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Abstract

We study the high-dimensional asymptotics of empirical risk minimization (ERM)
in over-parametrized two-layer neural networks with quadratic activations trained
on synthetic data. We derive sharp asymptotics for both training and test errors
by mapping the ℓ2-regularized learning problem to a convex matrix sensing task
with nuclear norm penalization. This reveals that capacity control in such networks
emerges from a low-rank structure in the learned feature maps. Our results char-
acterize the global minima of the loss and yield precise generalization thresholds,
showing how the width of the target function governs learnability. This analysis
bridges and extends ideas from spin-glass methods, matrix factorization, and con-
vex optimization and emphasizes the deep link between low-rank matrix sensing
and learning in quadratic neural networks.

Modern machine learning relies heavily on training highly over-parameterized neural networks,
which often generalize well despite having far more parameters than data points [Zhang et al., 2021].
While it is known that large non-linear networks can approximate many functions [Cybenko, 1989],
it remains unclear what these models actually learn in practice, and why training succeeds so often.
In particular, we lack a precise understanding of how the structure of the data and the target function
affects learnability, and how many samples are needed. Developing such an understanding remains a
central theoretical challenge.

A promising route toward addressing these questions is to study models that go beyond the lin-
ear case—already well understood, eg. [Lee et al., 2018, Ji and Telgarsky, 2019, Pesme et al.,
2021]—while remaining simple enough for rigorous analysis. Two-layer networks with quadratic
activations are then the next natural candidate that captures some nonlinear behavior while still
allowing for mathematical treatment [Gamarnik et al., 2019, Arjevani et al., 2025, Maillard et al.,
2024]. On top of that working with synthetic data helps isolate the core mechanisms of learning
and generalization [Mei et al., 2018, Aubin et al., 2020, Mei and Montanari, 2022, Xiao et al., 2022,
Damian et al., 2024], free from the confounding factors of real-world datasets.

In this paper, we thus study learning by empirical risk minimization with quadratic networks from
data that is also generated by a quadratic network. Consider a dataset D = {xµ, yµ}nµ=1 where the
data xµ ∈ Rd are standard Gaussian xµ ∼ N (0, Id) (though our results allow for some universality)
for µ = 1, . . . , n, and the labels yµ ∈ R are generated by an unknown target function f⋆(x). We
aim at learning this unknown function using a quadratic neural network f̂(x;W ) with a number of
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hidden unit m ≥ d:

ŷ = f̂(x; Ŵ ) :=
1√
m

m∑
k=1

σk

(
ŵk · x√

d

)
, (1)

where σk(u) = u2 − ||wk||2/d is the (centered) quadratic activation, and where we collect the
first-layer weights wk ∈ Rd for k = 1, . . . ,m in the matrix W ∈ Rm×d. We learn W by empirical
risk minimization of the square loss with ℓ2 regularization (or equivalently, weight decay):

Ŵ = argminL(W ), where L(W ) :=

n∑
µ=1

(
yµ − f̂(xµ;W )

)2
+ λ∥W∥2F . (2)

Given the structure of the model, the considered quadratic neural network can represent any centered
positive semi-definite quadratic form of the input data—but no more. In particular, functions involving
higher-order nonlinearities cannot be captured and are effectively treated as noise by the learner. To
focus on the regime where generalization is possible, we therefore choose a target function f⋆ that
lies within the expressivity class of the model (1) (we will also refer to the model as the student while
thinking about the target as the teacher):

yµ = f∗(xµ;W ∗) +
√
∆ξµ , with f∗(x;W ∗) :=

1√
m∗

m∗∑
k=1

σk

(
w⋆

k · x√
d

)
, (3)

where ξµ ∼ N (0, 1) is an additional Gaussian label noise. As will shall see, our result will depend
on W ⋆ only through the spectral density of S⋆ = (W ⋆)TW ⋆/

√
m⋆d ∈ Rd×d, which needs to have

a well-defined limit as d→ ∞.

We will work in the high-dimensional limit d → ∞ with extensive-width target and quadratically
many samples, i.e. the joint limit d, n,m∗,m→ +∞ with

α = n/d2 = O(1) , κ∗ = m∗/d = O(1) , κ = m/d = O(1) . (4)

Our contributions. We provide an exact characterization of training and generalization in over-
parameterized two-layer neural networks with quadratic activations, in the high-dimensional limit
with Gaussian data. Our main result (Theorem 1) gives closed-form expressions for the training loss,
generalization error, and spectral properties of the global minima of the regularized empirical risk (2),
in the regime κ = m/d ≥ 1, κ∗ = O(1), and λ > 0.

Our solution to this problem connects three previously distinct lines of research that turn out to
be related: the geometry and training dynamics of quadratic networks in teacher-student setups
[Sarao Mannelli et al., 2020, Gamarnik et al., 2019, Martin et al., 2024a, Arjevani et al., 2025], recent
advances in high-dimensional Bayesian analysis of networks with extensive width [Maillard and
Bandeira, 2023, Maillard et al., 2024], and the role of implicit regularization in matrix factoriza-
tion [Gunasekar et al., 2017] and its connection to matrix compressed sensing and nuclear norm
regularization [Recht et al., 2010, Fazel et al., 2008].

Concretely, we map the non-linear estimation problem for W in (2) to the linear one of estimating
the matrix S =W⊤W/

√
md ∈ Rd×d, where, remarkably, the ℓ2 regularization on W translates into

a nuclear norm regularization on S. This reveals that the learning dynamics implicitly favor solutions
f̂ corresponding to narrow neural networks. We then study this equivalent matrix model by rigorous
tools based on approximate message passing [Berthier et al., 2020, Gerbelot and Berthier, 2023]
and their relation to convex optimization [Loureiro et al., 2021b]. Our main result is Theorem 1, an
analytical prediction for the test error achieved by the ERM, where importantly the error does not
depend on the value of κ as long as κ > 1, thus describing potentially massively over-parametrized
models. Theorem 1 allows us to answer a range of questions as a function of κ∗ (see Section 3).

1. Location of the interpolation threshold: How many samples n are needed to have only a
unique global minimum of (2) in the limit λ = 0+, both in the noiseless and noisy case?

2. Generalization performance: How many samples n are needed to achieve perfect generaliza-
tion with zero label noise?

3. Low-rank limit: What is the generalization performance in the limit κ∗ ≪ 1 corresponding
to low-rank target functions?
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In this paper, we provide new sharp results focusing on the extensive width case, encompassing
the full range of target widths and focusing in particular on the setting 0 < κ∗ < 1, previously
unexplored.

Finally, we remark that while (2) is a priori non-convex, it has no non-global local minima [Arjevani
et al., 2025], implying that if a gradient-based algorithm converges to a minimum at all, it must
converge to a global one. Hence, our main result Theorem 1 provides a closed-form characterization
of the behavior at convergence to minima of gradient-based algorithms for any strictly positive
regularization λ.

Further related work. Deriving exact formulas for two-layer networks in the teacher-student
setting in high dimensions is a classical problem that has been extensively studied over the past
decades (e.g., [Gardner and Derrida, 1989, Bayati et al., 2010, Thrampoulidis et al., 2018, Barbier
et al., 2019, Montanari et al., 2023]). The case of a single hidden unit, or single-index model, has been
widely explored and, for quadratic activations, reduces to phase retrieval [Mondelli and Montanari,
2018, Lu and Li, 2020, Maillard et al., 2020]. The case of a finite number of hidden units falls into
the broader class of multi-index models, which has seen a surge of recent interest [Seung et al.,
1992, Aubin et al., 2018, Damian et al., 2022, Bietti et al., 2025, Troiani et al., 2025, Bruna and
Hsu, 2025, Montanari and Urbani, 2025]. When the number of directions becomes extensive (i.e.,
of order O(d)) and for general activations, the problem has been studied for linearly-many samples
n = O(d) [Li and Sompolinsky, 2021, Cui et al., 2025, Pacelli et al., 2023, Bordelon and Pehlevan,
2023, Camilli et al., 2025]. It becomes significantly more challenging in the setting we consider
here of quadratically-many samples n = O(d2). This more difficult regime has been explored
empirically [Cui et al., 2025] and heuristically [Barbier et al., 2025] in a few specific settings, but an
asymptotically exact sharp characterization is still lacking.

Significant progress, however, has recently been made for the quadratic networks in the Bayes-
optimal, information-theoretic setting. In particular, [Maillard et al., 2024] computed the Bayes-
optimal performance in the setting considered here, a result later rigorously proven in [Xu et al., 2025].
These works build upon recent advances originating in the context of ellipsoid fitting [Maillard and
Kunisky, 2024, Maillard and Bandeira, 2023], and leverage a Gaussian universality principle that also
underpins our approach [Goldt et al., 2022, Hu and Lu, 2022, Montanari and Saeed, 2022, Dubova
et al., 2023]. This allows to study the problem as a matrix denoising task [Bun et al., 2014, Troiani
et al., 2022, Pourkamali and Macris, 2023a,b, Semerjian, 2024]. For empirical minimization instead,
landscape properties have been studied in [Du and Lee, 2018, Venturi et al., 2019, Soltanolkotabi
et al., 2019, Gamarnik et al., 2019, Sarao Mannelli et al., 2020, Arjevani et al., 2025], and gradient
descent on the population loss has been discussed in [Martin et al., 2024b].

The concept of double descent (see e.g. [Belkin et al., 2019, Nakkiran et al., 2021]) has reshaped
our understanding of the bias-variance trade-off, revealing that increasing model complexity can,
counterintuitively, improve generalization. While many of these analyses have focused on linear
or kernel regimes [Gerace et al., 2020, Geiger et al., 2020, Belkin et al., 2020, Mei and Montanari,
2022], our work instead provides sharp asymptotics for non-linear two-layer nets.

Our analysis for two-layer networks hinges on a mapping to a matrix compressed sensing, or low
rank-matrix recovery, problem with nuclear norm regularization [Fazel et al., 2008]. The number
of samples required for perfect recovery has been discussed in [Donoho et al., 2013, Oymak and
Hassibi, 2016, Amelunxen et al., 2014]. Additionally, we leverage tools from Approximate Message
Passing (AMP) theory. AMP has become a tool of choice for the rigorous analysis of statistical
inference problems and algorithms in high-dimension. It often allows to provides sharp asymptotic
characterizations of both Bayesian and empirical risk minimization procedures in many models
[Bayati and Montanari, 2011, Donoho and Montanari, 2016, Rangan et al., 2016, Loureiro et al.,
2021b, Vilucchio et al., 2025]. In this work, we use AMP with non-separable denoisers [Berthier
et al., 2020, Gerbelot and Berthier, 2023] to prove rigorously our main formula, that can also be
derived by the heuristic replica method, a non-rigorous technique from statistical physics [Mézard
et al., 1987, Mezard and Montanari, 2009].

1 Setting and notations

We consider a dataset of n samples D = {xµ, yµ}nµ=1, with xµ ∈ Rd and yµ ∈ R, constructed as in
(1). We remark that the assumption of Gaussian data could be relaxed in the same spirit as in [Xu

3



et al., 2025, Assumption 2.2], and denote by E the average of the training set. We will assume that
the empirical spectral density of the matrix S∗ = (W ∗)TW ∗/

√
m∗d ∈ Rd×d converges to a limiting

distribution µ∗ with finite first and second moment as d→ ∞ with κ∗ = m∗/d = O(1), and call Q∗

its second moment. As our running example, we will focus on the Marchenko-Pastur (MP) target case,
where the weights w∗ are such that the limiting distribution satisfies µ∗(x) =

√
κ∗µM.P.(

√
κ∗x),

where µM.P. is the Marchenko-Pastur distribution [Marchenko and Pastur, 1967] with parameter κ∗
(the asymptotic spectral distribution of ATA/m where A ∈ Rm×d has i.i.d. zero-mean unit-variance
components), and Q∗ = 1+κ∗. For example, this is the case for w∗ with i.i.d. components extracted
from a distribution with zero mean and unit variance, but we stress that our results hold also for
deterministic targets, as well as targets with different spectral distributions.

We learn the dataset by empirical risk minimization on the loss (2), and unless stated otherwise, in
this paper we will always consider learning with m ≥ d, typically for m > m∗. We will measure the
performance of the empirical risk estimator using the test error on the labels

etest(W ) =
1

2
Ex

(
f∗(x;W ∗)− f̂(x;W )

)2
, (5)

where the average is over a new test sample x with the same distribution as the training samples
(notice that for the sake of the test error we do not add any label noise on the test label). The Bayes-
optimal (BO) test error, i.e. the minimum test error achievable by any estimator (on average over the
joint realization of the dataset and the target weights) is a natural baseline. In the high-dimensional
limit (4), the BO test error has been characterized in [Maillard et al., 2024]. We will always consider
the high-dimensional limit (4).

2 Main theorem

Our main technical result is the characterization of the properties of the global minima of the empirical
loss (2) in the high dimensional limit in terms of training and test error.

Theorem 1 (Asymptotics of ERM (2), informal) Consider the setting of Section 1 with κ ≥ 1.
Define λ̃ =

√
κλ and µ∗

δ = µ∗ ⊞ µs.c.,δ, where ⊞ is the free convolution and µs.c.,δ =√
4δ2 − x2/(2πδ2) the semicircle distribution of radius 2δ for δ > 0. Call (δ̄, ϵ̄) ∈ R2

+ the unique
solution of{

4αδ − δ
ϵ = ∂1J(δ, λ̃ϵ)

Q∗ + ∆
2 + 2αδ2 − δ2

ϵ = (1− ϵλ̃∂2)J(δ, λ̃ϵ)
where J(a, b) =

∫ +∞

b

dxµ∗
a(x) (x−b)2 . (6)

Then, for all values of α, κ∗, λ > 0, ∆ ≥ 0 and κ ≥ 1 any global minimum Ŵ of (2) satisfies

lim
d→∞

Eetest(Ŵ ) = 2αδ̄2 − ∆

2
, lim

d→∞
d−2EL(Ŵ ) =

δ̄2

4ϵ̄2
− λ̃

2
∂2J(δ, λ̃ϵ) . (7)

Moreover, if µ∗ has compact support, then the empirical singular value density of Ŵ/ 4
√
md satisfies

lim
d→∞

E
1

d

d∑
i=1

δ(x− σi) = Fδ̄(λ̃ϵ̄)δ(x) + I(x > 0)
[
2xµδ̄(x

2 + λ̃ϵ̄)
]

(8)

where {σi}di=1 are the singular values of Ŵ/ 4
√
md, I is the indicator function and Fδ is the c.d.f. of

µ∗
δ .

Sketch of the proof. The proof, detailed in Appendix A, proceeds as follows. We use a reduction of a
regularized version of the minimization (2) to the one of a positive semi-definite matrix estimation:

Ŝ = argmin
S⪰0

L̃(S), with L̃(S) :=
n∑

µ=1

Tr [X(xµ) (S − S∗)]2 +
√
md
(
λTr(S) + τ∥S∥2F

)
(9)

where we defined S∗ =W ∗(W ∗)T /
√
m∗d and X(x) = (xxT − Id)/

√
d, and where we have added

a Frobenius norm penalty of amplitude τ . Notice that (9) is strongly convex for λ, τ > 0, so that
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Figure 1: Left: Test error of simulations of vanilla GD (crosses, error bars are the standard deviation
over 16 realizations of the target/training set at d = 300) compared with the results of Theorem
1 (lines) as a function of the number of samples n = αd2, noiseless case ∆ = 0, κ∗ = 0.2. We
observe a perfect match, particularly striking in the regime of small test error. The purple line is
the Bayes-optimal performance [Maillard et al., 2024]. Right: Test error of simulations of GD run
with LBFGS on (2) (yellow dots, d = 300) and of a convex solver run on the equivalent convex
matrix problem (9) (blue dots d = 50, purple d = 100 dots), for ∆ = 0.5, κ∗ = 0.2, and λ = 0.02
and as a function of the number of samples n = αd2. Error bars are the standard deviation over 16
realizations of the target/training set, compared with the result of Theorem 1 (gray line).

Ŝ is unique. Under the mapping S(W ) = WWT /
√
md, we have Ŝ = S(Ŵ ) for any (Frobenius

regularized) solution of (2), due to the uniqueness of Ŝ. The second part is to use the Gaussian
universality principle, that allows to replace each matrix (xxT − Id)/

√
d by a random Wigner matrix,

following closely the steps of [Maillard et al., 2024, Xu et al., 2025]. This in turns reduces the
problem to a rank-penalized matrix recovery problem with GOE(d) sensing matrices:

Ŝ = argmin
S⪰0

L̃G(S), with L̃(S) :=
n∑

µ=1

Tr [Zµ (S − S∗)]2 +
√
md
(
λTr(S) + τ∥S∥2F

)
(10)

The problem can then be studied in various way. For instance with the heuristic, but powerful, replica
method technique from statistical physics (see for instance [Maillard and Kunisky, 2024]). To provide
a rigorous approach, we use instead a suitable Approximate Message Passing (AMP) algorithm with
non-separable prior [Berthier et al., 2020, Gerbelot and Berthier, 2023], designed in such a way as its
(unique) non-trivial fixed point is also the fixed point of projected gradient descent on (9) [Bayati
et al., 2010, Montanari et al., 2012, Loureiro et al., 2021b], which by the convexity of (9) coincide
with the unique Ŝ. We then write the state evolution of this AMP algorithm which gives us all the
relevant characteristics of the minimizer. Simple manipulations of the state evolution equations, in
the limit τ → 0, lead to the characterization (6). □

Theorem 1 provides an asymptotic result for train and test error, as well as a characterization of the
singular values of the optimal neural network weights. It is of independent interest for the matrix
compressed sensing problem (10) and extends directly to any strictly convex matrix problem.

A remarkable observation is that the ℓ2 regularization over the weights W naturally translates to a
nuclear norm regularization in the equivalent matrix problem (the convexification of the minimum
rank regularization), naturally favoring model weights configurations with an effective lower width
(i.e., implementable with fewer hidden units): a weight decay in W thus implies a low nuclear norm
of the matrix S.

Theorem 1 also implies that the properties of the global minima do not depend on the network width
m, as long as m ≥ d. This means that a neural network with width κ ≫ 1 will achieve the same
test error as a much narrower network with κ = 1, when trained on the same data, provided that the
regularization strength is appropriately matched. Theorem 1 thus described both mildly and massively
over-parametrized models since for very large κ the number of learnable parameters will be not only
much larger than the target function, but also can be much larger than the number of samples.
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Figure 2: Spectra of the singular values of Ŵ/ 4
√
md for κ∗ = 0.2, ∆ = 0.5, λ = 0.02 and several

values of α. The red line is the singular value density of the target 2xµ∗(x2), the blue line is the
density predicted by (8). The histogram in gray is computed on the singular values of 16 runs of
LBFGS on experiments with d = 400.

We remark that our results can be extended to the setting where the second layer weights of the
student are binary ±1 with at least d positive and d negative weights, see Appendix G.

Illustration of Theorem 1 and the behavior of gradient descent. In Figure 1 we compare the
asymptotic results of Theorem 1 with numerical experiments at finite size run directly on the
equivalent convex loss (9) (using the solver CVXPY [Diamond and Boyd, 2016, Agrawal et al.,
2018]). We notice that despite the theoretical results being valid in the high-dimensional limit, they
are in excellent agreement with simulation at sizes as moderate as d = 50. Details on the numerical
experiments are given in Appendix F.

The mapping onto a matrix problem implies immediately that Theorem 1 describes also the perfor-
mance of gradient descent at convergence. Indeed, [Arjevani et al., 2025, Theorem 12] implies that if
m ≥ d, then the original minimization problem (2) has no local minima (in the language of [Arjevani
et al., 2025], it has no spurious valleys, which implies in our case absence of local minima). We
verify this claim experimentally at finite size by running gradient descent (GD)

wt
ki = wt−1

ki − η∇wki
L(w) (11)

initialized as wt=0
ki ∼ N (0, ζ2) independently, with ŵGD = wT , where T = 104 is a fixed stopping

time (we check that by time T GD has convincingly reached convergence) and η a tuned learning
rate (in Figure 1 right we used LBFGS for better convergence). We present our experiments in Figure
1. Again, we observe a very nice agreement, surprisingly precise in the region of small test error
(notice the log-scale on the vertical axis in the left panel). We further test our results by comparing
the empirical spectra with our theoretical prediction of equation (8) in Figure 2, observing a nice
match.

Relation with kernel ridge regression. While the equivalent model (9) is linear in the quadratic
feature space x → xixj , out result departs significantly from the analysis of kernel ridge regression,
random features regression and other linear methods studied in the literature (see e.g. [Gerace
et al., 2020, Bordelon et al., 2020, Loureiro et al., 2021a, Mei and Montanari, 2022]). The crucial
difference is in the regularization, which in (9) is a non-separable regularization including the positive
semi-definite constraint, that takes into account the full spectral distribution of the target µ∗, while
in the literature only the case of ℓ2 regularization in feature space was usually studied explicitly (a
separable regularization that takes into account only the second moment of the targetQ∗, disregarding
for example the low-width of the target function). Among the consequences of this, we find an
interpolation threshold that, unexpectedly, depends on the structure of the target function (Result 1).

Narrow students κ∗ ≤ κ < 1. We remark that Theorem 1 applies as is also to models with m < d
for certain values of the parameters, i.e. for all choices of α, κ∗, λ,∆ such thatm/d = κ > 1−Fδ̄(ϵ̄).
This is a consequence of the fact that the global minima of (2) for κ ≥ 1 have rank Fδ̄(ϵ̄) (see (8)),
and thus are also global minima of the (2) for κ < 1 under the above condition. Lower than this value
of κ, the rank constraint imposed by the structure of the student network affects the global minima of
the unconstrained (9), leading to non-convexity and to the failure of Theorem 1.
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Figure 3: (Left) The test error of any global minimum of (2) (Theorem 1) in the noiseless case
∆ = 0, κ∗ = 0.2 for finite regularization λ = 0.4 (blue line), in the limit λ→ 0+ (yellow line) and
for optimal regularization (dashed line). We compare with the Bayes-optimal performance [Maillard
et al., 2024] (purple line), and highlight the strong recovery threshold (vertical gray line, see Corollary
1). (Center, Right) The test and train loss (2) in the noisy case ∆ = 0.5, κ∗ = 0.2 for several values
of the regularization λ (solid lines), λ → 0+ (yellow line) and for optimal regularization (dashed
line). We highlight the region of sample ratio α where non-regularized training loss goes to zero
(before the vertical grey line, from Result 1), which coincides with the development of a cusp in the
test error as λ decreases.

3 Main results and consequences of Theorem 1

In this section we focus specifically on the Marchenko-Pastur target case (see Section 1, details on
the computation of µ∗

δ in Result 1 are given in Appendix E). We believe that our results generalize
(qualitatively for the learning curves, and as is for the thresholds and the low-rank target limit) to
any target such that µ∗ has a finite spectral gap, i.e. such that λmin = min{x ∈ supp(µ∗)|x > 0}
satisfies λmin > 0, with mass in zero equal to max(0, 1 − κ∗) (i.e. rank of the associated target
matrix ⌊min(κ∗, 1)d⌋) and second moment Q∗ = 1 + κ∗.

Learning curves. In Figure 3 we show the test and train error of any global minimum of the loss
function (2) given by Theorem 1, both the noiseless (∆ = 0) and noisy (∆ = 0.5) scenarios. Details
on the numerical experiments are given in Appendix E.

In the noiseless case (Figure 3 left), we plot the test error as functions of the sample ratio α for a
finite regularization value (λ = 0.4, blue line), in the limit of vanishing regularization (λ → 0+,
yellow line), and for the optimal choice of regularization (dashed line). These are contrasted with
the Bayes-optimal performance as derived in [Maillard et al., 2024] (purple line), clearly illustrating
the effect of regularization on the perfect recovery threshold, marked by the vertical gray line as per
Corollary 1.

In the noisy case (Figure 3 center and right), we show both the test and train losses as functions
of the sample ratio α for multiple values of λ (solid lines), including the minimum regularization
interpolator limit (λ→ 0+, yellow line) and the optimally regularized scenario (dashed line). Notably,
we highlight the specific region of α where the non-regularized training loss reaches zero (vertical
gray line, as per Result 1), which coincides with the emergence of a cusp – the double descent peak
[Belkin et al., 2019, Nakkiran et al., 2021] – in the test error as λ decreases.

Interpolation threshold. We define the interpolation threshold αinter(κ
∗,∆) as the value of the

sample ratio at which the set of PSD matrices S for which the loss (9) is zero for λ = 0 (we call
those the interpolators of the training dataset) shrinks to a single point. For α > αinter(κ

∗,∆), (9)
thus has a single global minimum with positive training loss if ∆ > 0, or with both zero training
and test loss if ∆ = 0. For α < αinter(κ

∗,∆) instead, the non-regularized λ = 0 loss admits many
global minima (all PSD interpolators), while the limit λ → 0+ has still a single global minimum
with zero training loss, and minimum value of the regularization norm. While we stated Theorem
1 for λ > 0 it also holds, at least at an heuristic level, for α > αinter(κ

∗,∆) and λ = 0 by directly
plugging λ = 0 in (6). The theorem does not hold for λ = 0 and α < αinter(κ

∗,∆) while it can
be adapted to the limit λ→ 0+ by a careful rescaling, which we comment upon in Appendix B. A
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direct consequence of Theorem 1 is a theoretical characterization of the position of the interpolation
threshold αinter(κ

∗,∆).

Result 1 (Interpolation threshold) Consider the setting of Section 1 for a Marchenko-Pastur target.
Then, the interpolation threshold αinter(κ

∗,∆) satisfies

αinter(κ
∗,∆) =

1

4δ̄
J (1,0)

(
δ̄, 0
)
+ od(1) where Q∗ +

∆

2
= J

(
δ̄, 0
)
− δ̄

2
∂1J

(
δ̄, 0
)
, (12)

where ∂1 denotes derivative w.r.t. the first argument, and J was defined in (6). Additionally, we have

lim
∆→0+

αinter(κ
∗,∆) =

1

4

{
1 + 2κ∗ − κ∗2 if 0 < κ∗ < 1

2 if κ∗ ≥ 1
, lim

∆→+∞
αinter(κ

∗,∆) =
1

4
. (13)

Result 1 is derived by considering the solution of the minimization problem (6) and setting λ = 0
directly at large α – where there is a unique minimum of (9) – and then looking for the smallest
value of α consistent with a unique minimum assumption. Equivalently, this is when the asymptotics
training loss reach zero (see Appendix C). We plot (13) in Figure 4. As discussed above, the
interpolation threshold does not depend on the width of the student.

It is interesting to contrast our results with the ellipsoid-fitting problem, where one seeks a PSD
matrix S such that a dataset of points {xµ}nµ=1 lies on the surface of the associated ellipsoid. This
problem, recently studied in a high-dimensional limit similar to (4) [Maillard and Kunisky, 2024,
Maillard and Bandeira, 2023], predicts that fitting is possible as long as α < 1/4. We recover this
same threshold, αinter = 1/4, in two extreme cases: when noise dominates (∆ → +∞) or when
the target is vanishingly small (∆ = 0, κ∗ → 0+). In all other scenarios, however, the interpolation
threshold is strictly larger, reflecting the structural advantage of the data over random labeling. Unlike
linear ridge regression or kernel methods, the interpolation threshold here is nontrivial and intricately
linked to data structure. Notably, it is not simply determined by the ratio of samples to parameters.
Despite the effective number of parameters scaling as O(d2/2), interpolation can occur well before
this count if the target function is sufficiently narrow (0 < κ∗ < 1). This effect arises from the PSD
constraint in the equivalent matrix problem (9), marking a fundamental departure from classic kernel
theory.

We note that special cases this threshold has been considered in the literature, for κ∗ ≥ 1 and ∆ = 0
in [Gamarnik et al., 2019], and our result agrees with these works. An analogue of this threshold
(still for ∆ = 0) has been considered in [Sarao Mannelli et al., 2020] for the case of low-width
target m∗ = 1, where the interpolation for the model with κ ≥ 1 happens at n = 2d. The authors
conjecture without a solid theoretical justification that for generic m∗ the interpolation happens at
n = d(m∗ + 1)−m∗(m∗ + 1)/2, which, however, is not compatible with our results. We conclude
that their conjecture is incorrect in the regime m∗ = Od(d), as it predicts interpolation for values
lower than the rigorous 1/4 random labels threshold [Maillard and Bandeira, 2023, Maillard and
Kunisky, 2024] as well.

Strong recovery threshold. A different phenomenon can be studied in the noiseless case ∆ = 0 and
λ→ 0+, i.e. what we call the strong recovery: the value of the sample ratio αstrong(κ

∗) = nstrong/d
2

such that, for α > αstrong the test error of the global minima of (2) is zero, and for α < αstrong is
strictly positive at ∆ = 0. Notice the difference with the previous paragraph, where the interpolation
peak was concerning the training error vanishing in the ∆ > 0 case, while we here consider the
perfect test error at ∆ = 0. This limit was studied in the context of matrix model (9) in the minimal-
norm interpolation setting [Donoho et al., 2013, Amelunxen et al., 2014, Oymak and Hassibi, 2016].
Here we re-derive their result independently as a consequence of Theorem 1.

Corollary 1 (Strong recovery threshold) Consider the setting of Section 1 for Marchenko-Pastur
targets with ∆ = 0, λ → 0+ and κ ≥ 1. Define for x ∈ [−2, 2] the incomplete moments of the
semicircle distribution

M (k)
s.c.(x) =

∫ x

−2

dxµs.c.(x)x
k =

1

2π

∫ x

−2

dx
√
4− x2 xk , (14)

and call c̄ the solution of the equation

M (1)
s.c.(c)− cM (0)

s.c.(c) +
c

1− κ∗
= 0 , (15)
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Figure 4: (Left) Interpolation threshold αinter(κ
∗,∆) as a function of κ∗ for several values of label

noise ∆ (Result 1). Notice the convergence to the 1/4 random-label-fitting threshold for very narrow
targets κ∗ ≪ 1 and large label noise ∆ ≫ 1. (Center) Comparison between interpolation threshold
(Result 1, ∆ = 0) and strong recovery threshold (Corollary 1) of the global minima of (2), with the
BO strong recovery threshold [Maillard et al., 2024]. Minimal regularization interpolators of (2)
reach perfect recovery well before the interpolator set shrinks to a singleton on the target weights
(the effect is more pronounced for very small ranks of the target function κ∗ ≪ 1. (Right) The test
error of any global minimum of (2) in the limit κ∗ → 0 (Result 2) for several values of regularization
λ = λ̄/

√
κ∗ and label noise ∆, compared with the Bayes-optimal [Maillard et al., 2024].

for 0 < κ∗ < 1. Then,

αstrong =

{
1
2 − 1

2 (1− κ∗)2
(
M

(2)
s.c.(c)− cM

(1)
s.c.(c)

)
if 0 < κ∗ < 1

1
2 if κ∗ ≥ 1

+ od(1) . (16)

Informally, the strong recovery threshold presented in Result 1 is derived by expanding (6) for δ → 0+

within an appropriate scaling ansatz, as the test error is proportional to δ2 (Theorem 1, noiseless case
∆ = 0), and finding the value α = αstrong such that the expansion is consistent. We provide all the
details in Appendix C. We plot (16) in Figure 4, comparing with the strong recovery threshold of the
BO estimator [Maillard et al., 2024] and with the interpolation threshold Result 1 for ∆ = 0.

Small target rank limit. Finally, we consider the small target width limit κ∗ → 0+ for κ bounded
away from zero. This is an example of large over-parametrization, as the ratio between student and
target widths m/m∗ diverges. In the limit κ∗ → 0, i.e. m∗ ≪ d, we define the rescaled sample ratio
ᾱ = α/κ∗ = n/(m∗d). The natural baseline to compare this limit against is given by the analogue
limit for the test error of the BO estimator given in [Maillard et al., 2024].

Result 2 (Test error in the κ∗ → 0 limit) Consider the setting of Section 1. Consider the limit
κ∗ → 0+ for any fixed κ > 0, ᾱ = α/κ∗ and λ̄ = λ

√
κ∗. Then, if ∆ = 0 and λ̄→ 0+ the test error

satisfies

lim
κ∗→0+

lim
d→∞

E etest(Ŝ) =


1 if 0 < ᾱ ≤ 1/2,
2
9 ᾱ(4−

√
6ᾱ− 2)2 if 1/2 < ᾱ ≤ 3

0 if ᾱ ≥ 3

(17)

In Appendix D we provide analogous expressions, albeit less explicit, for generic regularization
λ̄ > 0 and noise ∆ ≥ 0. We just state that for all λ̄ > 0 and ∆ ≥ 0, and for α < ᾱweak(λ̄,∆) the
test error equals one, where

ᾱweak(λ̄,∆) = max

(
1 + ∆/2

2
,
λ̄− 2(1 + ∆/2)

4

)
, (18)

and that for all λ̄ > 0 and ∆ > 0 and for ᾱ→ +∞ he have

lim
κ∗→0+

lim
d→∞

E etest(Ŝ) =
3∆

2ᾱ
(1 + oᾱ(1)) . (19)
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Result 2 provides a closed-form expression for the test error in the κ → 0 limit. It is derived by a
direct expansion of (6) at small κ, and it involves a BBP-like phase transition [Baik et al., 2005] in
the spectrum of Ŵ . We notice that Result 2 holds for any extensive student width κ > 0 due to the
fact that the rank of the global minima of (2) is vanishing as O(κ∗).

Figure 4 right shows the test error in the κ∗ → 0 limit for a selection of parameters. We see that the
solution at λ,∆ ̸= 0 as a non-trivial behavior, tracking closely but not exactly the λ→ 0+, ∆ ̸= 0
curve until an angular point is reached. We observe that for ᾱ < ᾱweak(λ̄,∆), the empirical risk
minimizer achieves BO performance, even though that is given by the trivial prior-average estimator.
Moreover, for ∆ = 0 and λ̄→ 0+, the empirical risk minimizer achieves strong recovery for ᾱ = 3
in accordance with Corollary 1. Finally, we remark that for fixed λ̄ > 0 and ∆ > 0, the test error
goes to zero as 1/α, which is the Bayes-optimal rate.

4 Discussion and limitations

In this paper, we presented a closed-form asymptotic characterization of learning a one hidden-layer
quadratic neural network target with an over-parametrized architecture, in the challenging high-
dimensional regime of extensive widths m∗ = O(d) target functions and quadratically-many samples
n = O(d2). We presented the asymptotic learning curves and values of relevant thresholds, as well
as numerical experiments (including gradient descent algorithms) illustrating that our theory applied
also accurately to very moderate sizes.

The main limitations of our setting are the restriction to random input data (which can be relaxed to a
certain extent, see [Xu et al., 2025] for a theoretical direction hinging on Gaussian universality, or
Loureiro et al. [2021b] for an empirical direction modeling real data by matching to Gaussian mixtures
with appropriate first and second moments), the choice of quadratic activation, the single hidden-layer
architecture and the requirement that the width of the target function satisfies m > d (imposing no
non-convex rank constraint in (9)). All such elements present highly non-trivial technical challenges,
and we hope our work will spark progress in these directions.
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A Proof of Theorem 1

In this section we discuss theorem 1 for the minima of

Ŵ = argminL(W ), where L(W ) :=

n∑
µ=1

(
yµ − f̂(xµ;W )

)2
+ λ∥W∥2F + τ∥WWT ∥2F .

(20)
which, due to the added regularization, is strongly convex for τ, λ > 0 and hence it admits a unique
global minimum. Note that while we concentrate on this case, the computation goes through for any
(strongly) convex denoiser.

The proof of Theorem 1 is an application of standard approaches in high-dimensional statistics, and
goes as follows:

1. In Section A.1, we show how to map the original learning problem into an equivalent matrix
estimation problem. This, in turn, can be reformulated as a vector Generalized Linear Model
(GLM) with a non-separable regularization.

2. In Section A.2, we use Gaussian universality and show that this model is asymptotically
equivalent to a Gaussian sensing problem, leveraging recent results on universality in
high-dimensional estimation.

3. The resulting Gaussian model can then be analyzed using the Generalized Approximate
Message Passing (GAMP) algorithm. We briefly recall the relevant properties of GAMP in
Section A.3.
To apply GAMP rigorously, we exploit the fact that its fixed points coincide with the
solutions of the associated convex optimization problem (Section A.3.1). These fixed points
are characterized by a set of deterministic equations known as state evolution (Section A.3.2).
With appropriate initialization (see Corollary 2), GAMP converges to the correct fixed point
(Theorem 5), which corresponds to the global minimizer of our original problem. Hence,
the fixed points of the associated state evolution equations describe the properties of the
global minima of (1). Notice that this discussion is generic (i.e. allows for generic convex
losses and regularizations), as long as the global minimum of the associated matrix problem
is unique.

4. Finally, in Appendix A.4, we describe the state evolution equations that precisely character-
izes the asymptotic behavior of the minimizer of the empirical risk (2), which is precisely
equivalent to the results given in Theorem 1 in the limit τ → 0+.

A.1 Mapping to a matrix model

The mapping of the data part of the loss is straightforward. For the ℓ2 regularization on the network
weights we have

m∑
k=1

||wk||22 =

d,m∑
i,k=1

W 2
ki =

√
md

d,m∑
i,k=1

W 2
ki√
md

=
√
md

d∑
i=1

S(W )ii =
√
mdTr(S(W )) . (21)

The same goes for the part proportional to τ in (20), that become the Frobenius norm of Ŝ. This leads
to the equivalent problem:

Ŝ = argmin
S⪰0

L̃(S), with L̃(S) :=
n∑

µ=1

Tr

[
xµx

T
µ − Id√
d

(S − S∗)

]2
+
√
md
(
λTr(S) + τ∥S∥2F

)
.

(22)

A.2 Data universality

The universality of the minimal error (or “ground state energy” in the physics jargon) follows directly
from a rich line of work on universality of empirical risk minimization [Goldt et al., 2022, Hu and
Lu, 2022, Montanari and Saeed, 2022, Maillard and Bandeira, 2023, Martin et al., 2024b, Xu et al.,
2025]. These results establish that, under broad conditions, the asymptotic behavior of the test and
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training errors becomes equivalent to those with a Gaussian sensing matrix. Given the maturity of
this theory, we will refer directly to these foundational works and provide a concise sketch of the
main arguments for completeness.

The universality follows directly from Proposition 2.1 in [Maillard and Bandeira, 2023], who derived
it in the related context of ellipsoid fitting. This was adapted to the "planted" case in [Xu et al., 2025,
Section 3.1, Lemma 3.3]. The proof strategy is to consider an interpolating model where each data
matrix is given by U(t) = cos(t)(xµx

T
µ − Id)/

√
d+sin(t)Gµ in t ∈ [0, 2π], from the original model

at t = 0 to the one with a GOE(d) random matrix Gµ at t = π/2, and to show that the "time" t does
not change the expected loss. We refer to these works (and to [Montanari and Saeed, 2022]) for the
detailed proofs, and directly state the universality result:

Theorem 2 (Gaussian Universality of the loss, from [Maillard et al., 2024, Xu et al., 2025])
Let ψ : R → R be a bounded differentiable functions with bounded derivative, then for any finite
α = n/d2, the minimum of the training loss GS({Φµ}nµ=1) := argminS L̃(S)({Φµ}nµ=1) (9) is
universal with respect to the training data Φµ in the sense that for any such ψ, then

lim
d→∞

∣∣∣∣∣∣E{xµ}ψ

GSd

{xµx
T
µ − Id√
d

}n

µ=1

− E{Gµ}i.i.d.∼ GOE(d)
ψ
[
GSd({Gµ}nµ=1)

]∣∣∣∣∣∣ = 0. (23)

if the matrices ({xµx
T
µ − Id})/

√
d respects the so-called one-dimensional CLT property [Xu et al.,

2025, Assumption 2.2] and if target weights S∗ and the regularization term of the loss r(S) satisfy
[Xu et al., 2025, Assumption 2.1].

The required one-dimensional CLT [Goldt et al., 2022, Montanari and Saeed, 2022, Dandi et al.,
2023] property is a point-wise normality of the projection of the operator, proven in the case of
Gaussian xµ in [Maillard and Bandeira, 2023, Lemma 4.8].

The universality argument can be readily adapted to other quantity as well, in order to show that not
only the loss, but also other observables such as the overlaps are universal. We will not repeat the full
proof, and directly use Theorem 3 in [Dandi et al., 2023] that can be applied mutatis mutandis1:

Theorem 3 (Universality of the overlaps [Dandi et al., 2023], informal) For any bounded-
Lipchitz function Ψ : Rd2 × Rd2 → R, we have:

E
[
Ψ
(
Ŝ, S∗

)]
−−−−−−−→
n,d→+∞
n/d2=α>0

EG
[
Ψ
(
Ŝ, S∗

)]

where Ŝ = argminS L̃(S), and S∗ determines the target function.

This directly can be applied to the overlap Tr[ŜT Ŝ] and Tr[ŜTS∗], which are thus universal, as well
as to the test error. Notice indeed that

etest(ŵ) =
1

2
Ex (fm∗(x;w∗)− fm(x; ŵ))

2
=

1

d
||S(w)− S(w∗)||2F , (24)

leading to an expression for the test error as a function of the overlaps. Finally, note that one can
apply the same argument to show the universality of any finite k ∈ Z+ moment d−1 Tr[Ŝk] (hinging
crucially on the PSD constraint to claim that all such perturbations are convex). With mild regularity
assumptions (for e.g. compact support, which is satisfied by the Marchenko-Pastur target case studied
in detail in the main text), this implies the universality of the spectral distribution of Ŝ as well.

1The argument is a classic approach of large deviation, or Legendre transform. This is done by applying
the universality to a perturbed version of the loss, where —to use the parlance of physics— a source term, or
a regularization, such as λS Tr[ŜTS∗], is added. Due to the convexity of the loss in λS the derivative with
respect to λS must converges to the same exact quantity in both the original and the equivalent model, since they
converge point-wise to the same limit.
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A.3 Generalized Approximate Message Passing algorithm and state evolution equations

We review here how to use GAMP to solve asymptotics convex optimization problems. Later, in
section A.4.1 we show indeed that the present PSD matrix optimization problem can be written as a
vector one, with a non-separable denoiser.

We will work in a vector setting, where one has sensing matrices A ∈ RN×D ∼ N (0, 1/D) (i.e. N
samples in D dimension) with rows aµ.

Notice that in this scaling ||u||2 should be always of order O(D).

The generic form of the "rectangular" GAMP algorithm reads [Javanmard and Montanari, 2013]:

ut+1 = AT gt(v
t) + dtet(u

t),

vt = Aet(u
t)− btgt−1(v

t−1) ,
(25)

with initialization ut=0 and the convention that g−1(·) = 0. Here v ∈ RN , u ∈ RD, g : RN → RN

and e : RD → RD.

The terms bt, dt are usually called Onsager’s reaction terms [Mézard et al., 1987], and are tuned
in such a way as to erase time-to-time correlations between the iterates (ut,vt) and the sensing
matrix A, so that from a statistical point of view of (ut,vt) it is as if the matrix A was resampled
independently at each time-step (conditioned on the previous iterates {(us,vs)}t−1

s=1). One has

dt = − 1

D
∇ · gt(vt) and bt =

1

D
∇ · et(ut) , (26)

where ∇ · f =
∑d

i=1 ∂ifi denotes the divergence of a function f : Rd → Rd. We will see later that
in high-dimension D ≫ 1, N = O(D), the Onsager’s term concentrate and do not depend on the
iterates ut and vt anymore.

A.3.1 GAMP for convex optimization

Using AMP for studying the minimum of a loss is now a classical approach that has been used in
many context, e.g. [Bayati et al., 2010, Montanari et al., 2012, Rangan et al., 2016, Loureiro et al.,
2021b, Vilucchio et al., 2025]. This is also discussed in detail the pedagogical review [Feng et al.,
2022, Section 4.4] and in the lecture notes [Krzakala and Zdeborová, 2024, Section 12.7.4].

The argument goes as follows: consider the convex optimization problem

argmin
u∈C

N∑
µ=1

ℓ(u · a,u∗ · a) +R(u) , (27)

with ℓ, R convex in their first argument, and C ⊆ RD a convex set. Define the functions

ḡ(r, s, b̄) = argmin
z∈R

[
ℓ(z, s) +

1

2b̄
(z − r)2

]
and g(r, s, b̄) =

ḡ(r, s)− r

b̄
,

e(r, d̄) = argmin
z∈C

[
R(z) +

d̄

2
||z − d̄−1r||2

]
.

(28)

Consider the GAMP algorithm

ut+1 = AT g(vt,y, bt) + dte(u
t, dt),

vt = Ae(ut, dt)− btg(v
t−1,y, bt−1) ,

(29)

where g is applied component-wise to v and y. Then, [Feng et al., 2022, Proposition 4.4] guarantees
that fixed points of (29) are solutions of (27) (by a minor adaptation, as they consider separable
regularization, but all their arguments generalize directly).

As long as ℓ, R are convex in their first argument, state evolution follows automatically for this
choices of g and e.

Additionally, we remark that if the loss is strictly convex, then the optimization problem (27) has
only a single global minimum, so that AMP will have a single fixed point coinciding with this global
minimum.
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A.3.2 State evolution

Thanks to the conditional Gaussianity discussed in Appendix A.3, one can track the statistics of the
iterated u,v of GAMP through a set of so-called state evolution equations. The main difference with
respect to previous approaches in our case is that the denoising function e is not separable. However,
[Berthier et al., 2020, Gerbelot and Berthier, 2023] guarantees that the state evolution that allows to
track the performance of AMP remains corrects (under regularity assumptions that are automatically
satisfied by e and g being proximal operators).

The state evolution associated to the GAMP
ut+1 = AT gt(v

t,y, bt) + dtet(u
t, dt),

vt = Aet(u
t, dt)− btgt−1(v

t−1,y, bt−1)
(30)

(where again here we consider g applied component-wise to v and y) is derived by considering that
yµ = ϕ(u∗ · aµ) where ϕ is a possibly random non-linearity, and taking into account the evolution
of the iterates u and v separately in the parallel and orthogonal directions to u∗ (and similarly with v
and v∗ = ATu∗). Using [Berthier et al., 2020, Gerbelot and Berthier, 2023] we have:

Theorem 4 (Theorem 1 in [Berthier et al., 2020], informal) Define

mt+1
u = N

DEt
u[∂z∗g(ω, ϕ(z∗), bt)]

qt+1
u = N

DEt
u[(g(ω, ϕ(z

∗), bt)2]
dt+1 = −N

DEt
u∂ωg(ω, ϕ(z

∗), bt)

mt
v = 1

DEt
v

[〈
u∗ ; e(

√
qtuz +mt

uu
∗, dt)

〉]
qtv = 1

DEt
v

[〈
e(
√
qtuz +mt

uu
∗, dt) ; e(

√
qtuz +mt

uu
∗, dt)

〉]
bt = 1

DEt
v∇ · e(

√
qtuz +mt

uu
∗, dt)

(31)

where the average Et
u is over the randomness in ϕ as well as over (ω, z∗) ∈ R2 distributed as[

z∗

ω

]
∼ N

([
0
0

]
;

[
||u∗||2/D mt

mt qt

])
, (32)

and Et
v is over z i.i.d. Gaussian N (0, ID).

Then the AMP vectors ut+1 and vt converges weakly to their Gaussian version: Ut = mt
uu

∗+
√
qtuz

(with z random Gaussian as above) and Vt =
√
qtv −mt

vw + mt
vA

Tu∗ (with w ∼ N (0, IN )),
in the sense that, for any deterministic sequence ϕn : (RD × RN )t × RN → R of uniformly
pseudo-Lipschitz functions of order k,

ϕn(u
0,v0,u1,v1, . . . ,vt−1,ut)

P≃ EU,V

[
ϕn
(
U0,V0,U1,V1, . . . ,Vt−1,Ut

)]
. (33)

An immediate corollary we shall use is the following:

Corollary 2 (Fixed point initialization) Consider a fixed point of the state evolution equations (31)
(we denote the fixed point quantities by fp). If one initializes an AMP sequence in the fixed point, i.e.

by using u0 = mfp
u u∗ +

√
qfpu z (with z random Gaussian as above), then in probability for any time

t > 0 and as d→ ∞, the sequence of iterates U t and V t remains in their fixed point.

We then use the following theorem, that ensure with the initialization of 2, then the GAMP equation
converges to their fixed point:

Theorem 5 (Convergence of GAMP, Lemma 7 from [Loureiro et al., 2021b]) Consider the
GAMP iteration with e, g as in (28), where all free parameters are initialized at any fixed point of the
state evolution equations. If the associated loss (27) is strongly convex, then GAMP converges to the
fixed point of the loss under study:

lim
t→∞

lim
d→∞

1√
d
∥ut − ufp∥F = 0, lim

t→∞
lim
d→∞

1√
d
∥vt − vfp∥F = 0 (34)

Thus, state evolution allows to compute all scalar observables (such as overlaps, errors, etc) on the
iterates, which at convergence and under the setting of Appendix A.3.1, are equivalent to the global
minimum of (27).
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A.4 State evolution for Theorem 1

Now that we have reviewed how to use GAMP to study the fixed point of an optimization problem,
it remains to show that the present matrix problem can be mapped to such an equivalent vectorized
problem. Consider (9), and write it in the following form:

Ŝ = argmin
S∈C

L̃(S), with L̃(S) :=
n∑

µ=1

ℓ (Tr[XµS],Tr[XµS∗]) +R(S) , (35)

where S ∈ Symd is a symmetric d× d matrix, C ⊆ RD is convex and ℓ, R are convex in their first
argument.

A.4.1 Mapping matrix-GLM to vector-GLM

We consider the mapping from vec : Symd → Rd(d+1)/2 (which conveniently maps the Frobenius
scalar product in Symd given by ⟨A ;B⟩ = Tr(AB) to the standard Euclidean scalar product in
Rd(d+1)/2) given by

vec (A)(ab) =
〈
b(ab) ;A

〉
=
√

2− δabAab , (36)

under the choice of orthonormal basis

b
(aa)
ij = δiaδja , b

(ab)
ij =

δiaδjb + δibδja√
2

. (37)

Here (ab) stands for the ordered pair of 1 ≤ a ≤ b ≤ d, and we denote Aij as the i, j entry of a
matrix A, while as A(ab) the component of matrix A onto the basis element b(ab). Let us denote
d(d+ 1)/2 = D (we will often use D ≈ d2/2 as we will be interested in the leading order in d).

Under this mapping, we have that w =
√
d/2vec (S) satisfies

||w||2 =
d

2
Tr[S2] = O(D) , (38)

for any S with asymptotically well-defined spectral density. In particular in state evolution u∗ =
vec (S∗) is such that ||u∗||2/D = Q∗. Moreover, we can define the correctly normalized sensing
vectors

Aµ
(ab) :=

√
1

d+ 1
vec (Xµ)(ab) =

√
d(2− δab)

2D
Xµ

ab ∼ N (0, 1/D) , (39)

for all 1 ≤ a ≤ b ≤ d, where we used that X ∼ GOE(d), giving

Tr[XµS] =
∑
(ab)

vec (Xµ)(ab)vec (S)(ab) =

√
2
d+ 1

d

∑
(ab)

Aµ
(ab)w(ab) ≈

√
2
∑
(ab)

Aµ
(ab)w(ab) .

(40)
where α = n/d2.

Thus, we can pick

ℓ̃(a, b) = ℓ(
√
2a,

√
2b) , R̃(w) = R(mat (w)/

√
d/2) and ϕ(z) = z +

√
∆/2 ξ (41)

where mat () denotes the inverse of vec (), ξ is a standard Gaussian (we are restricting here to the
Gaussian noise function ϕ), and similarly we define C̃ by a rescaling of C. Finally, we define the
equivalent vector problem in dimension D = d(d+ 1)/2 with N = n samples

ŵ = argmin
w∈C̃

L̃vec(w), with L̃vec(w) :=

N∑
µ=1

ℓ̃ (aµ ·w, ϕ(aµ ·w∗)) + R̃(w) . (42)

In particular, the GAMP iteration described in Appendix A.3 for this loss solves (9) modulo the
bijection vec (), with generic convex loss, regularization and constraint set C.
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A.4.2 GAMP denoiser g for the square loss

We directly specialize to the case of the square loss, but all this can be generalized to generic losses,
see [Loureiro et al., 2021a]. For ℓ(a, b) = (a− b)2 we have

ḡ(r, s, b̄) = argmin
z∈R

[
ℓ̃(z, s) +

1

2b̄
(z − r)2

]
=
r + 4b̄s

1 + 4b̄
and g(r, s, b̄) =

s− r

b̄+ 1/4
. (43)

The associated state evolution equations read (recall that ϕ(z∗) = z∗ +
√
∆/2ξ, including the

average over the noise ξ in the activation ϕ in Eu)
dt+1 = −N

DEt
u∂ωg(ω, ϕ(z

∗), bt) = 2α 1
bt+1/4

mt+1
u = N

DEt
u[∂z∗g(ω, ϕ(z∗), bt)] = 2α 1

bt+1/4

qt+1
u = N

DEt
u[(g(ω, ϕ(z

∗), bt)2] = 2αQ∗−2m+q+∆/2
(bt+1/4)2

(44)

where we used that N/D = 2n/d2 = 2α.

A.4.3 GAMP denoiser e for spectral regularization, including PSD constraints and
nuclear/Frobenius regularization

Spectral denoising function e. We have (calling Γ = mat
(√

2/dr
)

and k = d̄ to avoid confusion
with the dimension d)

e(r, k) = argmin
z∈C̃

[
R̃(z) +

k

2
||z − k−1r||2

]
= argmin

z∈C̃

[
R(
√
2/dmat (z)) +

k

2
||z − k−1r||2

]
=

√
d

2
vec
(
argmin

Z∈C

[
R(Z) +

d2k

4
||Z − k−1Γ||2F

]) (45)

Now, assume that both C and R are spectral, meaning that they do not depend on the eigenvectors
of Z. Then, if we consider the spectral decompositions Γ = ODOT , e(r, k) = ULUT , and we
parametrize Z = V TV T , then for each T

U = argmax
V ∈O(d)

Tr(V LV TODOT ) , (46)

which, by Von Neumann’s trace inequality [Mirsky, 1975] is given by the rotation V such that UTO
aligns the eigenvalues of T and D in decreasing order, which if we take the convention that all
spectral decomposition are given with eigenvalues sorted decreasingly, gives U = O. Thus, the
problem reduces to a spectral minimization

L = argmin
T∈C

[
d−2R(T ) +

k

4

d∑
i=1

T 2
i − 1

2

d∑
i=1

TiDi

]
, (47)

where here we are abusing the notation by writing Ti to mean Tii as T is really a diagonal d × d
matrix, and similarly for D. Notice that this expression is still general.

Spectral denoising function e for the case of the main text. We now specialize to the case of the
main text. If C is the set of PSD matrices and R(T ) = d2(λ̃

∑
i Ti + τ/2

∑
i T

2
i ) , then

Li =
1

2τ + k
ReLU

(
Di − 2λ̃

)
. (48)

In the end, this means that if
r = vec

(√
d/2ODOT

)
(49)

with eigenvalues Di sorted decreasingly, then

e(r, k) =

√
d

2
vec
(
O

1

2τ + k
ReLU

(
D − 2λ̃

)
OT

)
(50)

where here ReLU is applied component-wise to the diagonal matrix D − 2λ̃Id.
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State evolution equations. Now we need to derive explicit expressions for the associated state
evolution equations

mt
v = 1

DEt
v

[〈
x0 ; e(

√
qtuz +mt

uu
∗, dt)

〉]
qtv = 1

DEt
v

[〈
e(
√
qtuz +mt

uu
∗, dt) ; e(

√
qtuz +mt

uu
∗, dt)

〉]
bt = 1

DEt
v

∑D
i=1 ∂ie(

√
qtuz +mt

uu
∗, dt)i

. (51)

We revert to the case of general C and R for this, assuming that R is strictly convex over C for
simplicity. It is useful to consider the following function

Ψ(k, qu,mu) =
1

D
Et
v min
w∈C̃

[
R̃(w) +

k

2
||w||2 −√

qu⟨w ; z⟩ −mu⟨w ;u∗⟩
]

= − 1

D
lim

β→+∞
1

β
Et
v log

∫
w∈C̃

dwe−β(R̃(w)+ k
2 ||w||2−√

qu⟨w ;z⟩−mu⟨w ;u∗⟩)

= − 1

D
lim

β→+∞
Et
v

1

β
logZβ(k, qu,mu, z,x0) ,

(52)

where the limiting procedure and all following integration/derivation/limit exchanges are well defined
by the strict convexity of R, and Zβ was defined in the last line. Then we have immediately

−∂muΨ(k, qu,mu) =
1

D
Et
v

[〈
u∗ ; e(

√
qtuz +mt

uu
∗, dt)

〉]
,

2∂kΨ(k, qu,mu) =
1

D
Et
v

[〈
e(
√
qtuz +mt

uu
∗, dt) ; e(

√
qtuz +mt

uu
∗, dt)

〉]
.

(53)

Moreover (dropping the omnipresent β limit and average E, as well as the inputs of Z for readability)

−2∂quΨ(k, qu,mu) =

=
1

D
Et
v

1√
qu

∫
w∈C̃

dw
∑
i

wizi
e−β(R̃(w)+ k

2 ||w||2−√
qu⟨w ;z⟩−mu⟨w ;u∗⟩)

Zβ

=
1

D
Et
v

1√
qu

∫
w∈C̃

dw
∑
i

wi∂zi
e−β(R̃(w)+ k

2 ||w||2−√
qu⟨w ;z⟩−mu⟨w ;u∗⟩)

Zβ

=
1

D
Et
v

∑
i

∂√quzi+muu∗
i

∫
w∈C̃

dwwi
e−β(R̃(w)+ k

2 ||w||2−√
qu⟨w ;z⟩−mu⟨w ;u∗⟩)

Zβ

=
1

D
Et
v

∑
i

∂rie(r, k)i|r=√
quzi+muu∗

i

=
1

D
Et
v

D∑
i=1

∂ie(
√
qtuz +mt

uu
∗, dt)i

(54)

where in the third line we used Stein’s lemma, so that
mt

v = −∂muΨ(dt, qtu,m
t
u)

qtv = 2∂kΨ(dt, qtu,m
t
u)

bt = −2∂quΨ(dt, qtu,m
t
u)

. (55)

We just need to compute Ψ for the sake of the state evolutions.

State evolution equations for the case of the main text. If C is the set of PSD matrices and
R(T ) = d2(λ̃

∑
i Ti + τ/2

∑
i T

2
i ), then

Ψ(k, qu,mu) = 2Et
v

[∑
i

Li + τ/2
∑
i

L2
i +

k

4

∑
i

L2
i −

mu

2

∑
i

LiDi

]
, (56)

where Di is the i-th eigenvalue of the matrix S∗ +
√
qu/muZ, and Li is determined by

Li =
mu

2τ + k
ReLU

(
Di − 2λ̃/mu

)
, (57)
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giving

Ψ(k, qu,mu) = 2Et
v

[
λ̃
∑
i

Li + τ/2
∑
i

L2
i +

k

4

∑
i

L2
i −

mu

2

∑
i

LiDi

]

= − m2
u

2(k + 2τ)
Et
v

∑
i

ReLU(Di − 2λ̃/mu)
2

≈ − m2
u

2(k + 2τ)

∫
2λ̃/mu

dxµ∗√
qu/mu

(x)(x− 2λ̃/mu)
2

= − m2
u

2(k + 2τ)
J(

√
qu/mu, 2λ̃/mu) ,

(58)

where in the last step we used that at leading order the spectrum of S∗ +
√
qu/muZ concentrates (by

assumption in 1) to µ∗√
qu/mu

defined in Theorem 1.

A.4.4 Final form of the state evolution and observables

Collecting the state evolution equations derived in Appendices A.4.2 and A.4.3, calling mv = m,
qv = q, b = Σ, mu = m̂, qu = q̂ and d = Σ̂ we get the system of equations

Σ̂t+1 = 2α
Σt+1/4

m̂t+1 = 2α
Σt+1/4

q̂t+1 = 2αQ∗−2m+q+∆/2
(Σt+1/4)2

mt = ∂m̂t
(m̂t)2

2(Σ̂t+2τ)
J(
√
q̂t/m̂t, 2λ̃/m̂t)

qt = (m̂t)2

(Σ̂t+2τ)2
J(
√
q̂t/m̂t, 2λ̃/m̂t)

Σt = (m̂t)2

Σ̂t+2τ
∂q̂tJ(

√
q̂t/m̂t, 2λ̃/m̂t)

(59)

where J is defined in Theorem 1. This reduces to the equations presented in in Theorem 1 at its fixed
point and under the change of variable δ =

√
q̂/m̂, ϵ = 2/m̂.

The test error then is given by

etest = Q0 − 2m+ q = 2αδ2 −∆/2 . (60)

The expression train loss instead van be derived by using the fact that the residuals in the data part of
the loss can be computed from state evolution as q̂/16, and by evaluating the regularization at the
spectral density µ∗

δ (which is just the Tr of a shift and rescaling of this spectral distribution) giving
the expression in Theorem 1 in the limit τ → 0+.

Notice that these state evolution can be also heuristically applied in the case λ̃ = 0 as long as the
problem has a unique global minimum. This can be checked by having Σ < +∞, as Σ is a proxy for
the inverse of the curvature of the loss at the global minimum [Clarté et al., 2023], which becomes flat
when Σ = +∞. Notice also that Σ can be used to guarantee, at the heurisitc level, that the minimum
of the global loss is unique even without the need of the regularization τ > 0.

A.5 Replicon condition for Generalized Approximate Message Passing fixed points

For completeness, we discuss in this section the pointwise convergence of the GAMP algorithm when
initialized at a fixed point of the state evolution equations. While the convex nature of the problem
ensure this convergence [Loureiro et al., 2021b], we discussed here the explicit criterion that can also
be directly checked within the state evolution formalism. As noted by Bolthausen [2014], it hinges
on a stability condition—known in statistical physics as the replicon or de Almeida-Thouless (AT)
condition [de Almeida and Thouless, 1978, De Dominicis and Kondor, 1983]—which can be directly
and easily checked from the state evolution equations.

We thus provide the replicon condition on point-wise convergence of GAMP for generic non-separable
denoisers (see for instance Vilucchio et al. [2025] for the separable case).

30



Consider again the recursion (25)

ut+1 = AT gt(v
t) + dtet(u

t),

vt = Aet(u
t)− btgt−1(v

t−1) ,
(61)

with the bt, dt given in (26). We want to assess linear stability. To this end, we suppose that
the iteration is initialized at a fixed point (u,v) (and that at this point we also assume that the
nonlinearities g, e and the Onsager’s terms are constant in time), consider a Gaussian perturbation
ϵ ∼ N (0, ϵId) of u, and compute whether the iteration converges back to the fixed point after such
perturbation. Notice that we can avoid perturbing the Onsager’s terms, as in the high-dimensional
limit they are independent on the iterates. We have (at first order in ϵ)

vnew = Ae(u+ ϵ)− bg(v) = v +A(∇e(u))ϵ ,
unew = AT g(v +A(∇e(u))ϵ) + d e(u+ ϵ)

= u+AT∇(g(v))A(∇e(u))ϵ−D−1(∇ · g(v))(∇e(u))ϵ ,

unewk = uk +

D∑
i,j=1

N∑
µ,ν=1

AνkAµj∂µgν∂iejϵi −
1

N

N∑
µ=1

∂µgµ

D∑
i=1

∂iekϵi

= uk +

D∑
i,j=1

N∑
µ,ν=1

(AνkAµj −D−1δµνδkj)∂µgν∂iejϵi ,

(62)

where in the second to last step we used the explicit form of the Onsager’s term d, and in the last step
we suppressed the dependencies of the functions g, e on u,v for clarity and passed in components
notation.

The L2 norm of the perturbation unew − u equals (on average over the initial perturbation ϵ)

Eϵ(u
new
k − uk)

2 = Eϵ

D∑
i,j=1

N∑
µ,ν=1

(AνkAµj −N−1δµνδkj)∂µgν∂iejϵi

×
D∑

i′,j′=1

N∑
µ′,ν′=1

(Aν′kAµ′j′ −N−1δµ′ν′δkj′)∂µ′gν′∂i′ej′ϵi′

= N−2
D∑

i,j,j′=1

N∑
µ,ν,µ′,ν′=1

δνν′δjj′δµµ′∂µgν∂iej∂µ′gν′∂i′ej′

≈ 1

D

D∑
i,j=1

(∂iej)
2 × 1

D

N∑
µ,ν=1

(∂µgν)
2 ,

(63)

where we used that Eϵϵiϵi′ = δii′ , and the law of large number to substitute

(AνkAµj −D−1δµνδkj)(Aν′kAµ′j′ −N−1δµ′ν′δkj′)

≈ D−2δνν′δjj′δµµ′ ,
(64)

where in the last step we only kept the term that will contribute to leading order (equality at elading
order is denoted by ≈. This is the generalization to non-separable functions g, e of [Vilucchio et al.,
2025, Definition 1].

Thus, the linear stability criterion for GAMP is

N

D
× 1

D

D∑
i,j=1

(∂iej)
2 × 1

N

N∑
µ,ν=1

(∂µgν)
2 < 1 . (65)

In particular, in the case of independent observations we will have ∂µgν = δµν∂µgµ, and in the case
of separable denoiser one would have ∂iej = ∂ij∂iei. Notice also that this criterion is independent
of the value of the iterates u,v at the fixed points, as it concentrates onto its state-evolution-predicted
value.
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In the case of ℓ2 loss +PSD + nuclear norm regularization, a fixed point of the state evolution describes
a stable fixed point of GAMP if∫

dxµ∗
δ(x)

∫
dy µ∗

δ(y)

(
ReLU(x− ϵ)− ReLU(y − ϵ)

x− y

)2

< 2α . (66)

We have checked numerically that this condition was satisfied in our fixed point (in accord with
Theorem 5).

B Minimal norm interpolation limit λ → 0+

Consider (6). We would like to give a prescription to manipulate this equations in order to describe
minimal regularization interpolators. We first remark that the limit λ→ 0+ of (6) as written describes
the case of non-regularized minimization, and thus Theorem 1 will be valid in this case only for
α > αinterp, when only one interpolator of the training dataset exists.

Consider now the rescaling of (9) given by λ̃−1L̃. For any fixed positive λ̃, this rescaling does not
alter the solution of the minimization problem. In the limit λ̃→ 0+ instead, the loss first imposes that
the global minimum is an interpolator of the training dataset, and then minimizes the regularization
within the interpolator set. Thus, rescaling the loss by λ̃−1 and then sending λ̃→ 0+ will describe
minimal regularization interpolators, as long as α < αinterp in the noisy case (after that threshold no
interpolator exists, and the minimization problem is ill-defined) of for all α in the noiseless case (as
in this case there exists always one interpolator).

We practically achieve the loss rescaling in (6) by renaming λ̃ϵ→ ϵ, and obtaining the new system of
equations {

4αδ − λ̃ δ
ϵ = ∂1J(δ, ϵ)

Q∗ + ∆
2 + 2αδ2 − λ̃ δ2

ϵ = (1− ϵ∂2)J(δ, ϵ)
, (67)

equivalent to (6) for all λ̃ > 0, and then taking λ̃→ 0+.

Thus, to summarize the learning curves at λ̃ = 0+ are found as follows.

• In the noiseless case ∆ = 0, we solve (67) with λ̃ = 0 for all values of α.

• In the noisy case ∆ > 0, we solve (67) with λ̃ = 0 for all values of α < αinter, and we
solve (6) for λ̃ = 0 for all values of α > αinter.

C Derivation of Result 1 and Corollary 1

C.1 Prerequisites

For both Result 1 and Corollary 1 we will need the following results on the spectral density µ∗⊞µs.c.,δ ,
where ⊞ is the free convolution and µs.c.,δ =

√
4− x2/(2πδ2) the semicircle distribution of radius

2δ for δ > 0. Here µ∗(x) =
√
κ∗µM.P.(

√
κ∗x), where µM.P. is the Marchenko-Pastur distribution

[Marchenko and Pastur, 1967] with parameter κ∗ (the asymptotic spectral distribution of ATA/m
where A ∈ Rm×d has i.i.d. zero-mean unit-variance components), and Q∗ = 1 + κ∗.

We start by recalling that

J (δ, s) =

∫ +∞

s

dxµ∗
δ(x) (x− s)2 = Q∗ + δ2 − 2sM∗ + s2 −

∫ s

−∞
dxµ∗

δ(x) (x− s)2 , (68)

where
Q∗ =

∫
dxµ∗(x)x2 , M∗ =

∫
dxµ∗(x)x , (69)

and where we used that∫
dxµ∗

δ(x)x =

∫
dxµ∗(x)x+

∫
dxµs.c.,δ x =M∗∫

dxµ∗
δ(x)x

2 =

∫
dxµ∗(x)x2 +

∫
dxµs.c.,δ x

2 = Q∗ + δ2
(70)
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by additivity of the mean and variance.

Now we use [Maillard et al., 2024, Appendix D.3] to state that for any fixed x, for δ → 0+, we have
at leading order

δ
√
1− κ∗ µ∗

δ(xδ
√
1− κ∗) ≈ (1− κ∗)µs.c.(x) . (71)

This will allow us to compute the last integral in (68) when δ ≪ 1 for some values of s. Indeed, when
δ ≪ 1 and 0 < κ∗ < 1 the spectral density µ∗

δ is composed by a small semicircle around the origin
with mass 1− κ∗, and an approximately µ∗-shaped bulk gapped away from the origin. So as long
as s lies in the gap between the two bulks, only this semicircle will contribute to (68). For κ∗ > 1
instead, the bulk at the origin is not present leading to a zero contribution from all the integrals. The
case κ∗ = 1 is more delicate, as there the spectral distribution of the target may be non-gapped (for
example, in the narrow target case). We recover this case by a limiting procedure from the two sides.

C.2 Derivation of Result 1

To find the interpolation threshold, we consider (6) for λ̃ = 0. To do this, we need to make sure that
we are in the α > αinter region, where only one interpolator (noiseless case) or no interpolator (noisy
case) exists, giving a single minimum of the training loss. This can be checked by having

Σ = αϵ− 1

4
< +∞ , (72)

where Σ was defined in (59). The interpolation threshold will be exactly at the point where Σ ∝ ϵ
diverges.

Noisy case. Consider the (6) with λ̃ = 0. We have{
4αδ − δ

ϵ = ∂1J(δ, 0)

Q∗ + ∆
2 + 2αδ2 − δ2

ϵ = J(δ, 0)
. (73)

We now consider the limit ϵ→ +∞, obtaining{
4αδ = ∂1J(δ, 0)

Q∗ + ∆
2 + 2αδ2 = J(δ, 0)

=⇒
{
αinter =

1
4δ∂1J(δ, 0)

Q∗ + ∆
2 = J(δ, 0)− δ

2∂1J(δ, 0)
, (74)

i.e. an equation for δ, which can be plugged in to directly find α. This gives the first part of Result 1.
Notice that the value of δ found will be finite, giving also an analytic prediction of the height of the
cusp of the test error at interpolation.

For ∆ → +∞, we see that a consistent solution is given by δ → +∞ (starting from (73) at finite ϵ,
and then taking the limit). In that case, µ∗

δ is, at leading order, a semicircle with radius 2δ, so that

J(δ, 0) ≈ 1

2
δ2 and ∂1J(δ, 0) ≈ δ , (75)

implying that for large ∆ the interpolation threshold converges to 1/4.

Noiseless case. Here we can advance more. In the noiseless case ∆ → 0, we also know that after
interpolation we have zero test error, hence δ = 0. Thus, we can expand J(δ, 0) for small δ. Using
(68) and (71) we have

∂δJ (δ, 0) = ∂δ(Q
∗ + δ2)− ∂δ

∫ 0

−∞
dxµ∗

δ(x)x
2

= 2δ − ∂δ

[
δ2(1− κ∗)

∫ 0

−∞
dy δ

√
1− κ∗µ∗

δ(δ
√
1− κ∗y) y2

]
≈ 2δ − ∂δ

[
δ2(1− κ∗)2

∫ 0

−2

dy µs.c.(y) y
2

]
≈ δ

[
2− (1− κ∗)2

]
,

(76)

implying that the equation for δ is satisfied for δ = 0, and that

αinter =
1 + 2κ∗ − κ∗2

4
. (77)
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Let us notice that the δ = 0 solution here is valid for all α > αinter, so we could have worked with (6)
with λ̃ = 0 and finite ϵ, and computed ϵ explicitly as a function of α. Doing this shows that ϵ < +∞
for all α > αinter, and that ϵ→ +∞ exactly at the threshold. This concludes the derivation of Result
1.

C.3 Derivation of Corollary 1

Consider first the case 0 < κ∗ < 1. We start from the stationary conditions for (6){
4αδ − δ

ϵ = ∂δJ
(
δ, λ̃ϵ

)
Q∗ + 2αδ2 + ∆

2 − δ2

ϵ = [(1− s∂s)J(δ, s)]s=ϵλ̃

(78)

To compute the strong recovery, i.e. the value of α at which the test error is zero, we look for the
value of α that is consistent with a solution of (6) in the limit δ → 0+. We assume the scaling

ϵ = δ
√
1− κ∗c (79)

and verify it self-consistently. We have that (71) implies at leading order

∂δ

∫ λ̃ϵ

−∞
dxµ∗

δ(x) (x− λ̃ϵ)2

= ∂δδ
2(1− κ∗)

∫ λ̃ϵ/δ
√
1−κ∗

−∞
dy δ

√
1− κ∗µ∗

δ(δ
√
1− κ∗y)

(
y − λ̃ϵ

δ
√
1− κ∗

)2

≈ ∂δδ
2(1− κ∗)2

∫ λ̃ϵ/δ
√
1−κ∗

−2

dy µs.c.(y)

(
y − λ̃ϵ

δ
√
1− κ∗

)2

= 2δ(1− κ∗)2
(
M (2)

s.c.(λ̃c)− 2λ̃cM (1)
s.c.(λ̃c) + λ̃2c2M (0)

s.c.(λ̃c)
)

+ 2δ(1− κ∗)2
(
λ̃cM (1)

s.c.(λ̃c)− λ̃2c2M (0)
s.c.(λ̃c)

)
= 2δ(1− κ∗)2

(
M (2)

s.c.(λ̃c)− λ̃cM (1)
s.c.(λ̃c)

)
,

(80)

where we defined the incomplete k-th moment of the semi-circle distribution as

M (k)
s.c.(x) =

∫ x

−2

dy µs.c.(y) y
k . (81)

Similarly[
(1− s∂s)

∫ s

−∞
dxµ∗

δ(x) (x− s)2
]
s=ϵλ̃

=

∫ λ̃ϵ

−∞
dxµ∗

δ(x) (x− λ̃ϵ)2

+ 2ϵλ̃

∫ λ̃ϵ

−∞
dxµ∗

δ(x) (x− ϵλ̃)

=

∫ λ̃ϵ

−∞
dxµ∗

δ(x) (x
2 − λ̃ϵ2)

≈ δ2(1− κ∗)2
(
M (2)

s.c.(λ̃c)− λ̃2c2M (0)
s.c.(λ̃c)

)
.

(82)

This leads to the equations (at leading order in δ → 0+) α = 1
2 + λ̃

4c
√
1−κ∗δ

− 1
2 (1− κ∗)2

(
M

(2)
s.c.(c)− cM

(1)
s.c.(c)

)
α = 1

2 − ∆
4δ2 + λ̃

2c
√
1−κ∗δ

− 1
2c

2(1− κ∗)− 1
2 (1− κ∗)2

(
M

(2)
s.c.(c)− c2M

(0)
s.c.(c)

) (83)

where we renamed cλ̃→ c (which will allow to be in the interpolation limit for λ̃ = 0 as detailed in
Appendix B). Define

λ̄ =
λ̃

4δ
√
1− κ∗

and ∆̄ =
∆

4δ2
, (84)
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that is the small regularization limit and noisless limit at the critical scaling. Then the equations read
λ̄
c − ∆̄ = 1

2 (1− κ∗)2
(
cM

(1)
s.c.(c)− c2M

(0)
s.c.(c) +

c2

1−κ∗

)
αstrong = 1

2 + λ̄
c − 1

2 (1− κ∗)2
(
M

(2)
s.c.(c)− cM

(1)
s.c.(c)

) , (85)

giving one equation for c, and one for αstrong given c. By computing the next-to-leading order, one
could access the speed at which α→ αstrong in δ, invert it and find the critical scalings of λ̃ and ∆

as a function of αstrong − α. In the case λ̃ = ∆ = 0 we have the simpler equation c = (1− κ∗)
(
cM

(0)
s.c.(c)−M

(1)
s.c.(c)

)
αstrong = 1

2 − 1
2 (1− κ∗)2

(
M

(2)
s.c.(c)− cM

(1)
s.c.(c)

) , (86)

which modulo conversions gives the same αstrong as [Donoho et al., 2013, 12].

For κ∗ > 1, the same equations hold with all M contributions set to zero (see discussion above),
giving (again for λ̃ = ∆ = 0)

αstrong =
1

2
. (87)

This shows Corollary 1.

D Derivation of Result 2

We start again from (6){
4αδ − δ

ϵ = ∂δJ
(
δ, λ̃ϵ

)
Q∗ + 2αδ2 + ∆

2 − δ2

ϵ = J(δ, λ̃ϵ)− ϵλ̃J (0,1)(δ, ϵλ̃) .
(88)

We redefine λ̃ϵ→ ϵ and consider the limit κ∗ → 0 under the scaling ansatz α = ᾱκ∗, δ = dκ∗−1/2,
ϵ = cκ∗−1/2 and λ̃ = λ̄κ∗1/2. Notice that Q∗ = 1 + κ∗ ≈ 1 in the limit. The equations read{

4ᾱd− λ̄d
c = ∂dJ (δ, ϵ)

1 + 2ᾱd2 + ∆
2 − λ̄d2

c = (1− c∂c)J(dκ
∗−1/2, cκ∗−1/2)

(89)

Then

J
(
dκ∗−1/2, cκ∗−1/2

)
=

∫ +∞

cκ∗−1/2

dxµ∗
dκ∗−1/2(x) (x− cκ∗−1/2)2

= κ∗−1
∫ +∞

c

dy κ∗−1/2 µ∗
dκ∗−1/2(yκ

∗−1/2) (y − c)2 .

(90)

We now use the fact that at leading order for small κ∗

ν(y) ≈ κ∗−1/2 µ∗
dκ∗−1/2(yκ

∗−1/2) (91)
is given by a semi-circle distribution of radius 2d centered at zero with mass 1− κ∗, plus a Dirac’s
delta spike at y = 1 + d2 with mass κ∗ if d2 ≤ 1, see [Maillard et al., 2024, Appendix E.1].

We then have the following cases in which the spike does not contribute.

• No spike d2 > 1 and c > 2d, or spike 0 < d2 < 1 and c > 1 + d2 > 2d. Then the integral
J does not contribute to the equations. Thus{

4ᾱd = d
c λ̄

1 + 2ᾱd2 + ∆
2 − d2

c λ̄ = 0
=⇒

{
c = λ̄

4ᾱ

d2 = 1+∆/2
2ᾱ

, (92)

under the condition{
d2 > 1 ⇐⇒ ᾱ < 1+∆/2

2

c > 2d ⇐⇒ ᾱ < λ̄2

32(1+∆/2)

=⇒ ᾱ < min

(
1 + ∆/2

2
,

λ̄2

32(1 + ∆/2)

)
, (93)

or{
d2 ≤ 1 ⇐⇒ ᾱ ≥ 1+∆/2

2

c > 1 + d2 ⇐⇒ ᾱ < λ̄−2(1+∆/2)
4

=⇒ 1 + ∆/2

2
≤ ᾱ <

λ̄− 2(1 + ∆/2)

4
. (94)
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• No spike d2 > 1 and bulk integral contribution c→ (2d)−. In this case c tends to 2d with
the appropriate rate in order to have order O(1) contribution from the bulk integral in the
equations. We have, calling 2d− c = dt i.e. c = d(2− t) for some t > 0

κ∗−1
∫ 2d

(2−t)d

dy
1

d
µs.c.

(y
d

)
(y − d(2− t))2 = d2κ∗−1

∫ 2

2−t

dy µs.c. (y) (y − 2 + t)2

= d2κ∗−1 16t
7/2

105π
+O

(
κ∗−1t9/2

)
(95)

giving

Jbulk =
16d2t7/2

105πκ∗
≈ 0

∂dJ
bulk =

16dt5/2

15πκ∗
≈ T

∂cJ
bulk = −8dt5/2

15πκ∗
≈ −T

2

(96)

from which we see that the bulk integral contributes to non-diverging order if t5/2 = O(κ∗),
giving the equations{

4ᾱd− λ̄ 1
2 = T

1 + 2ᾱd2 + ∆
4 − λ̄d

2 = dT
=⇒

{
T = 2

√
2ᾱ(1 + ∆/2)− 1

2 λ̄

d2 = 1+∆/2
2ᾱ

(97)

under the conditions{
d2 > 1 =⇒ ᾱ < 1+∆/2

2ᾱ

T > 0 =⇒ ᾱ > λ̄2

32(1+∆/2)

=⇒ λ̄2

32(1 + ∆/2)
< ᾱ <

1 + ∆/2

2ᾱ
(98)

Thus, we start finding that

MSE = 1 for ᾱ < max

(
1 + ∆/2

2
,
λ̄− 2(1 + ∆/4)

4

)
. (99)

We now consider the case in which the spike contributes.

• If there is the spike d2 < 1 and it is the only contribution 2d < c < 1 + d2, then the
equations read{

4ᾱd− d
c λ̄ = 4d(1 + d2 − c)

1 + 2ᾱd2 − d2

c λ̄+ ∆
2 =

(
1 + d2 − c

)2
+ 2c

(
1 + d2 − c

) (100)

This system can be solved explicitly under the conditions above, giving quite an unmanage-
able expression. It reduces to δ = 0 for ∆ = λ̄ = 0.

• If there is the spike d2 < 1 and it contributes along with the bulk (see discussion above and
(96)) c→ (2d)−, then the equations read{

4ᾱd− 1
2 λ̄ = 4d(1− d)2 + T

1 + 2ᾱd2 − d
2 λ̄+ ∆

4 = (1− d)4 + 4d(1− d)2 + dT
(101)

These give again unmanageable expressions, but for ∆ = 0 it gives

MSE =
2

9
ᾱ
(
4−

√
6ᾱ− 2

)2
. (102)

One can check by explicit solution that the last two cases lead to test error strictly smaller than one.
The last two cases can be easily solve numerically, allowing to plot the curves in Figure 4.

Finally, the large α behavior can be found by considering the last case{
4ᾱd− 1

2 λ̄ = 4d(1− d)2 + T

1 + 2ᾱd2 − d
2 λ̄+ ∆

4 = (1− d)4 + 4d(1− d)2 + dT
(103)
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under the scaling ansatz

d =
1√
α

(
d0 +

d1
α

+ . . .

)
T =

√
α

(
T0 +

T1√
α
+ . . .

)
(104)

and solving the equations perturbatively gives

d0 =

√
∆

2
and d1 =

3
√
∆

4
(105)

giving the large α scaling presented in Result 2.

This completes the derivation of Result 2.

E Details of the numerical implementation of Theorem 1

We provide the code for the numerical implementation of the equations in Theorem 1 and the
experiments at https://github.com/SPOC-group/OverparametrisedNet.

The numerical implementation of (6) reduces, at its core, to two sub-tasks: the numerical evaluation
of µ∗

a, the integration involved in computing J(a, b) and its partial derivatives, and the numerical
solution of the equations themselves.

Computing µ∗
a. Recall that the spectral density µ∗

a is the free convolution of a rescaled Marchenko-
Pastur µ∗ distribution, and that of a semicircle distribution with radius 2a. In particular, µ∗(x) =√
κ∗µM.P.(

√
κ∗x), where µM.P. is the Marchenko-Pastur distribution with parameter κ∗ (the asymp-

totic spectral distribution of ATA/m where A ∈ Rm×d has i.i.d. zero-mean unit-variance compo-
nents). This free convolution can be computed using standard random matrix theory [Potters and
Bouchaud, 2020] tools. We report here the procedure as described in Maillard et al. [2024], and
summarize here only the steps without providing a derivation.

To compute the spectral density under consideration, first we fix the noise level a and the location x
at which we want to compute µ∗

a(x). Then, we solve the following cubic equation (looking for the
solution with largest imaginary part, if all solutions are real then the spectral density at that location
is zero) (

1√
κ∗
a

)
g3 −

(
z√
κ∗

+ a

)
g2 +

(
z +

1√
κ∗

−
√
κ∗
)
g − 1 = 0 , (106)

where z = x− iτ with τ a small positive constant.

The solution g = g(z) of the equation is the so-called Stieltjes transform of µ∗(x), i.e.

g(z) =

∫
dx

µ(x)

x− z
, (107)

which can be inverted by the Stieltjes–Perron inversion formula, i.e.

µ∗
a(x) = lim

τ→0+

1

π
Im gµY

(x− iτ) . (108)

In practice, the limit is done by using τ = 10−12 directly in (106).

Additionally, by imposing that the discriminant of (106) is zero we obtain an equation for x (setting
τ = 0) that allows to precisely evaluate the boundaries of each of the bulks of µ∗

a (the distribution
has two bulks in the low-noise setting, and one single bulk otherwise, with the splitting threshold
depending non-trivially on κ∗ and a).

Computing J(a, b). We use the estimate of the bulk boundaries to set-up an efficient integration
scheme to finally compute J(a, b). We first compute the bulk boundaries, then intersect the support
of the bulks with the integration region (b,+∞), and finally for each bulk integrate µ∗

a(x)(x− b)2

using quad from the Scipy library in Python. This explicit use of the bulk boundaries allows precise
evaluation of J(a, b) even in the low-noise regime, where one of the bulks has very small support
with quite large values for the spectral density.

Finally, we compute the partial derivatives of J(a, b) by centered finite differences, with step size
equal to 10−8.
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Numerical solution of the equations. To solve numerically (6), we find it convenient to revert to
the state evolution equations presented in Appendix A.4, equation (59). We follow the prescribed
iteration, possibly damping the updates with a factor as small as 10−2, and declaring convergence
when the Euclidean distance between two subsequent updates falls below a prescribed tolerance
of at least 10−4. It is also convenient to adopt a planting scheme, where the equations for a given
value of λ̃,∆, κ∗ are solved for one initial value of α (we found that a value around the mid-point
between α = 0 and α = αstrong works best), and then the rest of the learning curve as a function of
α is computed by successively using the solution at a value α as the initialization for that of α+ δα,
where δα is a small step-size.

F Details of the experiments

For Figure 1 right and d ≤ 100 we used the CVXPY package in Python. All the other experiments are
realized in PyTorch. We instantiate the student weights randomly as centered Gaussian variables with
standard deviation 10−3 and the target ones with variance 1, appropriately changing the functional
form of the target. In Figure 1 right we optimize using LBFGS for the sake of efficiency. For Figure 1
left we optimize using the GD iteration

wt+1
k = wt

k − 2λη
wt

k√
md

− η

n∑
µ=1

∇wk

[
yµ − 1√

m

m∑
k=1

σk

(
wt

k · xµ√
d

)]2
(109)

with η = 20.

G Arbitrary sign in the second layer weights

A key limitation of the network in (1) is that it can only learn targets with positive definite S∗. This
is because the second layer weights are all positive. Within our formalism we can consider a more
generic function with fixed ak ∈ {−1, 1} with at least d positive and d negative entries.

f̂(x;W ) =
1√
m

m∑
k=1

akσk

(
wk · x√

d

)
= Tr

(
X(x)

1√
dm

m∑
i=1

aiwiw
T
i

)
, (110)

with loss

L̃W (W ) :=

n∑
µ=1

Tr

(
X(x)

(
S∗ − 1√

dm

m∑
i=1

aiwiw
T
i

))2

+ λ

m∑
i=1

∥wi∥2 (111)

where

S∗ =
1√
dm∗

m∗∑
i=1

a∗iw
∗
i (w

∗
i )

T . (112)

Our goal will be to show that minimizing over L̃W (W ) is equivalent to minimize L̃S(S) from (9)
over all symmetric matrices S

Ŝ = argmin
S∈Sym(d)

L̃S(S), with L̃S(S) :=

n∑
µ=1

Tr

[
xµx

T
µ − Id√
d

(S − S∗)

]2
+

√
mdλ∥S∥∗ . (113)

The argument goes as follows. For any fixed value of a, define the sets of indices P , N as

P = {k|ak > 0} , N = {k|ak < 0} , (114)

and additionally, define

(SP )ij =
1√
md

∑
k∈P

ŴkiŴkj , (SN )ij = − 1√
md

∑
k∈N

ŴkiŴkj . (115)
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The matrix S is then given by the sum S = SP +SN , and we remark that both matrices are symmetric,
non-rank constrained and respectively positive and negative semi-definite. The minimization of
L̃W (W ) over W can be rewritten as

(ŜP , ŜN ) = argmin
SP⪰0
SN⪯0

L̃PN (SP , SN ),

with L̃PN (SP , SN ) :=

n∑
µ=1

Tr [Zµ (SP + SN − S∗)]2 +
√
mdλ(∥SP ∥∗ + ∥SN∥) .

(116)

What we have to show is that (113) and (116) have the same optimal value, and that the minimizer Ŝ
of (113) yields a minimizer (ŜP , ŜN ) of (116) by taking the positive and negative spectral parts of
Ŝ. First, we write

min
SP⪰0
SN⪯0

L̃PN (SP , SN ) = min
S∈Sym(d)

n∑
µ=1

Tr

[
xµx

T
µ − Id√
d

(S − S∗)

]2
+

√
mdλR(S) (117)

where
R(S) := inf

SP⪰0, SN⪯0
SP+SN=S

(
∥SP ∥∗ + ∥SN∥∗

)
. (118)

By the triangle inequality
∥S∥∗ = ∥SP + SN∥∗ ≤ ∥SP ∥∗ + ∥SN∥∗ , (119)

hence R(S) ≥ ∥S∥∗ . This bound is in fact achievable: let S be symmetric, with spectral decomposi-
tion

S = U diag(σ1, . . . , σd)U
⊤ . (120)

Define its positive and negative spectral parts
S+ := U diag(σ+

i )U
⊤ , S− := U diag(σ−

i )U
⊤ , (121)

where
σ+
i := max(σi, 0), σ−

i := min(σi, 0) ≤ 0 . (122)
Then S+ ⪰ 0, S− ⪯ 0, and S = S+ + S− . Moreover,

∥S+∥∗ =
∑

i:σi>0

σ+
i , ∥S−∥∗ =

∑
i:σi<0

(−σ−
i ), (123)

so
∥S+∥∗ + ∥S−∥∗ =

∑
i

|σi| = ∥S∥∗.

Thus, for this admissible decomposition R(S) ≤ ∥S∥∗, which combined with the other inequality
gives us R(S) = ∥S∥∗. This proves the claim.

Asymptotics without PSD constraint. We are solving the same problem as (22), just without the
positivity constraint:

Ŝ = argmin
S∈Sym(d)

L̃(S), with L̃(S) :=
n∑

µ=1

Tr

[
xµx

T
µ − Id√
d

(S − S∗)

]2
+
√
md
(
λ∥Tr(S∥∗) + τ∥S∥2F

)
.

(124)
For this case, the spectral denoising function (48) becomes

Li =
1

2τ + k
SoftThresholding

(
Di, 2λ̃

)
, (125)

where
SoftThresholding (x, θ) = sign(x)max{|x| − θ, 0} . (126)

Similarly, equation (57) needs to be substituted by

Li =
mu

2τ + k
SoftThresholding

(
Di, 2λ̃/mu

)
. (127)

The final state evolution will be unchanged by redefining J in (6) as

J(a, b) =

∫
|x|>b

dxµ∗
a(x) (|x| − b)2 . (128)

We illustrate how this changes the theoretical predictions in Figure 5.
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Figure 5: Test error as a function of the sample complexity α for different values of the regularization
when optimizing without PSD constraint as described in G. Here κ∗ = 0.2 and ∆ = 0.5. Notice that
in this case the interpolation peak is at α = 0.5, and there the test error diverges.
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