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Abstract

This paper considers intuitively appealing axioms for rational, multi-objective
agents and derives an impossibility from which one concludes that such agents must
admit non-Markov reward representations. The axioms include the Von-Neumann
Morgenstern axioms, Pareto indifference, and dynamic consistency. We tie this
result to irrational procrastination behaviors observed in humans, and show how the
impossibility can be resolved by adopting a non-Markov aggregation scheme. Our
work highlights the importance of non-Markov rewards for reinforcement learning
and outlines directions for future work.

1 Where Do Rewards Come From?

Sutton’s reward hypothesis states that the “purpose or goal” of any [rational] agent “can be well
thought of as the maximization of the expected value of the cumulative sum of a received scalar
signal (called reward)” [39, 35]. Within reinforcement learning (RL), and even machine learning
more broadly, this assumption has led to modeling human preferences using a single scalar reward
model [8, 38]. A basic result due to Ng and Russell [24] provides some support for this approach: it
states that given any behavior, there exists a reward function under which that behavior is optimal.
Unfortunately, this result speaks only to the optimal policy, which we cannot, in general, expect
our agents to achieve. Pitis [27] shows value functions computed using such a reward function may
misrepresent rational preferences with respect to suboptimal policies, and that this can be resolved by
adopting White [44]’s more general task specification with a state-action dependent discount factor.
While this more expressive formulation might be understood as supporting a generalized reward
hypothesis, important questions remain. Most fundamentally: where do the rewards come from?

To make progress on this question, we consider whether multiple simple objectives, represented
by relatively simple reward functions (e.g., sparse reward functions or potential functions), can be
aggregated into a single, more complex reward function. Indeed, this approach to reward function
engineering is commonly used in many (if not most) dense-reward environments; e.g., in OpenAI
Gym [5]. In the multi-objective RL literature, it is known as scalarization [32]. More generally, this
is the object of cardinal social choice, which seeks to aggregate a set of preferences into a single
social welfare functional [34]. We note that the problem of aggregating preferences that come from
multiple principals or objectives is precisely analogous to the social choice problem generally, so that
cardinal utilities are required to resolve Arrow’s Impossibility Theorem [3] (e.g., in context of RL,
direct aggregation of human preferences or agent policies is theoretically insufficient) (cf. [23]).

We take an axiomatic approach, where both the simple rewards and complex rewards are derived
from rational preferences and aggregation is assumed to be Pareto optimal. Interestingly, our chosen
axioms lead to an impossibility. We show that if (1) simple rewards are associated with different
time preferences (discount functions), and (2) preferences conflict in at least one case, dynamically
consistent, Pareto indifferent preference aggregation is impossible. This makes reward aggregation
a hard problem, even for very simple MDPs: to precisely aggregate rewards with different time
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preferences we need to adopt a non-Markov reward function or, equivalently, expand the state space.
As we aggregate more and more rewards, the complexity of this expansion may be unbounded.

2 The Procrastinator’s Peril

To motivate and ground our work, we begin with a numerical example of how the naive aggregation
of otherwise rational preferences leads to undesirable behavior. Our example involves repeated
procrastination, a phenomenon to which the reader might relate. An agent aggregates two competing
objectives: work and play. At each time step the agent can choose to either work or play. The
pleasure of play is mostly from today, and the agent doesn’t value future play nearly as much as
present play. On the other hand, the consequences of work are delayed, so that work tomorrow is
valued approximately as much as work today.

Let us model the agent’s preferences for work and play as two separate MDPs, each with state
space S = {w, p}. In the play MDP, we have rewards r(p) = 0.5, r(w) = 0 and a discount factor
of γplay = 0.5. In the work MDP, we have rewards r(p) = 0, r(w) = 0.3 and a discount factor of
γwork = 0.9. One way to combine the preferences for work and play is to value each trajectory under
both MDPs and then add up the values. Not only does this method of aggregation seem reasonable,
but it’s actually implied by some mild and appealing assumptions about preferences (Axioms 1 and 3
in the sequel). Using this approach, the agent assigns values to trajectories as follows:

τ1 p, p, p, p. . . V (τ1) =
∑

t(0.5)
t · 0.5 = 1.00

τ2 w, w, w, w. . . V (τ2) =
∑

t(0.9)
t · 0.3 = 3.00

τ3 p, w, w, w. . . V (τ3) = 0.5 + 0.9 · V (τ2) = 3.20
τ4 p, p, w, w. . . V (τ3) = 0.75 + 0.92 · V (τ2) = 3.18

We see that the agent most prefers τ3: one period (and one period only!) of procrastination is optimal.
Thus, the agent procrastinates and chooses to play today, planning to work from tomorrow onward.
Come tomorrow, however, the agent is faced with the same choice decision, and once again puts
off work in favor of play. The process repeats and the agent ends up pursuing the least preferred
alternative τ1. This plainly irrational behavior illustrates our impossibility theorem.

3 Impossibility of Dynamically Consistent, Pareto Indifferent Aggregation

We assume familiarity with Markov Decision Processes (MDPs) [29] and reinforcement learning
(RL) [39]. We follow the notation of Pitis [27], denoting an MDP by M = ⟨S,A, T,R, γ⟩, where
γ : S × A → R+ is a state-action dependent discount factor. We use lowercase letters for generic
instances, e.g. s ∈ S, and denote distributions using a tilde, e.g. s̃. In contrast to standard notation
we write both state- and state-action value functions using a unified notation that emphasizes the
dependence of each on the future policy: we write V (s, π) and V (s, aπ) instead of V π(s) and
Qπ(s, a). We extend V to operate on probability distributions of states, V (s̃,Π) = Es∼s̃V (s,Π),
and we allow for non-stationary, history dependent policies (denoted by uppercase Π,Ω). With this
notation, we can understand V as an expected utility function defined over prospects of the form
(s̃,Π). For simplicity we assume finite state and action spaces.

3.1 Representing rational preferences

Our work is concerned with the representation of aggregated preferences, where both the aggregation
and its individual components satisfy certain axioms of rationality. Our axioms of rationality build on
Pitis [27]. We define the objects of preference to be the stochastic processes (“prospects”) generated
by following (potentially non-stationary and stochastic) policy Π from an state s. Distributions or
“lotteries” over these prospects may be represented by (not necessarily unique) tuples of state lottery
and policy (s̃,Π) ∈ L(S)×Π =: L(P). We write (s̃1,Π) ≻ (s̃2,Ω) if (s̃1,Π) is strictly preferred
to (s̃2,Ω) under preference relation ≻. To be rational, we require ≻ to satisfy the “VNM axioms”
[41], which we capture in Axiom 1:
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Axiom 1 (VNM). For all p̃, q̃, r̃ ∈ L(P) we have:

Asymmetry: If p̃ ≻ q̃, then not q̃ ≻ p̃;
Negative Transitivity: If not p̃≻ q̃ and not q̃≻ r̃, not p̃≻ r̃;
Independence: If p̃≻ q̃, then αp̃+ (1− α)r̃ ≻ αq̃ + (1− α)r̃, ∀α ∈ (0, 1];
Continuity: If p̃ ≻ q̃ ≻ r̃, then ∃ α, β ∈ (0, 1) such that αp̃+ (1− α)r̃ ≻ q̃ ≻ βp̃+ (1− β)r̃;

where αp̃+ (1− α)q̃ denotes the mixture lottery with α% chance of p̃ and (1− α)% chance of q̃.

We require ≻ to be dynamically consistent [37, 18, 22]:

Axiom 2 (Dynamic consistency). (s, aΠ) ≻ (s, aΩ) if and only if (T (s, a),Π) ≻ (T (s, a),Ω) where
T (s, a) is the distribution over next states after taking action a in state s.

The axioms produce two key results that we rely on (see Kreps [19] and Pitis [27] for proofs):

Theorem 1 (Expected utility representation). The relation ≻ defined on the set L(P) satisfies Axiom
1 if and only if there exists a function V : P → R such that, ∀ p̃, q̃ ∈ L(P):

p̃ ≻ q̃ ⇐⇒
∑

z∈supp(p̃)

p̃(z)V (z) >
∑

z∈supp(q̃)

q̃(z)V (z).

Another function V † gives this representation iff V † is a positive affine transformation of V .

Theorem 2 (Bellman representation). If ≻ satisfies Axioms 1-21 and V is an expected utility
representation of ≻, there exist r : S ×A → R, γ : S ×A → R+ such that ∀ s, a,Π,

V (s, aΠ) = r(s, a) + γ(s, a)V (T (s, a),Π).

3.2 Representing rational aggregation

We now consider the aggregation of several preferences. These may be the preferences of an
agent’s several principals or an individual’s competing interests. An intuitively appealing axiom for
aggregation is Pareto indifference, which says that if each individual preference is indifferent between
two alternatives, then so too is the aggregate preference.

Axiom 3 (Pareto indifference). If p̃ ≈i q̃ (∀i ∈ I), p̃ ≈Σ q̃.

Here, p̃ ≈ q̃ means not p̃ ≻ q̃ and not q̃ ≻ p̃, I is a finite index set, and Σ indicates the aggregate
relation. There exist stronger variants of Pareto property that require monotonic aggregation [43].
We opt for Pareto indifference to accommodate potentially deviant individual preferences.

If we require individual and aggregate preferences to satisfy Axiom 1 and, jointly, Axiom 3, we
obtain a third key result due to [13]. (See Hammond [12] for proof).

Theorem 3 (Harsanyi’s representation). Consider individual preference relations {≻i; i ∈ I} and
aggregated preference relation ≻Σ, each defined on the set L(P), that individually satisfy Axiom 1
and jointly satisfy Axiom 3. If {Vi; i ∈ I} and VΣ are expected utility representations of {≻i; i ∈ I}
and ≻Σ, respectively, then there exist real-valued constant c and weights {wi; i ∈ I} such that:

VΣ(p̃) = c+
∑
i∈I

wiVi(p̃).

3.3 Impossibility result

None of Theorems 1-3 assume all Axioms 1-3. Doing so leads to our main contribution, as follows.

Theorem 4 (Impossibility). Assume there exist two different policies, Π,Ω, and consider the aggre-
gation of arbitrary individual preference relations {≻i; i ∈ I} defined on L(P) that individually
satisfy Axioms 1-2. There does not exist aggregated preference relation ≻Σ satisfying Axioms 1-3.

1Pitis [27] defined “prospects” as tuples (s̃,Π) and required an additional “Irrelevance of unrealizable actions”
axiom. This property is implicit in our redefinition of “prospect” as a stochastic process.
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Proof. Fix s, a. Using Theorem 2, choose {ri, γi}, rΣ, γΣ to represent individual and aggregate
preferences over L(P). W.l.o.g. assume |I| = 2 and shift VΣ so that by Theorem 3 ∃ {wi} for which,

VΣ(s, aΠ)− VΣ(s, aΩ) =
∑
i∈I

wiVi(s, aΠ)−
∑
i∈I

wiVi(s, aΩ)

= w1γ1(s, a) [V1(T (s, a),Π)− V1(T (s, a),Ω)]+

w2γ2(s, a) [V2(T (s, a),Π)− V2(T (s, a),Ω)] .

(1)

Furthermore, plugging in the result of Theorem 3 into Theorem 2 yields,

VΣ(s, aΠ)− VΣ(s, aΩ) = γΣ(s, a)VΣ(T (s, a),Π)− γΣ(s, a)VΣ(T (s, a),Ω)

= w1γΣ(s, a) [V1(T (s, a),Π)− V1(T (s, a),Ω)]+

w2γΣ(s, a) [V2(T (s, a),Π)− V2(T (s, a),Ω)] .

(2)

Compare the final RHS of equations (5) and (6) and note that individual preferences {≻i; i ∈ I}
may be chosen arbitrarily, so that each term in the square brackets, Vi(T (s, a),Π)− Vi(T (s, a),Ω)
is strictly greater than zero. Moreover, we may replace Ω with an α-mixture of Π and Ω (that is,
αΠ+ (1− α)Ω) in the above derivations to obtain equivalent equations where the terms inside the
square brackets may assume any value in the closed interval [0, Vi(T (s, a),Π)− Vi(T (s, a),Ω)] and
is differentiable with respect to α.

Then, differentiating with respect to α, we obtain the equalities:

w1γ1(s, a) = w1γΣ(s, a) and w2γ2(s, a) = w2γΣ(s, a), (3)

from which we conclude that γΣ(s, a) = γ1(s, a) = γ2(s, a). But this contradicts our assumption
that individual preferences {≻i; i ∈ I} may be chosen arbitrarily, completing the proof.

An important assumption of Theorem 4 is that the individual preferences {≻i; i ∈ I} may be chosen
arbitrarily. This is a natural requirement for aggregation, which is assumed by both Arrow’s and
Harsanyi’s theorems and is commonly referred to as “unrestricted domain”. A consequence, critical
to the impossibility result and salient in the procrastination example of Section 2, is that the individual
preferences may have diverse time preferences (i.e., different discount functions). NB, Theorem 4
generalizes the cases (and so applies) where Π, Ω are stationary, and where γ1, γ2, γΣ are constants.

The closest results from the economics literature consider consumption streams (S = R) [45, 7, 42].
Within reinforcement learning, equal time preference has been assumed, without justification, when
merging MDPs [36, 20].

4 Escaping Impossibility with Non-Markov Rewards

An immediate consequence of Theorem 4 is that any scalarized approach to multi-objective RL [40]
is generally insufficient to represent composed preferences. But the implications run deeper: insofar
as general tasks compose several objectives, Theorem 4 pushes Sutton’s reward hypothesis to its
limits. To escape impossibility, the Procrastinator’s Peril is suggestive: to be productive, repeat play
should not be rewarded. And for this to happen, we must keep track of past play, which suggests that
reward must be non-Markov, even in presence of Markov dynamics.

The way in which non-Markov rewards (or equivalently, non-Markov utilities/values) escape Theorem
4 is actually quite subtle. Nowhere in the proof of the Theorem, nor in the proofs of Theorems 1, 2, or
3 is the Markov assumption explicitly used. Nor does it obviously appear in any of the Axioms. The
Markov assumption is, however, invoked in two places. First, to establish comparability between the
basic objects of preference—prospects (s,Π)—and second, to extend that comparison set to include
“prospects” of the form (T (s, a),Π). To achieve initial comparability, Pitis [27] applied a “Markov
preference, MP” assumption together with an “original position” construction as follows:

. . . it is admittedly difficult to express empirical preference over prospects . . . an agent only
ever chooses between prospects originating in the same state . . . [Nevertheless,] we imagine
a hypothetical state from which an agent chooses between [lotteries] of prospects, denoted
by L(P). We might think of this choice being made from behind a “veil of ignorance” [30]
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In other words, to allow for comparisons between prospect (s1,Π) and (s2,Π), we prepend some
pseudo-state, s0, and compare prospects (s0, s1Π) and (s0, s2Π). Markov preference then lets us cut
off the prepended s0, so that our preferences between (s1,Π) and (s2,Π) are cardinal.

Without this construction, however, there is no reason to require relative differences between V (s1, ∗)
and V (s2, ∗) to be meaningful, or to even think about lotteries/mixtures of the two prospects (as done
in Axiom 1). Letting go of this ability to compare prospects starting in different states means that
Theorem 1 is applicable only to sets of prospects with matching initial states.

Though this does not directly affect the conclusion of Theorem 2, T (s, a) in V (T (s, a),Π) includes
a piece of history, (s, a), and can no longer be computed as Es′∼T (s,a)V (s′,Π). Instead, since the
agent is not choosing between prospects of form (s′,Π) but rather (abusing notation) prospects of
form (sas′,Π), the expectation should be computed as Es′∼T (s,a)V (sas′,Π).

The inability to compare prospects starting in different states also affects the conclusion of Theorem
3, which implicitly uses such comparisons to find constant coefficients wi that apply everywhere
in the original L(P). Relaxing Harsanyi’s theorem to not make inter-state comparisons results in
coefficients that are state dependent when aggregating utilities of prospects in the original L(P), and
history dependent when aggregating the historical prospects—e.g., of the form (sas′,Π)—as is now
required to compute the non-Markov value V (T (s, a),Π) that appears in Theorem 2.

Allowing the use of history dependent coefficients in the aggregation of Vi(T (s, a),Π) resolves the
impossibility. The following result shows that given state dependent coefficients wi(s), we can always
construct history dependent coefficients wi(sas

′) that allow for dynamically consistent aggregation
that satisfies all axioms. In the statement of the theorem, we use L(Py) to denote the set of prospect
lotteries starting with history y.
Theorem 5 (Possibility). Consider the aggregation of arbitrary individual preference relations
{≻y

i ; i ∈ I} defined on their respective L(Py), for each history y, that individually satisfy Axioms
1-2. There exist aggregated preference relations {≻y

Σ} each satisfying Axioms 1-3.

In particular, given s, a, VΣ, {Vi}, {wi(s)}, where (A) VΣ and each Vi individually satisfy Axioms
1-2 on L(Py),∀y, and (B) VΣ(s,Π) =

∑
i wi(s)Vi(s, aΠ)), then, choosing

wi(sas
′) = wi(sa) = wi(s)γi(s, a) for all i, s′ (4)

implies that VΣ(T (s, a),Π) ∝
∑

i wi(sa)Vi(T (s, a),Π) so that the aggregated preferences {≻sas′

Σ }
satisfy Axiom 3. Unrolling this result produces a set of constructive, history dependent weights
{wi(y)} that satisfy Axiom 3 for all histories {y}.

Proof. We follow the proof of Theorem 4. Fix s, a. Using Theorem 2, choose {ri, γi}, rΣ, γΣ to
represent individual and aggregate preferences over L(Ps) and L(Psas′). W.l.o.g. assume |I| = 2
and shift VΣ so that by Theorem 3 ∃ {wi(s)} for which,

VΣ(s, aΠ)− VΣ(s, aΩ) =
∑
i∈I

wi(s)Vi(s, aΠ)−
∑
i∈I

wi(s)Vi(s, aΩ)

= w1(s)γ1(s, a) [V1(T (s, a),Π)− V1(T (s, a),Ω)]+

w2(s)γ2(s, a) [V2(T (s, a),Π)− V2(T (s, a),Ω)] .

(5)

Furthermore, plugging in the result of Theorem 3 into Theorem 2 yields,
VΣ(s, aΠ)− VΣ(s, aΩ) = γΣ(s, a)VΣ(T (s, a),Π)− γΣ(s, a)VΣ(T (s, a),Ω)

= γΣ(s, a)Es′ [VΣ(sas
′,Π)]− γΣ(s, a)Es′ [VΣ(sas

′,Ω)]

= γΣ(s, a)Es′ [w1(sa)V1(T (s, a),Π)− w1(sa)V1(T (s, a),Ω)]+

γΣ(s, a)Es′ [w2(sa)V2(T (s, a),Π)− w2(sa)V2(T (s, a),Ω)] .

= w1(sa)γΣ(s, a) [V1(T (s, a),Π)− V1(T (s, a),Ω)]+

w2(sa)γΣ(s, a) [V2(T (s, a),Π)− V2(T (s, a),Ω)] .

(6)

As in Theorem 4, we define and differentiate with respect to an α-mixture of Π and Ω to obtain:

w1(s)γ1(s, a) = w1(sa)γΣ(s, a) and w2(s)γ2(s, a) = w2(sa)γΣ(s, a), (7)

from which we conclude that:
w2(sa)

w1(sa)
=

w2(s)γ2(s, a)

w1(s)γ1(s, a)
(8)
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This shows the existence of weights wi(sa), unique up to a constant scaling factor, for which
VΣ(T (s, a),Π) ∝

∑
i wi(sa)Vi(T (s, a),Π), that apply regardless of how individual preferences are

chosen or aggregated at s. Unrolling the result completes the proof.

From Theorem 5 we obtain a rather elegant result: rational aggregation over time discounts the
aggregation weights assigned to each individual value function its respective discount factor. In the
Procrastinator’s Peril, for instance, where we started with wp(s) = ww(s) = 1, at the initial (and only)
state s, we have wp(sps) = 0.5 and ww(sps) = 0.9. With these non-Markov aggregation weights,
you can verify that (1) the irrational procrastination behavior is solved, and (2) the aggregated rewards
for work and play are now non-Markov.

5 Non-Markov Rewards in Reinforcement Learning

The necessity of non-Markov rewards was demonstrated in other settings by Abel et al. [1], and
would also arise simply from Axioms 1-2 if state-action dependent discounts could not be considered
[27]. Though several papers explicitly consider RL with non-Markov rewards [10, 31], this is usually
motivated by task compression rather than necessity, and the majority of the RL literature restricts
itself to Markov rewards models. We note that many popular exploration strategies implicitly use
non-Markov rewards [17, 25], and that certain work has also considered non-Markov discount factors
[9, 33].

Conveying Non-Markov Reward The basic approach to dealing with non-Markov reward is to
expand the state space in such a way that reward becomes Markov [10]. Several ways of doing so
have been proposed, including Reward Machines [6] and the Split-MDP [2]. However, the expanded
reward state space is exponential in the number of acceptable policies and may be unbounded in the
amount of simple reward functions that are aggregated [2].

Enriched State Spaces Several specialized subtopics in RL use similarly enriched state spaces,
which can be related to non-Markov rewards. Perhaps the best known is the use of MDPs to address
partially observed problems, by solving an MDP over “belief states” [21], often represented as a
function of a compressed version of the history [16]. A similar preference aggregation problem may
arise in multi-agent RL, and admits a similar treatment to POMDPs whilst also involving a more
explicit aggregation of preferences from the individual agents [11]. In multi-goal RL [28] as well
as works on fast multi-task transfer [4], the reward representation is held separate from the state
dynamics model, which allows for strategies such as ex-post reward relabeling [15] and ex-ante
intrinsic reward setting [26]. These strategies might be adapted to improve the learning speed of
aggregation-based agents that use non-Markov rewards.

6 Conclusion

The main contribution of this paper is an impossibility result from which one concludes that non-
Markov rewards are likely necessary for reinforcement learning agents that either (1) pursue multiple
simultaneous objectives, and/or (2) serve multiple principals with differing preferences. We suspect
this will be the case for any advanced RL agent. To accurately align such agents with diverse
human preferences and minimize x-risks (Appendix A), we need to endow them with the capacity
to represent non-Markov reward (Section 5). Future work should quantify the inefficiency of using
Markov representations where non-Markov rewards are necessary, explore alternatives such as
commitment-based strategies that leave non-Markov rewards implicit, and consider the explicit
construction of aggregated non-Markov reward functions.
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A X-Risk Sheet

We analyze existential risk using the X-Risk Sheet Template of Hendrycks and Mazeika [14].

Individual question responses do not decisively imply relevance or irrelevance to existential risk
reduction. Do not check a box if it is not applicable.

A.1 Long-Term Impact on Advanced AI Systems

In this section, please analyze how this work shapes the process that will lead to advanced AI systems and how it
steers the process in a safer direction.

1. Overview. How is this work intended to reduce existential risks from advanced AI systems?

Answer: We showed that non-Markov reward functions can resolve proxy misspecification of AI systems
that would otherwise arise viaimproper reward aggregation. Starting from several intuitive axioms of rational
aggregation, an impossibility arising from multiple objectives is shown. Thus we conclude that, in order
to reduce reward hacking and proxy misspecification, non-Markov rewards are needed and can be defined
using a multiple mechanisms. This conclusion could help focus reinforcement learning research on questions
that matter, rather than have researchers waste cycles on solutions that apply only to Markov rewards. Our
conclusion applies to any multi-objective agent, whose individual objectives may possess multiple time
preferences. We suspect that this will include all advanced AI systems, as they are bound to have multiple
human principals with varying objectives, and humans have been shown to possess varying time preference.
Insofar as RL agents relate to existential risk, reward function design is paramount, as reward functions are
the fundamental tool for agent alignment. To better align AI preferences (defined by a reward function and
discount factor) with human preferences, we must better understand the theoretical insufficiencies of current
reward representations, which is what this work aims to do.

2. Direct Effects. If this work directly reduces existential risks, what are the main hazards, vulnerabilities, or
failure modes that it directly affects?

Answer: As noted above, our conclusions, if acted upon, could directly reduce proxy misspecification,
AI misgeneralization, and reward hacking. Risks of deceptive alignment, emergent behaviors and goals,
maliciously steered AI and colluding AIs emerging from a Markov reward might be better understood and
mechanisms to reduce this risk are outlined in our paper.

3. Diffuse Effects. If this work reduces existential risks indirectly or diffusely, what are the main contributing
factors that it affects?

Answer: This work could improve incentive structures, standards, defense in depth, and reduce the potential
for human error via reward alignment.

4. What’s at Stake? What is a future scenario in which this research direction could prevent the sudden,
large-scale loss of life? If not applicable, what is a future scenario in which this research direction be highly
beneficial?

Answer: In the case that humans want an AI to pursue an objective that is multi-faceted (i.e. combines
multiple simple objectives, or the joint objective of a multitude of agents), a well defined reward function may
not exist, and a naive aggregation may incentivize unintended behavior. This can have catastrophic effects
if the AI is given power over human life. Understanding the foundation and limitation of reward functions
provides important insight into task specification and human value alignment.

5. Result Fragility. Do the findings rest on strong theoretical assumptions; are they not demonstrated using
leading-edge tasks or models; or are the findings highly sensitive to hyperparameters? □

6. Problem Difficulty. Is it implausible that any practical system could ever markedly outperform humans at
this task? □

7. Human Unreliability. Does this approach strongly depend on handcrafted features, expert supervision, or
human reliability? ⊠

8. Competitive Pressures. Does work towards this approach strongly trade off against raw intelligence, other
general capabilities, or economic utility? ⊠

A.2 Safety-Capabilities Balance

In this section, please analyze how this work relates to general capabilities and how it affects the balance between
safety and hazards from general capabilities.

9. Overview. How does this improve safety more than it improves general capabilities?
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Answer: The discussed solutions to reward aggregation increases pre-deployment costs (e.g. constructing a
split-MDP is more intensive on the reward designer) and improves safety. It also increases the interpretability
of generalization results occurring from a single reward structure. Our work has little impact on general
capabilities (except to the extent that accurate aggregation of preferences is considered a capability).

10. Red Teaming. What is a way in which this hastens general capabilities or the onset of x-risks?

Answer: This work does not further capabilities; it mostly comments on the theoretical basis of differing
incentive structures for agents.

11. General Tasks. Does this work advance progress on tasks that have been previously considered the subject
of usual capabilities research? ⊠

12. General Goals. Does this improve or facilitate research towards general prediction, classification, state
estimation, efficiency, scalability, generation, data compression, executing clear instructions, helpfulness, in-
formativeness, reasoning, planning, researching, optimization, (self-)supervised learning, sequential decision
making, recursive self-improvement, open-ended goals, models accessing the Internet, or similar capabilities?
⊠

13. Correlation With General Aptitude. Is the analyzed capability known to be highly predicted by general
cognitive ability or educational attainment? ⊠

14. Safety via Capabilities. Does this advance safety along with, or as a consequence of, advancing other
capabilities or the study of AI? ⊠

A.3 Elaborations and Other Considerations
15. Other. What clarifications or uncertainties about this work and x-risk are worth mentioning?

Answer: Relating to Q5, all the assumptions/axioms imposed on preferences over prospects are deemed to
be rational and normative, therefore not believed to be strong theoretical assumptions.
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