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Abstract

Audio-visual vision–language models (VLMs) have recently
leapt forward, excelling at recognizing and localizing
audio-visual events from videos, generating videos with
audio from text prompt. Yet whether these models truly
understand the temporal synchrony between what is seen
and what is heard remains unanswered. Existing systems
(i) mostly sparsely sample video frames, making accurate
alignment challenging, or (ii) inherit M-RoPE/TM-RoPE
encodings that are only reliable within a two-second win-
dow; all are trained and evaluated exclusively on per-
fectly aligned audio–video pairs. Understanding mis-
alignment is critical: safety-critical applications require
millisecond-level localisation of events, and temporal de-
synchronisation is an emerging attack surface. We intro-
duce a compact evaluation set that injects controlled au-
dio–video time shifts into real-world clips and use it to
test two leading audio-visual VLMs, Gemini 2.0 Flash and
Qwen-2.5 Omni. Both models obtained accuracies be-
low chance rate in recognizing mis-alignment between au-
dio and visual information, exposing a clear gap in cur-
rent audio-visual understanding and motivating alignment-
aware model development.

1. Introduction

Humans recognize events in daily life by integrating visual
and auditory information. They infer information about ar-
eas outside their visual field based on sounds, and under-
stand the state transitions of objects—such as breaking or
collapsing—by combining what they see and hear.

In the field of computer vision, audio-visual recognition
is also a crucial technology and has been applied to a va-
riety of tasks such as Audio-Visual Segmentation (AVS)
[1], Audio-Visual Target Speaker Extraction (AV-TSE) [2],
and Audio-Visual Event Localization (AVEL) [3]. In these
tasks, audio information is used to complement visual in-
put, enabling more detailed event recognition compared to
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Figure 1. Illustration of Audio-video Temporal Misalignment
evaluation.

using visual information alone.
Furthermore, research on audio-visual VLMs [4] is cur-

rently being actively pursued. These models aim to compre-
hensively understand events from both visual and auditory
modalities, enabling functionalities such as caption genera-
tion and the localization of sound-emitting objects.

One of the essential capabilities required for audio-visual
vision-language models is the ability to accurately under-
stand the temporal relationships between sound and video.
This ability is critical for accurately recognizing and lo-
calizing audio-visual events. In applications where precise
synchronization between visual and auditory input is nec-
essary, desynchronizing the audio and video can serve as a
novel form of adversarial attack. Therefore, accurate align-
ment between audio and visual information is of great im-
portance. However, current methods under consideration do
not yet fully achieve perfect synchronization between video
and audio.

One of the reasons for this limitation is the inherent dif-
ference in modality: video and audio are discretely sam-
pled with different sampling manners. Many VLMs [5–8]
extract video features frame by frame in a discrete manner,
making it difficult to achieve perfect alignment with audio.
While methods such as MRoPE/TMRoPE [5] attempt to
synchronize video and audio by segmenting video into 2-
second intervals and aligning them via timestamps, it may
be challenging to handle misalignments that are less than
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2 seconds. Additionally, the datasets used for training and
evaluation are typically composed of audio and video that
are perfectly synchronized. As a result, these models tend
to be vulnerable to even minor misalignments between the
modalities.

To address this issue, we conducted an experimental in-
vestigation to determine whether current VLMs are capa-
ble of recognizing misalignments between video and audio.
The VLMs examined in this study were Qwen2.5-Omni [5]
and Gemini 2.0 Flash [9]. We constructed a dataset con-
sisting of 3–10 second clips generated from 51 videos col-
lected from online resources. For each clip, the audio track
was shifted forward and backward relative to the video in
0.5-second increments, within a range of 0 to 5 seconds.
Overall, the dataset has 4,284 video clips. These modified
clips were then input to the models to examine whether they
could recognize the temporal misalignment between audio
and video. In detail, the models were prompted to select the
most appropriate description from the following three op-
tions: the audio and video are synchronized; the audio lags
behind the video; or the audio precedes the video (Figure
1).

As a result, Qwen2.5-Omni achieved an overall accu-
racy of 4.7%, and Gemini 2.0 Flash achieved 26.0%, both
of which are below the random chance level. Furthermore,
Qwen2.5-Omni consistently responded with “sync” for all
clips, while Gemini 2.0 Flash responded with “sync” in
more than 50% of the cases, indicating a need for further in-
vestigation into the underlying causes. These findings sug-
gest that current VLMs are not capable of recognizing mis-
alignment between audio and video. However, the ability
to detect such misalignment is crucial in many real-world
applications and forms a core aspect of human audio-visual
understanding. Therefore, improving this capability is es-
sential for developing VLMs that more closely align with
human perception.

2. Related Work

2.1. Audio-Visual Recognition Evaluation

Audio Recognition Evaluation for VLMs: Benchmarks
for evaluating the performance of audio-visual recognition
in VLMs include Massive Multi-task Audio (MMAU) [10],
MMAR [11]. MMAU is a benchmark designed to as-
sess the inference and information extraction capabilities of
models on sounds, including speech, environmental sounds,
and music. The dataset consists of approximately 10,000
QA pairs, enabling evaluation across 27 types of cognitive
skills. It comprehensively covers the domains of speech,
music, and environmental sounds, allowing for a broad as-
sessment of a model’s ability to extract and infer informa-
tion from various auditory sources. Similarly, MMAR is
a benchmark that supports evaluation on speech, environ-

mental sounds, music, and their mixtures. Unlike MMAU,
which primarily focuses on event understanding without ad-
dressing deep-level reasoning, MMAR introduces a hier-
archical inference framework—comprising Signal, Percep-
tion, Semantic, and Cultural layers—to assess the model’s
ability for deeper reasoning.

Audio-Visual Recognition Evaluation for VLMs:
LongVALE [8] is constructed using an efficient and scal-
able pipeline that includes high-quality multimodal long-
video filtering, omni-modal event boundary detection, and
omni-modal event caption generation based on audiovisual
correlation reasoning. While MMAU and MMAR serve
as evaluation benchmarks for auditory capabilities, Long-
VALE is specifically designed to evaluate event recogni-
tion in long-form videos by integrating vision, audio, and
speech modalities. VAST-27M [12] is a dataset constructed
from an open-domain video corpus using a two-stage auto-
mated pipeline. It consists of video clips that contain five
vision-based captions, five audio-based captions, and one
omni-modal caption. Due to the diversity of caption types,
the dataset supports various learning tasks such as vision-to-
text and audio-to-text. Furthermore, an omni-modal foun-
dation model called VAST has been proposed, trained on
the VAST-27M dataset. VAST is capable of understanding
and processing all four modalities—vision, audio, subtitles,
and text—and can handle a wide range of tasks across these
modalities.

These benchmarks and models conduct evaluation and
training exclusively on videos in which the audio and visual
streams are synchronized. Therefore, it is unclear whether
they are capable of recognizing misalignment between au-
dio and video. In audio-visual event recognition, auditory
information serves as a crucial complement to the visual
content, enabling a more detailed understanding of events.
Consequently, the inability to detect audio-visual misalign-
ment poses a significant problem. In response, we conduct
an experiment to investigate whether current VLMs are ca-
pable of recognizing such misalignment.

2.2. Audio-Visual Recognition Method

VideoLLaMA2 [7] is based on its predecessor, VideoL-
LaMA [6], and is composed of two branches: a visual-
language branch and an audio-language branch, each oper-
ating independently. These two branches are connected via
a large language model, which performs the cross-modal
processing. The training datasets for video-text sources,
such as Panda-70M [13]. Additionally, WavCaps [14]
is used during the initial stage of training for the audio-
language branch. Qwen2.5-Omni is composed of four com-
ponents: a Vision Encoder, an Audio Encoder, a Thinker,
and a Talker. The Thinker accepts multiple types of modali-
ties as input, including text, images, audio, and video, and is
responsible for text generation. The Talker receives the rep-
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Figure 2. Illustration of the process of creating video clips.

resentations and text generated by the Thinker and outputs
individual speech tokens. Pretraining is conducted in three
stages: in the first stage, training is focused specifically on
the vision and audio encoders; in the second stage, training
is performed using a wide range of multimodal data; and in
the final stage, the model is trained on long sequence data
with a sequence length of 32k to handle complex, extended
input sequences. Meanwhile, Gemini 2.0 Flash and Gemini
2.5 Pro [9] are closed-source models capable of process-
ing videos with audio, and they have achieved the highest
accuracies in various audio-visual tasks. However, the ar-
chitecture and training data of the Gemini models remain
undisclosed.

All these methods are trained on aligned audio-visual
datasets, which might influence their ability to recognize
misalignment between audio and visual data. However,
understanding misalignment is a critical ability in various
applications, yet it is underexplored. Therefore, in our
research, we selected an open-sourced model, Qwen2.5-
Omni, and a closed-sourced model, Gemini 2.0 Flash, and
evaluated how they recognize misalignment between audio
and visual data.

3. Experiment

3.1. Evaluation Dataset

To cover different video genres and examine how model
performance varies across them, we collected 51 online
videos from five distinct genres. Video lengths ranged from
one minute to 15 minutes. Each video was manually ver-
ified to ensure proper synchronization between audio and
video. The genres and the number of videos used are shown
in Table 1.

Table 1. The genre and number of videos used.

Video genre Number
cooking (daily cooking videos) 11
instrument (violin, guitar, drum set, piano,
concert)

10

sports (tennis, table tennis, football, bas-
ketball, running match)

10

autonomous sensory meridian response
(ASMR)

10

speech (English, Chinese, French, Italian,
Japanese, Arabic)

10

As shown in Figure 2, from each video, clips of 3 sec-
onds, 5 seconds, 7 seconds, and 10 seconds in length were
randomly extracted. For each of these clips, versions were
prepared in which the audio was shifted both forward and
backward relative to the video in 0.5-second increments
within a range of 0 to 5 seconds, resulting in 20 video clips
with jittered audio and one original aligned video for each
clip. Overall, the dataset contains 4,284 video clips. These
clips were then input to the models to examine whether they
could detect the misalignment between audio and video.

3.2. Methods
The models examined in this study are the open-source
model Qwen2.5-Omni and close-source Gemini 2.0 Flash.
For Qwen2.5-Omni, both the 3B and 7B variants were eval-
uated. These three models were compared against a random
baseline.

The prompt used for the evaluation is shown in Figure 3.
The models were instructed to respond with “sync” if they
judged the audio and video to be synchronized, “ahead” if
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1 f"You will watch a {args.clip_len}-second video
with audio.\n"

2 "Reply with ONLY ONE word:\n"
3 "sync = audio matches video\n"
4 "ahead = audio earlier than video\n"
5 "behind = audio later than video"

Figure 3. Illustration of the input prompt.
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Figure 4. Recognition results of audio-visual misalignment of
Qwen2.5-Omni.

the audio was perceived to be ahead of the video, and “be-
hind” if the audio was perceived to be delayed relative to the
video. In addition, the variable “args.clip len” is designed
to store the duration, in seconds, of the input clip.

3.3. Result Analysis
As a result of the experiment, Qwen2.5-Omni responded
with “sync” for all clips across all genres in both the 3B and
7B versions, resulting in an overall accuracy of 4.7%. No-
tably, adjusting the input prompt did not produce any signif-
icant change in performance. A graph illustrating the results
is shown in Figure 4.

Gemini 2.0 Flash was evaluated using only 10-second
clips. As a result, the overall accuracy was 26.0%, and the
comparison between the ground truth and the model’s pre-
dictions is illustrated in the graph shown in Figure 5. The
accuracy for each video genre is shown in Table 2.

When examining the accuracy by video genre, Gemini
2.0 Flash demonstrated lower accuracy for videos involving
musical instrument performances and cooking. This is con-
sidered to be due to the relatively limited number of musical
performance videos used during training, and in the case of
cooking videos, the presence of diverse actions and tem-
porally irregular sounds compared to other genres, which
made temporal alignment of audio more difficult.
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Figure 5. Recognition results of audio-visual misalignment of
Gemini 2.0 Flash.

Table 2. Per-video-genre accuracy of Gemini 2.0 Flash.

Video genre Accuracy
(%)

cooking 13.5
instrument 20.3
sports 28.2
ASMR 33.7
speech 34.0

Overall, in our experiment, both models performed
worse than the random baseline (33.3% accuracy) and fell
far short of human performance, revealing a critical limita-
tion of existing VLMs. This highlights a potential vulner-
ability to adversarial attacks and raises concerns about the
models’ robustness and trustworthiness.

4. Discussion and Future Work

Our experiments reveal that two state-of-the-art VLMs per-
form below chance at detecting audio–video misalignment.

As future work, we plan to investigate the underlying
reasons why Qwen2.5-Omni responded with “sync” in all
cases, and why Gemini 2.0 Flash also selected “sync” with
a frequency exceeding 50%. Additionally, while the present
experiment involved shifting the audio relative to the video,
future studies will explore other experimental conditions,
such as exploring the spatial and semantic misalignment
recognition of current models, replacing parts of the audio
with audio from different videos, using video genres not in-
cluded in the current dataset, and evaluating the effect of
adding noise to the audio.
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