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Abstract

The performance of machine learning models on new data is critical for their success in real-
world applications. Current methods to detect shifts in the input or output data distributions
have limitations in identifying model behavior changes when no labeled data is available. In
this paper, we define explanation shift as the statistical comparison between how predictions
from training data are explained and how predictions on new data are explained. We propose
explanation shift as a key indicator to investigate the interaction between distribution shifts
and learned models. We introduce an Explanation Shift Detector that operates on the
explanation distributions, providing more sensitive and explainable changes in interactions
between distribution shifts and learned models. We compare explanation shifts with other
methods that are based on distribution shifts, showing that monitoring for explanation
shifts results in more sensitive indicators for varying model behavior. We provide theoretical
and experimental evidence and demonstrate the effectiveness of our approach on synthetic
and real data. Additionally, we release an open-source Python package, skshift, which
implements our method and provides usage tutorials for further reproducibility.

1 Introduction

Machine Learning (ML) theory provides means to forecast the quality of ML models on unseen data, provided
that this data is sampled from the same distribution as the data used to train and evaluate the model. If
unseen data is sampled from a different distribution than the training data, model quality may deteriorate,
making monitoring how the model’s behaviour changes crucial.

Recent research has highlighted the impossibility of reliably estimating the performance of machine learning
models on unseen data sampled from a different distribution in the absence of further assumptions about the
nature of the shift (Ben-David et al., 2010; Lipton et al., 2018; Garg et al., 2021). State-of-the-art techniques
attempt to model statistical distances between the distributions of the training and unseen data or the
distributions of the model predictions. However, these approaches only partially capture how distribution
shifts affect the interaction between new data and trained models. Additionally, they often require causal
graphs or specific shift assumptions, limiting their general applicability, mainly since such assumptions
can depend on the data modality. In particular, tabular data—an economically critical domain—presents
unique challenges. Thus, it is often necessary to go beyond detecting changes in input data distributions and
understanding how they impact and relate to changes in the model given that performance degradation can
not be accurately estimated.
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The field of explainable AI has emerged as a way to understand model decisions and interpret the inner
workings of ML models. The core idea of this paper is to go beyond the modeling of distribution shifts and
monitor for explanation shifts to signal a change of interactions between learned models and dataset features
in tabular data. We newly define explanation shift as the statistical comparison between how predictions from
training data are explained and how predictions on new data are explained. In summary, our contributions
are:

• We propose measures of explanation shifts as a key indicator for investigating the interaction between
distribution shifts and learned models.

• We define an Explanation Shift Detector that operates on distributions of model explanations, allowing
for more sensitive and explainable changes of interactions between distribution shifts and learned
models in Section 3.

• We compare our monitoring method that is based on explanation shifts with methods that are based
on other kinds of distribution shifts. We find that monitoring for explanation shifts results in more
sensitive indicators for varying model behavior.

• We release an open-source Python package skshift, which implements our “Explanation Shift
Detector”, along usage tutorials for reproducibility (cf. Statement 6).

2 Foundations and Related Work

2.1 Basic Notions

Supervised machine learning induces a function fθ : dom(X) → dom(Y ), from training data Dtr =
{(xtr0 , ytr0 ), . . . , (xtrn , ytrn )}. Where dom(X) refers to the domain of X, which is the set of all possible values
that the variable X can take, and dom(Y) denotes the domain target of the target variable Y . Thereby, fθ is
from a family of functions fθ ∈ F and Dtr is sampled from the joint distribution P(X,Y ) with predictor
variables X and target variable Y . fθ is expected to generalize well on new, previously unseen data Dnew

X =
{xnew0 , . . . , xnewk } ⊆ dom(X). We write Dtr

X to refer to {xtr0 , . . . , xtrn } and Dtr
Y to refer to Dtr

Y = {ytr0 . . . , ytrn }.
For formalizations and to define evaluation metrics, it is often convenient to assume that an oracle provides
values Dnew

Y = {ynew0 , . . . , ynewk } such that Dnew = {(xnew0 , ynew0 ), . . . , (xnewk , ynewk )} ⊆ dom(X) × dom(Y ).

The core machine learning assumption is that training data Dtr and novel data Dnew are sampled from the
same underlying distribution P(X,Y ). Where P(·) are density functions for continuous variables or probability
mass functions if the variables are discrete. The twin problems of model monitoring and recognizing that
new data is out-of-distribution can now be described as predicting an absolute or relative performance drop
between perf(Dtr) and perf(Dnew), where perf(D) =

∑
(x,y)∈D ℓeval(fθ(x), y), ℓeval is a metric like 0-1-loss

(accuracy), but Dnew
Y is unknown and cannot be used for such judgment in an operating system.

Therefore, related work analyses distribution shifts between training and newly occurring data. Let two
datasets D,D′ define two empirical distributions P(D),P(D′), then we write P(D) ≁ P(D′) to express that
P(D) is sampled from a different underlying distribution than P(D′).
Definition 2.1 (Input Data Shift). We say that data shift occurs from Dtr

X to Dnew
X , if P(Dtr

X ) ≁ P(Dnew
X ).

Specific kinds of data shift are:
Definition 2.2 (Univariate data shift). There is a univariate data shift between P(Dtr

X ) = P(Dtr
X1
, . . . ,Dtr

Xp
)

and P(Dnew
X ) = P(Dnew

X1
, . . . ,Dnew

Xp
), if ∃i ∈ {1 . . . p} : P(Dtr

Xi
) ≁ P(Dnew

Xi
).

Definition 2.3 (Covariate data shift). There is a covariate data shift between P(Dtr
X) = P(Dtr

X1
, . . . ,Dtr

Xp
)

and P(Dnew
X ) = P(Dnew

X1
, . . . ,Dnew

Xp
) if P(Dtr

X ) ≁ P(Dnew
X ), which cannot only be caused by univariate shift.

The next two types of shift involve the interaction of data with the model fθ, which approximates the
conditional P (Dtr

Y ,Dtr
X )

P (Dtr
X

) . Abusing notation, we write fθ(D) to refer to the multiset {fθ(x)|x ∈ D}.
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Definition 2.4 (Predictions Shift). There is a predictions shift between distributions P(Dtr
X ) and P(Dnew

X )
related to model fθ if P(fθ(Dtr

X )) ≁ P(fθ(Dnew
X )).

Definition 2.5 (Concept Shift). There is a concept shift between P(Dtr) = P(Dtr
X ,Dtr

Y ) and P(Dnew) =
P(Dnew

X ,Dnew
Y ) if conditional distributions change, i.e. P(Dtr

Y ,Dtr
X )

P(Dtr
X

) ≁ P(Dnew
Y ,Dnew

X )
P(Dnew

X
) .

In practice, multiple types of shifts co-occur together, and their disentangling may constitute a significant
challenge that we do not address here.

2.2 Related Work on Tabular Data

Classifier two-sample test (C2ST): Evaluating how two distributions differ has been a widely studied
topic in the statistics and statistical learning literature (Hastie et al., 2001; Quiñonero-Candela et al., 2009;
Liu et al., 2020a) and has advanced in recent years (Lee et al., 2018; Zhang et al., 2013). Using supervised
learning classifiers to measure statistical tests has been explored by Lopez-Paz & Oquab (2017) proposing a
classifier-based approach that returns test statistics to interpret differences between two distributions. We
adopt their power test analysis and interpretability approach but apply it to the explanation distributions
instead of input data distributions. Another noteworthy recent contribution comes from Barrabés et al.
(2023), who leverages a tree-based classifier as C2ST. Their approach, augmented with iterative heuristics,
aims at localizing and rectifying feature shifts within input data. In contrast, our work is distinctive in
investigating the impact of distribution shifts on the model behaviour. We achieve this by applying C2ST
to distributions of feature attribution explanations, providing insights into how alterations in distribution
impact the model’s predictive behavior.

Other methods to detect if new data is out-of-distribution (OOD) have relied on neural networks based
on the prediction distributions Fort et al. (2021); Garg et al. (2020). They use the maximum softmax
probabilities/likelihood as a confidence score Hendrycks & Gimpel (2017), temperature or energy-based
scores Ren et al. (2019); Liu et al. (2020b); Wang et al. (2021), they extract information from the gradient
space Huang et al. (2021), relying on the latent space Crabbé et al. (2021), they fit a Gaussian distribution
to the embedding, or they use the Mahalanobis distance for out-of-distribution detection Lee et al. (2018);
Park et al. (2021).

Many of these methods are explicitly developed for neural networks that operate on image and text data, and
often, they can not be directly applied to traditional ML techniques. For example, in deep neural networks,
one can define invariances in the latent space, which do not apply to tabular data. In this work, we focus
on tabular data where techniques such as gradient-boosted decision trees achieve state-of-the-art model
performance.

Detecting distribution shift and its impact on model behaviour:Extensive related work has aimed
at detecting that data is from out-of-distribution. To this end, they have created several benchmarks that
measure whether data comes from in-distribution or not (Malinin et al., 2021; Barrabés et al., 2023). In
contrast, our main aim is to evaluate the impact of the distribution shift on the use of model. A typical
example is two-sample testing on the latent space, as described by Rabanser et al. (2019). However, many
methods developed for detecting out-of-distribution data are specific to neural networks processing image and
text data and can not be applied to traditional machine learning techniques. These methods often assume
that the relationships between predictor and response variables remain unchanged, i.e., no concept shift
occurs. Our work is applied to tabular data where techniques such as gradient-boosted decision trees achieve
state-of-the-art model performance (Grinsztajn et al., 2022; Elsayed et al., 2021; Borisov et al., 2021).

Impossibility of model monitoring: Recent research findings have formalized the limitations of monitoring
machine learning models in the absence of labelled data. Specifically (Garg et al., 2021; Chen et al., 2022) prove
the impossibility of predicting model degradation or detecting out-of-distribution data with certainty (Fang
et al., 2022; Zhang et al., 2021; Guerin et al., 2022). Although our approach does not overcome these
limitations, it provides valuable insights for machine learning engineers to better understand changes in
interactions between learned models and shifting data distributions.
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Model monitoring and distribution shift under specific assumptions: Under specific types of assump-
tions, model monitoring and distribution shift become feasible tasks. One type of assumption often found in
the literature is to leverage causal knowledge to identify the drivers of distribution changes (Budhathoki et al.,
2021; Zhang et al., 2022; Schrouff et al., 2022). For example, Budhathoki et al. (2021) use graphical causal
models and feature attributions based on Shapley values to detect changes in the distribution. Similarly,
other works aim to detect specific distribution shifts, such as covariate or concept shifts. Our approach does
not rely on additional information, such as a causal graph, labelled test data, or specific types of distribution
shift. Still, by the nature of pure concept shifts, the model behaviour remains unaffected and new data need
to come with labelled responses to be detected.

Explainability and distribution shift: Lundberg et al. (2020) applied Shapley values to identify possible
bugs in the pipeline by visualizing univariate SHAP contributions. Following this line of work, Nigenda
et al. (2022) compare the order of the feature importance using the Normalized Discounted Cumulative
Gain (NDCG) between training and unseen data. We go beyond their work and formalize the multivariate
explanation distributions on which we perform a two-sample classifier test to detect how distribution shift
impacts interaction with the model. Furthermore, we provide a mathematical analysis of how the SHAP values
contribute to detecting distribution shift. In Appendix A we provide a formal comparison against Nigenda
et al. (2022). Recent work by Kulinski & Inouye (2023) introduced a framework for explaining distribution
shifts using a transport map between a source and target distribution; our work does not only change on the
distribution shift but on how these changes impact the model.

2.3 Explainable AI: Local Feature Attributions

Attribution by Shapley values explains machine learning models by determining the relevance of features
used by the model (Lundberg et al., 2020; Lundberg & Lee, 2017). The Shapley value is a concept from
coalition game theory that aims to allocate the surplus generated by the grand coalition in a game to each
of its players (Shapley, 1953). The Shapley value Sj for the j’th player is defined via a value function
valf,x : 2N → R of players in T :

Sj(valf,x) =
∑

T⊆N\{j}

|T |!(p − |T | − 1)!
p! (valf,x(T ∪ {j}) − valf,x(T )), (1)

where valf,x(T ) = EX|XT =xT
[f(X)] − EX [f(X)]. (2)

In machine learning, N = {1, . . . , p} is the set of features occurring in the training data. Given that x is the
feature vector of the instance to be explained, and the term valf,x(T ) represents the prediction for the feature
values in T that are marginalized over features that are not included in T . The Shapley value framework
satisfies several theoretical properties (Molnar, 2019; Shapley, 1953; Winter, 2002; Aumann & Dreze, 1974).
Our approach is based on the efficiency and uninformative properties:

Efficiency Property. Feature contributions add up to the difference of prediction from x⋆ and the expected
value,

∑
j∈N Sj(f, x⋆) = f(x⋆) − E[f(X)]).

Uninformativeness Property. A feature j that does not change the predicted value has a Shapley value
of zero.∀x, xj , x′

j : f({xN\{j}, xj}) = f({xN\{j}, x
′
j}) ⇒ ∀x : Sj(f, x) = 0.

Our approach works with explanation techniques that fulfill efficiency and non-informative properties, and we
use Shapley values as an example. It is essential to distinguish between the theoretical Shapley values and the
different implementations that approximate them; in Appendix D, we provide an experimental comparison of
different approaches.

LIME is another explanation method candidate for our approach (Ribeiro et al., 2016b;a) that can potentially
satisfy efficiency and uninformative properties, even though several research has highlighted instability and
difficulties with the definition of neighbourhoods. In Appendix C, we analyze LIME’s relationship with
Shapley values to describe explanation shifts.
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3 A Model for Explanation Shift Detection

Our model for explanation shift detection is sketched in Fig. 1. We define it as follows:
Definition 3.1 (Explanation distribution). An explanation function S : F × dom(X) → Rp maps a model
fθ ∈ F and data x ∈ Rp to a vector of attributions S(fθ, x) ∈ Rp. We call S(fθ, x) an explanation. We write
S(fθ,D) to refer to the empirical explanation distribution generated by {S(fθ, x)|x ∈ D}.

We use local feature attribution methods SHAP and LIME as explanation functions S.
Definition 3.2 (Explanation shift). Given a model fθ learned from Dtr, explanation shift with respect to
the model fθ occurs if S(fθ,Dnew

X ) ≁ S(fθ,Dtr
X ).

Definition 3.3 (Explanation shift metrics). Given a measure of statistical distances d, explanation shift is
measured as the distance between two explanations of the model fθ by d(S(fθ,Dtr

X ),S(fθ,Dnew
X )).

We follow Lopez et al. (Lopez-Paz & Oquab, 2017) to define an explanation shift metrics based on a
two-sample test classifier. We proceed as depicted in Figure 1. To counter overfitting, given the model
fθ trained on Dtr, we compute explanations {S(fθ, x)|x ∈ Dval

X } on an in-distribution validation data set
Dval
X . Given a dataset Dnew

X , for which the status of in- or out-of-distribution is unknown, we compute
its explanations {S(fθ, x)|x ∈ Dnew

X }. Then, we construct a two-samples dataset E = {(S(fθ, x), ax)|x ∈
Dval
X , ax = 0} ∪ {(S(fθ, x), ax)|x ∈ Dnew

X , ax = 1} and we train a discrimination model gψ : Rp → {0, 1} on E,
to predict if an explanation should be classified as in-distribution (ID) or out-of-distribution (OOD):

ψ = arg min
ψ̃

∑
x∈Dval

X
∪Dnew

X

ℓ(gψ̃(S(fθ, x)), ax), (3)

where ℓ is a classification loss function (e.g. cross-entropy). gψ is our two-sample test classifier, based on which
AUC yields a test statistic that measures the distance between the Dtr

X explanations and the explanations of
new data Dnew

X .

Explanation shift detection allows us to detect that a novel dataset Dnew changes the model’s behavior.
Beyond recognizing explanation shift, using feature attributions for the model gψ, we can interpret how the
features of the novel dataset Dnew

X interact differently with model fθ than the features of the validation
dataset Dval

X . These features are to be considered for model monitoring and for classifying new data as
out-of-distribution.

Explanations 

Train Classifier for
Two-Sample Test

No Explanation ShiftExplanation Shift

Explain
Explanation Shift Detector

Not
Reject

Reject

Explanations 

Train Classifier 

Figure 1: Our model for explanation shift detection. The model fθ is trained on Dtr implying explanations for
distributions Dval

X , Dnew
X . The AUC of the two-sample test classifier gψ decides for or against explanation shift. If an

explanation shift occurred, it could be explained which features of the Dnew
X deviated in fθ compared to Dval

X .
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4 Relationships between Common Distribution Shifts and Explanation Shifts

This section analyses and compares data shifts and prediction shifts with explanation shifts. Section 4.4
draws from these analyses to derive experiments with synthetic data.

4.1 Explanation Shift vs Data Shift

One type of distribution shift that is challenging to detect comprises cases where the univariate distributions
for each feature j are equal between the source Dtr

X and the unseen dataset Dnew
X , but where interdependencies

among different features change. Multi-covariance statistical testing is a hard task with high sensitivity that
can lead to false positives. The following example demonstrates that Shapley values can indicate co-variate
interaction changes while a univariate statistical test will provide false negatives.

Example 4.1. (Multivariate Shift) Let Dtr ∼ N

([
µ1
µ2

]
,

[
σ2
X1

0
0 σ2

X2

])
× Y . We fit a linear model

fθ(x1, x2) = γ + a · x1 + b · x2. If Dnew
X ∼ N

([
µ1
µ2

]
,

[
σ2
X1

ρσX1σX2

ρσX1σX2 σ2
X2

])
, then P(Dtr

X1
) and P(Dtr

X2
) are

identically distributed with P(Dnew
X1

) and P(Dnew
X2

), respectively, while this does not hold for the corresponding
Sj(fθ,Dtr

X ) and Sj(fθ,Dnew
X ) for j ∈ {1, 2}.

S1(fθ, x) = a · (x1 − µ1),

S1(fθ, xnew) = 1
2 [val({1, 2}) − val({2})] + 1

2 [val({1}) − val(∅)] ,

where the Shapley value function val is defined as follows:

val({1, 2}) = E[fθ|X1 = x1, X2 = x2] = a · x1 + b · x2,

val(∅) = E[fθ] = a · µ1 + b · µ2,

val({1}) = E[fθ|X1 = x1] + b · µ2,

= a · µ1 + ρ · σX2

σX1

· (x1 − µ1) + b · µ2,

val({2}) = E[fθ|X2 = x2] + a · µ1,

= b · µ2 + ρ · σX1

σX2

· (x2 − µ2) + a · µ1.

Substituting these values, we conclude:

S1(fθ, xnew) ̸= a · (x1 − µ1).

False positives frequently occur in out-of-distribution data detection when a statistical test recognizes
differences between a source distribution and a new distribution, though the differences do not affect the
model behavior (Grinsztajn et al., 2022; Huyen, 2022). Shapley values satisfy the Uninformativeness property,
where a feature j that does not change the predicted value has a Shapley value of 0 (equation 2.3).

Example 4.2. Shifts on Uninformative Features. Let the random variables X1, X2 be normally
distributed with N(0; 1). Let dataset Dtr ∼ X1 × X2 × Y tr, with Y tr = X1. Thus Y tr⊥X2. Let Dnew

X ∼
X1 ×Xnew

2 and Xnew
2 be normally distributed with N(µ;σ2) and µ, σ ∈ R. When fθ is trained optimally on

Dtr then fθ(x) = x1. P(Dtr
X2

) is different from P(Dnew
X2

) but S2(fθ,Dtr
X ) = 0 = S2(fθ,Dnew

X ).
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DX3 ∼ N(µ3, c3),Dnew
X3

∼ N(µ
′

3, c
′

3).

If µ
′

3 ̸= µ3 or c
′

3 ̸= c3 → P (X3) ̸= P (Xnew
3 ),

S(fθ, X) =

a1(X1 − µ1)
a2(X2 − µ2)
a3(X3 − µ3)

 =

a1(X1 − µ1)
a2(X2 − µ2)

0

 .

S3(fθ,DX) = S3(fθ,Dnew
X ).

4.2 Explanation Shift vs Prediction Shift

Analyses of the explanations detect distribution shifts that interact with the model. In particular, if a
prediction shift occurs, the explanations produced are also shifted.

Proposition 1. Given a model fθ : DX → DY . If fθ(x′) ̸= fθ(x), then S(fθ, x′) ̸= S(fθ, x).

This follows from the efficiency property of Shapley values (Aas et al., 2021). For example, given:

Given fθ(x) ̸= fθ(x′)
p∑
j=1

Sj(fθ, x) = fθ(x) − EX [fθ(DX)] then S(fθ, x) ̸= S(fθ, x′), (4)

a difference in predictions implies at least one component of the explanation vectors must differ.

However, the reverse is not necessarily true: an explanation shift does not always imply a prediction shift.
The following example illustrates this asymmetry.

Example 4.3. (Explanation shift not affecting prediction distribution) Given Dtr is generated from
(X1 ×X2 × Y ), X1 ∼ U(0, 1), X2 ∼ U(1, 2), Y = X1 +X2 + ϵ and thus the optimal model is f(x) = x1 + x2.
If Dnew is generated from Xnew

1 ∼ U(1, 2), Xnew
2 ∼ U(0, 1), Y new = Xnew

1 + Xnew
2 + ϵ, the prediction

distributions are identical fθ(Dtr
X ), fθ(Dnew

X ) ∼ U(1, 3), but explanation distributions are different S(fθ,Dtr
X ) ≁

S(fθ,Dnew
X ), because Si(fθ, x) = αi · xi. for i ∈ {1, 2}.

∀i ∈ {1, 2} Si(fθ, x) = αi · xi,
Si(fθ,DX)) ̸= Si(fθ,Dnew

X ),
⇒ fθ(DX) = fθ(Dnew

X ).

4.3 Explanation Shift vs Concept Shift

Concept shift comprises cases where the covariates retain a given distribution, but their relationship with
the target variable changes (cf. Section 2.1). This example shows the negative result that the detection of
explanation shift cannot indicate concept shift.

Example 4.4. Concept Shift Let Dtr ∼ X1 ×X2 × Y , and create a synthetic target ytri = a0 + a1 · xi,1 +
a2 · xi,2 + ϵ. As new data we have Dnew

X ∼ Xnew
1 ×Xnew

2 × Y , with ynewi = b0 + b1 · xi,1 + b2 · xi,2 + ϵ whose
coefficients are unknown at prediction stage. With coefficients a0 ̸= b0, a1 ̸= b1, a2 ̸= b2. We train a linear
regression fθ : Dtr

X → Dtr
Y . Then explanations have the same distribution, P(S(fθ,Dtr

X)) = P(S(fθ,Dnew
X )),

input data distribution P(Dtr
X) = P(Dnew

X ) and predictions P(fθ(Dtr
X)) = P(fθ(Dnew

X )). But there is no
guarantee on the performance of fθ on Dnew

X (Garg et al., 2021).
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X ∼ N(µ, σ2 · I), Xnew ∼ N(µ, σ2 · I),
→ P (DX) = P (Dnew

X ),

Y ∼ a+ αN(µ, σ2) + βN(µ, σ2) +N(0, σ
′2),

Y new ∼ a+ βN(µ, σ2) + αN(µ, σ2) +N(0, σ
′2),

→ P (DY ) = P (Dnew
Y ).

S(fθ,DX) =
(
α(X1 − µ1)
β(X2 − µ2)

)
∼

(
N(µ1, α

2σ2)
N(µ2, β

2σ2)

)
.

S(hϕ,DX) =
(
β(X1 − µ1)
α(X2 − µ2)

)
∼

(
N(µ1, β

2σ2)
N(µ2, α

2σ2)

)
.

If α ̸= β → S(fθ,DX) ̸= S(hϕ,DX).

In general, concept shift cannot be detected because Dnew
Y is unknown (Garg et al., 2021). Some research

studies have made specific assumptions about the conditional P (Dnew
Y ),Dnew

X )
P (Dnew

X
) in order to monitor models and

detect distribution shift (Lu et al., 2023; Alvarez et al., 2023). Appendix 4.3 sketches a situation where
explanation distributions are used in the context of labelled data to indicate concept shift— which is not the
paper’s main target.

4.4 Experiments on Synthetic Data

This experimental section explores the detection of distribution shifts via explanation shifts in the previous
analytical examples. In this case, the model is non-linear, a gradient-boosted decision tree from the XGBoost
Python implementation.

4.4.1 Detecting Multivariate Shift

Given two bivariate normal distributions DX = (X1, X2) ∼ N

(
0,

[
1 0
0 1

])
and Dnew

X = (Xnew
1 , Xnew

2 ) ∼

N

(
0,

[
1 0.2

0.2 1

])
, then, for each feature j the underlying distribution is equally distributed between DX

and Dnew
X , ∀j ∈ {1, 2} : P (DXj

) = P (Dnew
Xj

), and what is different are the interaction terms between them.
We now create a synthetic target Y = X1 ·X2 + ϵ with ϵ ∼ N(0, 0.1) and fit a gradient-boosted decision tree
fθ(DX). Then we compute the SHAP explanation values for S(fθ,DX) and S(fθ,Dnew

X ).

Table 1: Displayed results are the one-tailed p-values of the Kolmogorov-Smirnov (KS) test comparison between two
underlying distributions. Small p-values indicate that compared distributions are unlikely to be equally distributed.
SHAP values correctly indicate the interaction changes that individual distribution comparisons cannot detect.

Comparison p-value Conclusions
P(DX1), P(Dnew

X1
) 0.33 Not Distinct

P(DX2), P(Dnew
X2

) 0.60 Not Distinct
S1(fθ,DX), S1(fθ,Dnew

X ) 3.9e−153 Distinct
S2(fθ,DX), S2(fθ,Dnew

X ) 2.9e−148 Distinct

Having drawn 50, 000 samples from both DX and Dnew
X , in Table 1, we evaluate whether changes in the input

data distribution or the explanations can detect changes in covariate distribution. For this, we compare the
one-tailed p-values of the Kolmogorov-Smirnov test between the input data distribution and the explanations
distribution. The “Distinct/Not Distinct” conclusion is based on the one-tailed p-value of the Kolmogorov-
Smirnov test drawn out of 50, 000 samples for both distributions, this comparison methodology is used
similarly for the rest of the experiments on synthetic data section 5.2. Explanation shift correctly detects the
multivariate distribution change that univariate statistical testing can not detect.
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4.4.2 Detecting Concept Shift

As mentioned before, concept shifts cannot be detected if new data comes without target labels. However, if
new data is labelled, the explanation shift can still be useful for detecting concept shifts.

Given a bivariate normal distribution DX = (X1, X2) ∼ N(1, I) where I is an identity matrix of order
two. We now create two synthetic targets Y = X2

1 · X2 + ϵ and Y new = X1 · X2
2 + ϵ and fit two machine

learning models fθ : DX → DY and hΥ : DX → Dnew
Y . Now we compute the SHAP values for S(fθ,DX) and

S(hΥ,DX).

Table 2: Comparison of distribution shifts in synthetic concept shift analysis, highlighting the distinctiveness of
SHAP value distributions in detecting relational changes between features and targets, even when other distributions
appear equivalent.

Comparison Conclusions
P(DX), P(Dnew

X ) Not Distinct
P(DY ), P(Dnew

Y ) Not Distinct
P(fθ(DX)), P(hΥ(Dnew

X )) Not Distinct
P(S(fθ,DX)), P(S(hΥ,DX)) Distinct

In Table 2, we see how the distribution shifts cannot capture the change in the model behavior while the
SHAP values are different. As in the synthetic example, in table 2, SHAP values can detect a relational
change between DX and DY , even if both distributions remain equivalent.

4.4.3 Uninformative Features on Synthetic Data

To have an applied use case of the synthetic example from the methodology section, we create a three-variate
normal distribution DX = (X1, X2, X3) ∼ N(0, I3), where I3 is an identity matrix of order three. The target
variable is generated Y = X1 · X2 + ϵ being independent of X3. For both training and test data, 50, 000
samples are drawn. Then out-of-distribution data is created by shifting X3, which is independent of the
target, on test data Dnew

X3
= Dte

X3
+ 1.

Table 3: Distribution comparison when modifying a random noise variable on test data. The input data shifts while
explanations and predictions do not.

Comparison Conclusions
P(Dte

X3
), P(Dnew

X3
) Distinct

fθ(Dte
X), fθ(Dnew

X ) Not Distinct
S(fθ,Dte

X), S(fθ,Dnew
X ) Not Distinct

In Table 3, we see how an unused feature has changed the input distribution, but the explanation distributions
and performance evaluation metrics remain the same.

4.4.4 Explanation Shift that does not affect the Prediction

In this case, we provide a situation where we have changes in the input data distributions that affect the
model explanations but do not affect the model predictions because positive and negative associations between
the model predictions and the distributions cancel out, producing a vanishing correlation in the mixture of
the distribution (Yule effect 4.2).

We create a train and test data by drawing 50, 000 samples from a bi-uniform distributionX1 ∼ U(0, 1), X2 ∼
U(1, 2) the target variable is generated by Y = X1 + X2 where we train our model fθ. Then if out-of-
distribution data is sampled from Xnew

1 ∼ U(1, 2), Xnew
2 ∼ U(0, 1).

In Table 4, we see how an unused feature has changed the input distribution, but the explanation distributions
and performance evaluation metrics remain the same.
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Table 4: Distribution comparison over how the change on the contributions of each feature can cancel out to produce
an equal prediction (cf. Section 4.2), while explanation shift will detect this behaviour changes on the predictions will
not.

Comparison Conclusions
f(Dte

X), f(Dnew
X ) Not Distinct

S(fθ,Dte
X2

), S(fθ,Dnew
X2

) Distinct
S(fθ,Dte

X1
), S(fθ,Dnew

X1
) Distinct

4.5 Summary Comparison on Synthetic data

To assess the effectiveness of different detection methods in identifying and accounting for synthetic shifts,
we present a conceptual comparison in Table 5. We evaluate these methods based on their capacity to
capture synthetic shifts. We illustrate this comparison by considering two scenarios: a multicovariate shift (cf.
Example 4.1) and a shift involving uninformative features (cf. Example 4.2). The complementary evaluation
with related work is in the Appendix in Section A

This comparison focuses on their ability to detect synthetic distribution shifts using the examples of covariate
shifts and uninformative shifts. It provides valuable insights while ensuring accountability.

Table 5: Conceptual comparison of different detection methods over the examples discussed in the mathematical
analysis of the main body of the paper(cf. Section 4): a multicovariate shift(cf. Example 4.1 )and an uninformative
features shift(cf. Example 4.2) . Learning a Classifier Two-Sample test g over the explanation distributions is the only
method that achieves the desired results (✓) and is accountable. We evaluate accountability by checking if the feature
attributions of the detection method correspond to the synthetic shift generated in both scenarios

Detection Method Covariate Uninformative Accountability
Input distribution(gϕ) ✓ ✗ ✗

Prediction distribution(gΥ) ✓ ✓ ✗

Input KS ✗ ✗ ✗

Classifier Drift ✓ ✗ ✗

Output KS ✓ ✓ ✗

Output Wasserstein ✓ ✓ ✗

Uncertainty ∼ ✓ ✓

NDCG ✗ ✓ ✗

Explanation distribution (gψ)
✓ ✓ ✓Explanation Shift Detector

5 Empirical Evaluation

We evaluate the effectiveness of explanation shift detection on tabular data by comparing it against methods
from the literature, which are all based on discovering distribution shifts. For this comparison, we systematically
vary models f , model parameterizations θ, and input data distributions DX . The experimental results include:

1. Details on experiments with synthetic data (cf. Section 5.2).

2. Experiments on natural datasets (cf. Sections 5.3, 5.4, and further extended on Appendix B).

3. A broad range of modeling choices for both the model f and the detector g (cf. Section 5.5).

4. Analysis of the effects of hyperparameter variations on explanation shifts for the Explanation Shift
Detector (Appendix B.5) and the estimator (cf. Section 5.6).

5. A comparison of our SHAP-based method against LIME, an alternative explanation approach
(Appendix C).

Core observations made in this section are further confirmed and refined in the Appendix, without being
contradicted.
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5.1 Baseline Methods and Datasets

Baseline Methods. We compare our method of explanation shift detection (Section 3) with several methods
that aim to detect that input data is out-of-distribution: (B1) statistical Kolmogorov Smirnov (KS) test
on input data (Rabanser et al., 2019), (B2) prediction shift detection by Wasserstein distance (Lu et al.,
2023), (B3) NDCG-based test of feature importance between the two distributions (Nigenda et al., 2022),
(B4) prediction shift detection by Kolmogorov-Smirnov test (Diethe et al., 2019), and (B5) model agnostic
uncertainty estimation (Mougan & Nielsen, 2023; Kim et al., 2020). All Distribution Shift Metrics are scaled
between 0 and 1. We also compare against Classifier Two-Sample Test (Lopez-Paz & Oquab, 2017) on
different distributions as discussed in Section 4, viz. (B6) classifier two-sample test on input distributions
(gϕ) following Barrabés et al. (2023) and (B7) classifier two-sample test on the predictions distributions (gΥ):

ϕ = arg min
ϕ̃

∑
x∈Dval

X
∪Dnew

X

ℓ(gϕ̃(x)), ax). (5)

Υ = arg min
Υ̃

∑
x∈Dval

X
∪Dnew

X

ℓ(gΥ̃(fθ(x)), ax). (6)

Datasets. In the main body of the paper we base our comparisons on the UCI Adult Income dataset Dua &
Graff (2017) and on synthetic data. In the Appendix, we extend experiments to several other datasets, which
confirm our findings: ACS Travel Time, ACS Employment, Stackoverflow dataset (Stackoverflow, 2019).

5.2 Synthetic Data

Our first experiment on synthetic data showcases the two main contributions of our method: (i) being more
sensitive to changes in the model than prediction shift and input shift and (ii) accounting for its drivers. We
first generate a synthetic dataset Dρ, with a parametrized multivariate shift between (X1, X2), where ρ is
the correlation coefficient, and an extra variable X3 = N(0, 1) and generate our target Y = X1 ·X2 +X3.
We train the fθ on Dtr,ρ=0 using a gradient-boosted decision tree, while for gψ : S(fθ,Dval,ρ

X ) → {0, 1}, we
train on different datasests with different values of ρ. For gψ we use a logistic regression. In Section 5.5, we
benchmark other models fθ and detectors gψ.
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Figure 2: In the left figure, we compare the Classifier Two-Sample Test on explanation distribution (ours) versus
input distribution (B6) and prediction distribution (B7). Explanation distribution shows the highest sensitivity. The
right figure, related work comparison of distribution shift methods(B1-B5), as the experimental setup has a gradual
distribution shift, good indicators should follow a progressive steady positive slope, following the correlation coefficient,
as our method does. In Table 6 we provide a quantitative evaluation.

The left image in Figure 2 compares our approach against C2ST on input data distribution(B6) and on the
predictions distribution (B7) different data distributions, for detecting multi-covariate shifts on different
distributions. In our covariate experiment, we observed that using the explanation shift led to higher
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sensitivity towards detecting distribution shift. We interpret the results with the efficiency property of the
Shapley values, which decomposes the vector fθ(DX) into the matrix S(fθ,DX). Moreover, we can identify
the features that cause the drift by extracting the coefficients of gψ, providing global and local explainability.

The right image features the same setup compared to the other out-of-distribution detection methods (B1-B5).
Table 6 quantitatively evaluates how the baselines correlate with the covariate correlation coefficient (ρ). One
can see how our method behaves favourably compared to the others.

Table 6: Pearson Correlation of the correlation coefficient ρ and baseline methods, extending Figure 2. Explanation
Shift achieves better covariate shift detection on synthetic data.

Baseline Pearson Correlation with ρ

B1 Input KS 0.01
B2 Prediction Wasserstein 0.97
B3 Explanation NDCG 0.52
B4 Prediction KS 0.70
B5 Uncertainty 0.26
B6 C2ST Input 0.18
B7 C2ST Output 0.96
(Ours) Explanation Shift 0.99

5.3 Novel Group Shift

The distribution shift in this experimental setup is constituted by the appearance of a hitherto unseen group at
prediction time (the group information is not present in the training features). We vary the ratio of presence
of this unseen group in Dnew

X data. The experiment is done with two fθ models: a gradient-boosted decision
tree and a logistic regression; for gψ, we use a logistic regression. Results are presented in Figure 3 and
Table 7. Confidence intervals are extracted out of 10 bootstraps. Furthermore, we compare the performance
of different algorithms for fθ and gψ in Section 5.5, and varying hyperparameters in Section 5.6.
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Figure 3: Novel group shift experiment on the US Income dataset. Sensitivity (AUC) increases with the growing
fraction of previously unseen social groups. Left figure: The explanation shift indicates that different social groups
exhibit varying deviations from the distribution on which the model was trained (White). Middle Figure: We vary the
model fθ by training it using both XGBoost (solid lines) and Logistic Regression (dots). The novel ethnicity group is
Black. We compare Explanation Shift against C2ST on input (B6) and output (B7). Right figure: Comparison of
Explanation Shift against Exp. NDCG (B4). We see how monitoring method(B4) is more unstable with a linear
model, and with an XGBoost it erroneously finds a horizontal asymptote. We don’t compare against methods relying
purely on input data such as (B1) as we are changing the model, which they don’t take into consideration.

5.4 Geopolitical and Temporal Shift

In this section, we tackle a geopolitical and temporal distribution shift; for this, the training data Dtr for
the model fθ is composed of data from California in 2014 and a Dnew for each of the states in 2018. The
objective of the prediction task of this dataset is to predict whether an individual’s income is above $50,000.1.

1For more information consult https://github.com/socialfoundations/folktablesof the associated publication Ding et al.
(2021b)
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Table 7: Pearson correlation between baselines and the ratio of presence of the unseen group. The Accountable
column indicates accountability, measured as providing both theoretical underpinnings and empirical validation of the
sources driving model changes, as discussed in Section 4.

Baseline Pearson Correlation Accountable
fθ = Log fθ = XGB

B1 Input KS 0.99 ± 0.01 0.99 ± 0.01
B2 Pred. Wass. 0.95 ± 0.02 0.98 ± 0.01
B3 NDCG 0.37 ± 0.25 0.81 ± 0.10
B4 Pred. KS 0.97 ± 0.02 0.96 ± 0.01
B5 Uncertainty 0.73 ± 0.10 0.74 ± 0.12
B6 C2ST Input 0.95 ± 0.03 0.95 ± 0.03
B7 C2ST Output 0.67 ± 0.13 0.96 ± 0.02
Explanation Shift 0.98 ± 0.01 0.98 ± 0.01
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Figure 4: In the left figure, a comparison of the performance of Explanation Shift Detector in different states. In the
right figure, the strength analysis of features driving the change in the model, on the y-axis are the features, and
on the x-axis are the different states. Explanation shifts allow us to identify how the distribution shift of different
features impacted the model.

The model gψ is trained each time on each state using only the Dnew
X in the absence of the label, and a 50/50

random train-test split evaluates its performance. As models, we use XGBoost as fθ and logistic regression
for the Explanation Shift Detector (gψ). The model’s performance was evaluated using the AUC metric in
different states, except PR18, where the model showed an explanation shift.

We hypothesize that the AUC of the Explanation Shift Detector on new data will be distinct from that
on in-distribution data, primarily owing to the distinctive nature of out-of-distribution model explanations.
Figure 4 illustrates the performance of our method on different data distributions, where the baseline is a ID
hold-out set of CA14. The AUC for CA18, where there is only a temporal shift, is the closest to the baseline,
and the OOD detection performance is better in the rest of the states. The most disparate state is Puerto
Rico (PR18).

Our next objective is to identify the features where the explanations differ between Dtr
X and Dnew

X data. To
achieve this, we compare the distribution of linear coefficients of the detector between both distributions. We
use the Wasserstein distance as a distance measure, generating 1000 in-distribution bootstraps using a 63.2%
sampling fraction from California-14 and 1000 bootstraps from other states in 2018. In the right image of
Figure 4, we observe that for PR18, the most crucial feature is the Place of Birth.

Furthermore, we conduct an across-task evaluation by comparing the performance of the “Explanation
Shift Detector” on another prediction task in the Appendix B. Although some features are present in both
prediction tasks, the weights and importance order assigned by the "Explanation Shift Detector" differ. One
of this method’s advantages is that it identifies differences in distributions and how they relate to the model.

13



Published in Transactions on Machine Learning Research (01/2025)

5.5 Varying Models and Explanation Shift Detectors

OOD data detection methods based on input data distributions only depend on the detector type, independent
of the model fθ. OOD Explanation methods rely on both the model and the data. Using explanation shifts
as indicators for measuring distribution shifts’ impact on the model enables us to account for the influencing
factors of the explanation shift. Therefore, in this section, we compare the performance of different algorithms
for explanation shift detection using the same experimental setup. The results of our experiments show
that using Explanation Shift enables us to see differences in the choice of the original model fθ and the
Explanation Shift Detector gϕ

Estimator fθ
Detector gϕ XGB Log.Reg Lasso Ridge Rand.Forest Dec.Tree MLP

XGB 0.583 0.619 0.596 0.586 0.558 0.522 0.597
LogisticReg. 0.605 0.609 0.583 0.625 0.578 0.551 0.605

Lasso 0.599 0.572 0.551 0.595 0.557 0.541 0.596
Ridge 0.606 0.61 0.588 0.624 0.564 0.549 0.616

RandomForest 0.586 0.607 0.574 0.612 0.566 0.537 0.611
DecisionTree 0.546 0.56 0.559 0.569 0.543 0.52 0.569

Table 8: Comparison of explanation shift detection performance, measured by AUC, for different combinations of
explanation shift detectors and estimators on the UCI Adult Income dataset using the Novel Covariate Group Shift
experimental setup (cf. Section 5.3). The table shows that the algorithmic choice for fθ and gψ can impact the OOD
explanation performance. We can see how, for the same detector, different fθ models flag different OOD explanations
performance. On the other side, for the same fθ model, different detectors achieve different results.

5.6 Hyperparameters Sensitivity Evaluation

This section presents an extension to our experimental setup where we vary the model complexity by varying
the model hyperparameters S(fθ, X). We use the UCI Adult Income dataset with the Novel Covariate Group
Shift experimental setup (cf. Section 5.3). For the Stackoverflow as training data, we use the United States
of America and a novel covariate group, France.

In this experiment, we changed the hyperparameters of the original model: for the decision tree, we varied the
depth of the tree, while for the gradient-boosted decision trees, we changed the number of estimators, and for
the random forest, both hyperparameters. We calculated the Shapley values using TreeExplainer (Lundberg
et al., 2020). For the Detector choice of model, we compare Logistic Regression and XGBoost models.

The results presented in Figure 5 show the AUC of the Explanation Shift Detector for the ACS Income
dataset under novel group shift. We observe that the distribution shift does not affect very simplistic
models, such as decision trees with depths 1 or 2. However, as we increase the model complexity, the impact
of out-of-distribution data on the model becomes more pronounced. Furthermore, when we compare the
performance of the Explanation Shift Detector across different models, such as Logistic Regression and
gradient-boosted decision trees, we observe distinct differences(note that the y-axis takes different values).
Furthermore, in Appendix B.5, we study the effects of varying the complexity hyperparameters for the
Explanation Shift Detector.

In conclusion, the explanation distributions serve as a projection of the data and model sensitive to what
the model has learned. The results demonstrate the importance of considering model complexity under
distribution shifts.

5.7 Discussion

The Shapley value, a key component in our method, describes how a model’s prediction for a specific data
point deviates from the mean. These theoretical considerations, which we laid out in Section 4, have been
confirmed by our experimental sections.
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Figure 5: Images represent the AUC of the Explanation Shift Detector, on two dataset: Top ACS Income and Bottom
Stackoverflow under novel group shift. In the images on the left, the detector is a logistic regression, and in the images
on the right, it is a gradient-boosted decision tree classifier. By changing the model, we can see that vanilla models
(decision tree with depth 1 or 2) are unaffected by the distribution shift, while when increasing the model complexity,
the out-of-distribution impact of the data in the model starts to be tangible

In Section 5.3, we have studied input distribution shift. Our experiment shows that explanation shift detects
input distribution shifts better than the best baseline methods. Table 7 showcases the two top-performing
methods—comparing input distributions with Kolmogorov-Smirnoff (B1) and our method — with statistically
insignificant differences.

In Section 5.2, we have studied co-variate shift. Considering, Table 6, the best method for detecting input
distribution shifts, (B1), fails completely on this task. The second best method is (B2) comparison of
prediction distributions using the Wasserstein distance, which also did quite well w.r.t. predicting input
distribution shifts and came rather close behind our approach in both experiments.

Moreover, in our geopolitical and temporal shift experiment (cf. Section 5.4), we demonstrate the ability to
account for the drivers of model changes under such input data shifts. Cross-task comparisons in experiments
(Figure 9 or Figure 8) highlight how explanation shift feature importance varies even when input distribution
shifts remain constant during cross-task. These capabilities are not offered by any of the competing baselines.
These observations are further supported by additional experiments in Section 5.6, where we solely vary
model complexity, showcasing the adaptability of explanation shifts to changes in model characteristics.
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6 Conclusions

Commonly, the problem of detecting the impact of the distribution shift on the model has relied on
measurements for detecting shifts in the input or output data distributions or relied on assumptions either on
the type of distribution shift or causal graphs availability. In this paper, we proposed explanation shifts as
an indicator for detecting and identifying the impact of distribution shifts on machine learning models. We
provide software, mathematical analysis examples, synthetic data, and real-data experimental evaluation. We
found that measures of explanation shift can provide more insights than input distribution and prediction
shift measures when monitoring machine learning models.

Limitations: The potential utility of explanation shifts as distribution shift indicators that affect the model
in computer vision or natural language processing tasks remains an open question. We have used feature
attribution explanations to derive indications of explanation shifts, but other AI explanation techniques may
be applicable and come with their advantages. Also, our approach cannot detect concept shifts, as concept
shift requires understanding the interaction between input data and response variables. By the nature of pure
concept shifts, such changes do not affect the model. We work under the assumption that such labels are not
available for new data, nor do we make other assumptions; therefore, our method is not able to predict the
degradation of prediction performance under distribution shifts.

Furthermore, our use of the shap Python package for Shapley values approximation can introduce known
drawbacks, as highlighted in recent literature (Bilodeau et al., 2022; Slack et al., 2020a). Additionally, our
current implementation relies on linear Shapley value interaction approximations, which can be extended
following the work of Fumagalli et al. (2023); Bordt & von Luxburg (2023).

Reproducibility Statement

To ensure reproducibility, we make the data, code repositories, and experiments publicly available
https://github.com/cmougan/ExplanationShift. Also, an open-source Python package skshift, avail-
able at: https://skshift.readthedocs.io/For our experiments, we used default scikit-learn parameters
Pedregosa et al. (2011).Experiments were run on a 4 vCPU server with 32 GB RAM.
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A Experimental Comparison against Specific Related Work

A.1 Comparison Against Changes on Feature Attribution Relevance

In this section, we present a comparative analysis against the work of (Nigenda et al., 2022),

which involves assessing the disparity in feature importance orders between training data and out-of-
distribution data. To quantify this disparity, we employ the normalized discount cumulative gain (NDCG)
metric. This method is versatile, accommodating both individual sample analysis and distribution-level
assessments. In cases involving distributions, we aggregate the average feature importance.

A.1.1 Novel Group Shift

Experimental Set-Up:This experiment extends the core experiment detailed in Section 5, where distribution
shifts arise due to the emergence of previously unseen groups during the prediction phase.

Datasets: We use ACS Income, ASC Employment, ACS Mobility and ACS Travel time (Ding et al., 2021b).
The group that is not present on the features is the black ethnicity.

Baseline: We compare against the method proposed by Nigenda et al. (2022), (B6) of the experimental
comparison of the main body, that compares the order of the feature importance using the NDCG between
train and unseen data. We vary fθ to be a XGBoost and a Logistic regression. For the “Explanation Shift
Detector”, gψ , we use a logistic regression in both.

Metrics:To facilitate a direct comparison with the Area Under the Curve (AUC) metric, we adapt the NDCG
metric, to have the same interval range as follows: (1 −NDCG) + 0.5, ensuring a consistent metric range.

This extended experiment aims to further validate the effectiveness of the “Explanation Shift Detector” under
novel group shifts in real-world datasets. It demonstrates how the approach performs consistently across
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Figure 6: Novel group shift experiment conducted on the 4 Datasets. Sensitivity (AUC) increases as the proportion
of previously unseen social groups grows. As the experimental setup has a gradual distribution shift, ideal indicators
should exhibit a steadily increasing slope. However, in all figures, NDCG exhibits saturation and instability. These
observations align with the analysis presented in the synthetic experiment section, as discussed in Section 5.2 of the
main paper.

multiple datasets and provides insights into the sensitivity of model behavior as previously unseen social
groups become a larger part of the prediction data. The results are presented in Figure 6, where our proposed
method is compared against Exp. NDCG (B6) across the four datasets. We can see how Exp. NDCG (B6) is
more unstable and finds often an horizontal asymptot, in all the situations, this is due to changes on the
feature importance order do not have information about the value, where our approach of performing a
Classifier Two Sample Test on the distributions of explanations do.

A.1.2 Synthetic Data Comparison

In this section, we evaluate changes in the distribution of explanations and the order of feature importance
when faced with a synthetic data shift scenario. We begin with a bivariate normal distribution Dtr

X =
(X1, X2) ∼ N(1, I), where I represents the identity matrix of order two. We create a synthetic target variable
Y = X2

1 ·X2 + ϵ, and develop a machine learning model fθ : DX → DY using a non-linear model, specifically
an XGBoost model. Subsequently, we generate new data from Dnew

X = (X1, X2) ∼ N(2, I), which constitutes
a shift of Dnew

X = DtrX + 1. We then compute SHAP values for S(fθ,DX) and compare the average
contributions’ orders.

Having sampled 50, 000 instances from both Dtr
X and Dnew

X , we analyze whether alterations in explanation
distributions and explanation importance orders can detect these changes. To achieve this, we compare
one-tailed p-values from the Kolmogorov-Smirnov test for explanation shifts and the order of average SHAP
values between the distributions.
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Table 9: Comparison between distribution shifts in explanations and shifts in feature attribution importance
orders(previous work of (Nigenda et al., 2022)). Explanation distributions exhibit differences, while the importance
order remains consistent.

Comparison Conclusions
P(Dte

X), P(Dnew
X ) Distinct

P(S(fθ,Dte
X)), P(S(fθ,Dnew

X )) Distinct
P(S1(fθ,Dte

X) > S2(fθ,Dte
X)), P(S1(fθ,Dnew

X ) > S2(fθ,Dnew
X )) Not Distinct

A.1.3 Analytical Comparison under Monotonous Uniform Shift

In this section, we conduct an analytical comparison between changes in explanation distributions and changes
in the order of feature importance.
Example A.1. Comparison against NDCG Let Dtr

X = (Dtr
X1
,Dtr

X2
) ∼ N([µ1, µ1], I) and Dnew

X =
(Dnew

X1
,Dnew

X2
) ∼ N([µ2, µ2], I) where the relationship between µ1 and µ2 is monotonous uniform shift

characterized by µ2 = µ1 +N where N is a real number. We fit a linear model fθ(X1, X2) = γ + a1 ·X1 +
a2 ·X2, where a1 > a2. Then even if the distribution of SHAP values are distinct between S(fθ,Dtr

X) and
S(fθ,Dnew

X ), the order of importance between the distributions is not distinct. If S1(fθ,Dtr
X) > S2(fθ,Dtr

X)
then S1(fθ,Dnew

X ) > S2(fθ,Dnew
X ). But the distributions are distinct S1(fθ,Dtr

X) ̸= S1(fθ,Dnew
X ) and

S2(fθ,Dtr
X ) ̸= S2(fθ,Dnew

X ).

Sj(fθ,DX) = aj · (DXj
− µ1),Sj(fθ,Dnew

X ) = aj · (Dnew
Xj

− µ2),
µ2 = µ1 +N.

Then Sj(fθ,DX) ̸= Sj(fθ,Dnew
X ),

But S1(fθ,DX) > S2(fθ,DX) ⇔ S1(fθ,Dnew
X ) > S2(fθ,Dnew

X ).

Conclusion of the comparison to Nigenda et al. (2022) In the context of natural data, when confronted
with a novel covariate shift, our findings indicate that NDCG demonstrates limited sensitivity and fails to
detect shifts when the fraction of data from previously unseen groups exceeds ratios 0.2 to 0.4 threshold.

Furthermore, in our analyses both synthetic and natural data, we observe that NDCG struggles to provide
accurate and consistent estimates when faced with multicovariate shifts.

Both analytically and in our experiments with synthetic data, it becomes evident that NDCG lacks robustness
and sensitivity when confronted with even a basic, uniform, and monotonous shift.

B Further Experiments on Real Data

In this section, we extend the prediction task of the main body of the paper. The methodology used follows
the same structure. We start by creating a distribution shift by training the model fθ in California in
2014 and evaluating it in the rest of the states in 2018, creating a geopolitical and temporal shift. The
model gθ is trained each time on each state using only the XNew in the absence of the label, and a 50/50
random train-test split evaluates its performance. As models, we use a gradient-boosted decision tree(Chen
& Guestrin, 2016; Prokhorenkova et al., 2018) for fθ, approximating the Shapley values by TreeExplainer
(Lundberg et al., 2020), and using logistic regression for the Explanation Shift Detector.

B.1 ACS Employment

The objective of this task is to determine whether an individual aged between 16 and 90 years is employed or
not. The model’s performance was evaluated using the AUC metric in different states, except PR18, where
the model showed an explanation shift. The explanation shift was observed to be influenced by features such
as Citizenship and Military Service. The performance of the model was found to be consistent across most
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of the states, with an AUC below 0.60. The impact of features such as difficulties in hearing or seeing was
negligible in the distribution shift impact on the model. The left figure in Figure 7 compares the performance
of the Explanation Shift Detector in different states for the ACS Employment dataset.
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Figure 7: The left figure compares the performance of the Explanation Shift Detector in different states for the ACS
Employment dataset. The right figure shows the feature importance analysis for the same dataset.

Additionally, the feature importance analysis for the same dataset is presented in the right figure in Figure 7.

B.2 ACS Travel Time

The goal of this task is to predict whether an individual has a commute to work that is longer than +20
minutes. For this prediction task, the results differ from the previous two cases; the state with the highest
OOD score is KS18, with the “Explanation Shift Detector” highlighting features such as Place of Birth, Race
or Working Hours Per Week. The closest state to ID is CA18, where there is only a temporal shift without
any geospatial distribution shift.
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Figure 8: In the left figure, comparison of the performance of Explanation Shift Detector, in different states for the
ACS TravelTime prediction task. In the left figure, we can see how the state with the highest OOD AUC detection is
KS18 and not PR18 as in other prediction tasks; this difference concerning the other prediction task can be attributed
to “Place of Birth”, whose feature attributions the model finds to be more different than in CA14.

B.3 ACS Mobility

The objective of this task is to predict whether an individual between the ages of 18 and 35 had the same
residential address as a year ago. This filtering is intended to increase the difficulty of the prediction task, as
the base rate for staying at the same address is above 90% for the population (Ding et al., 2021b).
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The experiment shows a similar pattern to the ACS Income prediction task (cf. Section 4), where the inland
US states have an AUC range of 0.55 − 0.70, while the state of PR18 achieves a higher AUC. For PR18, the
model has shifted due to features such as Citizenship, while for the other states, it is Ancestry (Census record
of your ancestors’ lives with details like where they lived, who they lived with, and what they did for a living)
that drives the change in the model.

As depicted in Figure 9, all states, except for PR18, fall below an AUC of explanation shift detection of 0.70.
Protected social attributes, such as Race or Marital status, play an essential role for these states, whereas for
PR18, Citizenship is a key feature driving the impact of distribution shift in the model.
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Figure 9: Left figure shows a comparison of the Explanation Shift Detector ’s performance in different states for the
ACS Mobility dataset. Except for PR18, all other states fall below an AUC of explanation shift detection of 0.70.
The features driving this difference are Citizenship and Ancestry relationships. For the other states, protected social
attributes, such as Race or Marital status, play an important role.

B.4 StackOverflow Survey Data: Novel Covariate Group

This experimental section evaluates the proposed Explanation Shift Detector approach on real-world data
under novel group distribution shifts. In this scenario, a new unseen group appears at the prediction stage,
and the ratio of the presence of this unseen group in the new data is varied. As a training data country,
we use the United States. The model fθ used is a gradient-boosted decision tree or logistic regression, and
logistic regression is used for the detector. The results show that the AUC of the Explanation Shift Detector
varies depending on the quantification of OOD explanations, and it shows more sensitivity concerning model
variations than other state-of-the-art techniques.

The dataset used is the StackOverflow annual developer survey, with over 70,000 responses from over
180 countries examining aspects of the developer experience (Stackoverflow, 2019). The data has high
dimensionality, leaving it with +100 features after data cleansing and feature engineering. The goal of this
task is to predict the total annual compensation.

B.5 Sensitivity Analysis of Explanation Shift Detector Hyperparameters

This section extends our experimental setup by evaluating the impact of varying the complexity of the
Explanation Shift Detector through its hyperparameters, represented as gψ(S(fθ,X)). We focus on the
geopolitical and temporal shifts in the US Income dataset, using CA14 for training and PR18 as the
out-of-distribution (OOD) dataset.

In this analysis, we adjusted the hyperparameters for the Explanation Shift Detector across different model
types. For decision trees, we varied tree depth; for gradient-boosted decision trees, we changed the number of
estimators; and for random forests, both hyperparameters were adjusted. To evaluate estimator choices, we
compared Logistic Regression and XGBoost models. While this setup resembles the one in Section 5.6, here
we focus on altering the complexity of the Explanation Shift Detector rather than the original estimator.
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Figure 10: Both images represent the AUC of the Explanation Shift Detector for different countries on the
StackOverflow survey dataset under novel group shift. In the left image, the estimator, fθ, is a gradient-boosted
decision tree; in the right image, for both cases the detector, gψ, is a logistic regression. By changing the type of
estimator model, we can see how different types of models are affected differently for the same distribution shift.
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Figure 11: The AUC of the Explanation Shift Detector under geopolitical and temporal shifts in the ACS Income
dataset. Left: results for a linear model as the estimator. Right: results for a gradient-boosted decision tree regressor.
Increasing the complexity of the Explanation Shift Detector highlights the impact of distribution shifts, particularly
for the XGB model. For linear models, the AUC plateaus due to their limited complexity.

As shown in Figure 11, the Explanation Shift Detector requires a minimum level of complexity to detect the
effects of distribution shifts. Beyond this threshold, the AUC values plateau, indicating diminishing returns
from increasing the Explanation Shift Detector’s complexity. For the linear model as estimators (fθ), the
AUC of the Explanation Shift Detector plateaus with less complex parameter, likely due to the simplicity of
how the distribution shift impact a simpler model. In contrast, when the XGB model increases the detector’s
complexity, it continues to improve performance, reflecting the model’s greater capacity to learn complex
patterns.

In conclusion, explanation distributions act as projections of the data and model behavior, capturing the
impact of learned features. While Explanation Shift Detector complexity is important under distribution
shifts, its influence appears secondary to that of the original estimator model complexity, as explored in
Section 5.6.

C LIME as an Alternative Explanation Method

Another feature attribution technique that satisfies the properties above (efficiency and uninformative features
Section 2) and can be used to create the explanation distributions is LIME (Local Interpretable Model-
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Agnostic Explanations). The intuition behind LIME is to create a local interpretable model that approximates
the behavior of the original model in a small neighbourhood of the desired data to explain (Ribeiro et al.,
2016b;a) whose mathematical intuition is very similar to the Taylor series. In this work, we have proposed
explanation shifts as a key indicator for investigating the impact of distribution shifts on ML models. In
this section, we compare the explanation distributions composed by SHAP and LIME methods. LIME can
potentially suffer several drawbacks:

Computationally Expensive: Its current implementation is more computationally expensive than current
SHAP implementations such as TreeSHAP (Lundberg et al., 2020), Data SHAP (Kwon et al., 2021; Ghorbani
& Zou, 2019) or Local and Connected SHAP (Chen et al., 2019), the problem increases when we produce
explanations of distributions. Even though implementations might be improved, LIME requires sampling
data and fitting a linear model, which is a computationally more expensive approach than the aforementioned
model-specific approaches to SHAP.

Local Neighborhood: The definition of a local “neighborhood”, which can lead to instability of the
explanations. Slight variations of this explanation hyperparameter lead to different local explanations. In
Slack et al. (2020b) the authors showed that the explanations of two very close points can vary greatly.

Dimensionality: LIME requires as a hyperparameter the number of features to use for the local linear
approximation. This creates a dimensionality problem as for our method to work, the explanation distributions
must be from the exact same dimensions as the input data. Reducing the number of features to be explained
might improve the computational burden.
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Figure 12: Comparison of the explanation distribution generated by LIME and SHAP. The left plot shows the
sensitivity of the predicted probabilities to multicovariate changes using the synthetic data experimental setup of 2 on
the main body of the paper. The right plot shows the distribution of explanation shifts for a New Covariate Category
shift (Asian) in the ASC Income dataset.

Figure 12 compares the explanation distributions generated by LIME and SHAP. The left plot shows the
sensitivity of the predicted probabilities to multicovariate changes using the synthetic data experimental
setup from Figure 2 in the main body of the paper. The right plot shows the distribution of explanation
shifts for a New Covariate Category shift (Asian) in the ASC Income dataset. The performance of OOD
explanations detection is similar between the two methods. Still, LIME suffers from two drawbacks: its
theoretical properties rely on the definition of a local neighborhood, which can lead to unstable explanations
(false positives or false negatives on explanation shift detection), and its computational runtime required is
much higher than that of SHAP (see experiments below).

C.1 Runtime

We analyzed the runtimes of generating the explanation distributions using the two proposed methods. The
experiments were run on a server with four vCPUs and 32 GB of RAM. We used shap version 0.41.0 and
lime version 0.2.0.1 as software packages. In order to define the local neighborhood for both methods, we use
all the data provided as background data in this example. As an fθ model, we use an XGBoost and compare

27



Published in Transactions on Machine Learning Research (01/2025)

the results of TreeShap against LIME. When varying the number of samples we use five features and while
varying the number of features we use 1000 samples.
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Figure 13: Wall time for generating explanation distributions using SHAP and LIME with different numbers of
samples (left) and different numbers of columns (right). Note that the y-scale is logarithmic. The experiments were
run on a server with four vCPUs and 32 GB of RAM. The runtime required to create an explanation distribution
with LIME is far greater than SHAP for a gradient-boosted decision tree

Figure 13, shows the wall time required to generate explanation distributions using SHAP and LIME
with varying samples and columns. The runtime required of generating an explanation distributions using
LIME is much higher than using SHAP, mainly when producing explanations for distributions. This is
because LIME requires training a local model for each instance of the input data to be explained, which
can be computationally expensive. In contrast, SHAP relies on heuristic approximations to estimate the
feature attribution without training a model for each instance. The results illustrate that this difference in
computational runtime becomes more pronounced as the number of samples and columns increases.

We note that limiting the number of features to be explained can further reduce the computational burden of
generating the explanation distributions, as this reduces the dimensionality of the explanation distributions.
However, this will inhibit the quality of the explanation shift detection, as it won’t be able to detect changes
in the distribution shift that impact the model on those features.

Given the current state-of-the-art software packages, we have used SHAP values due to the lower runtime
required and the theoretical guarantees that hold with the implementations. In the experiments performed
in this paper, we are dealing with a medium-scaled dataset with around ∼ 1, 000, 000 samples and 20 − 25
features. Further work can be envisioned on developing novel mathematical analysis and software that study
under which conditions which method is more suitable.

D True to the Model or True to the Data?

The “Explanation Shift Detector” proposed in this work relies on the explanation distributions that satisfy
efficiency and uninformative theoretical properties. We have used the Shapley values as an explainable AI
method that satisfies these properties. However, the correct way to connect a model to a coalitional game,
which is the central concept of Shapley values, is a source of controversy, with two main approaches (i) an
interventional (Aas et al., 2021; Frye et al., 2020; Zern et al., 2023) or (ii) an observational formulation
of the conditional expectation(Sundararajan & Najmi, 2020).

In the following experiment, we compare what are the differences between estimating the Shapley values
using one or the other approach. We benchmark this experiment on the four prediction tasks based on the
US census data (Ding et al., 2021a) and using the “Explanation Shift Detector”, where both the model fθ(X)
and gψ(S(fθ, X)) are linear models. We will calculate the Shapley values using the SHAP linear explainer. 2

The comparison depends on a feature perturbation hyperparameter: whether the approach to compute the
SHAP values is either interventional or correlation dependent. The interventional SHAP values break the
dependence structure between features in the model to uncover how the model would behave if the inputs

2https://shap.readthedocs.io/en/latest/generated/shap.explainers.Linear.html
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were changed (as it was an intervention). This option is said to stay “true to the model”, meaning it will
only give allocation credit to the features that the model actually uses (Aas et al., 2021).

On the other hand, the full conditional approximation of the SHAP values respects the correlations of the
input features. If the model depends on one input that is correlated with another input, then both get some
credit for the model’s behaviour. This option is said to say “true to the data”, meaning that it only considers
how the model would behave when respecting the correlations in the input data (Chen et al., 2020).In our
case, we will measure the difference between the two approaches by looking at the linear coefficients of the
model gψ and comparing the performance using the geo-political and temporal experiment of the previous
section 5, for this case between CA14 and PR18.

Table 10: AUC comparison of the “Explanation Shift Detector” between estimating the Shapley values between
the interventional and the correlation-dependent approaches for the four prediction tasks based on the US census
dataset (Ding et al., 2021a). The % character represents the relative difference. The performance differences are
negligible.

Interventional Observational %
Income 0.736438 0.736439 1.1e-06
Employment 0.747923 0.747923 4.44e-07
Mobility 0.690734 0.690735 8.2e-07
Travel Time 0.790512 0.790512 3.0e-07

Table 11: Linear regression coefficients comparison of the “Explanation Shift Detector” between estimating the
Shapley values between the interventional and the correlation-dependent approaches for one of the US census-based
prediction tasks (ACS Income). The % character represents the relative difference. The coefficients show negligible
differences between the calculation methods

Interventional Observational %
Marital 0.348170 0.348190 2.0e-05
Worked Hours 0.103258 -0.103254 3.5e-06
Class of worker 0.579126 0.579119 6.6e-06
Sex 0.003494 0.003497 3.4e-06
Occupation 0.195736 0.195744 8.2e-06
Age -0.018958 -0.018954 4.2e-06
Education -0.006840 -0.006840 5.9e-07
Relationship 0.034209 0.034212 2.5e-06

In Table 10 and Table 11, we can see the comparison of the effects of using the aforementioned approaches
to learn our proposed method, the “Explanation Shift Detector”. Even though the two approaches differ
theoretically, the differences become negligible when explaining the protected characteristic, i.e. when
providing the linear regression coefficients.

29


