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ABSTRACT

Recent works have shown that Large Language Models (LLMs) could empower
traditional neuro-symbolic models via programming capabilities to translate lan-
guage into module descriptions, thus achieving strong visual reasoning results
while maintaining the model’s transparency and efficiency. However, these mod-
els usually exhaustively generate the entire code snippet given each new instance
of a task, which is extremely ineffective. On the contrary, human beings grad-
ually acquire knowledge that can be reused and grow into more profound skills
for fast generalization to new tasks since we are an infant. Inspired by this, we
propose generative neuro-symbolic visual reasoning by growing and reusing mod-
ules. Specifically, our model consists of three unique stages, module initialization,
module generation, and module execution. First, given a vision-language task, we
adopt LLMs to examine whether we could reuse and grow over established mod-
ules to handle this new task. If not, we initialize a new module needed by the task
and specify the inputs and outputs of this new module. After that, the new module
is created by querying LLMs to generate corresponding code snippets that match
the requirements. In order to get a better sense of the new module’s ability, we
treat few-shot training examples as test cases to see if our new module could pass
these cases. If yes, the new module is added to the module library for future reuse.
Finally, we evaluate the performance of our model on the testing set by executing
the parsed programs with the newly made visual modules to get the results. We
find the proposed model possesses several advantages. First, it performs compet-
itively on standard tasks like visual question answering and referring expression
comprehension; Second, the modules learned from one task can be seamlessly
transferred to new tasks; Last but not least, it is able to adapt to new visual rea-
soning tasks by observing a few training examples and reusing modules'.

1 INTRODUCTION

Neuro-symbolic visual reasoning models (Andreas et al., 2016b; Mao et al., 2019b) refer to the al-
gorithm family that combines deep neural networks (lec, 1998; Hochreiter & Schmidhuber, 1997)
for learning correlations among the training data and symbolic methods (Yi et al., 2018; Andreas
et al., 2016a) to perform explicit and transparent multi-step reasoning. In contrast to pure neu-
ral network-based models (Hudson & Manning, 2018; Li et al., 2023), neuro-symbolic approaches
achieve strong performance in visual reasoning tasks, simultaneously offering superior model trans-
parency and data efficiency.

Nevertheless, such models suffer from several inherent limitations. Firstly, their language parsers (Yi
et al., 2018; Andreas et al., 2016b), employed for the conversion from natural language into sym-
bolic programs, typically demand extensive domain-specific language-program pairs to train on,
and struggle to generalize effectively to unconstrained natural language instructions. Additionally,
these models necessitate a custom design for every module, rendering the process labor-intensive
and lacking scalability.
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Figure 1: The motivation of the GENOME. Compared with VisProg and ViperGPT which exhaus-
tively generate a code snippet for each input case, our GENOME is able to generate new modules and
reuse old modules to handle the query. The module generated by GENOME can be used to handle
other instances of the task for better performance. Second, the generated module can be transferred
to different tasks like image editing. Finally, it can learn to handle new tasks like Raven (Burke,
1985; Zhang et al., 2019a) by learning modules from only a few training samples. The edited region
and the correct answer for the Raven task are labeled with red boxes for better visualization.

Recent advancements in large language models (LLMs) (Brown et al., 2020; Ouyang et al., 2022)
have ushered in a new era with its remarkable performances across various applications, including
chatbots (Shuster et al., 2022), virtual assistants (Dong et al., 2023), and programming assistants
(Chen et al., 2021a). Riding this unprecedented wave, researchers reformulate the old wisdom by
incorporating LLMs into neuro-symbolic reasoning, bypassing the inflexibility and ineffectiveness
of domain-specific language-to-program parsers. Specifically, VisProg (Gupta & Kembhavi, 2022)
pre-defines a set of visual modules, and uses LLMs to transform language instructions into symbolic
programs consisting of the pre-defined visual modules. Taking a step forward, ViperGPT (Suris
etal., 2023) releases the burden on manually-defined visual modules by introducing a code generator
that could produce a code snippet based on each input instance of a new task.

Promising as these LLM-based neuro-symbolic models can be, they inevitably bear several weak-
nesses compared to the learning and reasoning processes of human beings. First, both VisProg and
ViperGPT exhaustively produce one code snippet for each new instance of a task, which is extremely
ineffective. This is in stark contrast with the human learning process: from an early age, we organ-
ically accumulate knowledge from particular experiences. Such knowledge acquired from specific
cases could be reused and reconfigured, enabling us to quickly adapt to new tasks and new demands
(Harlow, 1949; Mitchell et al., 1986; Lake et al., 2016; Ellis et al., 2023). The knowledge blocks
grow progressively over time, gradually into a library with extraordinary richness and flexibility
for fast generalization to any unseen task - the knowledge library that these models fall short of.
Second, both models do not verify and examine the codes they generate. It seems that when the
models generate a bad code snippet that cannot solve the input case, they just “let it go” without
taking another stab for larger chance towards success. And of course, when they encounter similar
cases again, they keep “stepping on the same rake”. Human beings, on the other hand, would verify
and examine the acquired knowledge by proposing a set of test scenarios before storing them in the
library (Brulé & Blount, 1989). It’s crucial that a neuro-symbolic reasoning model is equipped with
the same abilities to verify the codes it produces, stores them in a library if satisfactory, and makes
another attempt when the codes fail.

To this end, we introduce a novel Generative Neuro-symbolic Visual Reasoning Model (GENOME),
proficient in assimilating new neural modules from a limited set of training examples. This model
excels in handling standard visual reasoning tasks such as visual question answering. Addition-
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ally, it demonstrates outstanding module transfer capabilities for tasks like image editing, and ex-
hibits an exceptional ability to generalize to new reasoning tasks with limited training examples.
As illustrated in Figure 2, GENOME comprises three stages: 1) module initialization, 2) mod-
ule generation, and 3) module execution. From the initial training set examples, an LLM discerns
the necessity for a new module to tackle the task and, if required, produces the respective input
and output. In the second stage, LLMs implement and refine the new module, ensuring seamless
integration with existing modules and resulting in accurate responses to the training queries. Dur-
ing testing, the LLM first converts language instructions into executable high-level programs like
COMPARE _ATTRIBUTE(IMAGE,BOX0,BOX1,ATTR) for comparing attributes of different bound-
ing boxes. The program will be run with the new module sets, producing the desired outputs.

We assessed the performance of GENOME across six visual reasoning tasks, spanning from vi-
sual question answering (Hudson & Manning, 2019) to Raven’s Progressive Matrices (Zhang et al.,
2019a). The experimental findings reveal that GENOME delivers competitive results on standard
benchmarks, ensuring both transparency and interoperability. Notably, modules honed on these stan-
dard tasks can be adeptly adapted to diverse domains, including image editing and knowledge tag-
ging (Gupta & Kembhavi, 2022). Additionally, with minimal training examples, GENOME demon-
strates the capability to manage new visual reasoning tasks (Burke, 1985; Jiang et al., 2023a) by
repurposing modules.

2 RELATED WORK

Visual Reasoning. Our work aims to handle visual reasoning tasks, which require a model to draw
new inferences based on the acquired visual cues in images or videos (Hudson & Manning, 2019;
Kazemzadeh et al., 2014; Goyal et al., 2017; Zhang et al., 2019a; Jiang et al., 2023a). Typical tasks
for visual reasoning include visible question answering (Goyal et al., 2017; Hudson & Manning,
2019), visual grounding (Kazemzadeh et al., 2014; Yu et al., 2016; Chen et al., 2020) and Raven’s
Progressive Matrices (Burke, 1985; Zhang et al., 2019a). Various models (Hudson & Manning,
2018; Yu et al., 2018; Zhang et al., 2021; Ding et al., 2023) have been developed to handle these
tasks but most of them are ad-hoc and carefully designed for a specific task, leaving it an open
research question on how to build a general model that can handle different kinds of visual reasoning
problems by only showing a few examples.

Neuro-symbolic Visual Reasoning. Our work is also closely related to neuro-symbolic visual rea-
soning models (Andreas et al., 2016b; Mao et al., 2019a; Chen et al., 2021c; 2022), where the
models decompose the query of the visual reasoning tasks into a series of reasoning steps and repre-
sent each reasoning step with a neural module (i.e., a code snippet for achieving specific functions
like localizing objects and recognizing object categories). While these models have better model
interoperability and data efficiency than previous connectionist models (Hudson & Manning, 2018;
Anderson et al., 2018), they often show their limitations in representing natural language instruc-
tions in the wild with the limited pre-defined reasoning steps (Yang et al., 2020; Chen et al., 2021b).
Moreover, they need to manually define and implement each neural module one by one, making it
hard to scale up and handle multiple tasks within a single model.

Foundation Models for Reasoning. Recently, large language models (LLMs) (Brown et al., 2020;
Ouyang et al., 2022) have been widely used in language understanding (Hendrycks et al., 2020) and
reasoning (Cobbe et al., 2021; Amini et al., 2019). Schick et al. (2023) develop the toolformer to
show that LLMs can use external tools to better handle language tasks. Cai et al. (2023) shows that
LLMs can make simple tools for natural language tasks by writing code snippets. LLMs have also
been used in vision-language tasks. Most of these works (Li et al., 2023; Alayrac et al., 2022) con-
nect LLMs with additional vision encoders and fine-tune them with massive vision-language pairs.
As evaluated by Xu et al. (2023b), while these models show great performance on in-domain tasks,
they also perform poorly on tasks out of the training domains. They are also extremely computation-
expensive. For example, it takes 15 days to use 1536 TPUv4 for training Flamingo (Alayrac et al.,
2022).

LLMs for Programming. There are some works that use LLMs to write codes to handle tasks.
Pereira & Hartmann used LLMs to progressively enhance and specify system subcomponents, em-
powering users to develop versatile programs through a systematic iterative disambiguation method.
Jiang et al. (2023b) learned to generate code with LLMs, which involves a planning phase for outlin-
ing solution steps and an implementation phase for generating code. Besides the dense engagement
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Figure 2: The framework of our GENOME, which contains three stages, module initialization,
module generation, and module execution. In stage 1, we feed the questions and the signature of
the existing modules to the LLM and ask it to identify whether we can handle the query within the
operations of the existing modules. If not, we ask the LLM to generate the signature of the new
module (i.e. the input and output) and predict the reasoning steps to handle the query task. In stage
2, we feed the module signature and the testing cases to the LLM and ask the LLM to implement the
module and test its pass rate on the training examples. We only accept the modules that successfully
handle the query. In stage 3, we first use the LLM to parse the query into symbolic operations and
then execute these operations on the test images with the help of the scalable module library. We
take VQA as an example and such a framework can also be expanded to other tasks like referring
expression comprehension and Raven.

with the visual modalities as input, our GENOME differs from them in modularizing code snippets
for better module expansion and reuse. These unique differences make our GENOME model have
new capabilities like growing new modules to handle the visual reasoning tasks and transferring the
modules into new domains. Some research works (Vendrow et al., 2023; Gao et al., 2023) also used
LLMs and few-shot examples to improve Al models’ performance. However, they only focused on
improving the pure neural network model’s performance and automatically discovered groups to use
them for model design.

Visual Programming by LLMs. Another line of research has been combining vision models (Li*
et al., 2022; Kirillov et al., 2023; Radford et al., 2021) with LLMs in an off-shelf manner. Early
models (Yang et al., 2022; Chen et al., 2023b) transformed images into captions and append the cap-
tions into the LLMs’ prompt to handle vision-language tasks. While the method is simple, they also
perform inferior and lack transparency. Recently, VisPROG (Gupta & Kembhavi, 2022) uses LLMs
to transform language instructions into pre-defined modular operations for step-by-step reasoning.
However, it still requires manually implementing each module one by one. Later, ViperGPT (Suris
et al.,, 2023) shows that the LLMs can be used to write a code snippet for each query instance inde-
pendently to handle vision tasks. However, the code it writes has not been examined and tested by
any training examples and there is no guarantee about the performance and code safety. Instead, we
propose GENOME that ask LLMs to create new neural models (i.e. general code snippets to achieve
specific functions) and handle the given tasks through only a few training examples. Our GENOME
has the reliance on a few training examples to learn new modules. However, such newly generated
modules can cooperate with each other and be reused for other tasks for better performance. There
is also research like (Rahaman et al., 2021) which adopts pure neural network architecture to ab-
stract the reasoning problem by generating the script and dynamically executing it. Differently, our
GENOME is a neuro-symbolic method that provides better model transparency in explicit Python
scripts and is able to make use of existing large pre-trained models to make and reuse new modules.

3  METHOD
3.1 OVERALL
In this section, we present a novel framework named as Generative Neuro-symbolic Visual Rea-

soning Model (GENOME) for the acquisition of neural modules and solutions of visual reasoning
tasks with only a limited set of training examples. GENOME comprises several pre-defined opera-
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tors that serve as the initial building blocks. Each neural operator corresponds to a neural module
and is implemented using a Python code snippet, thereby enabling specific functions such as object
localization within an image. Nevertheless, it is not possible to pre-define all the necessary neural
modules prior to addressing the visual reasoning tasks. Consequently, there arises a need to generate
new modules based on a limited number of visual reasoning task examples.

Figure 2 illustrates that GENOME consists of three distinct stages: 1) module initialization, 2) mod-
ule generation, and 3) module execution. In the module initialization stage, when provided with
a small set of training examples from the visual reasoning dataset, the primary objective is to de-
termine whether the existing neural modules are sufficient to address the query examples. If the
existing modules are inadequate for the query instance, GENOME will identify the requirements
for creating new modules, including defining the modules’ input and output specifications. Dur-
ing the module generation stage, GENOME leverages the LLM to implement the neural module
based on the provided training examples and the specified input and output format (i.e., function
signature) and add the module to the module library only when it passes the test cases. Once the
new module is successfully implemented, the module execution orchestrates the transformation of
input queries into a sequence of neural operations. Subsequently, these operations are applied to
the neural modules to obtain the correct output. All these three stages are powered by robust code
generation capabilities and the in-context learning technique. Prompts for each stage can be found
at Figure 15-17

3.2 MODEL DETAILS

Utilizing a limited number of examples from the training set of visual reasoning tasks, we employ
the GENOME framework, comprising three distinctive stages: module initialization, module gener-
ation, and module execution.

Module Initialization. The initial phase within our GENOME framework is module initializa-
tion, dedicated to determining the set of new modules required to address the visual reasoning task.
As depicted in Figure 2-1, we employ an LLM to assess the feasibility of handling these training
instances using existing neural modules. Should this not be achievable, we task the LLM with
specifying the necessary new modules (e.g. COMPARE _ATTRIBUTE in Figure 2) for an accurate
response to the query. The outcome of this stage comprises function signatures detailing the input
and output formats for these new modules. Furthermore, it facilitates the transformation of the input
query into a sequence of reasoning steps, which function as test cases to validate the correctness of
the generated program within module generation. The prompt for the LLM in this stage is shown in
Figure 15.

Module Generation. The second phase of our GENOME framework is module generation, which
focuses on implementing the correct new modules proposed during the module initialization stage.
Specifically, after receiving the signature of a new module, we incorporate all the corresponding
test cases that call the new module into the prompt and employ learning-in-context techniques to
generate multiple program candidates. Note that a new module is usually paired with multiple test
cases. These program candidates are subsequently executed using the provided training examples. If
a program encounters errors during execution, we incorporate the error information into the LLM’s
prompt and instruct it to rectify these issues. We only accept program candidates that achieve a pass
rate surpassing a predefined threshold (n). This procedure bears resemblance to the code transla-
tion of LLMs discussed in (Chen et al., 2023a), but we extend it to accommodate more intricate
multi-modal input types and instructions from natural language and raw images. The inclusion of
module generation in the context of visual reasoning tasks offers two principal advantages. Firstly,
it upholds the transparency and interpretability of neuro-symbolic models while preserving compet-
itive performance. Secondly, it exhibits generative capabilities and scalability as our GENOME can
autonomously generate new modules tailored to specific tasks.

Module Execution. Given the integration of newly-generated modules with existing neural mod-
ules tailored for visual reasoning, the GENOME framework initiates query parsing from the testing
dataset, transforming them into executable operations through in-context learning. An illustrative
prompt for this stage is depicted in Figure 17. Notably, although various visual reasoning tasks may
possess distinct inputs and outputs, they can re-purpose these intermediary modules designed for
other tasks to enhance overall performance. This feature represents a unique capability for code
generation at the module level, an aspect hitherto unexplored by prior methods(Suris et al., 2023;
Gupta & Kembhavi, 2022).
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4 EXPERIMENTS

In this section, we present a comprehensive series of experiments to evaluate the performance of our
models. Initially, we demonstrate our models’ effectiveness in learning neural modules on two estab-
lished benchmarks: GQA (Hudson & Manning, 2019), focusing on compositional visual question
answering, and RefCOCO (Kazemzadeh et al., 2014), which assesses referring expression com-
prehension. Subsequently, we illustrate how the modules acquired from these two datasets can be
successfully applied to novel tasks such as image editing and knowledge tagging. Moreover, we
highlight the adaptability of our framework to address novel visual reasoning tasks (Raven (Zhang
etal., 2019a) and MEWL (Jiang et al., 2023a)), even with limited training examples. Before delving
into these experiments, we provide an overview of the experimental settings.

Experimental Details. The success of our GENOME relies on a set of pre-defined modules and
APIs as the starting point. We utilize handcrafted modules from VisProg (Gupta & Kembhavi,
2022) as our initial components. Additionally, we incorporate several new APIs from ViperGPT to
enhance module creation. We also include some new APIs from ViperGPT (Suris et al., 2023) for
making new modules. In Section 4.4, we also include results parsed by the open-source LLM from
WLM (Xu et al., 2023a) to investigate the influence of different LLM models. A comprehensive list
of the pretrained modules employed in our approach can be found in Section A.1 of the Appendix.
We extract training examples to acquire new modules. More precisely, we extracted 300 examples
from GQA, 100 from RefCOCO, 10 from Raven, and 10 from MEWL.

Datasets and Evaluation Metric. We show experiments of our GENOME on standard vision-
language benchmarks, GQA (Hudson & Manning, 2019) and RefCOCO Kazemzadeh et al. (2014).
GQA is a popular compositional visual reasoning dataset with synthesis multi-hop questions, mak-
ing it suitable for multi-step reasoning. RefCOCO is a typical visual grounding dataset, evaluating
models’ ability to localize objects and understand fine-grained spatial and semantic relationships.
Following ViperGPT, we evaluate GQA on test-dev split and RefCOCO on the testA split. Then, we
show GENOME'’s abilities on the other transferred tasks, image editing, and knowledge tagging and
compare it with VisProg. Since the image editing and knowledge tagging datasets from VisProg are
not publicly available, we built two new datasets for evaluation. The new editing dataset contains
50 images and instruction pairs. The new knowledge tagging dataset contains 50 images with 50
referring expressions. We provide more details about the dataset in Appendix A.4. The datasets will
be released for research purposes. Finally, we show that GENOME can learn to handle new visual
reasoning tasks like Raven (Zhang et al., 2019a) and MEWL (Jiang et al., 2023a) by observing a
few training examples and module learning. Raven is a task for relational and analogical visual
reasoning of image sets and has been widely used for non-verbal intelligence tests. MEWL is a
recent benchmark proposed to assess how machines learn word meaning in grounded visual scenes.
Examples of these tasks can be found at Figure 5 and Figure 6.

4.1 COMPARISON WITH BASELINES ON VISUAL REASONING.

We conducted analysis between our model and several baseline models us-
ing the GQA and RefCOCO datasets. Due to the deprecation of the origi-
nal professional Codex APl (code-davinci-002), we replaced it with the
currently available APl (gpt-3.5-turbo-instruct) and conducted experi-
ments with both our model and the baseline models to ensure a fair compari-

son. We did not carry out experiments with GPT-4 due to the prohibitive cost.
The results, as presented in Table 1, demonstrate that ~ Methods GQA RefCOCO
our model achieves competitive performance in both

. . . . ) BLIP-2 44.7 -
visual question answering and referring expression KOSMOS-2 ) 574
comprehension, thus confirming its effectiveness. Fur- ViperGPT-CodeX ~ 48.1 72'0

thermore, we provide an illustrative module from our
model in Figure 11. This newly created module has the ~ VisPROG-Instruct ~ 45.4 -

capability to utilize various available APIs to select at-  ViperGPT-Instruct ~ 38.2 62.4
tributes from the images. The step-by-step reasoning ~ Ours-Instruct 45.6 69.2

process of our model is detailed in Figure 3, offering
greater transparency compared to end-to-end models.

4.2 GENOME FOR TRANSFER LEARNING
In this section, we demonstrate our model’s robust ca-
pabilities in transfer learning. We augment the modular library by incorporating modules created

Table 1: Evaluation on standard visual rea-
soning benchmarks, GQA and RefCOCO.
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Figure 3: Qualitative examples of GENOME’s on GQA and RefCOCO. The query images, language
instructions, and the parsed programs are shown on the left. The corresponding new modules and
the value of important variables are shown on the right.
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Tag the second gas planet from the left in
our solar system
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Figure 4: Qualitative examples of GENOME'’s on the image editing and knowledge tagging tasks.
The language instructions of the tasks are shown the original images while the modified results of
the images are shown below the original images. The emphasis of the instructions is highlighted
with red colors, which requires our new modules to handle. While the key regions of the output
images are bounded with green colors.

from GQA and RefCOCO, employing in-context examples to guide the Language Model (LLM) in
generating step-by-step instructions for task execution. Qualitative results for this task are depicted
in Figure 4. As illustrated in Figure 4, our model excels in generating semantically accurate images
using the newly added module, whereas the baseline VisProg struggles to capture the required re-
lationships with its fixed, pre-defined module library. To provide a more comprehensive evaluation
of image editing, we enlist annotators to manually assess the correctness of the generated images.
The models’ performance is compared in Table 2, where our model outperforms the baseline. In
the context of knowledge tagging, we task annotators with marking image regions referenced by ex-
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Methods Image Editing Tagging Localization
Accuracy Precision Recall F1  Precision Recall Fl

VisProg 16.7 18.4 21.7 199 32.8 353 340

GENOME 553 67.1 523 588 76.9 579  66.0

Table 2: Evaluation of GENOME on Transfer Learning with image editing and knowledge tagging
tasks. Our GENOME shows much better performance on all criteria, showing the effectiveness of
the transferred modules. A qualitative comparison can be seen Figure 7 in the Appendix.

Methods Center L-R U-D Methods shape color material
ResNet+DRT 58.1 65.8 67.1 Aloe 34.2 33.2 31.0
ALANS-V 98.4 973 964 Flamingo-1.1B  49.3 35.3 48.5
GENOME 80.1 67.6 69.1 GENOME 437 45.3 41.0
Human 95.5 86.4 81.8 Human 92.4 87.2 72.7

Table 3: Evaluation of GENOME on Table 4: Evaluation of GENOME on
Raven (Zhang et al., 2019a). Compared MEWL (Jiang et al., 2023a). Compared
with methods trained with massive in-domain with approaches trained on extensive in-domain
data, our model performs competitively. data, our model shows competitive performance.

pressions and employ the same metrics as RefCOCO for evaluating the accuracy of bounding boxes
and employ the BERT score to assess the correctness of labeled names. Our model demonstrates
superior performance in both image editing and knowledge tagging. We show a typical example in
Figure 7 of the Appendix to show how our GENOME make use of new modules to perform better
knowledge tagging result the baseline.

4.3 GENOME ON FEW-SHOT TASK LEARNING.

As a general module learning framework, our model is not only able to learn new modules to handle
existing tasks but also can learn to handle new visual reasoning tasks from a few training exam-
ples. We evaluate such abilities on new tasks, Raven (Zhang et al., 2019a) and MEWL (Jiang et al.,
2023a). Specifically, we first prompt the LLM to learn pattern recognition modules for visual un-
derstanding and then ask the LLM to generate a solver module to handle the task. The instances of
our model prediction are shown in Figure 5 and Figure 6. Note that visual reasoning from Raven is
widely used in intelligent testing for humans, which shows our model’s strong capabilities and poten-
tial. We report the performance of our model and the baselines in Table 3 and Table 4. Our model is
significantly better than previous fully-supervised methods like ResNet+DRT (Zhang et al., 2019a)
and Aloe (Ding et al., 2021), showing its effectiveness. Note that all these models ResNet+DST,
ALANS-V (Zhang et al., 2022), Aloe (Ding et al., 2021) and Flamingo (Alayrac et al., 2022) are
models fully-finetuned on in-domain data, while our GENOME is a general few-shot framework to
learn modules for problem-solving. Moreover, we can observe the new compositionality and mod-
ule re-usage from Figure 8 of the Appendix. Although the SOLVER module was originally learned
from center-type problems, it can be naturally transferred to other types like left-right and up-down.

4.4 ABLATIONS

Methods RefCOCO
To gauge the efficacy of our model, we conducted
a series of ablation studies addressing the following ggggﬁg“\;jixL gii
key inquiries: Q1 How effective is module learn- GENOME (10) 49 4
ing? Q2 What impact does the quantity of train- GENOME (50) 67.0
ing examples have on model performance? Q3 How GENOME (100) 67.1

crucial is the LLM’s capability for optimal perfor-
mance? In our experiments, GENOME w/o ML repre- Table 5: Ablation study of GENOME on
sents a configuration without any new module learn- RefCOCO.

ing but relies heavily on ViperGPT and VisProg-defined modules, directing the LLM to pin-
point a region matching the referring expression. On the other hand, GENOME-WLM replaces
the gpt-3.5-turbo-instruct API with WizardCoder-Python-34B-V1.0 from Wiz-
ardLM (Xu et al., 2023a). The designations GENOME (10)/(50) / (100) indicate models trained with
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Figure 5: A qualitative example from the Raven dataset (Zhang et al., 2019a) is provided. This task
involves a set of images with varying visual attributes, such as colors, shapes, and locations. Models
are tasked with identifying the image that best matches the missing item in the Problem Matrix.
GENOME exhibits the capability to compose modules (i.e. DETECT_SHAPE and SOLVER) for
detecting these attribute rules and constructing a solver module to address the task. The correct
answer is indicated by a green box.

COLOR=DETECT_COLOR (image=IMAGE) I o ek
cyan gray cyan
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ANSWER=SOLVER (image=IMAGE, color=COLOR, — |« —
word=HORD)
FINAL_RESULT=RESULT (var=ANSKER) acno atlec ercan cyan acno
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Figure 6: A qualitative illustration from the MEWL dataset (Jiang et al., 2023a) is presented.
This task entails a set of images featuring diverse visual attributes, such as material and shapes,
and it necessitates models to determine the word that corresponds to the query image. GENOME
demonstrates the capability to generate modules for identifying these attribute rules and composing
a solver module to address the task. The correct answer is indicated by a green box.

10, 50, and 100 examples, respectively. For resource constraints, we limited our experimentation to
800 RefCOCO samples.

Table 5 presents the outcomes, leading to these insights: module learning, given sufficient test in-
stances, can bolster task performance (Q1 addressed). A paucity of training examples, such as 10 for
RefCOCO, might induce overfitting, but this diminishes with increased training data (50 examples),
improving overall performance (Q2 addressed). Finally, model performance appears intrinsically
tied to the LLM’s capacity, with superior LLMs delivering enhanced results (Q3 addressed).

5 CONCLUSION

In this study, we introduce GENOME, which is designed to tackle visual reasoning tasks when
confronted with limited training data. This approach combines language models to parse natural
language into executable operations and create specialized visual modules tailored to the given task.
Our model exhibits competitive performance on conventional tasks, effortless transfer of acquired
modules to novel tasks, and the capability to adapt to new tasks even with limited training data. Our
GENOME also proposes numerous avenues for future research. Firstly, it still necessitates task-
specific prompts for each distinct reasoning task, and it would be intriguing to explore the use of a
universal prompt for all tasks. Secondly, the framework can be extended to encompass a broader
range of multi-modal reasoning tasks, incorporating diverse inputs such as audio, video, and tactile
information.
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A APPENDIX

In this section, we substantiate our claims in the paper by providing additional implementation de-
tails (Section A.1), more experimental analysis (Section A.2), exemplar prompts for each stage (Sec-
tion A.3), details on dataset collection (Section A.4), qualitative examples of new learned modules
(Section A.5).

A.1 IMPLEMENATION DETAILS

Pre-defined Modules and API models. The success of our model still requires a set of pre-
defined APIs. Following the modules in VisProg and ViperGPT, we adopt the following APIs.
We adopt GLIP (Li* et al., 2022) for object localization. We adopt gpt-3.5-turbo-instruct from
OpenAl and WizardCoder-Python-34B-V1.0 from WizardLM for code generation. We use BLIP (Li
et al., 2023) for answering simple questions about images. We use CLIP (Radford et al., 2021) and
X-VLM (Zeng et al., 2021) for image-text classification. We use MiDaS (Ranftl et al., 2021) for
estimating depths in images. We use stable diffusion (Rombach et al., 2022) for modifying image
patches. Based on these APIs, we construct a set of pre-defined modules following VisProg. These
pre-defined modules will be used to cooperate with the new learned modules for visual reasoning.

Descriptions | Modules

Loc for object location, FaceDet for face detection, Select and
Image Understanding | Filter_Property for image-text classification. Filter_Spatial for
selecting image regions;

Replace for image editing, colorPop for changing images colors,
BgBlur for blurring background, Tag for annotating box regions
and Emoji for face tagging. Crop and its variants for cropping
patches from the images.

List for retrieving factual knowledge, Count for counting object
Others numbers, Eval, Result, BOX2MASK and MASK2BOX for
formatting outputs.

Image Manipulation

Table 6: Pre-defined Modules used in GENOME.

Details on Raven and MEWL. Note that a visual reasoning task does not necessarily use lan-
guage as input. All we need is to prompt the LLMs to generate modules that recognize the patterns
and solve the problem. In RAVEN, by prompting LLM, we can obtain DETECT_COLOR, DE-
TECT_SHAPE, and DETECT_SIZE. The image is fed into these modules and the output is the
color, shape, and size of the image. In this way, the input image is converted into a (color, shape,
size) triplet. We provide LLM with ten examples from the RAVEN train split to demonstrate how to
deduce the pattern of these triplets. By observing few-shot demonstrations, we let LLM generate the
SOLVER() module, which detects the pattern of input triplets from the Problem Matrix and chooses
the most appropriate answer from the Answer Set. Therefore, the internal of the SOLVER() module
is primarily based on judgment, used to identify the patterns of the input triples in the Problem Ma-
trix, thereby finding the answer in the Answer Set. The workflow of RAVEN is shown in Figure 5.
As for MEWL, we employ a similar approach to handle it. One example is provided Figure 6. Since
MEWL and RAVEN have different patterns, the SOLVER() module is not shared between RAVEN
and MEWL. Thus, it utilizes distinct logic.

A.2 MORE EXPERIMENTAL ANALYSIS.

Computational Efficiency of Module Reuse. Our modularized design and module reuse strategy
offer higher computational efficiency and generate shorter code compared to baseline approaches
like ViperGPT, which creates solutions from scratch without modular abstraction and reuse. We
calculated the average token count for both our GENOME model and ViperGPT, which lacks a
module reuse mechanism, in their interactions with LLMs. As shown in table 7, our GENOME
model’s solutions are demonstrably shorter and more efficient.
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Methods GQA RefCOCO

ViperGPT  153.7 109.1
GENOME 623 54.4

Table 7: Comparison of average token number for the generated solutions on GQA and RefCOCO.

More Ablation Study on Different Components. To dissect different components of our pro-
posed method, we showcase a more comprehensive and detailed ablation study here. We randomly
select 800 samples from GQA test-dev split to further investigate the effectiveness of different com-
ponents of GENOME. Moreover, we add baseline experiments of RAVEN and MEWL for better
comparison. To better present all experimental results, all the ablation studies are organized into the
following sections.

Methods GQA
GENOME 45.9
GENOME w/o input and output format 43.2
GENOME w/o good initialization 41.8
GENOME w/o existing modules in prompt for module making  45.0
GENOME w/o creating new modules 44.7
GENOME w/ random sampling 443
GENOME (60) 44.5
GENOME (120) 453
GENOME (300) 45.9
GENOME w/ different LLM 443
GENOME w/o debugging 44.9

Table 8: More ablation on GQA dataset.

Ablation on Prompt Design. We conducted a series of experiments to observe the impact of prompt
design on the overall performance of GENOME. Firstly, we removed the descriptions of input and
output formats from the prompt. After removing these descriptions, the performance of GENOME
dropped by 2.7%. This is because, without clear guidance on input and output formats, the modules
might output in the wrong format, leading to errors in subsequent parsing of the results. Further-
more, on top of removing the input and output format, we also removed some of the in-context
examples and descriptions about module signatures from the prompt. The performance further de-
clined. Since our method consists of three stages: module initialization, module generation, and
module execution, where module initialization is the first step of our method. Without adequate
module initialization as a foundation, the subsequent results are largely impacted. Therefore, we
can see that without good initialization, our performance drops by 4.1%.

Regarding the use of existing modules and creating new ones, from Table 8, we can observe that
not using the predefined modules from VisProg results in a 0.9% decrease in our performance.
This demonstrates the robust module generation capability of GENOME. Even without a series
of predefined modules, our method can still build modules from scratch, solve problems, and the
performance does not drop significantly. If we don’t create new modules, then we are merely using
the predefined modules. We can see that the result is 44.7%, which is 1.2% lower than our result
of 45.9%. This performance gap highlights the effectiveness of the newly generated modules. By
generating and using new modules, we can achieve better results.

Ablation on Sampling. In this section, we introduce our sampling strategy at first. Then, we
conduct an experiment to showcase how the sampling methods will impact GENOME performance.
Subsequently, we investigate how the number of training samples affects our results of different
tasks.

Sampling Strategy. Our sampling strategy: the GQA dataset contains five structural types: choose,
logical, compare, verify, and query. These structural types inspired the idea of generating our new
modules. Taking COMPARE_COLOR as an example, this newly generated module is generated
to address questions related to color within the compare structural type. From the visualization
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# of Sampl RAVEN MEWL

Ol SAMPIES  center L-R - U-D shape color material
5 465 372 398 389 396 379
10 80.1 67.6 69.1 437 453 41.0
20 80.1 67.6 69.1 437 453 41.0

Table 9: Number of Sampling Examples on RAVEN and MEWL.

of GQA, it is apparent that the query type can be addressed using the existing VQA module from
VisProg, and problems in the logical type can be decomposed into sub-problems of choose, compare,
and verify types. Therefore, when selecting training samples, we randomly chose 100 samples each
from the choose, compare, and verify types. Altogether, these three types comprise 300 samples, all
sourced from the GQA train split. Hence, we are not cherry-picking our training samples; rather, we
are selecting training samples based on the structural types of GQA.

To explore the impact of sampling strategies on our experiment, we conducted an additional experi-
ment with a random sampling of 300 samples, beyond our initial sampling strategy. In this setting,
we randomly sampled 300 examples from the GQA train split. The performance was observed to
be 44.3%, a decrease of 1.6% compared to 45.9%. This result suggests that a strategic sampling
method can more effectively guide the LLM in generating more efficient modules for a given task.
Relatively speaking, our method is robust in the face of choices in sampling strategies.

Number of Sampling Examples. We conduct a series of experiments to illustrate how the number
of training samples influences the performance.

In the GQA and RefCOCO datasets, if a small number of training samples are used, it’s possible
for the generated modules to overfit certain samples, thereby reducing the generalization capability
of the newly generated modules. Such overfitting in new modules can negatively impact the final
results. Therefore, we can observe that when the number of samples is small, the performance of
GENOME is poorer. As the number of samples increases, the effectiveness of GENOME improves.
However, with a further increase in the number of samples, the performance gains of GENOME
tend to saturate.

Regarding RAVEN and MEWL, since their patterns of change are limited, the number of few-shot
samples selected is sufficient if it already covers all the variation patterns in RAVEN and MEWL.
In other words, if the number of samples exceeds this threshold, there won’t be any further im-
provement in the results; if it’s below this threshold, the performance will decline. We selected 10
few-shot samples each in RAVEN and MEWL. As can be seen from the results in the table above,
if the number of samples is equal to 5, there is a noticeable decrease in performance. This is be-
cause 5 few-shot samples are not enough to cover all the variation patterns of RAVEN or MEWL.
If the number of samples is equal to 10 or 20, at this point, the few-shot samples are sufficient to
encompass all possible variations. In this case, the same results are obtained.

Ablation on LLM’s capability. By using a better LLM, our prompts can be better understood,
and the LLM will generate higher-quality modules. In this experiment, we compared the results
of using gpt—-3.5-turbo-instruct (i.e., GENOME) and gpt-3.5-turbo (i.e., different
LLM). Our experimental results show that better outcomes are achieved when using the more ef-
fective gpt-3.5-turbo-instruct. Itis evident that the capabilities of the LLM influence the
performance of GENOME. As the abilities of LLMs continue to improve, so will the performance
of GENOME. Thanks to the flexibility of GENOME, once a better LLM is available, we can easily
switch to the latest LLM to achieve better results.

Ablation on Debug Mechanism. The error-correction prompt contains the error message from
Python interpreter and wrong code snippet. We prompt the LLM to correct the wrong code based
on the error message from Python interpreter. We heuristically set the maximal number of debug
iterations as 5. If the wrong code can be corrected within 5 iterations, we will keep it. Otherwise, it
will be abandoned. (Details can be found in the Module Generation section of Figure 2) The errors
mainly stem from two sources: one is basic syntax errors in Python code, such as indentation and
variable name errors. The other source is some fundamental logical errors, such as mistakes made
when setting variable types, like treating a variable that should be of the bool type as the string
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RAVEN MEWL
Center L-R U-D shape color material

VisProg variant 36.8 261 27.8 352 359 34.9
ViperGPT variant  40.6  30.7 324 378 382 36.7
Ours 80.1 67.6 69.1 4377 453 41.0

Methods

Table 10: Compare our GENOME model with baselines, VisProg, and ViperGPT on RAVEN and
MEWL.

type. By observing the table above, we can conclude that the debug process can assist GENOME
with generating more useful modules to elevate performance and prevent elementary programming
mistakes.

Additional Baseline Experiments of RAVEN and MEWL. For RAVEN and MEWL, we have
implemented the ViperGPT and VisProg baseline experiments in the following way. For VisProg,
it requires a manual implementation of all modules by making use of the provided APIs. Thus, to
enable VisProg to handle Raven and MEWL tasks, we manually implement and debug new hand-
crafted modules for VisProg to recognize and discover patterns to handle the task. We call this
baseline VisProg variant. We also put the training examples in GENOME’ stage 1 into the prompt
of VisProg variant for better performance. For ViperGPT, it has no manual modules and ask the
LLMs to make use of the APIs to handle the instances. Thus, we manually write solutions for the
training examples into the prompt of the ViperGPT to teach ViperGPT to handle the task. We call
this approach ViperGPT variant. We have added such analysis into the revised paper. VisProg by
itself needs a handcrafted solver module to find the target solution and it would be extremely difficult
for ViperGPT to generate a solver from scratch. Thus, we add the solver module learnt from our
GENOME model to pre-defined API pool of VisProg and ViperGPT. As shown in table 10, our
GENOME model achieves better performance than these two baselines, showing the great value of
module learning for handling new tasks from only a few examples.

New Modules GQA

VERIFY_ATTRIBUTE 14.1
CHOOSE_ATTRIBUTE 10.8

VERIFY_COLOR 6.9
COMPARE_ATTRIBUTE 59
VERIFY_MATERIAL 3.6

Table 11: Percentage of top-5 most-used new modules in GQA.

More Details about New Modules. We further take GQA as an example to exhibit the percentage
of top-5 most-used new modules in GQA in the Table 11. The data in Table 11 shows the proportion
of the five most common new modules appearing in the generated high-level programs. Overall,
38.7% of all generated high-level programs use the newly generated modules (this 38.7% calculation
includes other less common modules and excludes duplicate samples, such as a single high-level
program containing multiple new modules). From these results, it can be seen that these newly
learned modules can be widely applied to GQA, thereby helping GENOME achieve good results on
GQA.

Additional Experiment on I-RAVEN. As independently demonstrated in (Hu et al., 2021) and
(Spratley et al., 2020), the Raven dataset (Zhang et al., 2019a) exhibits flaws in its choice design,
enabling models to learn shortcuts for solving the RPM reasoning task. Thus, we additionally con-
duct the balanced I-RAVEN dataset (Hu et al., 2021) for further analysis. Following our setting in
RAVEN (Zhang et al., 2019a), we use 10 training samples for learning new modules to handle the
task and test the model on the testing set. As shown in table 12, our GENOME is still able to handle
the abstract reasoning task with high accuracy and data efficiency.
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Methods Center L-R U-D
LEN (Zheng et al., 2019) 56.4 442 442
CoPINet (Zhang et al., 2019b) 54.4 51.9 525
SRAN (Hu et al., 2021) 78.2 70.1 703
GENOME 85.2 746 754

Table 12: Experiments for Raven’s Progressive Matrices on I-RAVEN dataset (Hu et al., 2021).

Effectiveness of Module Learning. To better investigate the effectiveness of our GENOME, we
further two variants of our GENOME to show the effectiveness of module learning. GENOME w/o
ML represents a configuration without any new module learning but relies heavily on ViperGPT and
VisProg-defined modules, directing the LLM to answer the question related to the image content
and pinpoint a region matching the referring expression. It strictly follows the function call style
like VisProg and our GENOME. We also develop a variant of GENOME w/o ML v2 that allows
the LLM to call functions like ViperGPT with standard control flow and arbitrary Python logic.
For resource constraints, we limited our experimentation to the randomly selected 800 examples
from GQA and RefCOCO with gpt-3.5-turbo-instruct APL As shown in table 13, our
GENOME performs better than both two baselines across tasks, showing the effectiveness of the
module learning.

Methods GQA RefCOCO
GENOME w/o ML 433 62.3
GENOME w/o ML v2  40.9 65.5
GENOME 45.9 67.1

Table 13: Ablation of module learning on GQA and RefCOCO.

A.3 PROMPTS FOR EACH STAGE.

The ability of Our GENOME is from in-context learning of LLMs (Brown et al., 2020), when the
prompts are keys to tell what the LLM should generate. We show the exemplar prompts of our
models to learn the VQA task in Figure 15-17.

A.4 DETAILS AND EXAMPLES OF THE NEW DATASETS.

To evaluate Knowledge Tagging, 50 tagging instructions are annotated on 50 internet images in-
cluding personalities and a variety of objects such as logos, flowers, buildings, fruits and sports,
among others. For each instruction, we manually annotated the ground truth bounding box and the
associated tag. For image editing assessment, we collected 50 editing instructions on 50 images
including personalities and various objects like foods, furniture, animals, utensils etc. 25 images are
from the COCO dataset and the other 25 images are from the internet. For the image editing tasks,
we ask three annotators to estimate whether the editing is correct or not. For the knowledge tagging
task, we consider the localization is correct if the detected region has an IoU higher 0.5 with the
ground-truth annotation. For text tagging, we compare the prediction with the annotated text with
BERT matching (BEM) (Bulian et al., 2022). If the matching score is higher than 0.5, we consider
it a successful matching. More examples of the two datasets can be found at Figure 9 and Figure 10.

A.5 QUALITATIVE EXAMPLES.

In this subsection, we show the qualitative examples of the learned modules and qualitative cases of
how they handle different tasks. We show an example of GENOME performs better than VisProg
in Figure 7. At the top of Figure 7, our model effectively utilizes the COMPARE_COLOR module
acquired from GQA to pinpoint the correct region, whereas VisProg fails to generate the correct
program due to its rigid module library. Figure 8 highlights emerging forms of compositionality
and module re-usage. Notably, although the SOLVER module was originally trained on center-type
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Knowledge Tagging
Ours 0BJ2: ‘ OBJ3: [/ (@J
apes. s "t
Generated Program: (COMPARE_COLOR [ ‘ 0BJ3 ]
s
. P 0BJ@=L0C(image=IMAGE,object="fruit or vegetable’) OBJ4: e
Question: Tag common fruits and LISTO=LIST(query="fruits and vegetables',max=20)
vegetables of the same color as the grape. 0BJ1=CLASSTFY (image=IMAGE,object=0B1@, categories=LISTO) /
0BJ2=CLASSIFY(image=IMAGE,object=0B1®, categories="grape’) - =,
IMAGE: 0BJ3=REDUCE_MASK(mask_1ist1=0BJ1,mask_list2=0BJ2)
: 0BJ4=META_COMPARE (function_name='COMPARE_COLOR ', image=IMAGE,0bj_list= O @ /
0BJ3,0bj_cmp=0BJ2,namel="fruit or vegetable’,name2 FINAL_RESULT: Pt - e
apple eggplant | grapes ='grape’,attribute="'same’ ) on._y
IMAGE@=TAG(image=IMAGE , object=0BJ4)
O @ / FINAL_RESULT=RESULT(var=IMAGE@)
orange onion peas

cherries potato | strawberry VisProg

Generated Program:

&

0BJ@=LOC (image=IMAGE ,object="grape’)

LIST@=LIST(query="'common fruits and vegetables of the same color as
the grape',max=20)

0BJ1=CLASSIFY(image=IMAGE,object=0BJ0, categories=LIST@)
IMAGE@=TAG(image=IMAGE,object=0BJ1)

FINAL_RESULT=RESULT(var=IMAGE®)

lemon pumpkin

Figure 7: A typical example of how our GENOME outperforms VisProg on knowledge tagging. In
the top, our model is able to make use of the COMPARE_COLOR module learned from GQA to
localize the correct region while VisProg fail to generate the correct program with its fixed module
library.

problems within the Raven dataset, it demonstrates inherent adaptability to other problem types,
including left-right and up-down orientations.

New Learned Modules. We show the examplar new learned modules from the GQA and Ref-
COCO in Figure 11-14. As shown in Figure 11, the new learned module ( CHOOSE_ATTRIBUTE)
is able to use the LLM to retrieve relevant knowledge first and then adopt the image-text classifier
to match the attributes. In Figure 13-14, we see that the new module SORT_SPATIAL is able to
localize objects with spatial index.
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Generated Program:

COLOR=DETECT_COLOR(image=IMAGE)
SHAPE=DETECT_SHAPE (image=IMAGE)
SIZE=DETECT_SIZE(image=IMAGE)
ANSWER=SOLVER (image=IMAGE, color=COLOR,
shape=SHAPE, size=SIZE)
FINAL_RESULT=RESULT (var=ANSKER)

Generated Program:

BOX0=LOC(image=IMAGE,object=LEFT?)

IMAGE@=CROP (image=IMAGE , box=BOX®)
BOX1=LOC(image=IMAGE,object=“RIGHT’)
IMAGE1=CROP (image=IMAGE ,box=BOX1)
COLOR=DETECT_COLOR(image@=IMAGE®, imagel=IMAGE1)
SHAPE=DETECT_SHAPE (image@=IMAGE®, image1=IMAGE1)
SIZE=DETECT_SIZE(image@=IMAGE®, image1=IMAGE1)
ANSWER=SOLVER (image@=IMAGE®, image1=IMAGE1, color

Generated Program:

BOX@=LOC (image=IMAGE, object="TOP’)
IMAGE@=CROP (image=IMAGE , box=BOX0)

BOX1=LOC (image=IMAGE,object=BOTTOM’ )
IMAGE1=CROP (image=IMAGE, box=BOX1)
COLOR=DETECT_COLOR (image@=IMAGE®, image1=IMAGE1)
SHAPE=DETECT_SHAPE (image@=IMAGE®, image1=IMAGE1)
SIZE=DETECT_SIZE(image@=IMAGE®, image1=IMAGE1)
ANSWER=SOLVER (image@=IMAGE®, image1=IMAGE1, color
=COLOR, shape=SHAPE, size=SIZE)

=COLOR, shape=SHAPE, size=SIZE)

FINAL_RESULT=RESULT(var=ANSWER) FINAL_RESULT=RESULT (var=ANSWER)

Figure 8: New compositionality and module re-usage in the Raven dataset. While the SOLVER
module was initially trained on center-type problems in the Raven dataset, it exhibits a natural
transferability to other types, such as left-right and up-down problems.

Replace the spoon of
the same material as
the spatula with a knife

Create a color pop of the
first child from the right

Create a color pop of the first boat
from the front

Select the lamp with the same
color as the one at the bottom
and create a color pop

Replace the second

pizza from the top with
a hamburger
N :

Hide Tim Robbins with ;) and
Morgan Freeman with 8)

Figure 9: More examples of the new image edit dataset. The dataset asks models to edit images’
fine-grained and regional details according to diverse language instructions.
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Tag the famous landmark of Europe
in the bottom right

Tag the famous painting of the
Louvre in the left

Tag the common bird of
the same color as the ibis

£ K
* [ <
-

e

1

Tag the second dog from
the right

Tag the second famous film
director from the left

Tag the second Nobel Laureate
in Physics from the left

Figure 10: More examples of the new knowledge tagging dataset. The dataset requires models to
localize the target region and tag the region with the desired information.
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class CHOOSE_ATTRIBUTE () :
mmn
Input:
image: an image object
box: a list of bounding boxes
object: a string
attributel: a string
attributeZ: a string
Output:
result: a string
Examples:
Question: Is the coat thick or thin?
BOX0=LOC (image=IMAGE, object="coat ')
ANSWERO=CHOOSE_ATTRIBUTE (image=IMAGE, box=B0X0, object="'coat',
attributel="thick',attribute2="thin'")
FINAL RESULT=RESULT (var=ANSWEROQO)

mmwn

step_name = 'CHOOSE_ATTRIBUTE'

def _ init_ (self):
print (f'Registering {self.step_name} step')

def expand_box(self,box,img_size, factor=1.5):
W,H = img_size
x1l,y1l,x2,y2 = box
dw = int (factor« (x2-x1)/2)
dh = int (factor* (y2-yl)/2)
cx = int ((x1 + x2) / 2)
cy = int((yl + y2) / 2)
x1l = max(0,cx — dw)
X2 = min(cx + dw, W)
yl = max(0,cy — dh)

y2 = min(cy + dh,H)

return [x1,yl,x2,y2]

def predict (self, img,boxes,obj,attrl,attr2):
if len(boxes) > 0:
box = boxes[0]
box = self.expand_box (box, img.size)
out_img = img.crop (box)
else:
out_img = img
promptl = f£'Tell me the attributes when the {obj} is {attrl} in
one sentence.'
prompt2 = f'Tell me the attributes when the {obj} is {attr2} in
one sentence.'
obj_descl = API.gpt3 (promptl, 'gpt3_general')
obj_desc2 = API.gpt3(prompt2, 'gpt3_general')
resultl = API.clip(out_img,ob]j_descl)
result2 = API.clip(out_img,obj_desc2)
if resultl > result2:
result = attrl
else:
result = attr2
return result

def execute(self, img,boxes,obj,attrl,attr2):
result = self.predict (img,boxes,obj,attrl,attr2)
return result

Figure 11: Exemplar generated module from the GQA dataset. This automatically constructed
module can make use of different APIs to compare attributes of an image region.
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1 class COMPARE_COLOR () :

2 mmn

3 Input:

4 image: an image object

5 boxl: a 1list of bounding boxes
6 box2: a list of bounding boxes
7 objectl: a string

8 object2: a string

9 compare_type: a string

10 Output:

11 result: a string
12 mmn

13 def expand_box(self,box,img_size, factor=1.5):

14 W,H = img_size

15 x1,y1l,x2,y2 = box

16 dw = int (factor+* (x2-x1)/2)

17 dh = int (factor« (y2-yl)/2)

18 cx = int ((x1 + x2) / 2)

19 cy = int ((yl + y2) / 2)

20 x1l = max(0,cx — dw)

21 X2 = min(cx + dw, W)

22 yl = max (0,cy - dh)

23 y2 = min(cy + dh,H)

24 return [x1,yl,x2,y2]

25 def predict (self, img,boxesl,boxes2,0bjl,obj2, compare_type) :
26 if len (boxesl) > 0O:

27 boxl = boxesl[0]

28 boxl = self.expand_box (boxl,img.size)

29 out_imgl = img.crop (boxl)

30 else:

31 out_imgl = img

32 if len (boxes2) > 0:

33 box2 = boxes2[0]

34 box2 = self.expand_box (box2,img.size)

35 out_img2 = img.crop (box2)

36 else:

37 out_img2 = img

38 colorl = API.vga(out_imgl, f'What color is the {objl}?"'")
39 color2 = API.vga(out_img2, f'What color is the {obj2}?"'")
40 prompt = f'Can the {colorl} be regarded as the same color as'
41 f'{color2}? You should just reply yes or no without any other
42 words. '

43 temp = API.gpt3 (prompt, 'gpt3_general')

44 if 'same' == compare_type:

45 if 'yes' in temp.lower() :

46 result = 'yes'

47 elif 'no' in temp.lower():

48 result = 'no'

49 elif 'different' == compare_type:

50 if 'yes' in temp.lower() :

51 result = 'no'

52 elif 'no' in temp.lower () :

53 result = 'yes'

54 else:

55 if 'yes' in temp.lower():

56 result = 'yes'

57 elif 'no' in temp.lower():

58 result = 'no'

59 return result

60 def execute (self, img,boxesl,boxes2,0bjl,ob]j2, compare_type) :
61 result = self.predict (img,boxesl,boxes2,0bjl,obj2, compare_type)
62 return result

Figure 12: Exemplar generated module from the GQA dataset.
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class SORT_SPATIAL() :

mwn

1
2

3 Select objects from the image that match the spatial location.

4 Objects are represented by the bounding boxes.

5 Returns the bounding boxes that satisfie the condition.

6 Input:

7 image: raw PIL image

8 box_list: a list of unormalized bounding boxes

9 location: the location can only be left, middle, right, top,
10 bottom, front and behind

11 index: a number for the rank the object

12 Output:

13 box: a bounding box

14 Examples:

15 Question: second sandwich from the right on the bottom

16 BOXLISTO0=LOC (image=IMAGE, object="'sandwich')

17 BOXLIST1=SORT_SPATIAL (image=IMAGE,box_1ist=BOXLIST0,location=
18 'right', index=2)

19 BOXLIST2=SORT_SPATIAL (image=IMAGE,box_1ist=BOXLIST1l,location=
20 "bottom', index=1)

21 FINAIL RESULT=RESULT (var=BOXLISTZ)

22 G

23 step_name = 'SORT_SPATIAL'

24 def predict (self,img,box_list, location, index) :

25 if index < 0 or index > len (box_list):

26 return []

27 if index == 0:

28 return [box_list[0]]

29 if "front" in location or "behind" in location:

30 box_depth_list = self.parse_depth(img, box_list)

31 box_list_sorted = sorted(box_depth list, key=lambda x: x[1])
32 out_box_list = [box_1[0] for box_1 in box_ list_sorted]

33 if "behind" in location:

34 out_box_list.reverse ()

35 else:

36 if "left" in location:

37 box_list = sorted(box_list, key=lambda x: x[0])

38 elif "right" in location:

39 box_list = sorted(box_list, key=lambda x: x[2], reverse
40 =True)

41 elif "top" in location:

42 box_list = sorted(box_list, key=lambda x: x[1])

43 elif "bottom" in location:

44 box_list = sorted(box_list, key=lambda x: x[3], reverse
45 =True)

46 else:

47 return []

48 if index > len(box_list):

49 return []

50 out_box_list = [box_list[index—-11]]

51 return out_box_list

52 def check_location(self,img,box,location) :

53 w, h = img.size

54 x1l, yl, x2, y2 = box

55 cx = (x1 + x2) / 2

56 cy = (yl1 + y2) / 2

57 if 'left' in location:

58 if cx > w / 2:

59 return False

Figure 13: Exemplar generated module from the RefCOCO dataset. The rest part of the code is in
Figure 14.
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def

def

elif 'right' in location:
if cx < w / 2:
return False
if 'top' in location:
if cy > h / 2:
return False
elif 'bottom' in location:
if cy <h / 2:
return False
return True

parse_depth (self, img,box_list) :
box_depth_list = []
# compute depths for front or background
depth_map = API.depth (img)
for box in box_list:
x1l, yl, x2, y2 = box
depth_map = np.array (depth_map)
avg_depth = np.median (depth _map[xl:x2, yl:y2])
box_depth_list.append((box, avg_depth))
return box_depth_list

execute (self,img,box_list, location, index) :
return self.predict (img,box_list, location, index)

Figure 14:

Exemplar generated module from the RefCOCO dataset. The former part of the code is

in Figure 13. This generated module is able to localize objects based on their location in images and
the depth of images.
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1 Pre-defined Modules:

2 class LOC() :

3 mmrn

4 Generate boxes of the object on the image.
5 Input:

6 image: an image object

7 object: an object string

8 Output:

9 box: a list of bounding boxes

10 Examples:

11 BOX0=LOC (image=IMAGE, object="camel")

12 mmn

13 class COUNT () :

14 mwn

15 Count the number of boxes in the 1ist.
16 Input:

17 box: a list of bounding boxes

18 Output:

19 number: number of boxes

20 Examples:

21 ANSWERO=COUNT (box=B0X1)

22 e

23 Suppose you are a program expert. Given a set of pre-defined modules,

24 could you identify whether it is possible to write a program to get the
25 answer to the questionf?] If not, what new modules do we need[?

26 Note that you can only use the below pre-defined modules:

27 LOC, COUNT, CROP .......

29 Question: Is the purse to the left or to the right of the personi
30 Yes. The program is:

31 BOXO0=LOC (image=IMAGE, object="person')

32 IMAGEO=CROP_LEFTOF (image=IMAGE, box=B0X0)

33 BOX1=LOC (image=IMAGEO, object="purse')

34 ANSWERO=COUNT (box=BOX1)

35 ANSWER1=EVAL (expr=f"'left' if {ANSWERO} > 0 else 'right'")

36 FINAL_RESULT=RESULT (var=ANSWERI1)

33 Question: Which object is larger, the sphere or the blue cubei

39 No. We need to make a new module "COMPARE_SIZE" first. Here is the header
40 of the class:

41 class COMPARE_STZE () :

42 mmrn

43 Compare the size of two objects in the image.

44 One object is identified by the first bounding box of box0

45 Another object is identified by the first bounding box of boxl
46 Input:

47 image: an image object

48 box0: a 1list of bounding boxes

49 boxl: a 1list of bounding boxes

50 Output:

51 flag: return True if first object is larger else False

52 Examples:

53 Question: Which object is larger, the sphere or the blue cube?
54 BOX0=LOC (image=IMAGE, object="sphere')

55 BOX1=LOC (image=IMAGE, object="'blue cube')

56 FLAGO=COMPARE_SIZE (image=IMAGE, box0=B0X0,box1=B0OX1)

57 ANSWER2=EVAL (expr=f"'sphere' if {FLAGO} else 'blue cube'")
58 FINAL RESULT=RESULT (var=ANSWER)

59 e

60 ...

61 Question: _ INSERT_NEW_QUESTION_

Figure 15: Prompt of module initialization (Stage 1) to propose the module candidates.
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Pre-defined APIs:

1
2 class API():

3 def loc(cls, image: Image.Image, obj_name: str) —-> List[List[int]]:
4 mmwn

5 Returns boxes of the specific object on the image.

6 Input:

7 image: an image object

8 obj_name: a text string

9 Output:

10 boxes: a list of bounding boxes

11 Example:

12 [[261, 160, 525, 299]] = API.loc(image, "camel")
13 e

14 return boxes

15 def gpt3(cls, prompt: str) -> str:

16 mmn

17 Returns response from gpt3

18 Input:

19 prompt: prompt to gpt3

20 Output:

21 response: gpt3 response

22 Example:

23 "joe biden" = API.gpt3("Who is the US President?")
24 mmn

25 return response

28 Given the above APIs, could you write a new module, Loc()i
29 class Loc():
30 mmn

31 Generate boxes of the object on the image.
32 Input:

33 img: an image object

34 obj _name: an object string

35 Output:

36 selected _boxes: a list of bounding boxes
37 Examples:

38 BOX1=LOC (image=IMAGEO, object="food")

mmn
39

40 Response:
41 class Loc () :

42 step_name = 'LOC'

43 def execute(self,img, obj_name) :

44 if obj_name=='TOP':

45 bboxes = [self.top_box (img) ]

46 elif obj_name=='BOTTOM':

47 bboxes = [self.bottom_box (img) ]
48 elif obj_name=="'LEFT':

49 bboxes = [self.left_box (img) ]
50 elif obj_name=='RIGHT':

51 bboxes = [self.right_box (img) ]
52 else:

53 bboxes = self.predict (img, obj_name)
54 return bboxes

55

56 def predict (self, img,obj_name) :

57 return API.loc (img,obj_name)

59 Given the above APIs, could you write a new module, __ MODULE_NAME i
60 _ MODULE_HEAD_

Figure 16: Prompt of module generation (Stage 2) to make a module based on the module’s input
and output.
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Think step by step to answer the question.

You can only use modules below:
LOC

COUNT

EVAL

RESULT

VERIFY_ ATTRIBUTE

VERIFY_COLOR

VERIFY_ MATERIAL

Question: Is the vehicle in the top of the imagei
Program:

BOX0=LOC (image=IMAGE, object="TOP"')

IMAGEO=CROP (image=IMAGE, box=B0OX0)

BOX1=LOC (image=IMAGEQO, object="vehicle"')

ANSWERO=COUNT (box=BOX1)

ANSWER1=EVAL (expr=f"'yes' if {ANSWERO} > 0 else 'no'")
FINAL_RESULT=RESULT (var=ANSWER1)

Question: Who is carrying the umbrellai

Program:

BOX0=LOC (image=IMAGE, object="umbrella"')

IMAGEO=CROP (image=IMAGE, box=B0X0)

ANSWERO=VQA (image=IMAGEO, question="'Who is carrying the umbrella?')
FINAL_RESULT=RESULT (var=ANSWERO)

Question: Do the towel and the box have a different colorsi

Program:

BOX0=LOC (image=IMAGE, object="towel')

BOX1=LOC (image=IMAGE, object="box")
ANSWERO=COMPARE_ATTRIBUTE (image=IMAGE, box1=BOX0, box2=BOX1, objectl="towel'
,o0bject2="box',attribute="color', question=QUESTION)

FINAL_RESULT=RESULT (var=ANSWERO)

Question: Is the knife made of ceramici

Program:

BOX0=LOC (image=IMAGE, object="knife')
ANSWERO=VERIFY_MATERIAL (image=IMAGE, box=BOX0,material="'ceramic', object=
'knife', question=QUESTION)

ANSWER1=EVAL (expr=f"'yes' if {ANSWERO} else 'no'")

FINAL_RESULT=RESULT (var=ANSWER1)

Question: Is the coat thick or thini

Program:

BOX0=LOC (image=IMAGE, object="coat"')
ANSWERO=CHOOSE_ATTRIBUTE (image=IMAGE, box=BOX0, object="'coat',attributel=
'thick',attribute2="thin'")

FINAL_RESULT=RESULT (var=ANSWERO)

Question: _ INSERT_NEW_QUESTION_
Program:

Figure 17: Prompt of module execution (Stage 3) to parse programs for a new test case.
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