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Abstract

Membership Inference Attacks (MIAs) pose a critical privacy threat by enabling1

adversaries to determine whether a specific sample was included in a model’s2

training dataset. Despite extensive research on MIAs, systematic comparisons be-3

tween generative and discriminative classifiers remain limited. This work addresses4

this gap by first providing theoretical motivation for why generative classifiers5

exhibit heightened susceptibility to MIAs, then validating these insights through6

comprehensive empirical evaluation. Our study encompasses discriminative, gener-7

ative, and pseudo-generative text classifiers across varying training data volumes,8

evaluated on five benchmark datasets. Employing a diverse array of MIA strate-9

gies, we consistently demonstrate that fully generative classifiers which explicitly10

model the joint likelihood P (X,Y ) are most vulnerable to membership leakage.11

Furthermore, we observe that the canonical inference approach commonly used12

in generative classifiers significantly amplifies this privacy risk. These findings13

reveal a fundamental utility-privacy trade-off inherent in classifier design, un-14

derscoring the critical need for caution when deploying generative classifiers in15

privacy-sensitive applications. Our results motivate future research directions in16

developing privacy-preserving generative classifiers that can maintain utility while17

mitigating membership inference vulnerabilities.18

1 Introduction and Related work19

Text Classification (TC) is a fundamental task in Natural Language Processing (NLP), serving as the20

backbone for numerous applications including sentiment analysis, topic detection, intent classification,21

and document categorization (Yogatama et al., 2017; Castagnos et al., 2022; Roychowdhury et al.,22

2024; Kasa et al., 2024; Pattisapu et al., 2025). As machine learning models have become increasingly23

sophisticated and widely deployed, concerns about their privacy implications have grown substantially.24

One of the most critical privacy vulnerabilities is the Membership Inference Attack (MIA), where25

an adversary attempts to determine whether a specific data point was included in a model’s training set26

(Shokri et al., 2017). MIAs represent a fundamental threat to data privacy by exploiting differential27

model behaviors on training versus non-training data to infer membership in the training set (Shokri28

et al., 2017; Carlini et al., 2019). The implications are particularly severe for sensitive personal29

data, potentially violating privacy expectations and regulatory requirements. Recent surveys have30

highlighted the growing sophistication of these attacks (Amit et al., 2024; Feng et al., 2025).31

Predominant Focus on Discriminative Models. The majority of MIA research has concentrated32

on discriminative models like BERT (Devlin et al., 2019), which directly model P (Y |X) and learn33

decision boundaries without explicitly modeling data distributions (Zheng et al., 2023; Kasa et al.,34

2025). Studies have revealed how factors such as overfitting, model capacity, and training data35

size influence attack success rates (Amit et al., 2024). Despite this discriminative focus, there has36
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been renewed interest in generative classifiers for text classification (Li et al., 2025; Kasa et al.,37

2025). Unlike discriminative models, generative classifiers explicitly model the joint distribution38

P (X,Y ) = P (X|Y )P (Y ), offering compelling advantages: superior performance in low-data39

regimes (Kasa et al., 2025; Yogatama et al., 2017), reduced susceptibility to spurious correlations (Li40

et al., 2025), and principled uncertainty estimates via Bayes’ rule (Bouguila, 2011). The renaissance41

of generative classifiers has been particularly bolstered through scalable model architectures including42

autoregressive models (Radford et al., 2018), discrete diffusion models (Lou et al., 2024), and masked43

language models used generatively (Devlin et al., 2019; Wang and Cho, 2019a).44

However, the very characteristics that make generative classifiers attractive explicit modeling of45

data distributions and superior performance with limited data raise important privacy questions Kasa46

et al. (2025). While MIAs have been extensively studied for discriminative models, a significant47

gap exists in understanding how different classification paradigms compare in their vulnerability to48

such attacks. In this work, we present the first large-scale, systematic analysis of the vulnerability of49

transformer-based classifiers to MIAs across a spectrum of modeling paradigms. Following Kasa et al.50

(2025), we consider three broad categories: (1) discriminative models (e.g., BERT), which model the51

conditional distribution P (Y |X); (2) fully generative models that explicitly model P (X,Y ), such52

as autoregressive or discrete diffusion models; and (3) pseudo-generative models, such as MLMs,53

and pseudo-autoregressive models, where the label is appended at the end of the input sequence.54

Contributions. Our work makes three key contributions to understanding privacy vulnerabilities in55

generative text classification:56

1. First systematic MIA analysis across classification paradigms: We provide comprehen-57

sive theoretical and empirical analysis of MIA vulnerability across discriminative, generative,58

and pseudo-generative text classifiers. Our results reveal that by virtue of modeling P (X),59

generative classifiers inherently expose themselves to heightened privacy risks compared60

to discriminative classifiers that only learn P (Y |X). This vulnerability is particularly61

pronounced in discrete diffusion models.62

2. Analysis of privacy-utility trade-offs: We demonstrate complex dynamics between MIA63

vulnerability and training data volume across different architectures. Our experiments reveal64

that vulnerability patterns vary with dataset size, and different factorizations of P (X,Y ) lead65

to distinct privacy leakage patterns. Through this analysis, we identify pseudo-generative66

models as a potential privacy-preserving alternative.67

3. Practical guidance for privacy-aware deployment: Our findings provide actionable68

insights through: (a) comprehensive evaluation of attack strategies ranging from simple69

threshold-based to sophisticated machine learning approaches, (b) quantification of privacy70

risks through statistical divergence measures, and (c) clear recommendations for mitigating71

vulnerabilities in real-world deployments.72

2 Related Works and Background73

Generative vs. Discriminative Classifiers: Historical Foundations and Evolution. Efron (1975)74

established foundational theoretical groundwork demonstrating logistic regression’s higher efficiency75

compared to normal discriminant analysis under certain distributional assumptions. Ng and Jordan76

(2001) provided the seminal analysis showing that while discriminative classifiers achieve lower77

asymptotic error rates, generative classifiers converge more rapidly with smaller training sets—a78

fundamental sample efficiency versus asymptotic performance trade-off. Liang and Jordan (2008)79

extended these foundations with comprehensive asymptotic analyses revealing that relative perfor-80

mance depends critically on model assumption correctness and data availability. Neural networks81

brought new perspectives through Raina et al. (2003)’s hybrid approaches combining both paradigms’82

strengths, while Li et al. (2019) demonstrated generative classifiers’ superior robustness to adversarial83

attacks in neural network settings. Zheng et al. (2023) provided comprehensive theoretical and empir-84

ical revisiting with large-scale experiments across multiple domains, developing novel frameworks85

quantifying bias-variance trade-offs and revealing that generative models achieve better calibration86

and uncertainty quantification despite higher asymptotic error rates.87

The application of generative and discriminative approaches to text classification has evolved sig-88

nificantly with the transformer era witnessing a remarkable resurgence of generative approaches.89
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Early work with recurrent neural networks by Yogatama et al. (2017) demonstrated that generative90

RNN classifiers, while exhibiting higher asymptotic error rates than discriminative counterparts,91

showed superior robustness to distribution shifts and faster convergence, echoing classical patterns92

identified by Ng and Jordan (2001). Modern generative classifiers leverage sophisticated architectures93

including autoregressive language models (Radford et al., 2018), discrete diffusion models (Lou94

et al., 2024), and masked language models used generatively (Wang and Cho, 2019a), providing95

new empirical evidence for advantages in text classification, particularly in low-resource settings96

where generative classifiers consistently demonstrate superior sample efficiency (Kasa et al., 2025).97

Jaini et al. (2024) demonstrated that generative classifiers exhibit superior robustness properties,98

including reduced susceptibility to adversarial perturbations and improved calibration of uncertainty99

estimates, while Li et al. (2025) showed that generative classifiers naturally avoid shortcut learning100

by explicitly modeling the full input distribution P (X,Y ) = P (Y )× P (X|Y ) rather than merely101

learning discriminative features P (Y |X). The explicit modeling of class-conditional distributions102

P (X|Y ) enables generative classifiers to provide richer interpretability through likelihood-based103

analysis and natural incorporation of prior knowledge via Bayes’ rule: P (Y |X) = P (X|Y )P (Y )
P (X)104

(Bouguila, 2011), allowing for more sophisticated uncertainty quantification and better handling of105

out-of-distribution inputs. We also acknowledge a separate class of hybrid generative-discriminative106

models, where some subset of parameters are trained generatively and others discriminatively (Raina107

et al., 2003; McCallum et al., 2006; Hayashi, 2025). However, we exclude them from our study, as108

their architectural differences hinder fair comparison with fully generative or discriminative models,109

placing them outside the scope of this work.110

Membership Inference Attacks. Membership inference attacks exploit the differential behavior111

exhibited by machine learning models on training versus non-training data to infer whether a specific112

sample was part of the training set (Shokri et al., 2017). Recent advances have introduced sophis-113

ticated approaches: Watson et al. (2023) developed scalable attacks using quantile regression that114

significantly improve efficiency and accuracy, while Shi et al. (2022) provided theoretical foundations115

through first-principles analysis of membership inference vulnerabilities, and Duan et al. (2022)116

demonstrated novel output distillation methods extracting membership information from intermediate117

model representations. The privacy implications have become increasingly nuanced with Tan et al.118

(2023) discovering a counterintuitive "blessing of dimensionality" phenomenon where increased119

model parameters, when coupled with proper regularization, can simultaneously improve both privacy120

and performance, challenging traditional assumptions about overparameterization as privacy liability.121

Mireshghallah et al. (2023a,b) provided comprehensive empirical analyses of privacy-utility dynam-122

ics, developing practical privacy auditing techniques enabling efficient assessment of membership123

leakage with minimal computational overhead, while Choi et al. (2023) established fundamental124

connections between memorization and membership inference success, demonstrating that attacks125

are most effective against samples that models are likely to memorize regardless of distributional126

properties. These advances collectively underscore the critical importance of incorporating privacy127

considerations when evaluating different modeling paradigms—a gap our work addresses by sys-128

tematically comparing MIA vulnerabilities across discriminative, generative, and pseudo-generative129

text classifiers. The scope of this work is limited to blackbox attacks with the assumption that logits130

are available from the model. Further, we assume that we can get the ground truth through human131

labelling. We assume that logits are vended out and cost of inference is negligible—specifically in132

the generative classifiers setting where the k-pass is the canonical setting. The knowledge distillation133

based approaches and trajectory based approaches are beyond the scope of this work.134

3 Approach135

We evaluate privacy vulnerabilities in text classification by training multiple classifiers across datasets136

and subjecting them to diverse membership inference attacks (MIAs). This enables a systematic137

comparison of the privacy–utility tradeoffs.138

3.1 Classifier Paradigms139

Following Kasa et al. (2025), we study 3 main classifier families:140
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Discriminative: Standard BERT-style encoders modeling P (Y |X) using linear head on top of [CLS]141

token to directly map text X to label Y . There’s no explicit memorization signal in this modeling142

approach.143

Fully Generative: Models the joint distribution P (X,Y ). We consider the following sub-approaches:144

(i) Label-Prefix Autoregressive models generate text x conditioned on a label prefix (e.g., Positive:145

The film was a masterpiece.). Classification is performed via logits using likelihood estima-146

tion, argmaxl∈K logP (x, yl), in a K-pass fashion (K = number of labels). Such models may be147

more vulnerable to MIAs since logits expose information about P (X). Alternatively, applying a148

softmax yields probabilities: softmax
(
logP (x, yl)

)
= P (x, yl)/P (x) = P (yl|x), where the shared149

denominator P (x) cancels across classes. This dilution of P (X) is expected to reduce susceptibility,150

which we further discuss in Section 5.151

(ii) Discrete Diffusion Models are trained on (X,Y ) pairs with a denoising objective. Following Lou152

et al. (2024), noise is gradually added to corrupt the input sequence to pure [MASK] tokens in the153

forward process, and the original input is reconstructed in the reverse process. At inference, x is154

given with the label masked and the model predicts y from [MASK], conditional on x. In practice,155

there are two ways to obtain the predicted variable - a) doing a K-pass argmax on the logits similar156

to Autoregressive models and b) by simulating a trajectory from the reverse process, conditional on157

x. In Kasa et al. (2025), the predicted y is obtained by the latter approach. To obtain logits, we use158

the Diffusion Weighted Denoising Score Entropy (DWDSE), which provides an upper bound on the159

log-likelihood: − log pθ0(x) ≤ LDWDSE(x) under the ELBO (Theorem 3.6 in Lou et al. (2024)).160

Pseudo-Generative: We include this approach in our study, motivated by prior work on generative161

classifiers in Li et al. (2019) and Kasa et al. (2025). This category occupies a middle ground between162

discriminative and fully generative approaches. We consider two main sub-approaches:163

(i) Masked Language Models (MLMs) are trained on a generative-like objective of reconstruct-164

ing masked tokens rather than full causal modeling. However, they do not capture the true joint165

distribution P (X,Y ), but instead model the pseudo-likelihood (Wang and Cho, 2019b).166

(ii) Pseudo-Autoregressive Models represent a recent development where traditional generative classi-167

fiers that model P (X|Y ) by prepending the label token are modified to append the label at the end168

of the input sequence. While this approach does not strictly model P (X|Y ), recent work (Li et al.,169

2025) demonstrates that label-appending can yield superior in-distribution performance compared to170

label-prepending. Notably, these approaches involve minimal architectural modifications to standard171

transformer models—typically requiring only changes to label placement or loss function compu-172

tation—while preserving the core model design. This design principle allows for fair comparisons173

using widely available implementations that are accessible to practitioners, making these models174

particularly relevant for real-world deployment scenarios.175

3.2 Membership Inference Attacks176

We examine two main classes of MIAs:177

Threshold-Based. Simple metrics derived from model outputs that might potentially contain hidden178

information useful for MIA: (i) Max Probability: max(P (y|x)). (ii) Entropy: H(P (y|x)) =179

−
∑

i pi log pi; lower for members and (iii) Log-Loss: Cross-entropy on the true label (requires label180

access).181

Model-Based. An explicit attack model is trained in the following fashion: (i) Collect training data182

by querying the target classifier with member and non-member samples, (ii) represent each sample183

using the target model’s output probability vector concatenated with its one-hot encoded ground-truth184

label, (iii) train a Gradient Boosting Classifier with binary 0/1 labels indicating membership class (0185

for non-member, 1 for member).186

4 Experimental Methodology187

This section details the concrete experimental setup used to test our hypotheses. We specify the188

datasets, training & evaluation procedures and computational details.189

4



4.1 Datasets and Models190

Datasets: Our evaluation is conducted on five public text classification benchmarks to ensure191

robustness across diverse domains and task complexities. The datasets are: SST-5 Socher et al.192

(2013), Hate Speech Davidson et al. (2017), Emotion Saravia et al. (2018), AG News Zhang et al.193

(2015), and IMDb Maas et al. (2011). These datasets cover a range of tasks from binary sentiment to194

fine-grained multi-class topic and emotion classification, with varying text lengths and class balances.195

Further details are in the Appendix Section A.1.196

Models: We implement and compare five classifier paradigms: (1) a discriminative BERT Classifier,197

(2) an Autoregressive model, (3) a Masked Language Model (MLM), (4) a Discrete Diffusion198

model, and (5) a Pseudo-Autoregressive model. All models are trained from scratch to avoid199

confounding effects from pre-training, following Li et al. (2025) and Kasa et al. (2025). The specific200

architectural properties, attention mechanisms, and training objectives for each model are taken from201

Kasa et al. (2025) and are detailed in Section 3.202

4.2 Training and Evaluation Protocol203

Training. All models are trained using the AdamW optimizer with a learning rate of 3× 10−5 and204

a weight decay of 0.01. We use a batch size of 32 and a maximum sequence length of 256 tokens,205

truncating longer inputs. A linear warmup is applied for the first 10% of updates, followed by linear206

decay. To prevent overfitting on the primary task, we employ early stopping with a patience of 20207

epochs based on validation accuracy. Each experiment is repeated across three different random seeds208

to ensure the stability of our findings.209

Attack and Evaluation. Each saved model checkpoint is subjected to the three categories of MIA 1.210

Label-Agnostic Threshold Attacks, 2. Label-Aware Threshold Attacks, and 3. Model-Based211

Attacks—as specified in Section 3.2. The primary metric for attack success (privacy leakage) is the212

Area Under the ROC Curve (AUROC). A score of 1.0 indicates a perfect attack, while 0.5 signifies213

performance equivalent to random guessing.214

4.3 Computational Details215

Experiments were conducted on a cluster of NVIDIA RTX 8000 and A100 GPUs. Training times var-216

ied based on model size and paradigm, ranging from approximately one hour for small discriminative217

models to over twelve hours for full-scale diffusion models on the largest datasets. We employed218

mixed-precision training to optimize computational efficiency. All model training and evaluation219

runs were performed in isolated environments to prevent any data contamination.220

5 Analysis and Results221

In this section, we present a comprehensive analysis of privacy vulnerabilities in text classification222

models. We begin by establishing theoretical bounds on MIAs, providing a framework for under-223

standing potential privacy risks. Our empirical evaluation then validates these theoretical insights224

across different model architectures, comparing discriminative models, fully generative models,225

and pseudo-generative masked language models (MLMs). We analyze how different model output226

representations (logits versus probabilities) and various attack strategies affect vulnerability. Finally,227

we examine how different approaches to modeling the joint distribution P (X,Y ) influence privacy228

leakage, introducing pseudo-autoregressive models as a privacy-utility balanced alternative to fully229

generative models. Through this analysis, we demonstrate the deep connection between architectural230

choices and privacy vulnerabilities.231

5.1 Theoretical Analysis and Bounds232

To systematically analyze privacy vulnerabilities, we first establish a theoretical framework for233

measuring membership inference risk. We define the Membership Inference Advantage (MIA), which234

quantifies an adversary’s ability to distinguish between training and test samples.235

Definition 1 (Membership Inference Advantage). Let A be an adversary with a decision function236

A(O(x)) that outputs 1 if it guesses an input x is a member of the training set Dtrain and 0 otherwise,237
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Figure 1: [Best viewed in color] Membership Inference Attack success rate (AUROC) compared across model
architectures with varying training dataset sizes. We evaluate fully generative classifiers (Autoregressive,
Discrete Diffusion), a discriminative classifier (BERT Classifier), and pseudo-generative models (MLM,
Pseudo-Autoregressive). The top row displays attack performance using model logits, while the bottom
row shows results using output probabilities. Higher AUROC values indicate increased privacy vulnerability.

based on the model’s output O(x). The advantage is defined as the absolute difference between the238

adversary’s true positive rate and false positive rate:239

εMIA = |P(A(O(x)) = 1|x ∈ Dtrain)− P(A(O(x)) = 1|x ∈ Dtest)| (1)

Building on this definition, we derive an upper bound on the membership inference advantage that240

decomposes the privacy risk into two components: one related to the marginal distribution P (X) and241

another to the conditional distribution P (Y |X).242

Theorem 1. Let A be any adversary. The membership inference advantage is bounded by:243

εMIA ≤
√

DKL(Ptrain(X)||Ptest(X))

2
+

√
Ex[DKL(Ptrain(Y |X)||Ptest(Y |X))]

2
(2)

The proof for this theorem is presented in Appendix B.244

This bound reveals that privacy leakage can occur through two channels: differences in the learned245

marginal distribution of inputs (P (X)) and differences in the learned conditional distribution of246

labels (P (Y |X))Mahloujifar et al. (2022).247

5.2 Empirical Analysis of Privacy Vulnerabilities248

Armed with this theoretical framework, we now empirically investigate how these bounds manifest249

across different model architectures and attack scenarios. Our theoretical bound suggests that privacy250

leakage can occur through both the marginal distribution P (X) and the conditional distribution251

P (Y |X). This insight leads us to examine three key aspects: (1) the inherent vulnerability differences252

between generative models (which model both distributions) and discriminative models (which253

focus only on P (Y |X)), (2) the impact of different output representations (logits vs. probabilities)254

on information leakage, and (3) the effectiveness of various attack strategies in exploiting these255

vulnerabilities.256

5.2.1 Generative Classifiers are Systematically More Susceptible257

Our experimental results consistently demonstrate that fully generative models exhibit significantly258

higher vulnerability to MIA compared to their discriminative and pseudo-generative counterparts.259

As shown in Figure 1, this vulnerability gap is particularly pronounced in logit-based attacks,260

where fully generative models (Autoregressive and Discrete Diffusion) consistently yield261

the highest attack AUC across all datasets. While the discriminative BERT Classifier shows some262

vulnerability, its susceptibility remains notably lower.263

These findings strongly support our hypothesis that explicitly modeling the joint distribution P (X,Y )264

forces the model into a memorization-heavy regime. Unlike discriminative models that focus solely265

on learning the decision boundary for P (Y |X), generative models must capture both the conditional266

distribution P (Y |X) and the marginal data distribution P (X). This additional modeling requirement267
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significantly increases the likelihood of memorizing specific training samples, thereby amplifying268

privacy leakage.269

Interestingly, our analysis of the relationship between model vulnerability and training data size270

reveals mixed trends, aligning with findings in Amit et al. (2024). We observe that MIA susceptibility271

fluctuates—sometimes increasing, sometimes decreasing—with the number of training examples.272

Table 3 provides additional evidence, comparing different attack types on probabilities (described in273

Section 3) averaged across all model architectures for varying training sample sizes. This variability274

can be partially explained by our use of early stopping with patience parameters. When the model’s275

validation loss fails to improve for a specified number of epochs, training stops to prevent potential276

overfitting. This early stopping mechanism leads to varying levels of model convergence and,277

consequently, different degrees of memorization across dataset sizes.278

5.2.2 Logits as a High-Bandwidth Privacy Leakage Channel279

Our experiments demonstrate that MIA conducted using pre-softmax logits consistently achieve280

higher success rates compared to those using post-softmax probabilities. As illustrated in Figure 1,281

comparing the top row (logit-based attacks) with the bottom row (probability-based attacks) reveals a282

significant and consistent decrease in attack AUC across all model architectures and datasets when283

only probabilities are accessible. Additional results in Table 4 compare various probability-based284

attacks with GBM (Logits) across all five datasets. This observation aligns with previous findings in285

the literature Shokri et al. (2017) and can be attributed to the information-rich nature of logits. Unlike286

normalized probabilities, logits preserve the raw, unnormalized confidence scores between classes.287

The softmax transformation, while necessary for obtaining interpretable probabilities, compresses288

this information through normalization, effectively reducing the attack surface.289

This finding has important practical implications: exposing raw logits through APIs, even for legiti-290

mate purposes such as temperature scaling or calibration, significantly increases privacy vulnerability.291

This is particularly concerning as many popular machine learning APIs and frameworks commonly292

expose logits by default OpenAI (2023). Therefore, practitioners should carefully consider imple-293

menting additional privacy-preserving mechanisms when logit access is required, or limit API outputs294

to probability distributions only.295

5.2.3 Attack Strategies and Their Effectiveness296

Our analysis demonstrates that membership inference success depends heavily on two factors: the297

sophistication of the attack strategy and the auxiliary information available to the adversary. Table 1298

presents results for both threshold-based and machine learning-based attacks, focusing specifically299

on probability-based attacks as many of these methods are not applicable to logits.300

Attack BERT Classifier Autoregressive MLM Discrete Diffusion Pseudo-Autoregressive

Max Probability 0.56 ± 0.05 0.67 ± 0.13 0.55 ± 0.06 0.52 ± 0.13 0.51 ± 0.02
Entropy 0.56 ± 0.05 0.63 ± 0.12 0.55 ± 0.06 0.46 ± 0.13 0.51 ± 0.02
Log-Loss 0.60 ± 0.06 0.76 ± 0.13 0.55 ± 0.08 0.66 ± 0.13 0.53 ± 0.05
GBM 0.62 ± 0.08 0.81 ± 0.13 0.56 ± 0.07 0.76 ± 0.16 0.53 ± 0.06

Table 1: Membership inference attack performance (AUROC) across different model architectures,
averaged over all datasets. Higher values indicate greater privacy vulnerability, with the highest
values in each column shown in bold.

Label-Agnostic Threshold Attacks represent the simplest approach, operating without knowledge301

of true labels and relying solely on the model’s output probability distribution. We implement two302

such attacks: (1) Max Probability, which examines the highest confidence score in the output vector303

(max(P (y|x))), and (2) Entropy of the output distribution (H(P (y|x)) = −
∑

i pi log pi). These304

methods establish our baseline performance metrics. Label-Aware Threshold Attacks enhance305

the inference capability by incorporating ground-truth label information. This includes Log-Loss,306

which measures the cross-entropy with respect to the true label. Our results indicate that access to307

ground-truth labels consistently enhances attack performance, particularly against generative models.308

Machine Learning-Based Attacks, implemented here using GBM, represent our most sophisticated309

approach. This method trains a GBDT using probability vectors, ground truth and membership labels310
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to learn complex decision boundaries between training and test samples. The effectiveness of this311

approach is particularly evident with diffusion models, where it achieves the highest AUC scores.312

These results reveal a clear hierarchy: while simple threshold-based methods can breach privacy313

to some extent, the addition of ground-truth labels and advanced machine learning techniques314

significantly enhances attack success. This underscores the need for robust privacy protection315

strategies that account for varying levels of adversarial capabilities.316

5.3 The Impact of Factorization: Decomposing Leakage in P (X,Y )317

Building on our theoretical bounds and empirical findings, we now dive deeper into how different318

factorizations of the joint distribution P (X,Y ) affect privacy leakage. Our theoretical analysis319

showed that vulnerability stems from differences in both P (X) and P (Y |X) between training and320

test distributions. Here, we explore how architectural choices in modeling P (X,Y ) can shift the321

balance between these two sources of leakage.322

We compare two approaches to modeling the joint distribution:323

• Autoregressive Models (Label-Prefix): This model is trained to generate the text x324

conditioned on a label prefix y, thereby factorizing the joint distribution as P (X,Y ) =325

P (Y )P (X|Y ). Its primary focus is on learning the class-conditional data distribution.326

• Pseudo-Autoregressive Models (Label-Suffix): We introduce an autoregressive model327

trained to generate the full sequence (x, y), with the label appended at the end. This328

architecture implicitly factorizes the joint distribution as P (X,Y ) = P (X)P (Y |X). While329

still generative, its final step of predicting y after generating all of x mirrors a discriminative330

task.331

This change in factorization from modeling P (X|Y ) to P (X) first fundamentally alters the model’s332

memorization patterns. Based on our theoretical bound, we hypothesize that this architectural shift333

redistributes privacy risk between the two components: the marginal distribution P (X) and the334

conditional distribution P (Y |X). To validate this, we measure the statistical divergence between loss335

distributions on training and test samples.336

Table 2: Statistical divergence between training and test loss distributions. The Pseudo-Autoregressive
model uses label-suffix architecture, while the Autoregressive model uses label-prefix. Higher values
indicate greater leakage of the marginal distribution P (X).

Pseudo-Autoregressive Autoregressive

Dataset JSD KS Stat. JSD KS Stat.

SST-5 0.8185 0.8314 0.6204 0.6062
HateSpeech 0.8355 0.8490 0.4419 0.4107
Emotion 0.8872 0.9240 0.4780 0.4320
AGNews 0.6230 0.6135 0.2400 0.2143
IMDb 0.8379 0.8681 0.5232 0.5380

The results in Table 2 strongly support our hypothesis. Across all five datasets, the pseudo-337

autoregressive model shows substantially higher divergence in both Jensen-Shannon Divergence338

(JSD) and Kolmogorov-Smirnov (KS) statistics. This indicates that the label-suffix architecture leads339

to greater leakage of information about the marginal distribution P (X) compared to the label-prefix340

approach.341

This difference stems from the models’ underlying objectives. The label-suffix model must first342

construct a comprehensive representation of the input x before predicting y, necessitating high-343

fidelity modeling of P (X). This requirement leads to increased memorization of training samples. In344

contrast, the label-prefix model focuses on learning conditional distributions P (X|Y ) for each class,345

potentially requiring less memorization of the complete data distribution.346

These findings reveal a fundamental privacy trade-off aligned with our theoretical framework. Rather347

than eliminating privacy leakage, different factorizations of P (X,Y ) redistribute the vulnerability348

between the marginal and conditional components. While the label-suffix model may be more349
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resistant to attacks targeting P (Y |X): refer Figure 1 and Table 1, it becomes more vulnerable to350

those exploiting differences in P (X) between training and test distributions.351

6 Conclusion & Future Work352

Our investigation reveals fundamental privacy vulnerabilities inherent in different text classification353

paradigms. Through theoretical analysis and extensive empirical validation, we demonstrate that354

generative models are systematically more vulnerable to membership inference attacks due to their355

explicit modeling of P (X). Our theoretical framework, decomposing privacy risk into components356

from P (X) and P (Y |X), explains the observed hierarchy of vulnerability: generative models are357

most susceptible, followed by pseudo-generative approaches, with discriminative models showing358

the highest resistance. We show that this vulnerability is particularly pronounced when accessing359

logits rather than probabilities, and that sophisticated machine learning-based attacks can effectively360

exploit these vulnerabilities. Importantly, our analysis of different factorization strategies reveals that361

architectural choices in modeling P (X,Y ) fundamentally affect privacy leakage patterns.362

Future research should focus on developing defense mechanisms specifically tailored to generative ar-363

chitectures, investigating privacy-preserving training methods that can maintain utility while reducing364

memorization, and exploring the impact of model scale and pre-training on privacy vulnerabilities.365

These directions, combined with our current findings, will help practitioners make informed decisions366

about model selection and deployment in privacy-sensitive applications.367

References368

Amit, G., Goldsteen, A., and Farkash, A. (2024). Sok: Reducing the vulnerability of fine-tuned369

language models to membership inference attacks.370

Bouguila, N. (2011). Bayesian hybrid generative discriminative learning based on finite liouville371

mixture models. Pattern Recognition, 44(6):1183–1200.372

Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., and Song, D. (2019). The secret sharer: Evaluating373

and testing unintended memorization in neural networks. In 28th USENIX security symposium374

(USENIX security 19), pages 267–284.375

Castagnos, F., Mihelich, M., and Dognin, C. (2022). A simple log-based loss function for ordinal text376

classification. In Proceedings of the 29th International Conference on Computational Linguistics,377

pages 4604–4609.378

Choi, J., Chandrasekaran, V., Tople, S., and Jha, S. (2023). Exploring connections between mem-379

orization and membership inference. In The Eleventh International Conference on Learning380

Representations.381

Davidson, T., Warmsley, D., Macy, M., and Weber, I. (2017). Automated hate speech detection and382

the problem of offensive language. In Proceedings of the 11th International AAAI Conference on383

Web and Social Media, ICWSM ’17, pages 512–515.384

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidi-385

rectional transformers for language understanding. In Burstein, J., Doran, C., and Solorio, T.,386

editors, Proceedings of the 2019 Conference of the North American Chapter of the Association for387

Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),388

pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.389

Duan, A. K., Kasiviswanathan, S. P., Kumar, R., and Mantrach, A. (2022). Flashing lights in my cnn:390

Membership inference by output distillation. arXiv preprint arXiv:2208.08270.391

Efron, B. (1975). The efficiency of logistic regression compared to normal discriminant analysis.392

Journal of the American Statistical Association, 70:892–898.393

Feng, Q., Kasa, S. R., KASA, S. K., Yun, H., Teo, C. H., and Bodapati, S. B. (2025). Exposing394

privacy gaps: Membership inference attack on preference data for llm alignment. In Li, Y., Mandt,395

S., Agrawal, S., and Khan, E., editors, Proceedings of The 28th International Conference on396

9



Artificial Intelligence and Statistics, volume 258 of Proceedings of Machine Learning Research,397

pages 5221–5229. PMLR.398

Hayashi, H. (2025). A hybrid of generative and discriminative models based on the gaussian-coupled399

softmax layer. IEEE Transactions on Neural Networks and Learning Systems, 36(2):2894–2904.400

Jaini, P., Clark, K., and Geirhos, R. (2024). Intriguing properties of generative classifiers. In The401

Twelfth International Conference on Learning Representations.402

Kasa, S. R., Goel, A., Gupta, K., Roychowdhury, S., Priyatam, P., Bhanushali, A., and Srini-403

vasa Murthy, P. (2024). Exploring ordinality in text classification: A comparative study of explicit404

and implicit techniques. In Ku, L.-W., Martins, A., and Srikumar, V., editors, Findings of the405

Association for Computational Linguistics: ACL 2024, pages 5390–5404, Bangkok, Thailand.406

Association for Computational Linguistics.407

Kasa, S. R., Gupta, K., Roychowdhury, S., Kumar, A., Biruduraju, Y., Kasa, S. K., Pattisapu,408

N. P., Bhattacharya, A., Agarwal, S., et al. (2025). Generative or discriminative? revisiting text409

classification in the era of transformers. arXiv preprint arXiv:2506.12181.410

Li, A. C., Kumar, A., and Pathak, D. (2025). Generative classifiers avoid shortcut solutions. In The411

Thirteenth International Conference on Learning Representations.412

Li, Y., Bradshaw, J., and Sharma, Y. (2019). Are generative classifiers more robust to adversarial413

attacks? In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th International414

Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages415

3804–3814. PMLR.416

Liang, P. and Jordan, M. I. (2008). An asymptotic analysis of generative, discriminative, and417

pseudolikelihood estimators. In International Conference on Machine Learning.418

Lou, A., Meng, C., and Ermon, S. (2024). Discrete diffusion modeling by estimating the ratios of419

the data distribution. In Proceedings of the 41st International Conference on Machine Learning,420

ICML’24. JMLR.org.421

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C. (2011). Learning word422

vectors for sentiment analysis. In Lin, D., Matsumoto, Y., and Mihalcea, R., editors, Proceedings423

of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language424

Technologies, pages 142–150, Portland, Oregon, USA. Association for Computational Linguistics.425

Mahloujifar, S., Sablayrolles, A., Cormode, G., and Jha, S. (2022). Optimal membership inference426

bounds for adaptive composition of sampled gaussian mechanisms.427

McCallum, A., Pal, C., Druck, G., and Wang, X. (2006). Multi-conditional learning: Genera-428

tive/discriminative training for clustering and classification. In AAAI, volume 1, page 6.429

Mireshghallah, F., Goyal, K., Uniyal, A., Berg-Kirkpatrick, T., and Shokri, R. (2023a). An em-430

pirical analysis of the privacy-utility tradeoff in membership inference attacks. arXiv preprint431

arXiv:2302.12580.432

Mireshghallah, F., Goyal, K., Uniyal, A., Berg-Kirkpatrick, T., and Shokri, R. (2023b). Privacy433

auditing with one (1) training run. arXiv preprint arXiv:2310.08015.434

Ng, A. Y. and Jordan, M. I. (2001). On discriminative vs. generative classifiers: A comparison of435

logistic regression and naive bayes. In Advances in Neural Information Processing Systems.436

OpenAI (2023). Openai api reference. https://platform.openai.com/docs/api-reference.437

Accessed: August 2023.438

Pang, B. and Lee, L. (2005). Seeing stars: Exploiting class relationships for sentiment categorization439

with respect to rating scales. In Knight, K., Ng, H. T., and Oflazer, K., editors, Proceedings of the440

43rd Annual Meeting of the Association for Computational Linguistics (ACL‘05), pages 115–124,441

Ann Arbor, Michigan. Association for Computational Linguistics.442

Pattisapu, N., Kasa, S. R., Roychowdhury, S., Gupta, K., Bhanushali, A., and Murthy, P. S. (2025).443

Leveraging structural information in tree ensembles for table representation learning. WWW.444

10

https://platform.openai.com/docs/api-reference


Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2018). Language models are445

unsupervised multitask learners. OpenAI.446

Raina, R., Shen, Y., Mccallum, A., and Ng, A. (2003). Classification with hybrid genera-447

tive/discriminative models. Advances in neural information processing systems, 16.448

Roychowdhury, S., Gupta, K., Kasa, S. R., and Srinivasa Murthy, P. (2024). Tackling concept shift449

in text classification using entailment-style modeling. In Proceedings of the 30th ACM SIGKDD450

Conference on Knowledge Discovery and Data Mining, pages 5647–5656.451

Saravia, E., Liu, H.-C. T., Huang, Y.-H., Wu, J., and Chen, Y.-S. (2018). CARER: Contextualized452

affect representations for emotion recognition. In Proceedings of the 2018 Conference on Empirical453

Methods in Natural Language Processing, pages 3687–3697, Brussels, Belgium. Association for454

Computational Linguistics.455

Shi, J., Xu, J., Chen, Y., Wang, D., Li, J., Tian, Z., and Shokri, R. (2022). Membership inference456

attacks from first principles. arXiv preprint arXiv:2211.00463.457

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. (2017). Membership inference attacks against458

machine learning models.459

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts, C. (2013). Recursive460

deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013461

Conference on Empirical Methods in Natural Language Processing, pages 1631–1642, Seattle,462

Washington, USA. Association for Computational Linguistics.463

Tan, J., LeJeune, D., Mason, B., Javadi, H., and Baraniuk, R. G. (2023). A blessing of dimensionality464

in membership inference through regularization. In Proceedings of The 26th International Con-465

ference on Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning466

Research, pages 10968–10993. PMLR.467

Wang, A. and Cho, K. (2019a). Bert has a mouth, and it must speak: Bert as a markov random field468

language model. arXiv preprint arXiv:1902.04094.469

Wang, A. and Cho, K. (2019b). BERT has a mouth, and it must speak: BERT as a Markov random470

field language model. In Bosselut, A., Celikyilmaz, A., Ghazvininejad, M., Iyer, S., Khandelwal,471

U., Rashkin, H., and Wolf, T., editors, Proceedings of the Workshop on Methods for Optimizing472

and Evaluating Neural Language Generation, pages 30–36, Minneapolis, Minnesota. Association473

for Computational Linguistics.474

Watson, L., Guo, C., Cormode, G., and Sablayrolles, A. (2023). Scalable membership inference475

attacks via quantile regression. arXiv preprint arXiv:2307.03694.476

Yogatama, D., Dyer, C., Ling, W., and Blunsom, P. (2017). Generative and discriminative text477

classification with recurrent neural networks. arXiv preprint.478

Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level convolutional networks for text classifi-479

cation. In Proceedings of the 29th International Conference on Neural Information Processing480

Systems - Volume 1, NIPS’15, page 649–657, Cambridge, MA, USA. MIT Press.481

Zheng, C., Wu, G., Bao, F., Cao, Y., Li, C., and Zhu, J. (2023). Revisiting discriminative vs. generative482

classifiers: Theory and implications. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato,483

S., and Scarlett, J., editors, Proceedings of the 40th International Conference on Machine Learning,484

volume 202 of Proceedings of Machine Learning Research, pages 42420–42477. PMLR.485

A Dataset Details486

To provide further context, we briefly describe each dataset and its characteristics: AG News Zhang487

et al. (2015) contains roughly 120K training and 7.6K test samples, categorized into World, Sports,488

Business, and Technology. Each entry is a short news article comprising the title and initial sentences.489

Emotion Saravia et al. (2018) is composed of English tweets labeled with six core emotions: anger,490

fear, joy, love, sadness, and surprise, totaling 20K samples (16K train, 2K validation, 2K test).491
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Stanford Sentiment Treebank (SST) Socher et al. (2013) is used in both its SST-2 (binary sentiment:492

positive/negative) and SST-5 (five sentiment classes: very negative, negative, neutral, positive, very493

positive) formats, enabling evaluation on both coarse and fine-grained sentiment tasks. Multiclass494

Sentiment Analysis1 includes 41.6K samples labeled as positive, negative, or neutral, with notable495

class imbalance that tests a model’s robustness to skewed distributions. Twitter Financial News496

Sentiment2 is a domain-specific dataset of 11,932 finance-related tweets, annotated as Bearish,497

Bullish, or Neutral, requiring nuanced understanding of financial terminology. IMDb Maas et al.498

(2011) offers 50K equally split positive and negative long-form movie reviews, challenging models499

to process extended, opinion-rich text. Rotten Tomatoes Pang and Lee (2005) comprises 10,662500

short movie review sentences (5,331 positive and 5,331 negative), emphasizing concise sentiment501

expression. Finally, Hate Speech Offensive Davidson et al. (2017) contains approximately 25K502

tweets categorized as hate speech, offensive (non-hate) language, or neutral, posing the challenge of503

fine-grained discrimination between harmful and non-harmful expressions.504

B Theoretical Results505

B.1 Proof of the General MIA Bound506

Membership Inference Advantage:507

Let A be an adversary with a decision function A(O(x)) that outputs 1 if it guesses an input x is a508

member of the training set Dtrain and 0 otherwise, based on the model’s output O(x). The advantage509

is defined as the absolute difference between the adversary’s true positive rate and false positive rate:510

εMIA = |P(A(O(x)) = 1|x ∈ Dtrain)− P(A(O(x)) = 1|x ∈ Dtest)| (3)

Here, we provide a formal proof for the theorem that bounds the Membership Inference Advantage511

(εMIA) by the Kullback-Leibler (KL) divergence between the training and test data distributions. The512

proof synthesizes three key inequalities from information and probability theory.513

Theorem 1. Let A be any adversary. The membership inference advantage is bounded by:514

εMIA ≤
√

DKL(Ptrain(X)||Ptest(X))

2
+

√
Ex[DKL(Ptrain(Y |X)||Ptest(Y |X))]

2
(4)

Proof. First, we would like to clarify the meaning of the Ptrain and Ptest.515

Ptrain(.) - represents the probability distribution of examples in the training set. Yeag Ptest(.) -516

represents the probability distribution of examples in the test set.517

The proof proceeds in three steps.518

Step 1: Bounding Advantage with Total Variation Distance. First, we bound the attacker’s519

advantage by the total variation distance between the distributions of the model’s outputs. Let520

Pout_train and Pout_test be the distributions of the model’s outputs on members and non-members,521

respectively. The maximum advantage of any statistical test to distinguish between two distributions522

is bounded by half of their total variation distance (TVD) - this follows from the definition of TVD:523

εMIA ≤ 1

2
∥Pout_train − Pout_test∥1 (5)

Step 2: Applying the Data Processing Inequality. A machine learning model is a function that524

processes input data to produce an output. The Data Processing Inequality states that no such525

processing can increase the statistical distance between distributions. Therefore, for a generative526

classifier, the distance between the output distributions cannot be greater than the distance between527

the original input data distributions, Ptrain(X,Y ) and Ptest(X,Y ):528

∥Pout_train − Pout_test∥1 ≤ ∥Ptrain(X,Y )− Ptest(X,Y )∥1 (6)

Combining these first two steps yields:529

εMIA ≤ 1

2
∥Ptrain(X,Y )− Ptest(X,Y )∥1 (7)

1https://huggingface.co/datasets/Sp1786/multiclass-sentiment-analysis-dataset
2https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment
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Step 3: Connecting Total Variation to KL Divergence (Pinsker’s Inequality). Finally, we relate530

the TVD to the KL divergence using Pinsker’s Inequality:531

1

2
∥P −Q∥1 ≤

√
1

2
DKL(P ||Q) (8)

Applying this to our bound from Step 2, we get:532

εMIA ≤
√

1

2
DKL(Ptrain(X,Y )||Ptest(X,Y )) (9)

Using the chain rule for KL-divergence, we can decompose the divergence of between joint distribu-533

tions as:534

DKL(P (X,Y )||Q(X,Y )) = DKL(P (X)||Q(X)) + Ex∼P (X)[DKL(P (Y |X)||Q(Y |X))] (10)

By applying this chain rule to the term inside our bound, we can separate the two primary sources of535

information leakage for a generative model that learns the joint distribution P (X,Y ):536

εMIA_gen ≤
√

1

2
(DKL(Ptrain(X)||Ptest(X)) + Ex[. . . ]) (11)

≤
√

DKL(Ptrain(X)||Ptest(X))

2
+

√
Ex[DKL(Ptrain(Y |X)||Ptest(Y |X))]

2
(12)

where the second line uses the inequality
√
a+ b ≤

√
a+

√
b.537

This completes the proof. The attacker’s advantage is fundamentally limited by how much the training538

data distribution diverges from the test data distribution.539

This decomposed bound reveals two distinct vulnerability terms:540

1. Input Memorization Term:
√

DKL(Ptrain(X)||Ptest(X))
2541

This term quantifies the leakage from the model memorizing the distribution of the training542

inputs themselves. This vulnerability exists because a generative model’s objective function543

explicitly requires it to learn P (X).544

2. Conditional Memorization Term:
√

Ex[DKL(Ptrain(Y |X)||Ptest(Y |X))]
2545

This term quantifies the leakage from the model overfitting the mapping from inputs to546

labels. This vulnerability exists for both generative and discriminative models.547

548
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C Extra Results549

Attack 128 256 512 1024 2048 4096 Full Data

Entropy 0.51 ± 0.12 0.49 ± 0.10 0.50 ± 0.11 0.50 ± 0.11 0.51 ± 0.11 0.50 ± 0.11 0.50 ± 0.10
GBM 0.61 ± 0.16 0.58 ± 0.13 0.60 ± 0.15 0.60 ± 0.13 0.62 ± 0.13 0.60 ± 0.12 0.55 ± 0.07
Log Loss 0.61 ± 0.14 0.60 ± 0.12 0.61 ± 0.12 0.61 ± 0.12 0.61 ± 0.12 0.61 ± 0.11 0.60 ± 0.11
Max Probability 0.54 ± 0.12 0.52 ± 0.11 0.53 ± 0.11 0.53 ± 0.10 0.53 ± 0.10 0.53 ± 0.10 0.52 ± 0.09

Table 3: Membership inference attack performance (mean ± standard deviation AUROC) across
varying training sample sizes. Higher values indicate greater privacy vulnerability, with the highest
values in each column shown in bold.

Dataset Entropy GBM Ground Truth Predictions Log Loss Max Probability

AG News 0.54 ± 0.11 0.62 ± 0.16 0.62 ± 0.15 0.62 ± 0.15 0.58 ± 0.13
Emotion 0.47 ± 0.14 0.61 ± 0.13 0.64 ± 0.11 0.65 ± 0.11 0.52 ± 0.12
HateSpeech 0.52 ± 0.06 0.56 ± 0.09 0.56 ± 0.06 0.56 ± 0.06 0.53 ± 0.06
IMDb 0.51 ± 0.08 0.56 ± 0.12 0.54 ± 0.07 0.54 ± 0.07 0.51 ± 0.08
SST5 0.48 ± 0.10 0.61 ± 0.13 0.66 ± 0.14 0.67 ± 0.14 0.51 ± 0.10

Table 4: Membership inference attack performance (mean ± standard deviation AUROC) across
different datasets. Higher values indicate greater privacy vulnerability, with the highest values in each
row shown in bold.
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