
seq-JEPA: Autoregressive Predictive Learning of
Invariant-Equivariant World Models

Hafez Ghaemi Eilif B. Muller∗ Shahab Bakhtiari∗

Université de Montréal - Mila

[hafez.ghaemi,eilif.muller,shahab.bakhtiari]@umontreal.ca

Abstract

Joint-embedding predictive architecture (JEPA) is a self-supervised learning (SSL)
paradigm with the capacity of world modeling via action-conditioned prediction.
Previously, JEPA world models have been shown to learn action-invariant or
action-equivariant representations by predicting one view of an image from another.
Unlike JEPA and similar SSL paradigms, animals, including humans, learn to
recognize new objects through a sequence of active interactions. To introduce
sequential interactions, we propose seq-JEPA, a novel SSL world model equipped
with an autoregressive memory module. Seq-JEPA aggregates a sequence of
action-conditioned observations to produce a global representation of them. This
global representation, conditioned on the next action, is used to predict the latent
representation of the next observation. We empirically show the advantages of this
sequence of action-conditioned observations and examine our sequential modeling
paradigm in two settings: (1) predictive learning across saccades; a method
inspired by the role of eye movements in embodied vision. This approach learns
self-supervised image representations by processing a sequence of low-resolution
visual patches sampled from image saliencies, without any hand-crafted data
augmentations. (2) invariance-equivariance trade-off ; seq-JEPA’s architecture
results in automatic separation of invariant and equivariant representations, with
the aggregated autoregressor outputs being mostly action-invariant and the encoder
output being equivariant. This is in contrast with many equivariant SSL methods
that expect a single representational space to contain both invariant and equivariant
features, potentially creating a trade-off between the two. Empirically, seq-JEPA
achieves competitive performance on both invariance and equivariance-related
benchmarks compared to existing methods. Importantly, both invariance and
equivariance-related downstream performances increase as the number of available
observations increases.

1 Introduction

Self-supervised learning (SSL) in latent space has made significant progress in visual representation
learning in recent years [van den Oord et al. [2019], Misra and van der Maaten [2020], He et al.
[2020], Chen et al. [2020], Grill et al. [2020], Chen and He [2021], Caron et al. [2020, 2021], Zbontar
et al. [2021], Bardes et al. [2022], Baevski et al. [2022], Assran et al. [2023]], almost closing the
gap with supervised learning in many downstream tasks. Many of these SSL methods are based on
joint-embedding architectures (JEAs), or joint-embedding predictive architectures (JEPAs). In JEAs,
two different views of a sample image, usually generated by hand-crafted data augmentations, are
encoded to produce invariant representations via sample-contrastive [Chen et al., 2020, He et al.,
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2020, Dwibedi et al., 2021, HaoChen et al., 2021, Yeh et al., 2022, Caron et al., 2020, 2021, Assran
et al., 2022] or dimension-contrastive objectives [Zbontar et al., 2021, Ermolov et al., 2021, Bardes
et al., 2022].

On the other hand, JEPAs are based on encoder-predictor architectures,where a predictor asymmetry
is introduced in one of the branches. The representation learning task is framed as predicting the
consequence of an action or data transformation applied to the first view resulting in the second
view. However, if the predictor is not conditioned on the action/transformation, one can only hope to
obtain transformation-invariant representations. Indeed, originally, this was the goal of JEPA models
without action conditioning, such as BYOL [Grill et al., 2020] and SimSiam [Chen et al., 2020].
Action-conditioned world modeling is common in reinforcement learning (RL) [Ha and Schmidhuber,
2018, Hafner et al., 2019]. In generative SSL, e.g. masked autoencoders [He et al., 2022], decoder
can be considered a world model conditioned on mask locations. In JEPAs, output embeddings of
the encoder can be conditioned on mask locations as in I-JEPA [Assran et al., 2023], or further on
data transformations as in image world models (IWM) [Garrido et al., 2024] before the predictor.
IWM showed a sufficiently deep action-conditioned predictor can be used to learn transformation-
equivariant representations; a property that is crucial in many fine-grained and low-level downstream
tasks such as semantic segmentation. For example, a fine-grained task of distinguishing different
species of birds may be impossible to solve if the model is invariant to color. Most architectures
designed for equivariant SSL [Devillers and Lefort, 2022, Park et al., 2022, Garrido et al., 2023,
Gupta et al., 2023, 2024, Dangovski et al., 2022] encourage both invariant and equivariant features
in the same representational space, i.e. backbone encoder’s output, which may result in a trade-off
between invariance and equivariance-related task performance [Garrido et al., 2024].

Most of the SSL models discussed above operate by comparing only two views of an image, over-
looking the potential advantages of integrating multiple views to learn both action-invariant and
action-equivariant representations. Models of object learning in animals have emphasized the role of
sequential actions and observations for both object representation learning [Tarr et al., 1998, Harman
et al., 1999, Vuilleumier et al., 2002] and planning [Rao, 2024]. To adapt JEPAs to take advantage
of such action-observation sequences, we propose seq-JEPA in which the usual predictor world
model is preceded by an autoregressive memory module to aggregate the latent representations of
recent observations, a mechanism that can be loosely compared with working memory in humans
[Baddeley, 2003]. We show that there is a positive correlation between the number of available
observations (length of the input sequence) and its downstream performance in both invariance and
equivariance-related tasks. To summarize, our contributions are as follows:

• We propose seq-JEPA, an SSL method with a memory-enhanced autoregressive predictive
world model. Our model is able to effectively aggregate recent action-conditioned observa-
tions to achieve competitive performance on invariance- and equivariance-related tasks on
3DIEBench and STL-10.

• We show that seq-JEPA separates invariant and equivariant representations, avoiding the
potential trade-off between invariance- and equivariance-related performances which can
happen when using a single representational space for both types of tasks.

• Utilizing seq-JEPA’s structure, we propose predictive learning across saccades, a method to
learn image representations inspired by embodied vision. To do so, we aggregate a sequence
of low-resolution saccadic patches sampled from image saliency maps with no hand-crafted
data augmentations.

2 Related Work

Self-supervised predictive architectures. In addition to JEPAs (Fig. 2.a) discussed in previous
section, another line of predictive SSL architectures predict the representation of the next observation
in a sequence yet with a contrastive objective and using negative samples [van den Oord et al., 2019,
Gupta et al., 2024, Schneider et al., 2021, Aubret et al., 2024] (see Fig. 2.b). Predictive learning in
latent space is also used to train world models in RL for better sample efficiency [Schwarzer et al.,
2021] or to create an auxiliary intrinsic reward function [Sekar et al., 2020, Guo et al., 2022]. Among
these models, architecturally, BYOL-Explore [Guo et al., 2022] would be closest to seq-JEPA.

Equivariant representation learning. To learn equivariant representations in SSL, one way is to
modify the type of transformations used to tailor to a downstream task [Xiao et al., 2021, Dangovski
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et al., 2022]. Another way is to use an equivariance predictor to predict the effect of a transformation
in the embedding space by conditioning the predictor on transformation parameters [Devillers and
Lefort, 2022, Park et al., 2022, Garrido et al., 2023, Gupta et al., 2023, 2024]. Most of the former
methods add an auxiliary predictor with an additional equivariance loss to avoid collapse to invariance.
Action-conditioned JEPAs [Garrido et al., 2023] have a single prediction loss but suffer a trade-off
between invariance- and equivariance-related performance based on the size of the predictor, i.e., a
larger predictor would result in more equivariant world models but with a drop in invariant linear
probe performance [Garrido et al., 2024].

3 Method

Architecture. We now describe the learning procedure of seq-JEPA (Fig. 1c). Assuming a se-
quence of actions or transformations {ai}M+1

i=1 , possibly generated from a policy that can also be
learnable, a set of sequential observations {xi}M+1

i=1 are produced (denote ∆ai+1,ai as the relative
action/transformation that transforms xi to xi+1). A backbone encoder fθ (we use a ResNet-18)
encodes these observations to output embeddings {zi}Mi=1. At this stage, the first M embeddings are
concatenated by learnable relative action embeddings, ∆âi+1,âi . These concatenated embeddings
are then fed as tokens to the autoregressive memory module gϕ (we use a three-layer transformer
encoder [Vaswani et al., 2017]). This module also receives a learnable token called [AGG] (similar
to the [CLS] token in supervised transformers). The output embedding corresponding to [AGG]
is zAGG = gϕ((z1,∆â2,â1), (z2,∆â3,â2)..., ((zM , 0)) and serves as the global representation of the
observation sequence. The vector zAGG is then concatenated with the action embedding âM+1 and
is fed to a predictor MLP module hψ which outputs the prediction of the subsequent observation
embedding ẑM+1 = hψ((zAGG,∆âM+1,âM )). The loss to be minimized is simply based on the neg-
ative cosine similarity between the original observation embedding (passed through a stop-gradient
(sg) to avoid representational collapse) and the predicted embedding,

Lseq−JEPA = 1− ẑM+1

∥ẑM+1∥2
· sg(zM+1)

∥sg(zM+1)∥2
. (1)

Actions and Observations. We experiment with three different modes of action-observation pairs
for seq-JEPA. In the first mode, observations are transformed image views using hand-crafted
augmentations typically used in augmentation-invariant SSL with action being encoded transformation
parameters (Fig. 2.d). In the second mode, observations are rendering images from the 3D Invariant
Equivariant Benchmark (3DIEBench) [Garrido et al., 2023] with actions being the object rotation
parameters (Fig. 2.c). In addition to these two settings, we also propose predictive learning across
saccades (PLS) (Fig. 2.a) to learn representations without hand-crafted augmentations with a similar
flavor to I-JEPA [Assran et al., 2023] but with differences in terms of architecture and view generation.
PLS is enabled by our use of an autoregressive memory module and is not dependent on the
architecture of the encoder (e.g. masking tokens of a vision transformer in I-JEPA). PLS takes
advantage of small cheap-to-process saccadic patches (glances); specifically, we adopt two principles
from embodied vision, i.e., saliency maps [Itti et al., 1998, Li, 2002, Zhaoping, 2014], and inhibition
of return (IoR) [Posner et al., 1985] to do away with the constraints of I-JEPA context and target
creation. Inspired by the V1 Saliency Hypothesis (V1SH) [Li, 2002, Zhaoping, 2014], we assume
that the agent possesses a (pre-defined or learnable) internal saliency map of its visual field to actively
guide its visual attention. We sample M + 1 fixations (actions) from the saliency map policy with
IoR (to avoid overlapping saccades), and feed seq-JEPA with the first M glances along with relative
action embeddings to predict the next glance representation. To generate saliency maps we use the
pre-trained DeepGaze IIE [Linardos et al., 2021]. See Appendix for details.

4 Experiments and Discussion

Augmentation-based STL-10 and 3DIEBench. For first and second mode of action-observation
discussed above, we use STL-10 and 3DIEBench respectively and compare both invariant and
equivariant performance of seq-JEPA with existing invariant (SimCLR [Chen et al., 2020], VICReg
[Bardes et al., 2022], and SimSiam [Chen and He, 2021]) and equivariant (SIE [Garrido et al., 2024],
SEN [Park et al., 2022], and EquiMod [Devillers and Lefort, 2022]) SSL methods. Top-1 linear
probe accuracy on frozen representations is reported as the invariance-related performance metric. As
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Figure 1: Different approaches to world modeling in SSL; (a) JEPAs predict the effect of a single transformation
in latent space, (b) Contrastive world models such as Contrastive Predictive Coding and ContextSSL predict the
next part of an input sequence via contrastive learning, (c) Seq-JEPA’s world model aggregates a sequence of
observations and conditions the aggregated output to predict the representation of next observation.
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Figure 2: (a) Predictive learning across saccades (PLS) for learning image representations (b) Both invariant
and equivariant performance in PLS increases with the number of available observations to seq-JEPA (c-d)
Geometric transformations and hand-crafted augmentations as other modes of action-observation for seq-JEPA

the equivariance metric, we report R2 of a regression head trained to predict relative transformation
parameters between a pair of observations with their concatenated representations as regressor’s
input. For seq-JEPA, we used the output of either [AGG] token or the ResNet for invariance, and
the ResNet output for equivariance tasks. All other methods use the ResNet output for both tasks.
Tab. 1 shows these metrics for both STL-10 and 3DIEBench. As can be seen, seq-JEPA achieves
competitive invariant and equivariant performance in both settings without sacrificing one for the
other. Although seq-JEPA does not achieve the best performance in all settings, it shows a high level
of invariance among equivariant models, and a high level of equivariance among invariant models.
Most interestingly, two different locations in the network, i.e., AGG and ResNet outputs, have taken
specialized roles: the [AGG] output is specialized for the invariance tasks while the ResNet output is
equivariant.

Predictive Learning across Saccades. In PLS, we report performance with different number of
saccades (Fig. 2.b). Equivariance metric is the R2 of a regressor that predicts the relative position of
two patches in the image given their concatenated representations. As can be seen, both invariant and
equivariant performances increase with the number of available saccadic observations which indicates
the ability of seq-JEPA’s world model to integrate more information to improve its performance. See
Appendix for PLS ablations on saliency map, IoR, and action conditioning.

Limitations and Future Work. The current version of seq-JEPA has only been tested on static
image datasets and perception tasks that do not require planning. Future works include larger-
scale experiments, planning tasks with intrinsic motivation or combined with RL, and integrating
multi-modality into our framework.
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Table 1: Performance metrics for 3DIEBench and STL-10
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-
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A Details and ablations for predictive learning across saccades.

To perform predictive learning across saccades, given an image dataset, we use DeepGaze IIE
Linardos et al. [2021], a model trained on human visual fixations, to generate the saliency maps
corresponding to the images. Specifically, DeepGaze receives an input image and outputs a negative
log-likelihood saliency map which can be converted to a probability distribution (policy) over the
pixels. This distribution can be interpreted as how likely humans are to center their gaze on a given
pixel. We extract and add these saliency maps as a fourth channel to images and store them as a
dataset to speed up training. To simulate a fixation, we sample a pixel from this policy and crop
a square patch centered on this pixel from the image with a width equal to third of the original
image, e.g. 32 for STL-10 square images. Furthermore, to implement IoR, which helps minimize
the overlap between subsequent glances and information redundancy in the prediction objective, we
set the probabilities of a circular area with a diameter equal to patch width surrounding the center
of the saccade to zero before sampling the subsequent saccade. To generate the PLS observations,
we sample M + 1 fixations (actions) from the saliency map policy with IoR, shuffle the fixations,
and feed the corresponding patches to the network. In Table 2, the results of ablation experiments
for the PLS setting are presented. It can be seen that removing each component in PLS results in a
performance drop.

Table 2: Predictive learning across saccades ablations on STL-10

Method Classification (top-1) Position prediction (R2)

seq-JEPA (M = 5) 72.81 0.794
w/o action conditioning 71.64 0.14
w/o IoR 68.51 0.761
w/o saliency map (uniform distribution) 68.12 0.748

B Implementation details.

We train all methods for 1000 epochs using a batch size of 512 with the AdamW optimizer, a learning
rate of 0.001, β1 = 0.9, β2 = 0.999, and weight decay of 0.01. We use a cosine schedule to decay
the learning rate to 10−6 following a linear warmup for 20 epochs starting from a learning rate of
10−4. To apply augmentations for STL-10, we follow the protocol of EquiMod [Devillers and Lefort,
2022] and their method to encode the transformation parameters. Each experiment was conducted on
1 NVIDIA A100 GPU with 40GB of accelerator RAM. A single run of seq-JEPA on 3DIEBench
with a sequence length of 5 takes around 3 hours.

Evaluation protocol. For linear probing, we follow the SSL protocol and train a linear classifier on
top of frozen representations with a batch size of 256 and using the Adam optimizer with default
hyperparameters. For action prediction, we follow the protocol in SIE [Garrido et al., 2023] and
train an MLP regressor with intermediate dimensions of 1024-1024-d, where d is the size of the
action vector (4 for quaternion rotations, 2 for relative saccade position, and 18 for augmentation
parameters)

Below, we describe the architectural details and hyperparameters of each method used in the paper:

Seq-JEPA. In our default setting, we use a ResNet-18 (not pre-trained) as the encoder. The relative
action/transformation parameters are passed from a learnable linear projector of size 32. We use a
transformer encoder architecture [Vaswani et al., 2017] with three layers and four attention heads as
our autoregressor. The predictor MLP has intermediate dimensions of 512-512.

SimCLR. We use a temperature parameter of τ = 0.5 with a projection MLP with 2048-2048-2048
intermediate dimensions.

VICReg. We use λinv = λV = 10, λC = 1, and a projection head of 2048-2048-2048 intermediate
dimensions.
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BYOL. We use a a projection head of 2048-2048-2048 intermediate dimensions. The predictor has
intermediate dimensions of 512-512. For EMA, we use a starting momentum of 0.996 and increase it
to one through training.

SIE. For both invariant and equivariant projection heads, we use intermediate dimensions of
1024-1024-1024. For the loss coefficients, we use λinv = λV = 10, λequi = 4.5, and λC = 1.

SEN. We use a temperature parameter of τ = 0.5 with a projection MLP with 2048-2048-2048
intermediate dimensions.

EquiMod. We use the version based on SimCLR (both invariant and equivariant losses are con-
trastive with τ = 0.1 and have equal weights). The projection head has 1024-1024-128 intermediate
dimensions. The transformation parameters are normalized and passed through a linear projection
layer of size 128.
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