the design matrix that agent a would have at time τ if
he completely adheres to the prescribed protocol LSHON. Let V ε

a,τ = Va,τ + εVa,τ be the design matrix as a result of agent
a deviating from this protocol, where εVa,τ quantifies this deviation.

Definition 1 (Free-rider). A rational agent a is said to free-ride if he explores lesser than LSHON requires him to for
some communication event τ , i.e., V ε

a,τ ⪰̸ Va,τ . Equivalently, an agent with any strategy εVa,τ ⪰̸ 0 that is not positive
semi-definite is a free-rider.

It is also possible that a strategic agent misreports their true parameter estimates, i.e., θεa,τ = θa,τ + εθa,τ , with corruption
εθa,τ .

While εθa,τ = 0, εVa,τ = 0 for an honest agent, a rational agent picks εθa,τ and εVa,τ strategically.

D.2. Principal Protocol

As per MONPEN, the principal initiates communication events as and when sufficient new statistics have been generated
(line 4), i.e., when the determinant of the design matrix will have grown by a certain factor (parameterized by c1) since the
last communication event. During a communication event, the principal receives parameter estimates from all agents (line
6). As the parameter estimate θε are from statistics from both self-play of agent a and communication of other agents’
statistics (eqn. 2), the principal recovers the agent a’s self-play statistics as follows:

Bself
a,τ =

(
λI + V self

a,τ + V col
a,τ

)
θεa,τ −Bcol

a,τ ,

where the principal is aware of V col
a,τ , B

col
a,τ as the statistics it sent a in the previous communication round, and the principal

can compute V self
a,τ due to the determinism of the low-switching arm play algorithm in agent’s protocol. The principal,

then, shall return to every agent a the complete aggregate statistics V col
a,τ =

∑
b∈A\{a} V

self
b,τ , Bcol

a,τ =
∑

b∈A\{a} B
self
b,τ of

all other agents, as if all agents were honest/truthful (line 8).

Next, the principal performs a statistical test to evaluate probabilistically the extent of an agent’s dishonesty and assigns
(line 11) a commensurate monetary penalty to the agent. Towards that, first, a d-dimensional vector za is computed as a
function of agent a’s parameter estimate and the aggregate reported parameter estimates of other agents, θε−a,τ (line 9).
The aggregate shall be computed as follows. Denote by V−a,τ =

∑
b∈A\{a} Vb,τ the aggregate design, write Bε

b,τ =

(λI + Vb,τ )θ
ε
b,τ , denote by Bε

−a,τ =
∑

b∈A\{a} B
ε
b,τ the aggregate results, and finally, compute the aggregate estimate

θε−a,τ = (λI + V−a,τ )
−1Bε

b,τ . Second, the components of za are fed to a hand-crafted penalty function (eqn. 4) to get the
monetary penalty. The reasoning behind the choice of statistical test/penalty function shall be elaborated in Section E.

Notice that the monetary penalty assigned to an agent, Pa,τ , depends on not only their own strategy, but also on the
strategies of other agents (in line 9) that agent a can’t observe. Thus, during any communication round (ending at time
τ ), we can consider the following simultaneous move game induced by this protocol/mechanism: every agent a ∈ A
picks their strategy (εθa,τ , ε

V
a,τ ), and receives a utility of negative of the penalty Pa,τ . Write short-hand εa,τ = 0 to denote

the honest strategy of εθa,τ = 0 and εVa,τ = 0, and short-hand εa ̸= 0 to denote any free-riding dishonest strategy where
εθa,τ ̸= 0 or εVa,τ ⪰̸ 0. 3

3We abuse notation and denote 0 to be the vector of all zeros, or matrix of all zeros, or a tuple or a list of tuples of a vector and matrix
both of all zeros, disambiguated by the left hand side quantity it is being equated/compared to.
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Algorithm 3 MONPEN - Principal’s protocol with monetary penalty
Parameters: Parameter c1 > 0, c2 > 0 Input: At all communication time-steps τ , the estimate θεa,τ from every agent a ∈ A.
Output: At all communication time-steps τ , the statistics sent back Va,τ , Ba,τ , and penalty Pa,τ for every agent a.
1: Most recent communication time τ ← 0.
2: for time-step t = 1, 2, . . . , T do
3: Compute Va,t to be the design of every agent as per Protocol 2.
4: if det(Va,t) ≥ (1 + c1) det(Va,τ ) then
5: Initiate communication round, τ ← t.
6: Get parameter estimates θa,τ from all agents a.
7: for all agent a ∈ A do
8: [Principal] Aggregate and send to agent a all other agent statistics V col

a,τ , B
col
a,τ . ▷ Share full information

9: Compute za :=
(
V −1
a,τ + V −1

−a,τ

)−1/2 (
θεa,τ − θε−a,τ

)
.

10: ∀i ∈ [d], write x = (zia)
2, compute component-wise penalty

P i =

√
2πx

(x+ 1)1+c2
· exp

(x
2

)
− 1

c2
. (4)

11: [Principal] Set agent a a monetary penalty of Pa,τ = 1
d

∑
i P

i. ▷ Levy penalty
12: end for
13: end if
14: end for

The next section presents the theoretical results on agent incentives and regret guarantees in this protocol.

E. Results and Discussion
In this section, we state our theoretical results, give proof sketches, and discuss their impact and significance. We defer the
formal proofs to the Appendix F in the interest of space.

We establish in Theorem 3 that principal’s protocol MONPEN is designed in a way such that it induces an equilibrium of
honesty (adherence to protocol) among all agents when prescribed to follow protocol LSHON .

Theorem 3. Let the principal declare and follow MONPEN. Then, for any communication round culminating at time τ , the
strategy profile of all agents being honest, i.e., (εa,τ = 0)a∈A, is a Nash Equilibrium of the game induced among agents.

Proof Sketch. We want to show that when all other agents are honest, agent a suffers the least penalty when they are
honest. Towards this, we prove (in Lemmas 5 and 6) that expected penalty of an agent is O(1) if they are honest and
doesn’t converge (tends to +∞) if they are dishonest and free-ride. This result primarily hinges on the principal’s ability to
distinguish between an honest and dishonest agent, probabilistically, from their reported parameter estimates θa,τ s without
actually knowing the true parameter value θ∗. Building on the intuition that a free-rider’s paramter estimate θa,τ will be
‘poorer’ than that of honest agents’ as they don’t perform the requisite exploration, the principal computes a statistical
quantity za ∈ Rd (in line 9) by comparing the estimate of an agent (θa) with the aggregate estimate of all other agents
(θ−a). We show that za doesn’t depend on the unknown θ∗, and conditioned on the honesty of all other agents, za follows a
0-mean Gaussian distribution with all components having a marginal variance 1 if a was honest, but if a was dishonest and
free-riding, some component’s marginal variance goes strictly above 1 (as in Claim 7). Taking advantage of this distinction,
the principal computes the penalty of agent a as function of these components of za (in line 10) specifically designed such
that it’s expected value converges to a constant for variance 1 (for an honest agent) and doesn’t converge for variance more
than 1 (for a dishonest agent).

With this explicit specification of the equilibrium strategy profile, we note it is this equilibrium behaviour that is incor-
porated in LSHON for the agents. Thus, the above establishes that our principal protocol MONPEN and agent algorithm
LSHON pairing is Bayesian-Nash Incentive Compatible. Next, we consider the trajectory where this equilibrium occurs
and analyze the bandit regret for an agent from playing the stochastic linear bandit instance.

Theorem 4. [Regret of Penalty-levying Protocol at Equilibrium] In the collaborative linear bandits problem, let the prin-
cipal declare and follow MONPEN and all agents follow LSHON as per the Nash Equilibrium mentioned in Theorem 3.

13
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Then, the regret of every agent is

Ra(T ) = O

(
d

√
T log(TM)

M

)
.

Additionally, the expected monetary penalty of every agent is O(1).

Proof Sketch. The key idea is that all (honest) agents can explore and contribute equally to the collaboration. This holds
due to the deterministic nature, across all agents, of the arm playing Protocol 2 between two communication events. As
the learning only occurs in batches during the times of communication, all agents use the same confidence set Ca,τ for
the entire period until the next communication event. Thus, the choice of arm played (in line 4) is same across all agents
leading to all agents maintain an identical design matrix Va,t (see Lemma 9). This establishes that all agents share the
burden of exploration equally. We quantify the benefit of collaboration among M agents as an improvement (reduction) in
individual regret by a factor of

√
M for all agents, by using this fact that all agents contribute equally to the collaboration.

The remainder of the proof broadly follows the line of argument in (Abbasi-Yadkori et al., 2011). First, we upper bound
the instantaneous regret of an agent ra,t at time t, and then use it to bound the total regret to get the desired bound of
Ra(T ).

Our result remarkably shows that we can attain the same regret bound as that of altruistic collaboration despite all agents
being rational/self-interested. (Wang et al., 2019) showed that if the agents are impicitly altruistic, then Õ(d

√
MT ) so-

cial regret is achievable. Here, it follows from Theorem 4 that the same regret upper bound (or utility lower bound) of
Õ(d

√
MT ) is attained when agents are implicitly strategic.

If each agent operates individually without the collaboration, they can achieve an Õ(d
√
T ) regret using the LinUCB algo-

rithm (Abbasi-Yadkori et al., 2011). However, our Theorem 4 shows an improvement of the regret bound to Õ(d
√

T/M)
when all agents participate in the collaboration adhering to the mentioned equilibrium behaviour. From the single agent
lower bound of (Dani et al., 2008), it follows that even with communication event at every time-step and complete sharing
of statistics, equivalently setup as a single agent playing for MT time sequentially, the per-agent regret bound is lower
bounded as Ω̃(d

√
T/M). This shows that our algorithm attains minimax optimal regret guarantee, and thus, the protocol

pairing is Individually Rational, i.e., the agents are better off by participating in this collaboration, despite the threat of a
monetary penalty, than abstaining.

While we show the existence of a Nash equilibrium of honesty and analyse it, it is not clear if it is unique. However,
note that our Nash Equilibrium (discussed in Theorem 3) leads to a per-agent optimal minimax regret as mentioned above,
and it directly follows that this leads to a socially optimal regret bound of Õ

(
d
√
TM

)
. Owing to this optimality, even

if other equilibriums exist, they can not have a better/lesser minimax social regret guarantee. In fact, this shows that no
hand-crafted strategy profile for the set of agents (even if they do not constitute an equilibrium) can lead to a better minimax
social regret, showing that our Nash equilibrium of honesty is socially optimal.

F. Missing Proofs from Section E
F.1. Proof of Theorem 3

We establish some useful claims before we present the Proof of the Theorem.

Claim 4. The ridge regression estimator θa,t follows the multi-variate Gaussian distribution with mean θ∗ −λV −1
a,t θ

∗ and
covariance V −1

a,t − λV −2
a,t .

Proof. Write Va,t =
∑t

s=1 xa,sx
⊤
a,s =: Xa,tX

⊤
a,t where Xa,t ∈ Rd×t comprises of column vectors xa,ss. Similarly,

Ba,t =
∑t

s=1 xa,sya,s =: Xa,tYa,t , where Ya,t ∈ Rt×1 comprises of rows of single rewards ya,ss. Write η(Σ) to be
a random vector that follows the multi-variate gaussian distribution with mean 0 and covariance Σ. For the remainder of
the proof, the subscripts a, t are dropped to reduce clutter. Note that the only source of randomness in θ estimate is the
gaussian noise in rewards ya,ts observed. By working our way upwards from there, we shall show the required distribution
of θ.

From the way θ is calculated (as in eqn. 2),

14
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θ = (λI + V )−1B = (XX⊤ + λI)−1.XY

= V −1.X(θ∗⊤X + η(It)
⊤)⊤

= V −1.XX⊤.θ∗ + V −1.Xη(It)

= V −1.(V −1 − λI)θ∗ + η
(
(V −1X.It.(V

−1X)⊤
)

= θ∗ − λV −1θ∗ + η
(
V −1XX⊤V −1

)
= θ∗ − λV −1θ∗ + η

(
V −1(V −1 − λI)V −1

)
= θ∗ − λV −1θ∗ + η

(
V −1 − λV −2

)
.

This completes the proof. Note that with λ = 0, the estimate becomes unbiased with a variance of V −1.

Theorem 3. Let the principal declare and follow MONPEN. Then, for any communication round culminating at time τ , the
strategy profile of all agents being honest, i.e., (εa,τ = 0)a∈A, is a Nash Equilibrium of the game induced among agents.

Proof of Theorem. As we argue the Theorem for any arbitrary communication time-step τ in this proof, to reduce clutter,
we drop the subscript τ from all notations. To prove the Theorem statement, it requires to be shown that when other agents
are honest, i.e., εb = 0 for all b ∈ A \ {a} (denoted using short-hand ε−a = 0 henceforth), the agent a’s expected utility is
maximized when he is honest by playing strategy εa = 0, i.e., εθa = 0 and εVa = 0.

To show this, we first establish, in Lemma 5, that the expected penalty of agent a converges to a small constant value when
V ε
a = Va, θ

ε
a = θa for all agents a. Then, we establish in Lemma 6, that the expected penalty for agent a fails to converge

(and tends to infinity) when agent a unilaterally defects, i.e., when εa ̸= 0.

Lemma 5 (Penalty of Honest Agent). E [Pa|εa = 0, ε−a = 0] = O(1).

Proof. As all the agents are honest, we have Va = V ε
a , θa = θεa for all a.

From Claim 4, we have that θa ∼ N
(
θ∗, V −1

a

)
and θ−a ∼ N

(
θ, V −1

−a

)
. We next observe how the mean and more impor-

tantly, the covariance of the different quantities in the statistical test behave. It follows that θa−θ−a ∼ N
(
0, V −1

a + V −1
−a

)
,

and subsequently (as computed in line 9) z ∼ N (0, Id). Writing z = (z1, . . . , zd), we observe all zis are i.i.d. standard
normal random variables. Then, for all i ∈ [d], we have x = (zi)2 follows the chi-squared distribution with 1 degree of
freedom whose pdf we denote by fX . Denote by P (x) the penalty realised for a certain x (as in line 10). For any i ∈ [d],
the expected component-wise penalty P i is given by

E
[
P i
∣∣(εθa = 0, εVa = 0

)
, ε−a = 0

]
=

∫ ∞

−∞
P (x)fX(x)dx

=

∫ ∞

0

( √
2πx

(x+ 1)1+c2
exp

(x
2

))
×
(

1√
2πx

exp

(
−x

2

))
dx− 1

c2

=

∫ ∞

0

1

(x+ 1)1+c2
dx− 1

c2
= 0 = O(1),

for any choice of c2 > 0. Thus, the total expectation of total penalty Pa = 1
d

∑
i P

i is O(1).

Lemma 6 (Penalty of Dishonest Agent). E [Pa|εa ̸= 0, ε−a = 0] does not converge/exist (tends to +∞).

Proof. We show this lemma in two steps. First, we analyze the d-dimensional vector za (computed in line 9) and arrive
at its covariance based on the εθa, ε

V
a values. Second, we argue based on this covariance that the component-wise penalty

(computed in line 10) does not converge/tends to infinity for some component P i.

As all other agents are honest (ε−a = 0), we have Vb = V ε
b , θb = θεb for all b ∈ A \ {a}. Consequently, V−a = V ε

−a,
θ−a = θε−a. However, as agent a is dishonest/free-rides (εa ̸= 0), we have εθa ̸= 0 or εVa ⪰̸ 0. Recollect, V ε

a = Va + εVa
and θεa = θa + εθa.
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From Claim 4, it follows that θ−a ∼ N
(
θ∗, V −1

−a

)
and also θa ∼ N

(
θ∗, (V ε

a )
−1
)
. Consequently θ−a ∼ N

(
θ∗, V −1

−a

)
and

θg ∼ N
(
θ + εθa, (V

ε
a )

−1
)
. We next observe how the mean and the covariance of the different quantities in the statistical

test behave. It follows that θa − θ−a ∼ N
(
εθa, (V

ε
a )

−1 + V −1
−a

)
. Write a short-hand c :=

(
V −1
a + V −1

−a

)−1/2
εθa. Then,

the vector za (computed in line 9) obeys

za ∼ N
(
c,
(
V −1
a + V −1

−a

)−1/2 (
(V ε

a )
−1 + V −1

−a

) (
V −1
a + V −1

−a

)−1/2
)
. (5)

Denote by S the covariance matrix of za (in eqn. 5). Writing za = (z1, . . . , zd), we show in Claim 7 that some component
zi has marginal variance larger than 1.

Claim 7. When εVg ⪰̸ 0, it holds that ∃i ∈ [d] : Sii > 1.

Proof. The covariance matrix S is simplified as follows:

(
V −1
a + V −1

−a

)−1/2 (
(V ε

a )
−1 + V −1

−a

) (
V −1
a + V −1

−a

)−1/2

=

(
V −1
a +

V −1
a

M − 1

)−1/2(
(V ε

a )
−1 +

V −1
a

M − 1

)(
V −1
a +

V −1
a

M − 1

)−1/2

=

(
M

M − 1

)−1

V 1/2
a

(
(V ε

a )
−1 +

V −1
a

M

)
V 1/2
a

=
1

M
I +

M − 1

M
V 1/2
a (V ε

a )
−1V 1/2

a (6)

The second line follows from V−a = (M − 1)Va as the anticipated designs are identical across agents due to the determin-
ism of the prescribed algorithm between two communication rounds.

The assumption V ε
a ⪰̸ Va leads to I ⪰̸ Va(V

ε
a )

−1 and then to det(Va(V
ε
a )

−1) > 1. Thus, some diagonal element of
V

1/2
a (V ε

a )
−1V

1/2
a is larger than 1. Using this fact in line 6, we have that some diagonal element in S is greater than 1.

Write within the scope of this proof µ = ci and σ2 = Sii to be the mean and variance of zi for i which satisfies Claim 7,
with µ ̸= 0 ∨ σ2 > 1. Note that x = (zi)2 follows the generalized chi-squared distribution with 1 degree of freedom with
probability density fX (written down in Appendix A.1 Claim 1). Denote by P (x) the penalty realised for a certain x as in
line 10. The expected component-specific penalty P i is given by

E
[
P i
∣∣(εθa ̸= 0 ∨ εVa ⪰̸ 0

)
, ε−a = 0

]
=

∫ ∞

−∞
P (x)fX(x)dx

=

∫ ∞

0

( √
2πx

(x+ 1)2
exp

(x
2

))
.

(
1

2σ
√
2πx

exp

(
−(x+ µ)2

2σ2

)[
exp

(√
xµ

σ2

)
+ exp

(
−
√
xµ

σ2

)])
dx

=

∫ ∞

0

[
1

2σ(x+ 1)2

]
·
[
exp

(
x

2

(
1− 1

σ2
− µ2

xσ2

))]
·
[
exp

(√
xµ

σ2

)
+ exp

(
−
√
xµ

σ2

)]
dx,

which diverges as σ > 1 or µ ̸= 0. When σ > 1, the second term does not vanish for any value of µ. When σ = 1, any
µ ̸= 0 makes the third term not vanish.

Thus, the expectation of penalty Pg = 1
d

∑
i P

i does not converge.

From Lemmas 5, 6, we see that the expected utility of any agent can not be improved by unilaterally deviating from εa = 0.
Thus, the strategy profile (εa = 0)a∈A is a Nash Equilibrium. This completes the proof of the Theorem.
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F.2. Proof of Theorem 4

Theorem 4. [Regret of Penalty-levying Protocol at Equilibrium] In the collaborative linear bandits problem, let the
principal declare and follow MONPEN and all agents follow LSHON as per the Nash Equilibrium mentioned in Theorem
3. Then, the regret of every agent is

Ra(T ) = O

(
d

√
T log(TM)

M

)
.

Additionally, the expected monetary penalty of every agent is O(1).

We establish some useful lemmas that are used in the proof of the Theorem.

Recollect from Eqn. 3 the confidence set of agent a at time t (where τ is the time of last communication event) is given by
Ca,τ =

{
θ′ ∈ Rd : ∥θ′ − θa,τ∥λI+Va,τ

≤ βt(δ)
}

, where

βt(δ) =

√
2 log

(
det(Va,t)

1/2 det(λI)1/2

δ

)
+
√
λ = Õ

(√
d log(Mt/δ)

)
. (7)

Lemma 8 (‘Good event’ occurs with high probability). For δ ∈ (0, 1/M), the event

G = {∀a ∈ A,∀t ∈ [T ] : Ca,t ∋ θ∗}

occurs with probability 1− δM .

Proof. We have in the single agent setting (by Theorem 2 of (Abbasi-Yadkori et al., 2011)) that with probability 1 − δ,
θ∗ ∈ Ca,t at all times t. By taking a union bound for all M agents over the probability of failure (i.e., θ∗ /∈ Ca,t), we arrive
at the lemma statement.

Recollect V self
a,t :=

∑t
s=1 xa,sx

⊤
a,s is the design of agent a from self-play (without including information obtained through

collaboration). Write V self
A,t :=

∑
a∈A V self

a,t to be the global/social design at time t.

Lemma 9 (Equality of design across agents). When the Principal (follows Prot. 3 and) shares all statistics with agents
and all agents are honest (adhere t0 Prot. 2), then, for every time-step t ∈ [T ], the design matrix V self

a,t is the same across
all agents a ∈ A.

Proof. Consider any two agents a, b ∈ A. Denote τ1, τ2, . . . , τq to be the time-steps of the q communication events that
occur in the entire time horizon. Additionally, write τ0 = 0, τq+1 = T .

We show the desired result by a sequence of two inductions, one on variable i ∈ [q], and then on variable t ∈ [T ].

Let H1(i) denote the hypothesis that Ba,τi = Bb,τi . Initially, Ba,0 = 0, Bb,0 = 0, thus H1(0) is true. Assume H1(k) is
true, we have Ba,τk = Bb,τk . All agents separately play arms in the period [τk + 1, τk+1], until the next communication
event at τk+1. At time τk+1, every agent a shares the true parameter estimate θa,τk+1

as per Prot. 2 to the principal. The
principal recovers the self-play result matrix Bself

a,τk+1
of every agent and shares back Bcol

a,τk+1
=
∑

b∈A\{a} B
self
b,τk+1

the sum

of results of all other agents. Thus, every agent a has Ba,τk+1
= Bself

a,τk+1
+ Bcol

a,τk+1
= Bself

a,τk+1
+
∑

b∈A\{a} B
self
b,τk+1

=∑
b∈A Bself

b,τk+1
, which is the same quantity independent of specific agent a. Thus, Ba,τk+1

= Bb,τk+1
and H(k + 1) is

true. By induction, we have H1(i) is true (i.e., Ba,τi = Bb,τi ) for all i = [q]. By an indentical argument, we have that
Va,τi = Vb,τi for all i = [q].

Next, let H2(t) denote the hypothesis that V self
a,t′ = V self

b,t′ for all 0 ≤ t′ ≤ [t]. Note that initially V self
a,0 = V self

b,0 = 0. Thus,
H2(0) is true. Assume H2(k) is true, we have V self

a,0 = V self
b,0 , V self

a,1 = V self
b,1 , . . . , V self

a,τ = V self
b,τ , . . . , V self

a,k = V self
b,k .

At time k + 1, let τ be the time of the most recent communication event. We have that Va,τ = Vb,τ and Ba,τ = Bb,τ

from the first part of this proof. By the agents’ Prot. 2, we have that for every agent g, the confidence set Cg,τ is
a function of the design Vg,τ and results Bg,τ . Thus, Ca,τ = Cb,τ . Consequentially, at time k + 1, the arm played(
argmaxx∈X.,k+1,θ∈C.,τ

⟨a, θ⟩
)

by agents a and b are equal/same, i.e., xa,k+1 = xb,k+1. Combining this with V self
a,k =
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V self
b,k (by assumption for induction), this leads to V self

a,k+1 = V self
a,k + xa,k+1x

⊤
a,k+1 = V self

b,k + xb,k+1x
⊤
b,k+1 = V self

b,k+1.
Thus, H2(k + 1) is true. By induction, H2(T ) is true, i.e., V self

a,t = V self
b,t for all times t ∈ [T ].

As the above result holds for all pairs of agents a, b, this completes the proof of the Lemma.

The corollary follows.

Corollary 2. For all agents a, it holds that V self
A,t = M.V self

a,t , at all times t.

We are ready to prove the Theorem now.

Proof of Theorem. Set δ = 1/T 2M2. Then, G fails to occur with probability at most 1/MT 2. As the cumulative/social
regret is trivially upper bounded by MT , occurrence of this event only contributes a O(T−1) summand to the expected
cumulative/social regret, and consequently, to any single agent’s expected regret. Thus, it is sufficient to analyse the regret
of an agent when G occurs to show the required result.

The instantaneous regret at time t is given by

ra,t = ⟨x∗, θ∗⟩ − ⟨xa,t, θ
∗⟩

≤ max
θ∈Ca,t

⟨x∗, θ⟩ − ⟨xa,t, θ
∗⟩

≤ max
θ∈Ca,t

⟨xg,t, θ⟩ − ⟨xa,t, θ
∗⟩

= ⟨xa,t, θ
′⟩ − ⟨xa,t, θ

∗⟩
= ⟨xa,t, θ

′ − θ∗⟩ = ⟨xa,t, θ
′ − θa,t⟩+ ⟨xa,t, θa,t − θ∗⟩ .

The second line is due to θ∗ ∈ Cg,t. The third line is due to xg,t being the optimistic (i.e., the expected reward maximizing)
choice w.r.t Cg,t. We introduce θ′ := argmaxθ∈Cg,t

⟨xg,t, θ
′⟩ in the fourth line.

Next, recollect V self
a,t :=

∑t
s=1 xa,sx

⊤
a,s to be the individual design of agent g (without including information obtained

through collaboration), and write V self
A,t :=

∑
a∈A V self

a,t to be the global/social design at time t. Continuing the analysis

by applying Hölder’s inequality with a choice of conjugates λI + V self
A,t and

(
λI + V self

A,t

)−1

, we get

ra,t ≤∥xa,t∥(λI+V self
A,t )

−1 ∥θ′ − θa,t∥λI+V self
A,t

+ ∥xa,t∥(λI+V self
A,t )

−1 ∥θa,t − θ∗∥λI+V self
A,t

= ∥xa,t∥(λI+V self
A,t )

−1

(
∥θ′ − θa,t∥λI+V self

A,t
+ ∥θa,t − θ∗∥λI+V self

A,t

)
≤∥xa,t∥(λI+V self

A,t )
−1 .

det(λI + V self
A,t )

det(λI + Va,τ )

(
∥θ′ − θa,t∥λI+Va,τ

+ ∥θa,t − θ∗∥λI+Va,τ

)
≤∥xa,t∥(λI+V self

A,t )
−1 .

det(λI + V self
A,t )

det(λI + Vg,τ )
.2βt(δ)

≤∥xa,t∥(λI+V self
A,t )

−1 .2(1 + c1)βt(δ)

=

√
1

M
∥xa,t∥( λ

M I+V self
a,t )

−1 .2(1 + c1)βt(δ) = c3
βt(δ)√
M

. ∥xg,t∥( λ
M I+V self

a,t )
−1

≤c3
βt(δ)√
M

.min

{
1, ∥xa,t∥( λ

M I+V self
a,t )

−1

}
. (8)

Here, the third line is due to λI+V self
A,t ⪰ λI+Va,τ (used as in Lemma 3). The fourth line is due to the radius term used in

construction of Cg,t ∋ θ′, θ∗. The fifth line is from two things: first, Va,τ = V self
A,τ during times of communication events,

second, the condition for Principal initiating a communication event (line 4). The sixth line is from V self
A,t = M.V self

a,t as
in Corollary 2. The seventh line is by trivially upper bounding ra,t ≤ 2.
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Next, we aggregate the total regret of an agent a as follows:

Ra =

T∑
t=1

ra,t ≤

√√√√T

T∑
t=1

r2a,t

≤ c3.βT (δ)

√
T

M
.

√√√√ T∑
t=1

min

{
1, ∥xa,t∥2( λ

M I+V self
a,t )

−1

}

≤ c3.βT (δ)

√
T

M
.

√
2d log

(
dλ/M + T

dλ/M

)

≤ c3.

(√
2 log

(
det(Va,t)

1/2 det(λI)1/2

δ

)
+ λ

1/2

)√
T

M
.

√
2d log

(
dλ/M + T

dλ/M

)

≤ c4.
√
d log(MT ).

√
T

M
.
√
d log(MT ) = O

(
d

√
T log(MT )

M

)

Here, the first line uses Jensen’s inequality (on concavity of the square root function) or Cauchy-Schwarz inequality. The
second line follows from Eqn. 8. The third line is due to Lemma 2 with γ = λ/m. The fourth line uses Eqn. 7. The
fifth/final line uses det(Vg,t) ≤

(
MT
d

)d
, d < t, δ = (T 2M2)−1. This completes the proof of the individual agent regret

guarantee mentioned in the Theorem.

The expected monetary penalty of an individual agent is O(1) as already shown in Lemma 5 when all agents are honest.
This completes the proof of the Theorem.

G. Limitations
We discuss the limitations of our work in this section. Firstly, our work involves monetary penalty in the design of
mechanism. While it is possible to execute in a real-world environment, it would be interesting to see if one can design a
payment-free mechanism. Secondly, we assume that the agents have the same set of actions at each time-step. While our
results allow some relaxation of this assumption, it would be more realistic to allow for arbitrarily different actions sets for
each agents. With arbitrarily different action sets, the very benefit of collaboration, in fact, is not clear. Lastly, our work
does not consider competition between different agents which is a possibility in a real-world scenario.

H. Additional Experiments Details and Results
In this section, we provide additional experiment results and explanations that were not a part of the main paper.

H.1. Synthetic experiments

In the synthetic environment, we generate true parameter θ∗ and the action sets {Xt}t randomly as follows: each component
of θ∗ and each component of each action in an action set Xt is assigned a value uniformly at random in [−1, 1]. We consider
an embedding dimension of d = 50 and actions sets of size |Xt| = 400 at all times t for our synthetic experiments.

Presence of free-rider. The purpose of this experiment is to demonstrate the usefulness of our Protocol for multi-agent
stochastic linear bandits problem in the following sense. Existing algorithms are not immune to the presence of strategic
agents, i.e., a strategic agent will be able to ‘free-ride’ leading to a bad social outcome over time due to a collective lack of
exploration. On the other hand our algorithm will be able to levy a monetary penalty to the agents, the penalty serves as a
deterrent to such ‘free-riding’ and creates an incentive to be truthful. To elucidate this, in our collaborative learning setup,
we let one of the agents ‘free-ride’ and analyse how the regret and penalty of the agents behave. Specifically, the free-rider
agent, say a, plays the best arm according to the θa,τ based on total statistics from self-play and from communication by
the principal during the previous communication event, and does not perform exploration of his own. Specifically, he plays
xa,t = argmaxx∈Xt

⟨x, θa,τ ⟩, while all other agents fulfill the exploration as dictated in (line 4 of) LSHON. All agents,
including the free-rider, report their current estimate θa,t honestly.
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(a) (b) (c)

Figure 2: Synthetic problem instance All sub-figures (a, b, c) plot the corresponding metrics as described in Fig. 1.

The results of the synthetic experiment is plotted in Fig. 2. We plot the cumulative regret, round-wise penalty, and
cumulative utility of a bunch of agents. The negative of the utility of an agent is the sum of his regret and his monetary
penalty minus the average penalty of all agents. We draw identical insights from the results of the two experiments as
described in Section 4.
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