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Abstract—Persons with visual impairments (PwVI) have
difficulties understanding and navigating spaces around them.
Current wayfinding technologies either focus solely on naviga-
tion or provide limited communication about the environment.
Motivated by recent advances in visual-language grounding and
semantic navigation, we propose DRAGON, a guiding robot
powered by a dialogue system and the ability to associate the
environment with natural language. By understanding the com-
mands from the user, DRAGON is able to guide the user to the
desired landmarks on the map, describe the environment, and
answer questions from visual observations. Through effective
utilization of dialogue, the robot can ground the user’s free-form
descriptions to landmarks in the environment, and give the user
semantic information through spoken language. We conduct a
user study with blindfolded participants in an everyday indoor
environment. Our results demonstrate that DRAGON is able to
communicate with the user smoothly, provide a good guiding
experience, and connect users with their surrounding environ-
ment in an intuitive manner. Video and code are at https://
sites.google.com/view/dragon-wayfinding/home}

I. INTRODUCTION

Wayfinding, defined as helping people orient themselves
in an environment and guiding them from place to place, is a
longstanding challenge for persons with visual impairments
(PwVI) [1], [2]. A guiding robot that can verbally interact
with PwVI and connect language to the world, such as
finding a destination or helping the user understand the
environment, has the potential to improve the quality of their
lives and to also reduce the load on their caregivers [2]-[4].

A large body of previous wayfinding guides tackles joint
dynamics and path planning for the human-robot team [5]—
[7]. Another line of work pairs wayfinding with communica-
tion signals such as navigation instructions [8], [9] and basic
environment information [10], [11]. As a step further, other
wayfinding technologies recognize and convey the semantic
meaning of the surrounding environment such as naming
the landmarks [12]-[14]. However, these methods require
special environmental setups, such as multiple RFID tags
and bluetooth beacons. We aim to remove dependence on
these types of special infrastructure by integrating advances
in visual-language grounding into conversational wayfinding.

On the other hand, technologies in vision-language nav-
igation and voice-controlled robots have made significant
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Fig. 1: DRAGON identifies the intents of the user through dialogue, grounds
language with the environment, and guides the user to their desired goal.

progress [15]-[17]. These navigation agents are able to per-
form various tasks according to natural language commands
such as “Bring me a cup.” with simple onboard sensors.
This is usually achieved by encoding visual landmarks in a
semantic map and associating language with these landmarks
during navigation, which is referred to as visual-language
grounding [16], [18]. However, these general-purpose frame-
works assume that humans can provide step-by-step navi-
gation instructions. Thus, they are not built for PwVI that
often need help in perceiving the environment and planning
paths. Although attempts have been made to integrate vision
or language models in wayfinding [11], [19], [20], how to
build a guiding robot that can intuitively exchange semantic
information with users remains an open challenge.

In this paper, we propose DRAGON, a Dialogue-
based Robot for Assistive navigation with visual-language
Grounding. In Fig.|l| DRAGON uses speech to communicate
with the user and a physical handle for navigation guidance.
The dialogue and navigation can be executed simultaneously.
When the user gives a speech command, Speech Recognition
(SR) and Natural Language Understanding (NLU) modules
first extract the user’s intents and desired destinations. The
main grounding functionalities include: (1) finding users’
desired destinations with a visual-language model [21] and
guiding them to the destinations; (2) describing nearby
objects with an object detector [22]; and (3) answering
questions from users using a Visual Question Answering
(VQA) model [23]. With dialogue and grounding, DRAGON
can effectively navigate users to their desired destinations
and help them gain awareness of their surroundings in an
intuitive manner.

To find users’ intended goals on a map, we propose a novel
landmark recognition module based on CLIP [21]. After a
straightforward mapping process, the landmark recognizer
is able to select the landmark whose image best matches
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the user descriptions. Our landmark recognizer is able to
associate flexible and open-vocabulary commands with few
constraints on user expressions. If the description is am-
biguous, our system will disambiguate user intents through
additional dialogue. Then, the corresponding goal location is
passed to the path planners for navigation guidance, which
allows for easy integration of our model into the navigation
stack for mobile robots. Combined with the navigation stack,
the powerful and reliable landmark recognizer is essential to
ensure the success and user experience of DRAGON.

Our main contributions are as follows: (1) As an interac-
tive navigation guide for PwVI, DRAGON enables voice-
based dialogue, which carries rich information and has
grounding capabilities; (2) We propose a novel landmark
mapping and recognition method that can associate free-form
language commands with image landmarks. Our method can
be easily plugged into the navigation stack of mobile robots;
and (3) A user study (N=5) with blindfolded participants
demonstrates that DRAGON is able to understand user in-
tents through dialogue and guide them to desired destinations
in an intuitive manner. To the best of our knowledge, our
work is the first to show that visual-language grounding via
dialogue benefits robotic assistive navigation.

II. RELATED WORKS
A. Wayfinding robots and technologies

Navigation guidance: To guide PwVI from point A to
point B following a planned path, unactuated devices, such
as smartphones and wearables, rely on haptic or audio
feedback to give instructions such as going straight and
turning right [9], [12], [13], [20]. However, delays and
misunderstandings might lead to inevitable deviations, which
take time and effort to recover from [10], [12]. On the other
hand, robots provide a physical holding point, which offers
kinesthetic feedback to minimize deviations and reduce the
mental load of users [6], [24], [25]. Such physical guidance
can be combined with aforementioned verbal or haptic
navigation instructions to further improve performance at the
cost of a more expensive system [8], [11]. To ensure both
efficiency and low cost, we mount a handle on our robot to
give intuitive real-time steering feedback in navigation.

Semantic communication: A large part of blind naviga-
tion technologies ignores exchanging environmental informa-
tion with users [6]-[8]. To deal with this issue, CaBot applies

object recognition to describe the user’s neighborhood, yet
the user cannot hold conversations with the robot or choose
their destinations [11]. To enable users to choose a semantic
goal (e.g. a restroom), some works mark points of interest
using bluetooth beacons [12], [13] or RFID tags [14], [24],
which requires heavy instrumentation. As an alternative,
extracting semantic information from ego-centric camera
images is much cheaper and easier. For example, SeeWay
uses skybox images to represent landmarks [20]. Similarly,
Landmark AI offers semantic-related functionalities includ-
ing describing the environment, reading road signs, and
recognizing landmarks using a phone camera [19]. However,
these phone applications are not robots and thus cannot
physically guide users or provide a stable mounting point for
cameras. In contrast, Table [I| shows that DRAGON brings
conversational wayfinding to the next level: A robot can
simultaneously offer physical guidance and enable users to
trigger a variety of functionalities through dialogue.

B. Command following navigation

Tremendous efforts have been made in understanding and
grounding human language instructions for various robotic
tasks [15]-[17]. In command following navigation, a modular
pipeline usually consists of three modules: (1) an NLU
system to map instructions to speaker intent; (2) a grounding
module to associate the intent with physical entities; and (3)
a SLAM and a planner to generate feasible trajectories [18],
[26], [27]. Other works attempt to learn end-to-end policies
from simulated environments or datasets [28]—[31]. However,
due to sim-to-real gaps in perception, language, and plan-
ning, deploying these policies to the real world remains an
open challenge for applications in the low data regime such
as wayfinding [32]. Therefore, we adopt the modular pipeline
to ensure performance in the real world.

C. Semantic landmark recognition

Understanding the semantic meanings of a scene is a vital
step towards interactive navigation [16], [18]. Some works
reconstruct volumetric maps for the environment, where each
grid is associated with a semantic label [16], [27], [33]. Other
works build more abstract scene graphs [34], [35]. However,
implementing these methods on a real robot is expensive, as
they require accurately calibrated depth cameras and high-
performing instance segmentation models.

TABLE I: Benchmark for conversational wayfinding technologies. A v/ means that the functionality is implemented. A O means partial implementation.
A blank cell means the functionality is absent. (In [24], the users have to enter a number sequence into a keypad to specify their destinations. [19] can
only describe a fixed set of pre-mapped landmarks and can only answer two fixed questions.)

Method User-chosen Speech dialogue  Enviornment VOA Form Environmental
semantic goals  Input Output description Instrumentation

GuideBeacon [12] v v v Phone application Bluetooth beacons

NavCog3 [13] v v v O @) Phone application Bluetooth beacons

LandmarkAI [19] v v v v @] Phone application GPS

SeeWay [20] v v v Phone application WiFi

Robotic Shopping cart [24] O v Robot RFID tags

CaBot [11] v v Robot Remote joystick

Ballbot [8] v v v Robot WiFi + Remote computer

Ours v v v v v Robot WiFi + Remote computer
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Another line of work collects images as landmarks to
create topological graphs [36]-[38]. In navigation, the goal
location is retrieved by computing the similarity between a
goal image and all stored landmarks. However, the above
works only consider image goals, which are less natural
than language in human-centered applications. Inspired by
Shah et al. [18] and Huang et al. [16], we use CLIP [21] to
associate image landmarks with users’ language commands.
Compared with previous works that use closed vocabulary
object detectors, which are limited to a predefined set of
semantic classes [33]-[35], our method is able to handle
more flexible and open-vocabulary commands. We use CLIP
to select landmarks and keep traditional cost maps for
planning, enabling easy integration of our method into the
navigation stack of mobile robots.

III. SYSTEM OVERVIEW

In this section, we describe the setup and configuration
of our robot guide. Fig. Pfa) shows an overview of our
proposed system consisting of three main components: (1)
The TurtleBot platform (yellow); (2) Audio communication
interface (purple); (3) Dialogue and grounding modules (red).
The modules communicate with each other through ROS.

A. Robot platform

Overview: We use the Turtlebot2i as our robot platform.
As shown in Fig. b), the robot is fitted with the following
sensors and equipment: (1) An RP-Lidar A3 laser range
finder is mounted on the top of the robot structure for
SLAM; (2) An Intel RealSense D435i camera is mounted on
the top of a monopod facing forward for scene description
and question answering; (3) A wireless headset is used to
communicate with the user. The headset is lightweight and
maximally protects the users’ privacy, while the absence
of wires avoids tripping hazards; (4) A T-shaped handle is
attached to the top rear side of the robot as a holding point
for the user’s arm. The handle allows users to choose their
preferred holding configurations such as one hand or two
hands. The robot is connected to a desktop computer which
provides more computation resources through WiFi.

Planning and Navigation: The robot operations are
managed by the standard ROS move_base navigation stack.
Before navigation, we create a 2D occupancy map of the
environment using laser-based SLAM and mark the semantic
landmarks at the same time (see Fig. [3] and Sec. for

. Mobile base
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Fig. 2: An overview of the system and platform of DRAGON. (a) Submodules, message passing, and user interface. (b) The robot platform.

details). At the beginning of each trial, the goal pose is
obtained from the dialogue with the user (further specified
in Sec. [[V). During navigation, adaptive Monte Carlo local-
ization is used to localize the robot on the map. We use
the dynamic window approach (DWA) [39] and A™* as local
and global planners, respectively. The minimum translational
velocity is restricted to be non-negative to prevent the robot
from moving backward and colliding with the user. The
maximum velocity of the robot can be adjusted by the user

(see Sec. for details).

B. Audio Communication Interface

Speech is a natural choice for human-robot communica-
tion, particularly in cases where the human has limited vi-
sion [2]-[4]. To this end, as shown in purple in Fig. @a), we
develop an audio communication interface that consists of:
(1) Input: When audio is captured by the audio_capture
package, the OpenAl Whisper speech recognition model [40]
transcribes speech commands to text, which are passed to
the NLU module. The SR module continuously transcribes
the audio from the microphone and publishes the text tran-
scriptions to a ROS topic in real time; (2) Output: We
use the Google text-to-speech (TTS) service to convert the
text output from the visual-language modules and navigation
module to speech, which is then narrated to the user via the
headset. The TTS is another ROS topic that converts and
plays the synthesized sound constantly.

C. Dialogue and grounding

In the dialogue system, when SR publishes a transcribed
sentence, an NLU first extracts intents and landmarks (if any)
from the sentence. Then, based on the intents, the informa-
tion from the sentence is passed to different visual-language
grounding modules which output language responses to TTS
and/or the navigation module which changes navigation
behaviors. By doing so, the robot fulfills the user’s request.
The dialogue and grounding modules are detailed in Sec. [[V]

IV. DIALOGUE AND GROUNDING

The goal of DRAGON is to connect the user with the en-
vironment through conversation. In this section, we describe
how our dialogue system understands user language (Sec.
[A), maps and localizes semantic landmarks (Sec. [[V-B]),
provides information about the environment (Sec. , and
adjusts the navigation preference of the user (Sec.[[V-D). Our
grounding system is visualized in the red parts of Fig. [2{a).



A. Natural language understanding (NLU)

The NLU takes a transcribed sentence as input and outputs
user intents and entities of interest. Table [IIj shows all possi-
ble user intents. The entities are locations, objects, and object
attributes which include the material and functionalities of
an object. We use Dual Intent and Entity Transformer for
intent classification and entity recognition [41]. We train the
model using a custom dataset with 1092 sentences. For each
intent, we collect various expressions including misspelled
and phonetically similar phrases, which makes our NLU
robust to the nuances of human language and the errors
caused by the SR. For example, “a think” and “a sink”
both refer to the kitchen sink. We also collected expressions
for multi-intents and unknown intents so that the NLU can
fulfill a request containing multiple intents and ignore noise
input. For instance, “Hello robot, can you take me to a
sofa?” will both activate the robot and set an object goal.
Once the intent and entities are extracted, the corresponding
downstream module is activated and the robot informs the
user via language feedback. The NLU may pass additional
input arguments to modules such as extracted entities or the
whole sentence.

During navigation, the landmark recognition is triggered
if the user intent is Object goal and the NLU extracts a
goal object from the input sentence. If the user mentions
additional information about the landmark, we use simple
prompt engineering to make the description more specific.
For example, locations and attributes of objects can be added
to the description by “a chair in the office” or “a gaming
chair.” In addition, the robot uses clarification dialogue to dis-
ambiguate the desired landmark if the input description does
not contain any object. If the user only provided the location
or attributes without mentioning the object name (e.g. “Take
me to the kitchen”), our system provides hints to encourage
the user to provide more specific descriptions (e.g. “What
object are you looking for in the kitchen?”). If there are
multiple similar objects in different landmarks, our system
disambiguates the user’s preferred landmark (e.g. “What kind
of chair are you looking for? A dining chair, an office chair,
or a sofa?’). After choosing a unique landmark, our system
confirms the goal with the user (e.g. “Do you wish to go to
a dining chair?”). No further action is taken until the user
affirms the goal. With the disambiguation and confirmation
dialogue, the NLU is able to precisely capture the user’s
desired destination, which is crucial for the whole navigation
experience.

B. Landmark mapping and recognition

To guide the user to their object goals, we first record the
images and locations of landmarks during SLAM. Then, we
use a fine-tuned CLIP model to match the user’s description
with goal images, whose corresponding location is sent to
the navigation stack for navigation guidance.

The landmark mapping process is performed simultane-
ously with SLAM. During SLAM, when the robot is at a
landmark that might be a point of interest, we simply save
the current robot pose in the map frame and an RGB image of

TABLE II: All user intents and their descriptions.

Intents Descriptions
Greet Wake up the robot and begin an interaction.
Object goal Go to a specific object landmark.

May contain entities including objects and attributes.
Go to a rough goal location (kitchen, lounge, etc)
without mentioning a specific object.

May contain location entities.

Location goal

Affirm Confirm the goal.
Deny Deny the goal.
Describe Ask for a description of the surrounding environment.

Ask Ask a question about the surrounding environment.

Pause Pause the current navigation.

Resume Resume the current navigation.

Accelerate Increment velocities, up to a limit.

Decelerate Decrement velocities, down to a limit.

Unknown The text does not belong to any intents above (i.e.

be noise, chitchat, etc) and is ignored by the robot.

the landmark to the disk with a single key press. No labels
or text descriptions are needed at this stage. The resulting
landmark map is shown in Fig. [3]

During navigation, this module is activated when the
extracted intent is Object goal. After the goal is confirmed
by the NLU, the CLIP model selects the landmark whose
image has the highest similarity score with the descriptions
of landmarks. To obtain the image-text similarity score, a text
encoder and an image encoder first convert the input text and
all images to vector embeddings. Then, the text and image
similarity score is computed by the cosine similarity between
the pairwise text and image embeddings. The image with the
highest similarity score is selected as the goal. Finally, the
corresponding location of the chosen landmark on the map
is sent to an action client, which sets the goal for the robot.

The zero-shot performance of pre-trained CLIP models is
not satisfactory in our environment due to distribution shifts.
As shown in Fig. [3] the objects in the images are frequently
cropped due to the low mounting point of our camera and
the close distance between the camera and the objects. In
addition, the descriptions of landmarks from a PwVI might
be vaguer than those in public datasets (e.g. “a chair” v.s.
“a blue chair in front of a white wall”). To this end, we
fine-tune the CLIP model with a custom dataset containing
544 image and text description pairs from our environment
with a 8 x 107° learning rate for 35 epochs. By using an
open-vocabulary model to recognize landmarks, DRAGON
is able to handle free-form language and is not limited to a
fixed set of object classes. Thus, the user input expressions
are less restricted, making the grounding module easier for
non-experts to use.

C. Environment understanding modules

To help the user gain awareness of their surroundings, we
use an object detector [22] to describe the objects (activated
if the intent is Describe) and a VQA model [42] to answer the
user’s questions (activated if the intent is Ask). Both models
take the current camera image as input.

The output of the object detector consists of a list of
detected instances, their object classes, confidence scores,
and bounding boxes. To avoid narrating a long list and to



keep the description concise, we post-process the output as
follows. We first apply non-maximum suppression and filter
out the detected instances with low confidence scores. Then,
for the remaining instances, we keep the top three classes
with the largest average bounding boxes, and list the object
class names together with the numbers of objects (e.g. “2
chairs, 1 person, and 1 table”).

The VQA model takes the current camera image and the
user’s question from the SR and outputs a short answer to
the question. Similar to CLIP, we collect a dataset of 10252
(image, question, answer) triplets to fine-tune the VQA
model for 20 epochs. To handle free-form user expressions,
the dataset contains cases where multiple questions have the
same meaning but different phrasing (e.g. “Is any person in
front of me?” and “Anyone here?”).

The processed output of the object detector and the answer
from the VQA model is sent to the TTS topic, which is
narrated to the user in real time. Since both models can only
take a single RGB image, our system cannot provide depth-
based information or detect anything out of the camera view.

D. Navigation preference customization

To accommodate the different walking paces of users and
to avoid tiring the user during navigation, the robot can
change its speed (activated if the intent is Accelerate or
Decelerate), take a pause (Pause), and resume (Resume). To
pause the robot, our system stores and cancels the current
goal from the action client in the navigation stack. To resume,
the stored goal is sent to the action client again. To update the
speed, we change the maximum translational and rotational
velocities of the DWA local planner by updating its config-
uration through the dynamic_reconfigure package.

V. EXPERIMENTS

This section describes a user study to evaluate our system.
We also describe our baseline and evaluation metrics.

A. Baseline

We compare the CLIP-based landmark recognizer with a
closed-vocabulary object detector as the baseline [22] El The
vocabulary size, or the number of classes, of the detector is
more than 1200 and it is fine-tuned with the same number
of data as CLIP. In the baseline, the landmark images are
passed into the object detector, which outputs the class names
of detected objects. During navigation, the baseline chooses
the landmark with the highest number of objects mentioned
by the user. Since the vocabulary of object detectors is fixed,
the baseline is unable to incorporate an object’s attributes or
locations obtained from disambiguation. All other modules
are the same for our system and the baseline.

B. User Study

Environment: All experiments were conducted in an
everyday indoor environment in a university building. Three
routes were created with furniture acting as obstacles. Fig. 3]

'Open-vocabulary object detectors exist. We choose a closed-vocabulary
detector to represent a common closed-vocabulary grounding model.

Al

Fig. 3: The map of our environment with semantic landmarks. The
images are landmarks with locations marked by red dots. The orange lines
are the three routes in the user study. The red squares are the starting
locations of routes.

TABLE III: Example expressions and their corresponding landmarks from
CLIP v.s. the detector. The landmark labels are from Fig. El Underlined
expressions are collected from the user study.

Landmark CLIP Detector

A door, exit, entrance, gate poster
glass door, automatic door
sofa, couch, coach, sofa,

B fabric chair,relaxing chair thermostat
thermostat, climate control
sink, think,sync, faucet faucet

C soap, hand wash, water pipe bottle
paper towel dispenser, bowls dispenser
kitchen countertop, drying rack  bowl

provides a layout of the environment and the three routes.
The routes are designed to have varying levels of difficulties
for the system to correctly interpret the destination. Specif-
ically, the goal landmark A of Route 1 contains simple
objects, whereas landmark B of Route 2 contains more
complicated objects, and landmark C of Route 3 contains
a transparent door that is hard to recognize.

Participants: The user study was conducted with N=5
participants (mean age=26; 3 males; 2 females; all partic-
ipants were university students). All participants provided
informed consent under IRB #23565, which was approved by
University of Illinois Urbana Champaign on February 27th,
2023. All participants have full (corrected) vision and are
asked to wear a blindfold to simulate a visual impairment.
While our true target population are PwVI, the purpose of
this pilot study is to validate the capabilities of DRAGON.
Running experiments with PwVI is left for future work.

Procedure: Participants were first familiarized with the
goals of the study and requested to fill a demographic and
robot technology survey. Then, participants were provided
with a test run to get familiar with the system and its
intricate navigation feedback mechanism. To begin the trial,
the users were asked to command the robot to take them
to a predetermined goal destination. Participants were not
constrained in either the vocabulary or the sentence structure



H: Go slower.
R: Sure, decrease my
speed from now.

H: Hello, robot.

R: Hey! What can 1
do for you?

H: Can you take me

| to the door? B

R: Do you wish to go
to a door?

H: Yes.

R: Sure, taking you
to the door.

— \

Semantic goal recognition Speed adjustment

H: What is around me?
? R: One poster, one lap-

top computer, and
one person.

. H: Is it dark outside?

R: No.

H: Is there anyone at the door?
R: Yes.

H: What is next to the door?
R: Woman.

et - =
Environment description VQA

Fig. 4: An example navigation trial with human-robot dialogue in the user study. In the dialogue boxes, “H” denotes the human and “R” denotes the

robot. The camera view is shown in the lower right corner.

of their speech commands. The users were also informed that
they could interact with the robot (e.g. ask for a description
of their surroundings) at any point of the navigation. After
each route, we used a short questionnaire to measure the par-
ticipant’s perception of the system. A strictly structured post-
survey interview was conducted after participants finished all
three routes to collect their feedback with the system. The
same procedure was performed for CLIP and the detector.
The order of which method was tested first was randomized
for each participant to minimize the bias introduced due to
the order of testing. The full survey can be found at this link.

C. Metrics

Objective Metrics: We measure the accuracy of all in-
teractions during the user study, including 312 NLU, 30
landmark recognition (LR) and navigation trials, 15 envi-
ronment description (EnvDes), 74 VQA, and 15 navigation
preference adjustment (NavAdj). The NLU is considered
correct when the extracted intent and entities (if any) are
both correct. We also measure the accuracy of the NLU by
taking the correctness of SR into account to analyze the effect
of wrong SR. The effect of wrong NLU outputs is ignored
when evaluating its downstream modules. The correctness of
answers from VQA is based on the camera images, not on
the information out of the camera view. To compare the two
LR methods, we measure the success rates of LR and the
resulting navigation.

Subjective metrics: For both methods, we compare the
scores for categories from the short questionnaire in Ta-
ble [VI] The difference in scores for each participant was
aggregated and analyzed to discount individual biases. We
evaluate user preferences for the other modules through
a simple Likert scale analysis on the responses from the
post-survey interview. Additionally, participants’ feedback is
summarized for qualitative analysis.

VI. RESULTS

In this section, we discuss the results of our user study. A
demonstration can be found in the |supplementary video| with
results from each module and navigation trials that test the

whole system. Fig. [ also provides an example trial along
with the dialogue during the user study.

A. Quantitative Evaluation

LR and navigation: As seen in Table the success
rate of navigation is 100% if LR succeeds. This dependency
indicates that the performance of LR is the key factor for
navigation in the DRAGON system.

For LR, as shown in Table [[V] our CLIP model with dis-
ambiguation outperforms the detector baseline by achieving
100% success rate in LR and navigation with fewer rounds of
dialogue on average. We attribute this result to the fact that
CLIP is an open vocabulary model that can take free-form
query text, which is essential for our task because the user
may use different expressions to refer to the same landmark.
On the contrary, a closed vocabulary object detector can only
handle a fixed set of object classes with limited expressions.
For example, in Table [T} although both models can handle
different objects that belong to the same landmark, CLIP can
associate synonyms, such as “sofa” and “couch”, and wrong
transcriptions, such as ‘“coach”, to the correct landmark.
In contrast, the closed-vocabulary detector can only handle
strictly fixed expressions. The detector misidentifies some
objects such as the transparent door in Landmark C after
fine-tuning. Since our target users are usually non-experts,
the baseline sometimes needs the user to rephrase multiple
times to recognize the goal, which causes the user to run out
of patience, and results in failure or more rounds of dialogue.

Besides CLIP, the disambiguation dialogue also con-
tributes to the performance. With disambiguation, additional
information such as the material and functionality of objects
can be merged into the query text, such as “fabric chair”
and “relaxing chair” as shown in Table [Ill These rich
descriptions are helpful in distinguishing landmarks that
have the same objects with different attributes, such as the
different types of chairs in Landmark A, D, and E in Fig. |§|
with fewer rounds of user rephrasing.

NLU: In Table the overall accuracy of NLU is over
15% higher than SR, as the NLU is trained with incorrectly
transcribed text and thus can work even when SR is incorrect.

TABLE IV: Success rates (%) of LR and navigation (including TABLE V: Accuracies (%) of the SR, NLU (including overall accuracy, accuracy if SR
overall success rate, and success rate if LR is correct), and the is correct and if SR is wrong), EnvDes with fully correct and partially correct number of

average number of dialogue rounds for a successful LR.

objects, VQA, and navigation adjustment modules.

Method LR Navigation SR NLU EnvDes VQA  NavAdj
Overall # rounds Overall Correct LR Overall  Correct SR Wrong SR Full Partial

Ours 100 2.4 100 100

Baseline 46.67 371 46.67 100 70.19 85.26 93.61 65.59 4545 75776 8243 100



https://github.com/Shuijing725/DRAGON_Wayfinding/blob/main/IRB_documents/questionnaires.pdf
https://www.youtube.com/watch?v=1fojc44GTtI

However, we do notice that NLU performs better with correct
SR. The common failure cases of NLU occur when (1)
The SR mistakenly breaks a sentence into two halves (e.g.
“Is there anything?” and “To my right.” are treated as two
sentences); and (2) The NLU does not correctly extract
intents from noisy transcriptions and chitchat, which can
happen during the user study. Thus, we believe that a better
SR engine would vastly benefit the performance of the whole
system. However, since DRAGON will not begin navigation
until the user confirms the goal in the dialogue, the wrong
SR and NLU have little effect on navigation.

Other Modules: The system’s environment descriptions
are sometimes inaccurate due to errors in the object detector
such as: (1) detecting incorrect number of objects (e.g. 3
wall sockets, when there was only 1 present); and (2)
incorrect object classifications of rare or uncommon objects
(e.g. a building information tablet was classified as a poster).
Although we use non-maximum suppression and confidence
score threshold to reduce the errors, they are hard to entirely
eliminate due to the data distribution shift and the blurry
images caused by the robot motion. Nevertheless, in Table
the model is able to output a list of objects with correct
class names in 75.76% of the cases, which might be more
important to the user than a correct number of objects.

The VQA module accurately answers the user’s questions
in 82.43% of the cases. The model fails in cases where the
user asks questions that the robot cannot answer based on
a single RGB image. For example, without precise depth
information the VQA model only answers “far” or “close”
if the question is “How far is the person from me?”. Without
a wider field of view, the model outputs objects on the front
side if the question is “What is on my right?”.

B. Qualitative Evaluation

In Table participants showed an increasing prefer-
ence for DRAGON with CLIP over the detector in all
user experience categories across all routes. Specifically,
participants reported a 32% improvement with a mean score
difference of 1.60 4= 0.89 in the overall experience and a
mean score difference of 1.40 4 0.89 in the communication
experience. The difference increases as the goal landmark
contains more complicated objects in Route 2, and objects
that are difficult to detect in Route 3, where the failures
in LR significantly lower the user score for the detector
based system. Particularly, participants noted that DRAGON
with CLIP understood their intent, asked good follow-up
questions, and correctly guided them to their destination.
In contrast, the closed-vocabulary detector failed at these
aspects and occasionally was unable to recognize desti-
nations even though they existed. Participants also noted
that the failures in intent understanding led to a frustrating
communication experience with the detector.

One user in particular mentioned that the CLIP based
model “... was able to actually understand me, so it accurately
took me to the location and correctly answer [sic] my
questions.” while the detector based model ... would confirm
the location I wanted to go to but could not find [sic;

TABLE VI: Mean user experience scores on a scale of 1 to 10.

Route 1
CLIP  Detector CLIP

Route 2
Detector ~ CLIP

. Route 3
Use experience category

Detector

Ease of following 8.8 8.6 8.8 5.6 9.2 1.0
Navigational Experience 84 7.4 7.6 4.8 8.8 1.0
Intent Understanding 7.6 8 7.6 4.6 84 3.4

participant meant understand] the right location”. However,
users also mentioned potential improvements for DRAGON
including more detailed descriptions of the environment, a
quicker response time, and warnings of potential dangers
such as “We’re going through a door.”

For the user experience categories that are the same for
both LR methods, such as the ‘intuitiveness of communi-
cation interface’ and the ability of the system to aid in
‘gaining awareness of the environment’, participants reported
average scores of 7.07 £2.17 and 6.07 & 3.21, respectively.
As evidenced by these scores, the users’ opinions regarding
these two categories were positive, due to the inclusion of
the dialogue and grounding modules. However, participants
highlighted minor inaccuracies in the environment descrip-
tions and the slow pace of communication due to processing
times and network delays as potential issues.

VII. CONCLUSION AND FUTURE WORK

In conclusion, we present DRAGON, a first-of-its-kind
guide robot that fulfills user intents and familiarizes the
user with their surroundings through interactive dialogue. We
use CLIP to retrieve landmark destinations from commands
and provide visual information through language. The user
study shows promising communication, grounding, and nav-
igation performance of DRAGON. Our work suggests that
visual-language grounding and dialogue can greatly improve
human-robot interaction.

To extend DRAGON and address its limitations, we point
out the following directions for future work. First, the
current dialogue system is rule-based with fixed behaviors
for each intent. Replacing hard-coded rules with adaptive
learning-based policies should generalize to more complex
user behaviors and more subtasks. Second, the environ-
ment understanding modules provide limited information.
Future informative descriptions should include object rela-
tionships in images, incorporate information from the map
and other sensors, and inform users about the planned path
and potential dangers. Finally, the physical interface of the
platform should be redesigned to improve the user expe-
rience. DRAGON demonstrates the feasibility of dialogue
and visual-language grounding in assistive navigation that
future research in dialogue management, computer vision,
and robotics can explore further.
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