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VmambaSCI: Dynamic Deep Unfolding Network with Mamba for
Compressive Spectral Imaging

Anonymous Authors

ABSTRACT
Snapshot spectral compressive imaging can capture spectral infor-
mation across multiple wavelengths in one imaging. The method,
coded aperture snapshot spectral imaging (CASSI), aims to recover
3D spectral cubes from 2D measurements. Most existing methods
employ deep unfolding framework based on Transformer, which
alternately address a data subproblem and a prior subproblem. How-
ever, these frameworks lack flexibility regarding the sensing matrix
and inter-stage interactions. In addition, the quadratic computa-
tional complexity of global Transformer and the restricted receptive
field of local Transformer impact reconstruction efficiency and accu-
racy. In this paper, we propose a dynamic deep unfolding network
with mamba for compressive spectral imaging, called VmambaSCI.
We integrate spatial-spectral information of the sensing matrix into
the data module and employs spatial adaptive operations in the
stage interaction of the prior module. Furthermore, we develop
a dual-domain scanning mamba (DSMamba), featuring a novel
spatial-channel scanning method for enhanced efficiency and ac-
curacy. To our knowledge, this is the first Mamba-based model for
compressive spectral imaging. Experimental results on the public
databases, CAVE and KAIST, demonstrate the superiority of the
proposed VmambaSCI over the state-of-the-art approaches.

CCS CONCEPTS
• Computing methodologies→ Reconstruction.

KEYWORDS
Compressive Spectral Imaging, Deep Unfolding, Mamba

1 INTRODUCTION
Snapshot spectral compressive imaging offers significant advan-
tages over traditional spectral imaging methods, including low cost,
high speed, and minimal resource consumption. This technique
finds widespread application in remote sensing, medical imaging,
and various other fields. An exemplary method in this domain
is Compressive Sensing Snapshot Spectral Imaging (CASSI) [39],
which utilizes a coded aperture in conjunction with a dispersive
prism to capture spectral information of a scene. Through the ac-
quisition of a multiplexed 2D projection of the 3D data cube, CASSI
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facilitates the easy acquisition of spectral data from a single expo-
sure. However, recovering a high-fidelity 3D hyperspectral image
(HSI) from this 2D measurement poses a significant challenge.

Many approaches have emerged to tackle the ill-posed reverse
problem of HSI reconstruction, ranging from traditional model-
based approaches [3, 26, 41, 45] to learning-based approaches [32,
34]. The former leverages priors in different solution space with
interpretability, such as non-local similarity [16], low-rank prop-
erty [28], sparsity [49] and total variation [14]. However, the hand-
crafted priors suffer from limited generalization, resulting in a
mismatch with the problem. Besides, they often requires time-
consuming numerical iterations. The latter introduces neural net-
works in reconstruction. End-to-end algorithms [44] restore the
original HSI by brute-force mapping by learning spatial and spectral
information, but ignore the working principles of CASSI system.
Without the guidance of physical models, these methods also lack
transparency. Plug-and-play algorithms [33] plug fixed pre-trained
denoisers into traditional model-based methods. They fail to learn
the specific mapping for HSI, therefore limiting the reconstruc-
tion performance. Among all the ways and means, deep unfolding
networks [7, 22, 40] have exhibited superior performance among
various approaches. This method tackles a data subproblem through
convex optimization and a prior subproblem applying neural net-
works (denoiser), offering both the interpretability of model-based
methods and the learning power of neural networks.

The data subproblem is closely tied to the degradation process.
Methods for obtaining the degradation matrix fall into two cate-
gories. One directly employs the sensing matrix as the degradation
matrix [29, 31, 40]. Nevertheless, due to phase aberration, distortion
and alignment of the continuous spectrum, as well as photon and
dark current noise, a gap exists between the sensing matrix and the
degradation process. The other learns the degradation matrix using
a neural network [22]. [12] adopts residual learning to derive the
degradation matrix with reference to the sensing matrix. Besides,
the compression of pixels at different positions in the 3D cube is
agnostic in measurement, while existing algorithms ignore this
pixel-specific degradation. In [25], a pixel-level adaptive recovery
at different locations is introduced to solve this problem. They did
not integrate precise spatial-spectral information into gradient de-
scent but rather involved the sensing matrix in a relatively fixed
manner during iteration. Additionally, the inter-stage interaction
of the prior module is also inflexible. Most methods directly con-
catenate the features extracted from the previous stage with the
input of the current stage, disregarding the spatial structure and
distribution of the data. Consequently, we opt to explore a dynamic
deep unfolding framework to concurrently address both problems.

By treating the regularization term as a denoising problem in
an implicit manner, a denoiser, typically implemented as an end-
to-end neural network, is trained for the prior subproblem. Due to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the strong capability in modeling the interactions of non-local re-
gions, Transformer has been widely applied in most of the existing
methods. However, it faces two main issues. On the one hand, the
computational complexity of global Transformer is quadratic to
spatial dimensions, which is unaffordable in some cases. One the
other hand, the receptive fields of local transformer are confined
to the window at a specific location, unsuitable for high precision
reconstruction. Recently, structured state-space sequence models
(S4) have emerged as a versatile architecture in sequence modeling.
In terms of efficiency, they exhibit linear or near-linear scaling com-
plexity with sequence length, making it particularly suitable for
processing long sequences. In particular, the improved S4, known
as Mamba, with selective mechanism and efficient hardware de-
sign, has been proven to surpass Transformer in tasks requiring
long-term dependency modeling. More than that, some variants
of Mamba have also been utilized in computer vision applications
[23, 27, 51]. Motivated by this, we try to apply Mamba in hyper-
spectral snapshot compressive imaging. For better reconstruction,
we start with the scanning mechanism to make full use of spatial
information and spectral information.

Drawing from the above insights, we propose a dynamic deep
unfolding network with visual state space model for compressive
spectral imaging. Specifically, we introduce a flexible iteration strat-
egy, enabling adaptable feature flow and fusion across each iteration.
The proposed stage interaction module preserves and transmits
important features according to the frequency and spatial character-
istics of the current stage, which corrects the inherent information
loss between stages and guides the following iteration. To address
subproblems, we introduce a dynamic gradient descent module
for data accuracy. Implementing a residual mapping, we align the
sensing matrix with true degradation for result precision. Similar
to stage interaction, we integrate current features into gradient
descent for efficient optimization. Applying basic convolution and
channel attention methods, we merge spatial and spectral informa-
tion from the optimized sensing matrix for pixel-level degradation
reconstruction. In addition, for the denoiser in the prior subproblem,
we design a Mamba-based network architecture, called DSMamba.
Different from scanning in spatial dimension in other frameworks,
we develop a dual-domain scanning method, that is, scanning in
both spatial and spectral dimensions at the same time, to integrate
spectral information into spatial information. To alleviate Mamba’s
channel redundancy problem, we implement an efficient channel at-
tention to select important channels to facilitate Mamba’s learning
of diversified channel representations. This supplementation com-
pensates for the overall channel correlation lacking in DSMamba.
By comparing the values of evaluation indicators and the quality of
the reconstructed images with other existing methods, the proposed
method achieves advanced performance.

The primary contributions presented in this paper can be sum-
marized as follows:

• We devise a dynamic iteration strategy, which not only ac-
cords with the real degradation process, but also enhances
adaptability to the features, thereby improving the recon-
struction accuracy.

• We incorporate Mamba into the prior subproblem and pro-
pose a novel dual-domain scanning strategy to optimize

spatial-spectral information utilization. To the best of our
knowledge, this is the first attempt to combine the physics-
driven deep unfolding with Mamba in HSI reconstruction.

• We carry out extensive experiments on the simulation dataset.
The proposed method, named VmambaSCI, outperforms
state-of-the-art (SOTA) performance on HSI reconstruction.

2 RELATEDWORKS
2.1 Deep Unfolding Networks for HSI

Reconstruction
In general, when trying to reconstruct HSI, model-based techniques
[1, 15, 24, 50] take a Bayesian view and treat it as an optimization
problem that maximizes the posterior probability. The algorithms
commonly used for optimization include HQS [20], ADMM [4], and
PGD [2]. Normally, the techniques decouple the data fidelity and
regularization terms in the objective functions resulting in the al-
ternate solving of a data subproblem and a prior subproblem during
iteration. The main idea of the deep unfolding [10, 38] is that the
model-based iterative optimization algorithm can be implemented
equivalently by deep neural networks. Originally applied to deep
plug-and-play methods [30, 36, 46–48], this design utilizes a trained
denoiser to implicitly represent a prior subproblem as a denoising
problem. Inspired by this, deep unfolding methods are employed
for specific tasks in an end-to-end training manner by jointly opti-
mizing the trainable denoiser. For instance, GAP-net [31] unfolds
the generalized alternating projection algorithm with a trained
convolutional neural network. DGSMP [22] introduces an unfold-
ing model estimation framework utilizing learned Gaussian-scaled
mixed priors to improve performance. DAUHST [7] develop a novel
half-shuffle Transformer to the unfolding framework. Addressing
the gap between the sensing matrix and the real degradation, some
approaches leverage neural networks to learn the latter. Due to the
challenge of directly modeling the degradation process, RDLUF-
MixS2 [12] applies residual learning to approach the degradation
matrix. In PADUT [25], the pixel-specific degradation information
is explored and the frequency information is introduced through
a cross-stage fusion process. However, existing methods typically
rely on simple concatenation for stage interaction. Therefore, it is
necessary to propose a dynamic deep unfolding framework that
can better accommodate degradation while enhancing and stabiliz-
ing feature interaction between stages, achieving the purpose of
improving the network optimization process.

2.2 State Space Model
Recently, State Space Models (SSMs) have garnered attention. They
not only establish long-distance dependencies but also exhibit linear
complexity with respect to input size. The models rely on a classical
continuous system mapping a one-dimensional input function or
sequence 𝑥 (𝑡) ∈ R, through intermediate implicit states ℎ(𝑡) ∈ RN
to an output 𝑦 (𝑡) ∈ R. The overall process can be expressed as a
linear Ordinary Differential Equation (ODE):

ℎ′ (𝑡) = Aℎ(𝑡) + B𝑥 (𝑡),
𝑦 (𝑡) = Cℎ(𝑡) + D𝑥 (𝑡), (1)

where 𝑁 is the state size, A ∈ R𝑁×𝑁 , B ∈ R𝑁×1, C ∈ R1×𝑁 , D ∈ R.
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Figure 1: (a) Overview of the proposed VmambaSCI with K stages. (b) The flexible gradient descent module (FGD). (c) The spatial
adaptive frequency domain stage interaction.

Discretizing the continuous system with the zero-order hold
(ZOH) makes it more suitable for deep learning scenarios. Let Δ
denote the timescale parameter to transform the continuous param-
eters A, B to discrete parameters A, B:

A = exp(ΔA)
B = (ΔA)−1 (exp(A) − I) · ΔB.

(2)

After the discretization, the equations are written in linear re-
currence form:

ℎ𝑘 = Aℎ𝑘−1 + B𝑥𝑘 ,

𝑦𝑘 = Cℎ𝑘 + D𝑥𝑘 .
(3)

Besides, the above equations can be converted to CNN form:

K ≜
(
CB,CAB, · · · ,CA

𝐿−1
B
)

y = x ⊛ K,
(4)

where 𝐿 is the length of the input sequence, ⊛ represents convo-
lution operation, and K ∈ R𝐿 indicates a structured convolution
kernel.

The recent advanced state space model, Mamba [17], improves B,
C and Δ to be input-dependent, leading to a dynamic feature repre-
sentation. By sharing the same recursive form of Eq. 3, Mamba can
memorize ultra-long sequences, while the parallel scan algorithm
[17] allows efficient training similar to the advantages in Eq. 4.

Due to Mamba’s versatility, it has been extensively researched
across various fields, including language understanding [18], gen-
eral vision [27, 51], etc. Particularly, VMamba [27] brings Mamba
to image classification tasks successfully. VM-UNet [35] utilizes a
U-shaped network based on Mamba for medical image segmenta-
tion. VmambaIR [37] showcases the potential of state space models
for Image restoration. Inspired by the above findings, we intend to
apply Mamba to compressive spectral imaging. Although various
Mambas typically scan in the spatial domain, considering the im-
portance of spectral information in compressive spectral imaging,
it is worthwhile to consider scanning the spectral dimension.

3 METHOD
3.1 Problem Formulation
Based on the compressive theory [13], the CASSI system can cap-
ture 2D measurements that contains information for all bands. The
physical mask, denoted by M ∈ R𝐻×𝑊 , can be viewed as a modula-
tor which will act on the captured HSI signal X ∈ R𝐻×𝑊 ×𝑁𝜆 . Then
the representation of the 𝑛𝑡ℎ

𝜆
wavelength of the modulated image:

X′
𝑛𝜆

= M ⊙ X𝑛𝜆
, (5)

where ⊙ represents the element-wise product.
After shifting along the horizontal direction according to the dis-

persion process, which is denoted as 𝑑 , the signal can be expressed
as:

X′′ (ℎ,𝑤, 𝑛𝜆) = X′ (ℎ,𝑤 + 𝑑𝑛𝜆
, 𝑛𝜆), (6)
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where X′′ ∈ R𝐻×(𝑊 +𝑑𝑁𝜆
)×𝑁𝜆 .

Ultimately, the imaging sensor captures the shifted image, and
the final measurement can be formulated as:

Y =

𝑁𝜆∑︁
𝑛𝜆=1

X′′
𝑛𝜆
, (7)

where Y ∈ R𝐻×(𝑊 +𝑑𝑁𝜆
) .

For the convenience, after taking the measurement noise into
account, the matrix-vector form is formulated as:

y = Φx + n, (8)

where x is the original HSI, y stands for the 2D measurement,
Φ denotes the sensing matrix that contains the whole degraded
process, and n represents the additive noise. The purpose of HSI
restoration is to recover the original high-quality image x from
degraded measurement y.

3.2 Dynamic Deep Unfolding Framework
The overall architecture of the proposed VmambaSCI method is
depicted in Figure 1(a). It is a deep unfolding framework that com-
posed of 𝐾 repeated stages. In each stage, there is a data module fol-
lowed by a prior module. The former contains a Proximal Gradient
Descent (PGD) algorithm which utilizes the physical degradation
information, while the latter acts as a denoiser for optimization. In
this section, we introduce the proposed dynamic stage interaction,
which improves the quality of inter-stage fusion by transferring
important information according to the current characteristics flex-
ibly. The proposed data module and prior module are introduced
in sections 3.3 and 3.4, respectively.

Spatial Adaptive Frequency Domain Stage Interaction. The
inherent trade-off between spatial and spectral information leads
to contextually different intermediate features at different stages
of the encoder-decoder denoiser. Stage interaction can not only
reduce the loss of information but also enrich the features of each
stage. In [25], the frequency characteristics of HSIs are taken into
account, which are ignored in the previous methods. In the encoder,
the magnitude information is more prominent, which is concerned
with the intensity of pixels. In the decoder, the phase information
is more clear, which can help conveying positional information.
However, this mode of feature transfer is not flexible enough. To
address it, we introduce the normalization operation in a spatial-
adaptive way, along with the frequency domain feature interaction.
The process is shown in Figure 1(c). In this way, the denoiser can not
only use more information of HSIs to guide the reconstruction but
also reserve the refined memory of previous stages with the well-
preserved spatial information, leading to an informative proximal
mapping. The whole process can be expressed as:

H𝑘−1
𝑛 = F −1

(
𝐴

(
F

(
F𝑘−1𝑒𝑛𝑐

))
, 𝑃

(
F

(
F𝑘−1
𝑑𝑒𝑐

)))
𝛼𝑘𝑛 , 𝛽

𝑘
𝑛 = Conv𝛼

(
H𝑘−1
𝑛

)
,Conv𝛽

(
H𝑘−1
𝑛

)
F𝑘+1𝑠 = F𝑘𝑒𝑛𝑐 ⊙ 𝛼𝑘𝑛 + 𝛽𝑘𝑛 ,

(9)

where F denotes the Fourier transform, F −1 represents the inverse
Fourier transform. 𝐴 (·) is the amplitude component, 𝑃 (·) is the
phase component, 𝛼𝑘𝑛 and 𝛽𝑘𝑛 are tensors with spatial dimensions.

3.3 Flexible Gradient Descent
Mathematically, the optimization of HSI reconstruction can be mod-
eled as:

x̂ = argmin
x

1
2
∥y − Φx∥22 + 𝜆𝐽 (x), (10)

where 𝐽 (x) denotes the regularizer term with parameter 𝜆.
The PGD algorithm approximates Eq. (10) as an iterative conver-

gence problem by the following iterative function:

x̂𝑘 = argmin
x

1
2𝜌

x −
(
x̂𝑘−1 − 𝜌Φ𝑇

(
Φx̂𝑘−1 − y

))2
2
+ 𝜆𝐽 (x), (11)

where x̂𝑘 is the output of the 𝑘-th iteration, 𝜌 stands for the step
size.

Actually, x̂𝑘−1 − 𝜌Φ𝑇
(
Φx̂𝑘−1 − y

)
can be treated as a gradient

descent operation and the rest can be solved by the proximal oper-
ator 𝑝𝑟𝑜𝑥𝜆,𝐽 . Thus, the reconstruction problem can be decomposed
into two subproblems. One is the data module containing gradient
descent, and the other is the prior module containing proximal
mapping:

v𝑘 = x̂𝑘−1 − 𝜌Φ𝑇
(
Φx̂𝑘−1 − y

)
,

x̂𝑘 = prox𝜆,𝐽
(
v𝑘

)
.

(12)

For the gap between the sensing matrix and the real degradation,
previous methods use neural networks to learn the degradation ma-
trix,which is challenging. Later, estimating the residual between the
sensing matrix and the degradation matrix from the 2D measure-
ment and the sensing matrix has been proved to be more effective
[12]. Meanwhile, a pixel-adaptive data module [25] was mentioned
to address the problem of inconsistent and agnostic degradation at
different locations in the HSI. Due to the lack of overall learnability
of the gradient descent modules, they can not adjust themselves flex-
ibly according to the current situation in each iteration, resulting
in the reconstruction process deviating from the reality. Based on
this, we propose a flexible gradient descent method that solves the
problem of degradation more comprehensively, which is presented
in Figure 1(b) . In addition to using residual learning to reduce the
difference between the sensing matrix and the degradation matrix,
we change the step size flexibly during the gradient descent. In-
stead of making it as a simple learnable parameter, we introduce
spatial and spectral information carried by the degradation matrix
to recover the input at the pixel level. In this way, the direction of
the iteration remains correct.

Therefore, the gradient descent step in our proposed method can
be expressed as:

v𝑘 = x̂𝑘−1 − 𝑃𝑑 Φ̂⊤𝑘
(
Φ̂𝑘 x̂𝑘−1 − y

)
, (13)

where Φ̂𝑘 denotes the calculated degradation matrix, 𝑃𝑑 represents
the 3D parameters obtained by operating on input and degradation
matrix, k is the number of stage.

3.4 Mixing Priors based on Mamba
As shown in Figure 2(a), the denoiser adopts a U-shaped structure
consists of several basic unit blocks called MPMB. For the down-
sample layer, we use the convolution with a kernel size of 2 and
a stride of 2. For the upsample layer, we use a pointwise convolu-
tion followed by a pixel shuffle operation. The block interaction
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Figure 2: (a) PM is a three-layer U-shaped architecture with block interaction, SI represents stage interaction. (b) MPMB has
two parallel branches, SCA and DSMamba, with a bi-directional interaction. (c) The core module of DSMamba is SS2D, in which
we introduce spatial-spectral scanning.

is introduced to reduce the loss of information caused by sam-
pling. Although SSMs introduce a large number of hidden states to
memorize long-range dependencies, there exists notable channel re-
dundancy [19]. What’s more, the computational complexity of SSM
is almost determined by the number of input channels. Considering
the two points, unlike other methods of mapping features to higher
dimensions, we set the channels of each layer in the network as 28,
56, 112.

Mixing Priors based on Mamba Block. The architecture of
the MPMB is shown in Figure 2(b), which mainly consists of a
spatial-spectral scanning mamba branch and a simplified channel
attention branch in a parallel design. We add bi-directional interac-
tion [12] between two branches to provide complementary clues in
the channel and spatial dimensions. Instead of using gated-Dconv
feed-forward network (GDFN) which often appears in other net-
works, we adopt the SimpleGate module [9] to reduce intra-block
complexity while achieving better performance. The details of the
two branches are described following.

Spatial-Spectral Scanning Mamba Branch. SS2D is the core
operation of Mamba, which consists of three components: a scan
expanding operation, a S6 block, and a scan merging operation.
Derived from Mamba [17], the S6 block enables the model to dis-
tinguish and retain relevant information while filtering out the
irrelevant by introducing a selective mechanism on top of S4 that
adjusts the SSM’s parameters based on the input. Unlike other

Spatial-spectral 
scanning

Merge
SSM(S6) Block

…

…

…

…
SSM(S6) Block

Four directions

scan

…

Channel 1 Channel 2 Channel n-1 Channel n

H

W

Figure 3: The flow of the SS2D operation. Above it there is
an example of the space-spectral scanning.

methods which scans images in four directions of space (top-left to
bottom-right, bottom-right to top-left, top-right to bottom-left, and
bottom-left to top-right) into sequences, we add the scanning of
the channel dimension as well. As shown in Figure 3, we take the
first few lines of the first channel, the next few lines of the second
channel, all the way to the last few lines of the last channel. To
obtain comprehensive spatial information in different spectra, the
number of times we repeat this operation is the number of channels.
The first time it goes from the first channel to the last channel, the
second time it goes from the second channel to the last channel
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and back to the first channel, and then the last time it starts from
the last channel and then goes from the first channel to the penulti-
mate channel. The data obtained after the operations are integrated
and scanned using the four directions mentioned above. In order
to balance performance and efficiency, we only use this type of
scanning on the first layer of the U-shaped architecture. By fusing
the features of the two dimensions, we can capture the relationship
between different spectra while obtaining spatial information.

Simplified Channel Attention Branch.While DSMamba in-
troduces spectral information, it uses only a portion of each chan-
nel’s features at each scan, which is incomplete. To learn the weight
of each channel and better capture the correlation between different
channels, we build another branch. Meanwhile, the channel atten-
tion can help focus on learning diverse channel representations,
which improves the channel redundancy mentioned above. For
simplicity, we use an architecture based on convolution to achieve
this goal. In [9], it has been proved that the nonlinear activation
functions can be replaced by multiplication or removed, which sim-
plifies the model without performance degradation. Following this,
we introduce simplified channel attention(SCA) and SimpleGate to
extract channel information. SCA can be formulated as:

𝑆𝐶𝐴(X) = X ∗𝑊 pool(X), (14)

where pool indicates the global average pooling,𝑊 represents a
fully-connected layer and ∗ is a channelwise product operation.
SimpleGate can be expressed as:

SimpleGate (L) = L
[
:, :, :

𝐶

2

]
⊙ L

[
:, :,

𝐶

2
:
]
, (15)

where L
[
:, :, : 𝐶2

]
and L

[
:, :, 𝐶2 :

]
represent the first half and the

second half of the input L across channel, respectively.
Similarly, we can replace the gating mechanism used in previ-

ous works with SimpleGate, which improves the information flow
through the network in a simpler way.

3.5 Loss Function
Instead of L1 loss and L2 loss which may cause the images to be
too smooth and lack sensory realism, we adopt Charbonnier Loss,
a stable loss function, in the reconstruction. It is expressed as:

ℓ

(
I′, Î

)
=

√︃I′ − Î
2 + 𝜖2, (16)

where 𝜖 = 10−3 is a constant.
In addition to calculating the losses of the reconstructed images

with respect to the original HSIs, we also include the reversible
loss [8]. Based on the nature of the reversible optical path, the re-
constructions are projected back to the measurement space, and
then the gaps between the projected data and the actual 2D mea-
surements are calculated. By considering both forward and inverse
losses, we can make the final results closer to the real hyperspectral
images and thus improve the reconstruction accuracy. Therefore,
we define the overall loss function as follows:

L = ℓ (x𝑜𝑢𝑡 , x𝑡𝑟𝑢𝑡ℎ) + 𝜉 · ℓ (G (x𝑜𝑢𝑡 ) , y) , (17)

where x𝑜𝑢𝑡 is the output of the network, G denotes the process of
mask coding and dispersion, y represents the measurement of the
CASSI system. 𝜉 stands for a penalty coefficient which is set to 0.2
by default.

4 EXPERIMENTS
Experimental setup, implementation details and result analysis will
be introduced in this section.

4.1 Experimental Settings
We conduct experiments on the simulation dataset. Following the
previous approaches [6, 22, 32], a set of 28 wavelengths ranging
from 450-650nm, which are derived through spectral interpolation
manipulation, are selected for HSIs.

Simulation HSI Data. For the simulation experiment, two
widely used HSI datasets, CAVE and KAIST, are adopted. The for-
mer comprises 32 HSIs with a spatial size of 512 × 512, the latter
consists of 30 HSIs with a spatial resolution at 2704 × 3376. Fol-
lowing prior works, we employ the CAVE dataset as the training
set, while 10 scenes from the KAIST dataset are utilized for testing.
During the training process, we apply a real mask with a size of
256 × 256.

Evaluation Metrics. The reconstruction performance of the
methods are evaluated through peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) [43].

Implementation Details. During training, to get labels for the
simulation experiment, the 3D HSI datasets are randomly cropped
to generate patches of size 256 × 256 × 28. Real shifted masks of
dimensions 256 × 310 × 28 are utilized at the same time. As for the
data augmentation techniques, according to the previous works, we
leverage random flipping and rotation. Our model is implemented
using the PyTorch framework. Adam optimizer is adopted with
hyperparameters 𝛽1 = 0.9 and 𝛽2 = 0.999. The training process
spans 300 epochs in total, and cosine annealing scheduler with
linear warm-up is utilized. The learning rate and the batch size are
set to 2 × 10−4 and 1, respectively.

4.2 Quantitative Results
In our study, we conduct a comprehensive analysis of the proposed
VmambaSCI method and SOTA techniques. The techniques includ-
ing traditional the model-based methods: TwIST [3] and DeSCI [28];
the end-to-end networks: HDNet [21], MST [6], CST [5]; the deep
unfolding methods: RDLUF-MixS2 [12], PADUT [25] and DERNN-
LNLT [11]. The effectiveness of the methods is evaluated by PSNR
and SSIM, and the results from 10 simulated scenes are represented
in Table 1. It can be seen that the methods based on deep unfolding
are better than the other two methods. Specifically, compared to
PADUT-12stg [25], RDLUF-MixS2-9stg [12], DERNN-LNLT-9stg
[11], which represents the recent SOTA methods, the VmambaSCI-
9stg outperforms them with improvements of 1.19 dB, 0.51 dB and
0.15 dB on average, respectively.

4.3 Qualitative Results
By using 3 of 28 spectral channels of a scene obtained from the
simulation, we provide a comparison of the proposed VmambaSCI
method with six SOTAmethods. As can be observed in Figure 4, our
method excels in producing visually smoother textures with more
vivid edge details, while preserving the spatial information of the
homogeneous regions. Specifically, the dynamic frameworkwe used
enhances the accuracy of feature extraction and feature flow, and
Mamba-based branch effectively models long-range dependency
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Table 1: The PSNR (upper entry in each cell) in dB and SSIM (lower entry in each cell) results on 10 simulated scenes. The best
results are in bold.

Algorithms Scene1 Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8 Scene9 Scene10 Avg

TwIST 25.16
0.700

23.02
0.604

21.40
0.711

30.19
0.851

21.41
0.635

20.95
0.644

22.20
0.643

21.82
0.650

22.42
0.690

22.67
0.569

23.12
0.669

DeSCI 27.13
0.748

23.04
0.620

26.62
0.818

34.96
0.897

23.94
0.706

22.38
0.683

24.45
0.743

22.03
0.673

24.56
0.732

23.59
0.587

25.27
0.721

HDNet 35.14
0.935

35.67
0.940

36.03
0.943

42.30
0.969

32.69
0.946

34.46
0.952

33.67
0.926

32.48
0.941

34.89
0.942

32.38
0.937

34.97
0.943

MST-L 35.40
0.941

35.87
0.944

36.51
0.953

42.27
0.973

32.77
0.947

34.80
0.955

33.66
0.925

32.67
0.948

35.39
0.949

32.50
0.941

35.18
0.948

CST-L 35.96
0.949

36.84
0.955

38.16
0.962

42.44
0.975

33.25
0.955

35.72
0.963

34.86
0.944

34.34
0.961

36.51
0.957

33.09
0.945

36.12
0.957

RDLUF-MixS2-9stg 37.94
0.966

40.95
0.977

43.25
0.979

47.83
0.990

37.11
0.976

37.47
0.975

38.58
0.969

35.50
0.970

41.83
0.978

35.23
0.962

39.57
0.974

PADUT-12stg 37.36
0.962

40.43
0.978

42.38
0.979

46.62
0.990

36.26
0.974

37.27
0.974

37.83
0.966

35.33
0.974

40.86
0.978

34.55
0.963

38.89
0.974

DERNN-LNLT-9stg 38.26
0.965

40.97
0.979

43.22
0.979

48.10
0.991

38.08
0.980

37.41
0.975

38.83
0.971

36.41
0.973

42.87
0.981

35.15
0.962

39.93
0.976

Ours-9stg 38.28
0.966

41.50
0.981

43.90
0.981

47.88
0.990

37.68
0.979

37.68
0.976

38.83
0.970

36.47
0.975

43.34
0.983

35.21
0.963

40.08
0.976

TwIST DeSCI DGSMP HDNet MST-L DAUHST-9stg Ours-9stg Ground Truth

Figure 4: Visual comparisons of reconstructed HSIs in scene 5 with 3 spectral channels.

in two domains. Besides, Figure 6 illustrates the corresponding
spectral density curves of different methods. Our method achieves
the highest correlation coefficient, which indicating the spectral
fidelity of our method.

4.4 Ablation Study
We conduct an ablation study to analyze the specific effects of
different components of VmambaSCI on the overall performance,
detailed in Table 2. First, we build a baseline model by adopting a

SCA branch and a convolutional self-attention branch [42] with a
residual learning gradient descent module and a frequency domain
stage interaction, achieving a result of 37.69 dB. Incorporating a
pixel-adaptive gradient descent operation and spatial-adaptive nor-
malization between stages increases the PSNR by 0.32 dB. Moreover,
utilizing DSMamba yields an improvement of 0.69 dB, demonstrat-
ing significant enhancement. Combining these components results
in a performance increase of 1.01 dB for VmambaSCI, affirming the
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Figure 5: Examples of the region which are chosen for the analysis of the reconstructed spectra. By looking at the images we
can also find that the reconstructions obtained by our method are clearer and closer to the true values.
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Table 2: Break-down ablation study on individual compo-
nents.

PSNR SSIM
1 Baseline 37.69 0.965
2 1 + Stage Interaction 38.78 0.966
3 2 + Flexible Gradient Descent 38.01 0.967
4 3+ DSMamba 38.70 0.970

effectiveness of our method. Furthermore, we conduct an exper-
iment to examine the impact of varying the number of stages in
our model architecture, where parameters are shared except for
the initial and final stages. Analysis of the findings presented in
Table 3 reveals that as the number of stages increases (from 3 to
9), there is a corresponding enhancement in the network’s per-
formance. This underscores the efficacy of our iterative network

Table 3: Ablation of number of stages.

Number of stages PSNR SSIM
3 38.70 0.970
5 39.52 0.973
7 39.87 0.975
9 40.08 0.976

design, which enables refined information processing across mul-
tiple stages. Considering the trade-off between performance and
computational complexity, the optimal configuration need to be
determined for the specific task and constraints.

5 CONCLUSION
In this paper, we introduce a dynamic deep unfolding framework
as an initial step, which not only narrows the gap between the sens-
ing matrix and the degradation process, but also preserves more
spatial information during feature fusion. To further enhance the
spectral-spatial representation capabilities and model long-range
dependencies without introducing excessive computational com-
plexity, we propose the DSMamba, which scans in both spectral and
spatial domains. By integrating the DSMamba into the framework,
we create an end-to-end trainable neural network, referred to as
VmambaSCI. Through comprehensive experiments, our proposed
method achieves the best performance on simulated datasets. In
future work, We will introduce our model to real datasets to ex-
amine the performance. Meanwhile, reducing memory costs and
computation are worth noting. By building models that are easier
to train and faster to infer, efficient techniques for HSI snapshot
compression and reconstruction can be established.
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