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Abstract

Membership Inference Attacks (MIAs) pose a critical privacy threat by enabling
adversaries to determine whether a specific sample was included in a model’s
training dataset. Despite extensive research on MIAs, systematic comparisons be-
tween generative and discriminative classifiers remain limited. This work addresses
this gap by first providing theoretical motivation for why generative classifiers
exhibit heightened susceptibility to MIAs, then validating these insights through
comprehensive empirical evaluation. Our study encompasses discriminative, gener-
ative, and pseudo-generative text classifiers across varying training data volumes,
evaluated on five benchmark datasets. Employing a diverse array of MIA strate-
gies, we consistently demonstrate that fully generative classifiers which explicitly
model the joint likelihood P (X,Y ) are most vulnerable to membership leakage.
Furthermore, we observe that the canonical inference approach commonly used
in generative classifiers significantly amplifies this privacy risk. These findings
reveal a fundamental utility-privacy trade-off inherent in classifier design, un-
derscoring the critical need for caution when deploying generative classifiers in
privacy-sensitive applications. Our results motivate future research directions in
developing privacy-preserving generative classifiers that can maintain utility while
mitigating membership inference vulnerabilities.

1 Introduction and Related work

Text Classification (TC) is a fundamental task in Natural Language Processing (NLP), serving as the
backbone for numerous applications including sentiment analysis, topic detection, intent classification,
and document categorization (Yogatama et al., 2017; Castagnos et al., 2022; Roychowdhury et al.,
2024; Kasa et al., 2024; Pattisapu et al., 2025). As machine learning models have become increasingly
sophisticated and widely deployed, concerns about their privacy implications have grown substantially.
One of the most critical privacy vulnerabilities is the Membership Inference Attack (MIA), where
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an adversary attempts to determine whether a specific data point was included in a model’s training set
(Shokri et al., 2017). MIAs represent a fundamental threat to data privacy by exploiting differential
model behaviors on training versus non-training data to infer membership in the training set (Shokri
et al., 2017; Carlini et al., 2019). The implications are particularly severe for sensitive personal
data, potentially violating privacy expectations and regulatory requirements. Recent surveys have
highlighted the growing sophistication of these attacks (Amit et al., 2024; Feng et al., 2025).

Predominant Focus on Discriminative Models. The majority of MIA research has concentrated
on discriminative models like BERT (Devlin et al., 2019), which directly model P (Y |X) and learn
decision boundaries without explicitly modeling data distributions (Zheng et al., 2023; Kasa et al.,
2025). Studies have revealed how factors such as overfitting, model capacity, and training data
size influence attack success rates (Amit et al., 2024). Despite this discriminative focus, there has
been renewed interest in generative classifiers for text classification (Li et al., 2025; Kasa et al.,
2025). Unlike discriminative models, generative classifiers explicitly model the joint distribution
P (X,Y ) = P (X|Y )P (Y ), offering compelling advantages: superior performance in low-data
regimes (Kasa et al., 2025; Yogatama et al., 2017), reduced susceptibility to spurious correlations (Li
et al., 2025), and principled uncertainty estimates via Bayes’ rule (Bouguila, 2011). The renaissance
of generative classifiers has been particularly bolstered through scalable model architectures including
autoregressive models (Radford et al., 2018), discrete diffusion models (Lou et al., 2024), and masked
language models used generatively (Devlin et al., 2019; Wang and Cho, 2019a).

However, the very characteristics that make generative classifiers attractive explicit modeling of
data distributions and superior performance with limited data raise important privacy questions Kasa
et al. (2025). While MIAs have been extensively studied for discriminative models, a significant
gap exists in understanding how different classification paradigms compare in their vulnerability to
such attacks. In this work, we present the first large-scale, systematic analysis of the vulnerability of
transformer-based classifiers to MIAs across a spectrum of modeling paradigms. Following Kasa et al.
(2025), we consider three broad categories: (1) discriminative models (e.g., BERT), which model the
conditional distribution P (Y |X); (2) fully generative models that explicitly model P (X,Y ), such
as autoregressive or discrete diffusion models; and (3) pseudo-generative models, such as MLMs,
and pseudo-autoregressive models, where the label is appended at the end of the input sequence.

Contributions. Our work makes three key contributions to understanding privacy vulnerabilities in
generative text classification:

1. First systematic MIA analysis across classification paradigms: We provide comprehen-
sive theoretical and empirical analysis of MIA vulnerability across discriminative, generative,
and pseudo-generative text classifiers. Our results reveal that by virtue of modeling P (X),
generative classifiers inherently expose themselves to heightened privacy risks compared
to discriminative classifiers that only learn P (Y |X). This vulnerability is particularly
pronounced in discrete diffusion models.

2. Analysis of privacy-utility trade-offs: We demonstrate complex dynamics between MIA
vulnerability and training data volume across different architectures. Our experiments reveal
that vulnerability patterns vary with dataset size, and different factorizations of P (X,Y ) lead
to distinct privacy leakage patterns. Through this analysis, we identify pseudo-generative
models as a potential privacy-preserving alternative.

3. Practical guidance for privacy-aware deployment: Our findings provide actionable
insights through: (a) comprehensive evaluation of attack strategies ranging from simple
threshold-based to sophisticated machine learning approaches, (b) quantification of privacy
risks through statistical divergence measures, and (c) clear recommendations for mitigating
vulnerabilities in real-world deployments.

2 Related Works and Background

Generative vs. Discriminative Classifiers: Historical Foundations and Evolution. Efron (1975)
established foundational theoretical groundwork demonstrating logistic regression’s higher efficiency
compared to normal discriminant analysis under certain distributional assumptions. Ng and Jordan
(2001) provided the seminal analysis showing that while discriminative classifiers achieve lower
asymptotic error rates, generative classifiers converge more rapidly with smaller training sets—a
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fundamental sample efficiency versus asymptotic performance trade-off. Liang and Jordan (2008)
extended these foundations with comprehensive asymptotic analyses revealing that relative perfor-
mance depends critically on model assumption correctness and data availability. Neural networks
brought new perspectives through Raina et al. (2003)’s hybrid approaches combining both paradigms’
strengths, while Li et al. (2019) demonstrated generative classifiers’ superior robustness to adversarial
attacks in neural network settings. Zheng et al. (2023) provided comprehensive theoretical and empir-
ical revisiting with large-scale experiments across multiple domains, developing novel frameworks
quantifying bias-variance trade-offs and revealing that generative models achieve better calibration
and uncertainty quantification despite higher asymptotic error rates.

The application of generative and discriminative approaches to text classification has evolved sig-
nificantly with the transformer era witnessing a remarkable resurgence of generative approaches.
Early work with recurrent neural networks by Yogatama et al. (2017) demonstrated that generative
RNN classifiers, while exhibiting higher asymptotic error rates than discriminative counterparts,
showed superior robustness to distribution shifts and faster convergence, echoing classical patterns
identified by Ng and Jordan (2001). Modern generative classifiers leverage sophisticated architectures
including autoregressive language models (Radford et al., 2018), discrete diffusion models (Lou
et al., 2024), and masked language models used generatively (Wang and Cho, 2019a), providing
new empirical evidence for advantages in text classification, particularly in low-resource settings
where generative classifiers consistently demonstrate superior sample efficiency (Kasa et al., 2025).
Jaini et al. (2024) demonstrated that generative classifiers exhibit superior robustness properties,
including reduced susceptibility to adversarial perturbations and improved calibration of uncertainty
estimates, while Li et al. (2025) showed that generative classifiers naturally avoid shortcut learning
by explicitly modeling the full input distribution P (X,Y ) = P (Y )× P (X|Y ) rather than merely
learning discriminative features P (Y |X). The explicit modeling of class-conditional distributions
P (X|Y ) enables generative classifiers to provide richer interpretability through likelihood-based
analysis and natural incorporation of prior knowledge via Bayes’ rule: P (Y |X) = P (X|Y )P (Y )

P (X)

(Bouguila, 2011), allowing for more sophisticated uncertainty quantification and better handling of
out-of-distribution inputs. We also acknowledge a separate class of hybrid generative-discriminative
models, where some subset of parameters are trained generatively and others discriminatively (Raina
et al., 2003; McCallum et al., 2006; Hayashi, 2025). However, we exclude them from our study, as
their architectural differences hinder fair comparison with fully generative or discriminative models,
placing them outside the scope of this work.

Membership Inference Attacks. Membership inference attacks exploit the differential behavior
exhibited by machine learning models on training versus non-training data to infer whether a specific
sample was part of the training set (Shokri et al., 2017). Recent advances have introduced sophis-
ticated approaches: Watson et al. (2023) developed scalable attacks using quantile regression that
significantly improve efficiency and accuracy, while Shi et al. (2022) provided theoretical foundations
through first-principles analysis of membership inference vulnerabilities, and Duan et al. (2022)
demonstrated novel output distillation methods extracting membership information from intermediate
model representations. The privacy implications have become increasingly nuanced with Tan et al.
(2023) discovering a counterintuitive "blessing of dimensionality" phenomenon where increased
model parameters, when coupled with proper regularization, can simultaneously improve both privacy
and performance, challenging traditional assumptions about overparameterization as privacy liability.
Mireshghallah et al. (2023a,b) provided comprehensive empirical analyses of privacy-utility dynam-
ics, developing practical privacy auditing techniques enabling efficient assessment of membership
leakage with minimal computational overhead, while Choi et al. (2023) established fundamental
connections between memorization and membership inference success, demonstrating that attacks
are most effective against samples that models are likely to memorize regardless of distributional
properties. These advances collectively underscore the critical importance of incorporating privacy
considerations when evaluating different modeling paradigms—a gap our work addresses by sys-
tematically comparing MIA vulnerabilities across discriminative, generative, and pseudo-generative
text classifiers. The scope of this work is limited to blackbox attacks with the assumption that logits
are available from the model. Further, we assume that we can get the ground truth through human
labelling. We assume that logits are vended out and cost of inference is negligible—specifically in
the generative classifiers setting where the k-pass is the canonical setting. The knowledge distillation
based approaches and trajectory based approaches are beyond the scope of this work.
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3 Approach

We evaluate privacy vulnerabilities in text classification by training multiple classifiers across datasets
and subjecting them to diverse membership inference attacks (MIAs). This enables a systematic
comparison of the privacy–utility tradeoffs.

3.1 Classifier Paradigms

Following Kasa et al. (2025), we study 3 main classifier families:

Discriminative: Standard BERT-style encoders modeling P (Y |X) using linear head on top of [CLS]
token to directly map text X to label Y . There’s no explicit memorization signal in this modeling
approach.

Fully Generative: Models the joint distribution P (X,Y ). We consider the following sub-approaches:

(i) Label-Prefix Autoregressive models generate text x conditioned on a label prefix (e.g., Positive:
The film was a masterpiece.). Classification is performed via logits using likelihood estima-
tion, argmaxl∈K logP (x, yl), in a K-pass fashion (K = number of labels). Such models may be
more vulnerable to MIAs since logits expose information about P (X). Alternatively, applying a
softmax yields probabilities: softmax

(
logP (x, yl)

)
= P (x, yl)/P (x) = P (yl|x), where the shared

denominator P (x) cancels across classes. This dilution of P (X) is expected to reduce susceptibility,
which we further discuss in Section 5.

(ii) Discrete Diffusion Models are trained on (X,Y ) pairs with a denoising objective. Following Lou
et al. (2024), noise is gradually added to corrupt the input sequence to pure [MASK] tokens in the
forward process, and the original input is reconstructed in the reverse process. At inference, x is
given with the label masked and the model predicts y from [MASK], conditional on x. In practice,
there are two ways to obtain the predicted variable - a) doing a K-pass argmax on the logits similar
to Autoregressive models and b) by simulating a trajectory from the reverse process, conditional on
x. In Kasa et al. (2025), the predicted y is obtained by the latter approach. To obtain logits, we use
the Diffusion Weighted Denoising Score Entropy (DWDSE), which provides an upper bound on the
log-likelihood: − log pθ0(x) ≤ LDWDSE(x) under the ELBO (Theorem 3.6 in Lou et al. (2024)).

Pseudo-Generative: We include this approach in our study, motivated by prior work on generative
classifiers in Li et al. (2019) and Kasa et al. (2025). This category occupies a middle ground between
discriminative and fully generative approaches. We consider two main sub-approaches:

(i) Masked Language Models (MLMs) are trained on a generative-like objective of reconstruct-
ing masked tokens rather than full causal modeling. However, they do not capture the true joint
distribution P (X,Y ), but instead model the pseudo-likelihood (Wang and Cho, 2019b).

(ii) Pseudo-Autoregressive Models represent a recent development where traditional generative classi-
fiers that model P (X|Y ) by prepending the label token are modified to append the label at the end
of the input sequence. While this approach does not strictly model P (X|Y ), recent work (Li et al.,
2025) demonstrates that label-appending can yield superior in-distribution performance compared to
label-prepending. Notably, these approaches involve minimal architectural modifications to standard
transformer models—typically requiring only changes to label placement or loss function compu-
tation—while preserving the core model design. This design principle allows for fair comparisons
using widely available implementations that are accessible to practitioners, making these models
particularly relevant for real-world deployment scenarios.

3.2 Membership Inference Attacks

We examine two main classes of MIAs:

Threshold-Based. Simple metrics derived from model outputs that might potentially contain hidden
information useful for MIA: (i) Max Probability: max(P (y|x)). (ii) Entropy: H(P (y|x)) =
−
∑

i pi log pi; lower for members and (iii) Log-Loss: Cross-entropy on the true label (requires label
access).

Model-Based. An explicit attack model is trained in the following fashion: (i) Collect training data
by querying the target classifier with member and non-member samples, (ii) represent each sample
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using the target model’s output probability vector concatenated with its one-hot encoded ground-truth
label, (iii) train a Gradient Boosting Classifier with binary 0/1 labels indicating membership class (0
for non-member, 1 for member).

4 Experimental Methodology

This section details the concrete experimental setup used to test our hypotheses. We specify the
datasets, training & evaluation procedures and computational details.

4.1 Datasets and Models

Datasets: Our evaluation is conducted on five public text classification benchmarks to ensure
robustness across diverse domains and task complexities. The datasets are: SST-5 Socher et al.
(2013), Hate Speech Davidson et al. (2017), Emotion Saravia et al. (2018), AG News Zhang et al.
(2015), and IMDb Maas et al. (2011). These datasets cover a range of tasks from binary sentiment to
fine-grained multi-class topic and emotion classification, with varying text lengths and class balances.
Further details are in the Appendix Section A.1.

Models: We implement and compare five classifier paradigms: (1) a discriminative BERT Classifier,
(2) an Autoregressive model, (3) a Masked Language Model (MLM), (4) a Discrete Diffusion
model, and (5) a Pseudo-Autoregressive model. All models are trained from scratch to avoid
confounding effects from pre-training, following Li et al. (2025) and Kasa et al. (2025). The specific
architectural properties, attention mechanisms, and training objectives for each model are taken from
Kasa et al. (2025) and are detailed in Section 3.

4.2 Training and Evaluation Protocol

Training. All models are trained using the AdamW optimizer with a learning rate of 3× 10−5 and
a weight decay of 0.01. We use a batch size of 32 and a maximum sequence length of 256 tokens,
truncating longer inputs. A linear warmup is applied for the first 10% of updates, followed by linear
decay. To prevent overfitting on the primary task, we employ early stopping with a patience of 20
epochs based on validation accuracy. Each experiment is repeated across three different random seeds
to ensure the stability of our findings.

Attack and Evaluation. Each saved model checkpoint is subjected to the three categories of MIA 1.
Label-Agnostic Threshold Attacks, 2. Label-Aware Threshold Attacks, and 3. Model-Based
Attacks—as specified in Section 3.2. The primary metric for attack success (privacy leakage) is the
Area Under the ROC Curve (AUROC). A score of 1.0 indicates a perfect attack, while 0.5 signifies
performance equivalent to random guessing.

4.3 Computational Details

Experiments were conducted on a cluster of NVIDIA RTX 8000 and A100 GPUs. Training times var-
ied based on model size and paradigm, ranging from approximately one hour for small discriminative
models to over twelve hours for full-scale diffusion models on the largest datasets. We employed
mixed-precision training to optimize computational efficiency. All model training and evaluation
runs were performed in isolated environments to prevent any data contamination.

5 Analysis and Results

In this section, we present a comprehensive analysis of privacy vulnerabilities in text classification
models. We begin by establishing theoretical bounds on MIAs, providing a framework for under-
standing potential privacy risks. Our empirical evaluation then validates these theoretical insights
across different model architectures, comparing discriminative models, fully generative models,
and pseudo-generative masked language models (MLMs). We analyze how different model output
representations (logits versus probabilities) and various attack strategies affect vulnerability. Finally,
we examine how different approaches to modeling the joint distribution P (X,Y ) influence privacy
leakage, introducing pseudo-autoregressive models as a privacy-utility balanced alternative to fully
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Figure 1: [Best viewed in color] Membership Inference Attack success rate (AUROC) compared across model
architectures with varying training dataset sizes. We evaluate fully generative classifiers (Autoregressive,
Discrete Diffusion), a discriminative classifier (BERT Classifier), and pseudo-generative models (MLM,
Pseudo-Autoregressive). The top row displays attack performance using model logits, while the bottom
row shows results using output probabilities. Higher AUROC values indicate increased privacy vulnerability.

generative models. Through this analysis, we demonstrate the deep connection between architectural
choices and privacy vulnerabilities.

5.1 Theoretical Analysis and Bounds

To systematically analyze privacy vulnerabilities, we first establish a theoretical framework for
measuring membership inference risk. We define the Membership Inference Advantage (MIA), which
quantifies an adversary’s ability to distinguish between training and test samples.

Definition 1 (Membership Inference Advantage). Let A be an adversary with a decision function
A(O(x)) that outputs 1 if it guesses an input x is a member of the training set Dtrain and 0 otherwise,
based on the model’s output O(x). The advantage is defined as the absolute difference between the
adversary’s true positive rate and false positive rate:

εMIA = |P(A(O(x)) = 1|x ∈ Dtrain)− P(A(O(x)) = 1|x ∈ Dtest)| (1)

Building on this definition, we derive an upper bound on the membership inference advantage that
decomposes the privacy risk into two components: one related to the marginal distribution P (X) and
another to the conditional distribution P (Y |X).

Theorem 1. Let A be any adversary. The membership inference advantage is bounded by:

εMIA ≤
√

DKL(Ptrain(X)||Ptest(X))

2
+

√
Ex[DKL(Ptrain(Y |X)||Ptest(Y |X))]

2
(2)

The proof for this theorem is presented in Appendix B.

This bound reveals that privacy leakage can occur through two channels: differences in the learned
marginal distribution of inputs (P (X)) and differences in the learned conditional distribution of
labels (P (Y |X))Mahloujifar et al. (2022).

5.2 Empirical Analysis of Privacy Vulnerabilities

Armed with this theoretical framework, we now empirically investigate how these bounds manifest
across different model architectures and attack scenarios. Our theoretical bound suggests that privacy
leakage can occur through both the marginal distribution P (X) and the conditional distribution
P (Y |X). This insight leads us to examine three key aspects: (1) the inherent vulnerability differences
between generative models (which model both distributions) and discriminative models (which
focus only on P (Y |X)), (2) the impact of different output representations (logits vs. probabilities)
on information leakage, and (3) the effectiveness of various attack strategies in exploiting these
vulnerabilities.
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5.2.1 Generative Classifiers are Systematically More Susceptible

Our experimental results consistently demonstrate that fully generative models exhibit significantly
higher vulnerability to MIA compared to their discriminative and pseudo-generative counterparts.
As shown in Figure 1, this vulnerability gap is particularly pronounced in logit-based attacks,
where fully generative models (Autoregressive and Discrete Diffusion) consistently yield
the highest attack AUC across all datasets. While the discriminative BERT Classifier shows some
vulnerability, its susceptibility remains notably lower.

These findings strongly support our hypothesis that explicitly modeling the joint distribution P (X,Y )
forces the model into a memorization-heavy regime. Unlike discriminative models that focus solely
on learning the decision boundary for P (Y |X), generative models must capture both the conditional
distribution P (Y |X) and the marginal data distribution P (X). This additional modeling requirement
significantly increases the likelihood of memorizing specific training samples, thereby amplifying
privacy leakage.

Interestingly, our analysis of the relationship between model vulnerability and training data size
reveals mixed trends, aligning with findings in Amit et al. (2024). We observe that MIA susceptibility
fluctuates—sometimes increasing, sometimes decreasing—with the number of training examples.
Table 3 provides additional evidence, comparing different attack types on probabilities (described in
Section 3) averaged across all model architectures for varying training sample sizes. This variability
can be partially explained by our use of early stopping with patience parameters. When the model’s
validation loss fails to improve for a specified number of epochs, training stops to prevent potential
overfitting. This early stopping mechanism leads to varying levels of model convergence and,
consequently, different degrees of memorization across dataset sizes.

5.2.2 Logits as a High-Bandwidth Privacy Leakage Channel

Our experiments demonstrate that MIA conducted using pre-softmax logits consistently achieve
higher success rates compared to those using post-softmax probabilities. As illustrated in Figure 1,
comparing the top row (logit-based attacks) with the bottom row (probability-based attacks) reveals a
significant and consistent decrease in attack AUC across all model architectures and datasets when
only probabilities are accessible. Additional results in Table 4 compare various probability-based
attacks with GBM (Logits) across all five datasets. This observation aligns with previous findings in
the literature Shokri et al. (2017) and can be attributed to the information-rich nature of logits. Unlike
normalized probabilities, logits preserve the raw, unnormalized confidence scores between classes.
The softmax transformation, while necessary for obtaining interpretable probabilities, compresses
this information through normalization, effectively reducing the attack surface.

This finding has important practical implications: exposing raw logits through APIs, even for legiti-
mate purposes such as temperature scaling or calibration, significantly increases privacy vulnerability.
This is particularly concerning as many popular machine learning APIs and frameworks commonly
expose logits by default OpenAI (2023). Therefore, practitioners should carefully consider imple-
menting additional privacy-preserving mechanisms when logit access is required, or limit API outputs
to probability distributions only.

5.2.3 Attack Strategies and Their Effectiveness

Our analysis demonstrates that membership inference success depends heavily on two factors: the
sophistication of the attack strategy and the auxiliary information available to the adversary. Table 1
presents results for both threshold-based and machine learning-based attacks, focusing specifically
on probability-based attacks as many of these methods are not applicable to logits.

Label-Agnostic Threshold Attacks represent the simplest approach, operating without knowledge
of true labels and relying solely on the model’s output probability distribution. We implement two
such attacks: (1) Max Probability, which examines the highest confidence score in the output vector
(max(P (y|x))), and (2) Entropy of the output distribution (H(P (y|x)) = −

∑
i pi log pi). These

methods establish our baseline performance metrics. Label-Aware Threshold Attacks enhance
the inference capability by incorporating ground-truth label information. This includes Log-Loss,
which measures the cross-entropy with respect to the true label. Our results indicate that access to
ground-truth labels consistently enhances attack performance, particularly against generative models.
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Attack BERT Classifier Autoregressive MLM Discrete Diffusion Pseudo-Autoregressive

Max Probability 0.56 ± 0.05 0.67 ± 0.13 0.55 ± 0.06 0.52 ± 0.13 0.51 ± 0.02
Entropy 0.56 ± 0.05 0.63 ± 0.12 0.55 ± 0.06 0.46 ± 0.13 0.51 ± 0.02
Log-Loss 0.60 ± 0.06 0.76 ± 0.13 0.55 ± 0.08 0.66 ± 0.13 0.53 ± 0.05
GBM 0.62 ± 0.08 0.81 ± 0.13 0.56 ± 0.07 0.76 ± 0.16 0.53 ± 0.06

Table 1: Membership inference attack performance (AUROC) across different model architectures,
averaged over all datasets. Higher values indicate greater privacy vulnerability, with the highest
values in each column shown in bold.

Machine Learning-Based Attacks, implemented here using GBM, represent our most sophisticated
approach. This method trains a GBDT using probability vectors, ground truth and membership labels
to learn complex decision boundaries between training and test samples. The effectiveness of this
approach is particularly evident with diffusion models, where it achieves the highest AUC scores.

These results reveal a clear hierarchy: while simple threshold-based methods can breach privacy
to some extent, the addition of ground-truth labels and advanced machine learning techniques
significantly enhances attack success. This underscores the need for robust privacy protection
strategies that account for varying levels of adversarial capabilities.

5.3 The Impact of Factorization: Decomposing Leakage in P (X,Y )

Building on our theoretical bounds and empirical findings, we now dive deeper into how different
factorizations of the joint distribution P (X,Y ) affect privacy leakage. Our theoretical analysis
showed that vulnerability stems from differences in both P (X) and P (Y |X) between training and
test distributions. Here, we explore how architectural choices in modeling P (X,Y ) can shift the
balance between these two sources of leakage.

We compare two approaches to modeling the joint distribution:

• Autoregressive Models (Label-Prefix): This model is trained to generate the text x
conditioned on a label prefix y, thereby factorizing the joint distribution as P (X,Y ) =
P (Y )P (X|Y ). Its primary focus is on learning the class-conditional data distribution.

• Pseudo-Autoregressive Models (Label-Suffix): We introduce an autoregressive model
trained to generate the full sequence (x, y), with the label appended at the end. This
architecture implicitly factorizes the joint distribution as P (X,Y ) = P (X)P (Y |X). While
still generative, its final step of predicting y after generating all of x mirrors a discriminative
task.

This change in factorization from modeling P (X|Y ) to P (X) first fundamentally alters the model’s
memorization patterns. Based on our theoretical bound, we hypothesize that this architectural shift
redistributes privacy risk between the two components: the marginal distribution P (X) and the
conditional distribution P (Y |X). To validate this, we measure the statistical divergence between loss
distributions on training and test samples.

Table 2: Statistical divergence between training and test loss distributions. The Pseudo-Autoregressive
model uses label-suffix architecture, while the Autoregressive model uses label-prefix. Higher values
indicate greater leakage of the marginal distribution P (X).

Pseudo-Autoregressive Autoregressive

Dataset JSD KS Stat. JSD KS Stat.

SST-5 0.8185 0.8314 0.6204 0.6062
HateSpeech 0.8355 0.8490 0.4419 0.4107
Emotion 0.8872 0.9240 0.4780 0.4320
AGNews 0.6230 0.6135 0.2400 0.2143
IMDb 0.8379 0.8681 0.5232 0.5380

The results in Table 2 strongly support our hypothesis. Across all five datasets, the pseudo-
autoregressive model shows substantially higher divergence in both Jensen-Shannon Divergence
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(JSD) and Kolmogorov-Smirnov (KS) statistics. This indicates that the label-suffix architecture leads
to greater leakage of information about the marginal distribution P (X) compared to the label-prefix
approach.

This difference stems from the models’ underlying objectives. The label-suffix model must first
construct a comprehensive representation of the input x before predicting y, necessitating high-
fidelity modeling of P (X). This requirement leads to increased memorization of training samples. In
contrast, the label-prefix model focuses on learning conditional distributions P (X|Y ) for each class,
potentially requiring less memorization of the complete data distribution.

These findings reveal a fundamental privacy trade-off aligned with our theoretical framework. Rather
than eliminating privacy leakage, different factorizations of P (X,Y ) redistribute the vulnerability
between the marginal and conditional components. While the label-suffix model may be more
resistant to attacks targeting P (Y |X): refer Figure 1 and Table 1, it becomes more vulnerable to
those exploiting differences in P (X) between training and test distributions.

6 Conclusion & Future Work

Our investigation reveals fundamental privacy vulnerabilities inherent in different text classification
paradigms. Through theoretical analysis and extensive empirical validation, we demonstrate that
generative models are systematically more vulnerable to membership inference attacks due to their
explicit modeling of P (X). Our theoretical framework, decomposing privacy risk into components
from P (X) and P (Y |X), explains the observed hierarchy of vulnerability: generative models are
most susceptible, followed by pseudo-generative approaches, with discriminative models showing
the highest resistance. We show that this vulnerability is particularly pronounced when accessing
logits rather than probabilities, and that sophisticated machine learning-based attacks can effectively
exploit these vulnerabilities. Importantly, our analysis of different factorization strategies reveals that
architectural choices in modeling P (X,Y ) fundamentally affect privacy leakage patterns.

Future research should focus on developing defense mechanisms specifically tailored to generative ar-
chitectures, investigating privacy-preserving training methods that can maintain utility while reducing
memorization, and exploring the impact of model scale and pre-training on privacy vulnerabilities.
These directions, combined with our current findings, will help practitioners make informed decisions
about model selection and deployment in privacy-sensitive applications.
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A Dataset Details

To provide further context, we briefly describe each dataset and its characteristics: AG News Zhang
et al. (2015) contains roughly 120K training and 7.6K test samples, categorized into World, Sports,
Business, and Technology. Each entry is a short news article comprising the title and initial sentences.
Emotion Saravia et al. (2018) is composed of English tweets labeled with six core emotions: anger,
fear, joy, love, sadness, and surprise, totaling 20K samples (16K train, 2K validation, 2K test).
Stanford Sentiment Treebank (SST) Socher et al. (2013) is used in both its SST-2 (binary sentiment:
positive/negative) and SST-5 (five sentiment classes: very negative, negative, neutral, positive, very
positive) formats, enabling evaluation on both coarse and fine-grained sentiment tasks. Multiclass
Sentiment Analysis2 includes 41.6K samples labeled as positive, negative, or neutral, with notable
class imbalance that tests a model’s robustness to skewed distributions. Twitter Financial News
Sentiment3 is a domain-specific dataset of 11,932 finance-related tweets, annotated as Bearish,
Bullish, or Neutral, requiring nuanced understanding of financial terminology. IMDb Maas et al.
(2011) offers 50K equally split positive and negative long-form movie reviews, challenging models
to process extended, opinion-rich text. Rotten Tomatoes Pang and Lee (2005) comprises 10,662
short movie review sentences (5,331 positive and 5,331 negative), emphasizing concise sentiment
expression. Finally, Hate Speech Offensive Davidson et al. (2017) contains approximately 25K
tweets categorized as hate speech, offensive (non-hate) language, or neutral, posing the challenge of
fine-grained discrimination between harmful and non-harmful expressions.

B Theoretical Results

B.1 Proof of the General MIA Bound

Membership Inference Advantage:

Let A be an adversary with a decision function A(O(x)) that outputs 1 if it guesses an input x is a
member of the training set Dtrain and 0 otherwise, based on the model’s output O(x). The advantage
is defined as the absolute difference between the adversary’s true positive rate and false positive rate:

εMIA = |P(A(O(x)) = 1|x ∈ Dtrain)− P(A(O(x)) = 1|x ∈ Dtest)| (3)

Here, we provide a formal proof for the theorem that bounds the Membership Inference Advantage
(εMIA) by the Kullback-Leibler (KL) divergence between the training and test data distributions. The
proof synthesizes three key inequalities from information and probability theory.

Theorem 1. Let A be any adversary. The membership inference advantage is bounded by:

εMIA ≤
√

DKL(Ptrain(X)||Ptest(X))

2
+

√
Ex[DKL(Ptrain(Y |X)||Ptest(Y |X))]

2
(4)

Proof. First, we would like to clarify the meaning of the Ptrain and Ptest.

Ptrain(.) - represents the probability distribution of examples in the training set. Yeag Ptest(.) -
represents the probability distribution of examples in the test set.

The proof proceeds in three steps.

Step 1: Bounding Advantage with Total Variation Distance. First, we bound the attacker’s
advantage by the total variation distance between the distributions of the model’s outputs. Let
Pout_train and Pout_test be the distributions of the model’s outputs on members and non-members,

2https://huggingface.co/datasets/Sp1786/multiclass-sentiment-analysis-dataset
3https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment
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respectively. The maximum advantage of any statistical test to distinguish between two distributions
is bounded by half of their total variation distance (TVD) - this follows from the definition of TVD:

εMIA ≤ 1

2
∥Pout_train − Pout_test∥1 (5)

Step 2: Applying the Data Processing Inequality. A machine learning model is a function that
processes input data to produce an output. The Data Processing Inequality states that no such
processing can increase the statistical distance between distributions. Therefore, for a generative
classifier, the distance between the output distributions cannot be greater than the distance between
the original input data distributions, Ptrain(X,Y ) and Ptest(X,Y ):

∥Pout_train − Pout_test∥1 ≤ ∥Ptrain(X,Y )− Ptest(X,Y )∥1 (6)

Combining these first two steps yields:

εMIA ≤ 1

2
∥Ptrain(X,Y )− Ptest(X,Y )∥1 (7)

Step 3: Connecting Total Variation to KL Divergence (Pinsker’s Inequality). Finally, we relate
the TVD to the KL divergence using Pinsker’s Inequality:

1

2
∥P −Q∥1 ≤

√
1

2
DKL(P ||Q) (8)

Applying this to our bound from Step 2, we get:

εMIA ≤
√

1

2
DKL(Ptrain(X,Y )||Ptest(X,Y )) (9)

Using the chain rule for KL-divergence, we can decompose the divergence of between joint distribu-
tions as:

DKL(P (X,Y )||Q(X,Y )) = DKL(P (X)||Q(X)) + Ex∼P (X)[DKL(P (Y |X)||Q(Y |X))] (10)

By applying this chain rule to the term inside our bound, we can separate the two primary sources of
information leakage for a generative model that learns the joint distribution P (X,Y ):

εMIA_gen ≤
√

1

2
(DKL(Ptrain(X)||Ptest(X)) + Ex[. . . ]) (11)

≤
√

DKL(Ptrain(X)||Ptest(X))

2
+

√
Ex[DKL(Ptrain(Y |X)||Ptest(Y |X))]

2
(12)

where the second line uses the inequality
√
a+ b ≤

√
a+

√
b.

This completes the proof. The attacker’s advantage is fundamentally limited by how much the training
data distribution diverges from the test data distribution.

This decomposed bound reveals two distinct vulnerability terms:

1. Input Memorization Term:
√

DKL(Ptrain(X)||Ptest(X))
2

This term quantifies the leakage from the model memorizing the distribution of the training
inputs themselves. This vulnerability exists because a generative model’s objective function
explicitly requires it to learn P (X).

2. Conditional Memorization Term:
√

Ex[DKL(Ptrain(Y |X)||Ptest(Y |X))]
2

This term quantifies the leakage from the model overfitting the mapping from inputs to
labels. This vulnerability exists for both generative and discriminative models.
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C Extra Results

Attack 128 256 512 1024 2048 4096 Full Data

Entropy 0.51 ± 0.12 0.49 ± 0.10 0.50 ± 0.11 0.50 ± 0.11 0.51 ± 0.11 0.50 ± 0.11 0.50 ± 0.10
GBM 0.61 ± 0.16 0.58 ± 0.13 0.60 ± 0.15 0.60 ± 0.13 0.62 ± 0.13 0.60 ± 0.12 0.55 ± 0.07
Log Loss 0.61 ± 0.14 0.60 ± 0.12 0.61 ± 0.12 0.61 ± 0.12 0.61 ± 0.12 0.61 ± 0.11 0.60 ± 0.11
Max Probability 0.54 ± 0.12 0.52 ± 0.11 0.53 ± 0.11 0.53 ± 0.10 0.53 ± 0.10 0.53 ± 0.10 0.52 ± 0.09

Table 3: Membership inference attack performance (mean ± standard deviation AUROC) across
varying training sample sizes. Higher values indicate greater privacy vulnerability, with the highest
values in each column shown in bold.

Dataset Entropy GBM Ground Truth Predictions Log Loss Max Probability

AG News 0.54 ± 0.11 0.62 ± 0.16 0.62 ± 0.15 0.62 ± 0.15 0.58 ± 0.13
Emotion 0.47 ± 0.14 0.61 ± 0.13 0.64 ± 0.11 0.65 ± 0.11 0.52 ± 0.12
HateSpeech 0.52 ± 0.06 0.56 ± 0.09 0.56 ± 0.06 0.56 ± 0.06 0.53 ± 0.06
IMDb 0.51 ± 0.08 0.56 ± 0.12 0.54 ± 0.07 0.54 ± 0.07 0.51 ± 0.08
SST5 0.48 ± 0.10 0.61 ± 0.13 0.66 ± 0.14 0.67 ± 0.14 0.51 ± 0.10

Table 4: Membership inference attack performance (mean ± standard deviation AUROC) across
different datasets. Higher values indicate greater privacy vulnerability, with the highest values in each
row shown in bold.
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