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Abstract

In recent years, test-time adaptive object detection has attracted increasing attention
due to its unique advantages in online domain adaptation, which aligns more closely
with real-world application scenarios. However, existing approaches heavily rely
on source-derived statistical characteristics while making the strong assumption
that the source and target domains share an identical category space. In this paper,
we propose the first foundation model-powered test-time adaptive object detection
method that eliminates the need for source data entirely and overcomes traditional
closed-set limitations. Specifically, we design a Multi-modal Prompt-based Mean-
Teacher framework for vision-language detector-driven test-time adaptation, which
incorporates text and visual prompt tuning to adapt both language and vision repre-
sentation spaces on the test data in a parameter-efficient manner. Correspondingly,
we propose a Test-time Warm-start strategy tailored for the visual prompts to effec-
tively preserve the representation capability of the vision branch. Furthermore, to
guarantee high-quality pseudo-labels in every test batch, we maintain an Instance
Dynamic Memory (IDM) module that stores high-quality pseudo-labels from pre-
vious test samples, and propose two novel strategies-Memory Enhancement and
Memory Hallucination-to leverage IDM’s high-quality instances for enhancing orig-
inal predictions and hallucinating images without available pseudo-labels, respec-
tively. Extensive experiments on cross-corruption and cross-dataset benchmarks
demonstrate that our method consistently outperforms previous state-of-the-art
methods, and can adapt to arbitrary cross-domain and cross-category target data.
Code is available at https://github.com/gaoyingjay/ttaod_foundation.

1 Introduction

As a fundamental task in visual perception, object detection [23, 1, 32] has made significant progress,
while its performance drops dramatically when facing domain gaps. Although Unsupervised Domain
Adaptation (UDA) technology [3, 34] attempts to mitigate domain differences in an offline manner, it
still struggles to meet the real-time domain adaptation requirements in application scenarios such as
autonomous driving [33] and robotics [19]. Consequently, Test-Time Adaptation (TTA) [26, 28, 25]
has emerged, which operates in real-time by adapting on the fly during inference.

Existing Test-Time Adaptive Object Detection (TTAOD) methods [2, 31, 29], predominantly built
upon Faster R-CNN [23], leverage self-training or source-target feature alignment strategies to
achieve promising domain adaptation performance. However, as shown in Fig. 1(a), there are two
major issues: (1) requiring statistical characteristics (e.g., the mean and variance of feature maps)
derived from sampled source domain data, which violates the source-free principle of TTA, and

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/gaoyingjay/ttaod_foundation


Detector

Aeroplane

Bicycle

Bird

Detector

𝑁(𝜇𝑠, Σ𝑠)

VL

Detector

VL

Detector

Target Domain Target Domain

Source Domain

Statistical 

Characteristics Closed-setInit Open-set

Aeroplane. Bicycle. 

Bird.

Aeroplane

Bicycle

Bird

Init

Cat. Person.

Mouse. ...

Learnable Prompt

web

(a) Traditional TTAOD methods (b) Ours

Figure 1: (a) Traditional TTAOD methods require source domain statistical characteristics and are
limited to closed-set during adaptation. (b) Our method requires no source data while possessing
open-vocabulary capability.

(2) assuming identical category spaces between source and target domains, which limits TTAOD’s
applicability in open scenarios.

Recent vision-language foundation models (VLMs) [22, 9, 12, 17], pre-trained on large-scale datasets,
have demonstrated remarkable zero-shot generalization and open-vocabulary capabilities, motivating
our exploration of introducing vision-language detectors (e.g., GLIP [12] and Grounding DINO [17])
into the TTAOD task to address the aforementioned issues, as shown in Fig. 1(b). However, how to
adapt vision-language detectors during TTA is non-trivial. On one hand, full-parameter fine-tuning
via self-learning on test data not only diminishes the pre-trained detector’s generalization capability
but also amplifies sensitivity to noisy samples, exacerbating overfitting when target data is scarce.
On the other hand, effective adaptation hinges on high-quality pseudo-labels generated from target
domain test data, yet consistently obtaining reliable pseudo-labels in every batch remains challenging
even with advanced vision-language detectors.

For the first point, a straightforward approach is to perform parameter-efficient fine-tuning on the
foundation model using text prompts, but our empirical findings show that tuning only the text
prompts is inadequate for effective adaptation. Therefore, we design a Multi-modal Prompt-based
Mean-Teacher framework for vision-language detectors to perform self-training during TTA, which
incorporates text and visual prompt tuning to jointly adapt both language and vision representation
spaces on the test data. Correspondingly, to mitigate potential performance degradation of the teacher
model due to suboptimal visual prompt initialization, we introduce a Test-time Warm-start strategy
that initializes the visual prompts by average pooling image tokens extracted from the first test sample.

For the second point, we first maintain an Instance Dynamic Memory (IDM) module for each
category during test time to help preserve valuable knowledge acquired from prior test samples.
Building upon IDM, we then propose two novel strategies: Memory Enhancement and Memory
Hallucination. Memory Enhancement leverages high-quality instances stored in IDM to refine the
original predictions of the current test image, while Memory Hallucination integrates instances
sampled from IDM into test images that have no available pseudo-labels.

The main contributions of this paper are summarized in fourfold:

• To the best of our knowledge, this is the first foundation model-powered test-time adaptive object
detector, which eliminates the need for source data entirely and overcomes traditional closed-set
limitations.

• We design a Multi-modal Prompt-based Mean-Teacher framework for vision-language detector-
driven TTA, which incorporates text-visual prompts and a Test-time Warm-start strategy to achieve
effective parameter-efficient fine-tuning while preserving the pre-trained knowledge.

• We introduce an Instance Dynamic Memory module and propose two novel strategies—Memory
Enhancement and Memory Hallucination—to effectively leverage high-quality pseudo-labels from
previous test samples.
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• Extensive experiments on both cross-corruption and cross-dataset benchmarks demonstrate that
our proposed method outperforms the state-of-the-art approaches by large margins and can adapt to
arbitrary cross-domain and cross-category target data.

2 Related Work

2.1 Test-Time Adaptive Object Detection

TTAOD extends TTA [7, 26, 28, 8, 25] to the object detection task, aiming to adapt a detector pre-
trained on a labeled source domain to different unlabeled target domains in an online manner. Early
works [14, 13, 27] employ a self-training paradigm and perform multi-epoch offline adaptation on
target domain data. STFAR [2] utilizes self-training to generate pseudo-labeled objects on the fly and
incorporates feature distribution alignment as regularization. CTTAOD [31] focuses on continually
changing test domains by introducing an adapter-based adaptation approach that activates only when
necessary. The latest work, Efficient TTAOD [29], proposes pruning sensitive channels to focus
adaptation efforts solely on invariant ones. However, these methods require access to source data
for computing statistical characteristics (e.g., mean and variance), which is impractical in real-world
scenarios. Moreover, they inherently assume identical category spaces between source and target
domains, which significantly limits the applicability of TTAOD. In this paper, we explore leveraging
foundation models to enhance TTAOD and overcome the above limitations.

2.2 Vision-Language Object Detection

Vision-language foundation models are trained on large-scale image-text pairs collected from the
web, which establish connections between visual and textual representations and achieve impressive
zero-shot performance on various downstream tasks. Early vision-language object detection works
[6, 35] distill knowledge from pre-trained vision-language classification models (e.g., CLIP [22])
to a student detector (e.g., Faster R-CNN [23]), enabling the detection of novel categories beyond
the training set. GLIP [12] introduces a grounded language-image pre-training framework that
generates grounding boxes in a self-training paradigm, achieving strong zero-shot performance across
various object detection datasets. Grounding DINO [17] incorporates grounded pre-training into the
Transformer-based detector DINO [32] using a tight cross-modality fusion solution and demonstrates
superior generalization ability. In this paper, we investigate how to adapt vision-language detectors
during test time and propose an effective and efficient test-time adaptive object detection approach
based on Grounding DINO.

3 Methodology

3.1 Preliminary

Standard TTAOD approaches typically assume access to a detector pre-trained on source domain
data DS = {(xi, yi)}Ns

i=1, where xi ∼ PS(x) and yi = (bboxi, ci) consists of a set of bounding
boxes bboxi and their corresponding class labels ci ∈ C. The goal of TTAOD is to adapt the
detector to different unlabeled target domains DT = {xj}Nt

j=1 during testing, where xj ∼ PT (x)

and PS(x) ̸= PT (x). Crucially, the source domain is unavailable during adaptation, and the target
domains share the same label space C with the source domain (i.e., a closed-set scenario). When
vision-language detectors are introduced into TTAOD, their large-scale pre-training enables superior
generalization on target domains. Moreover, vision-language foundation models break the closed-set
constraint, allowing adaptation to arbitrary cross-domain and cross-category target data.

3.2 Overall Architecture

An overview of our method is illustrated in Fig. 2. We build our approach on the pre-trained
vision-language model Grounding DINO. In Sec 3.3, we introduce a Multi-modal Prompt-based
Mean-Teacher framework that enables parameter-efficient self-training on test data. To mitigate
potential performance degradation when incorporating visual prompts, we propose a Test-time Warm-
start strategy specifically for prompt initialization. In Sec 3.4, we present an Instance Dynamic
Memory module to store high-quality pseudo-labels extracted from the test stream, coupled with
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Figure 2: Overview of our method. It comprises two components: (1) the Multi-modal Prompt-based
Mean-Teacher framework shown in (a), incorporating text prompt tuning (green-highlighted) and
visual prompt tuning (blue-highlighted) with a Test-time Warm-start strategy; and (2) an Instance Dy-
namic Memory module that stores high-quality pseudo-labels from previous test samples, integrating
with Memory Enhancement (b) and Memory Hallucination (c).

two novel strategies—Memory Enhancement and Memory Hallucination—to refine the original
predictions for test images and hallucinate positive samples for images lacking reliable pseudo-labels,
respectively.

3.3 Multi-modal Prompt-based Mean-Teacher

Although vision-language pre-trained detectors like GLIP[12] and Grounding DINO[17] demonstrate
impressive zero-shot generalization, their performance often degrades under real-world distribution
shifts. Fine-tuning vision-language detectors to target domains during test time is therefore essential.
To achieve effective and efficient adaptation while preserving valuable pre-trained knowledge, we
propose a Multi-modal Prompt-based Mean-Teacher framework, which primarily comprises three
core components: Text Prompt Tuning, Visual Prompt Tuning, and Test-time Warm-start.

Text Prompt Tuning. Text prompt tuning is one of the most prominent approaches in parameter-
efficient fine-tuning for VLMs[37, 36, 12]. Accordingly, given a test label set C, Grounding DINO
concatenates the class names in C using dot symbols to form the text input t (e.g., "aeroplane. bicycle.
bird. ..."). The text encoder fT then maps the input description t to a sequence of at most 256 tokens,
ET . We further introduce a learnable vector PT in the language branch, whose dimension matches
that of ET . The modulated text tokens are computed as:

ẼT = ET + PT (1)

This enriched representation ẼT is subsequently fed into the vision-language feature enhancer fV L.

Visual Prompt Tuning. Observing that fine-tuning the text prompts alone fails to effectively adapt to
test data. As shown in Fig. 3(b), we further introduce m learnable tokens PI,i = {P k

I,i ∈ Rdi}m
k=1

at
each image encoder layer Li in Grounding DINO, alongside the input image tokens EI,i, where di
denotes the dimension of Li. Similar to [10], we concatenate the visual prompts PI with the image
tokens as the input of each Transformer layer:

[_, ẼI,1] = L1([PI,0, EI,0]) (2)
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Figure 3: Different behaviors of visual prompts. (a) Init visual prompts by average-pooling image
tokens from the first test sample before TTA. (b) Insert visual prompts with image tokens for every
test sample during TTA.

[_, ẼI,i] = Li([PI,i−1, ẼI,i−1]) i = 2, 3, . . . , N (3)

The visual prompt augmented image tokens ẼI,N then serve as the visual input to fV L.

Test-time Warm-start. Here, a challenge remains regarding the initialization of multi-modal prompts.
For the text prompts, we simply set PT = 0 so that the output tokens from the text branch remain
unchanged. However, for the visual prompts, both zero initialization and random initialization
inevitably degrade the representation capability of the vision branch. In extreme cases, the detector
fails to detect any objects, resulting in catastrophic failure during test-time adaptation. As illustrated
in Fig. 3(a), we propose a Test-time Warm-start strategy for the visual prompts. At the beginning of
each test-time adaptation, we initialize the visual prompts using average pooling over the input image
tokens EI,i from the first image X0 at the i-th Transformer layer:

PI,i = AvgPool(EI,i) (4)

Based on the above components, we construct the Multi-modal Prompt-based Mean-Teacher frame-
work, which comprises a set of multi-modal teacher prompts P ∗

{T,I} and a set of multi-modal student
prompts P{T,I}. The teacher model, equipped with P ∗

{T,I}, generates high-quality pseudo-labels
on weakly augmented target domain test data to supervise the optimization of the student model,
which uses P{T,I} and receives strongly augmented test data. To prevent being misled by noisy
pseudo-labels, we set a classification score threshold thpl to filter them. The total optimization
objective is:

Ltotal = Lcls + Lloc (5)
where Lcls and Lloc denote the contrastive classification loss and localization loss in Grounding
DINO, respectively. Pseudo-labels generated by the teacher model are used as ground-truth during
test time. We only fine-tune P{T,I}, while the majority of the pre-trained detector remains frozen
during adaptation. And P ∗

{T,I} are updated after each iteration via exponential moving average of
P{T,I} as follows:

P ∗
{T,I} = γP ∗

{T,I} + (1− γ)P{T,I} (6)

where γ ∈ [0, 1] is the momentum coefficient.

3.4 Instance Dynamic Memory Enhancement and Hallucination

The mean-teacher framework primarily relies on high-quality pseudo-labels derived from target
domain test data to facilitate test-time adaptation. However, obtaining reliable pseudo-labels in every
test batch remains challenging, even with the assistance of the vision-language detector. To address
this issue, we propose maintaining an Instance Dynamic Memory (IDM) module for each category
during TTA to preserve valuable knowledge acquired from prior test samples.

Specifically, the IDM maintains a dynamic queue Qc for each category c, which is initialized as
empty. For the current test data xi, one of its pseudo-labels is typically represented as (bbox, s, c),
corresponding to the predicted bounding box, classification score, and category, respectively. For a
high-quality pseudo-label with classification score s exceeding the given threshold thpl , we construct
a triplet (img, feat, s) as follows:

img = Crop(xi, bbox) (7)
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feat = DINOv2(img) (8)
where Crop(·, ·) is used to extract an instance crop from image xi, and DINOv2(·) generates the
DINOv2[21] feature for the cropped instance. We then store the triplet in the dynamic queue Qc

corresponding to its predicted category c. When Qc has not reached the maximum capacity |Qc|max,
we directly insert this new triplet. However, if Qc is already full, we compare the classification score
s of the current pseudo-label instance with the lowest score in Qc. If s is higher, we replace the
lowest-scoring triplet with the new one; otherwise,the new pseudo-label instance is excluded, and the
queue keeps unchanged.

IDM maintains progressively improving high-quality pseudo-labels through its iterative refinement
mechanism. Based on IDM, we introduce two novel strategies-Memory Enhancement and Memory
Hallucination-to more effectively leverage high-quality pseudo-labels from the test stream.

Memory Enhancement. Inspired by TDA[11], we leverage the IDM to refine the original predictions
of the current test image through the Memory Enhancement strategy, as illustrated in Fig. 2(b). We
first calculate the DINOv2 feature prototypes for each class c by averaging all samples in Qc, denoted
as vc. Then, for an original prediction (bboxj , sj , cj) of the current test image xi, we compute its
memory-based classification score s

′

j as:

s
′

j = A(DINOv2(Crop(xi, bboxj))v
T
c ) (9)

where A(x) = αexp(−β(1−x)) is the affinity function , α is a weighting factor and β is a sharpness
ratio. The enhanced prediction is defined as ((bboxj , s

′′

j , c
′′

j )), where the final classification score is
s
′′

j = sj + s
′

j , and its predicted category is c
′′

j = argmaxs
′′

j .

We compute similarity using the prototype vc for each category c instead of all samples in Qc, since
the number of instances per category varies greatly in object detection. Directly using all samples
from each category would cause categories with more instances to obtain higher classification scores.
Given that the detector produces numerous predictions per image (e.g., 300 in Grounding DINO),
applying Memory Enhancement to every prediction would not only significantly reduce inference
speed, but also degrade detection performance due to the enhancement of low-confidence predictions.
Thus, we apply Memory Enhancement only to high-confidence predictions whose classification
scores exceed thme.

Memory Hallucination. The threshold filtering in the mean-teacher framework may lead to no
available pseudo-labels for adaptation on certain test data, a limitation overlooked by previous self-
training based works[27, 2]. Since these negative test samples still contain valuable target domain
information, we propose a Memory Hallucination strategy, as shown in Fig. 2(c). This strategy
randomly samples high-quality instances from IDM and hallucinates positive samples by integrating
them into the negative test data.

Specifically, for a negative image xi and a high-quality instance image imgj sampled from IDM,
we overlay imgj onto xi at a random position to generate a hallucinated positive image x̃i using a
mixing coefficient λ, where λ ∈ [0, 1] is sampled from a Beta distribution. For each negative image,
we commix at most three high-quality instance images. To prevent overlap among instances, we
set an IoU threshold thIoU : if the IoU of the current instance image and any previously placed one
exceeds thIoU , we randomly reselect positions and retry up to 10 times. Additionally, to prevent the
detector from overfitting to high-quality instance images in the scale space, we apply random scaling
to imgj before mixing.

4 Experiments

4.1 Datasets

We evaluate the effectiveness of our method across a variety of TTAOD scenarios, covering two
benchmarks: the cross-corruption benchmark and the cross-dataset benchmark. The cross-corruption
benchmark is widely adopted in previous TTAOD works[2, 31, 11] to assess model robustness,
specifically including two datasets: Pascal-C and COCO-C. Pascal-C is constructed from the test
set of Pascal VOC[5] by applying an image corruption package [20], which consists of 15 types
of corruptions. Each corrupted test set contains 4956 images spanning 20 classes. COCO-C is
generated from COCO [16], which contains 80 object categories. Following the same procedure as
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Table 1: Test-time adaptive object detection results (AP50) on Pascal-C.
Detectors Methods Noise Blur Weather Digital Avg

Gauss Shot Impul Defoc Glass Motn Zoom Snow Frost Fog Brit Contr Elast Pixel Jpeg

Faster RCNN
(ResNet-50)

Direct Test 11.9 16.0 13.6 16.7 13.0 18.4 25.7 38.2 41.7 64.2 69.5 23.8 42.7 26.0 35.8 30.5
BN [7] 4.7 6.8 5.1 7.4 4.5 9.8 13.4 19.1 22.1 35.3 39.5 20.6 17.1 9.1 10.5 15.0

TENT [28] 3.1 4.0 3.3 2.6 2.5 5.3 4.8 12.8 13.7 19.0 19.6 9.9 11.0 8.8 4.5 8.3
T3A [8] 6.1 8.4 6.5 11.0 6.4 10.1 13.8 16.8 20.6 32.7 36.9 12.5 19.7 13.2 14.8 15.3

SHOT [15] 12.0 19.9 16.4 18.9 11.6 19.7 27.6 42.5 45.8 67.5 72.0 31.7 46.6 33.1 41.8 33.8
Mean-Teacher[30] 24.8 29.0 26.5 21.7 18.9 24.8 27.7 46.1 50.5 67.8 71.4 37.3 52.7 39.7 51.1 39.3

STFAR [2] 29.8 38.0 34.9 30.8 31.5 32.8 29.3 51.4 53.1 68.3 71.4 47.9 58.4 48.9 50.8 45.2

Grounding DINO
(Swin-T)

Direct Test 31.8 38.6 35.7 43.3 20.1 36.4 33.1 59.2 64.8 75.9 75.7 54.8 42.1 10.3 49.7 44.8
Mean-Teacher[30] 42.7 48.1 46.6 48.4 30.0 45.6 37.1 64.6 67.1 75.5 75.8 64.4 49.3 19.4 58.3 51.5

Ours 46.9 52.0 51.9 47.9 38.6 48.6 39.4 66.7 68.6 77.7 77.8 66.5 54.2 42.8 63.7 56.2

Table 2: Test-time adaptive object detection results (mAP) on COCO-C. * indicates methods using
SoftTeacher weights pre-trained on the COCO training set with extensive data augmentation.

Detectors Methods Noise Blur Weather Digital Avg
Gauss Shot Impul Defoc Glass Motn Zoom Snow Frost Fog Brit Contr Elast Pixel Jpeg

Faster RCNN
(ResNet-50)

Direct Test 8.2 10.0 9.1 12.9 4.7 9.1 4.9 19.8 24.0 38.9 38.4 22.9 16.5 6.2 13.2 15.9
BN [7] 1.4 1.8 1.5 1.7 0.8 1.8 2.0 5.8 8.3 13.6 15.2 3.4 7.3 2.2 3.1 4.7

TENT [28] 1.5 1.7 1.6 0.5 0.5 1.6 0.8 5.4 6.4 9.7 8.5 5.6 5.0 2.4 2.2 3.6
T3A [8] 4.6 5.8 5.2 8.3 3.1 5.8 3.5 13.8 17.2 28.9 28.8 15.9 11.3 4.1 9.0 11.0

SHOT [15] 11.0 13.0 12.1 14.7 7.2 11.0 6.4 22.0 26.7 41.5 40.9 26.6 19.7 9.7 16.4 18.6
Mean-Teacher* [30] 12.3 12.6 13.6 14.4 8.7 11.9 5.9 25.1 27.0 38.5 37.8 28.7 21.2 1.5 19.3 18.6

STFAR* [2] 14.8 17.6 16.7 15.1 13.4 14.1 7.5 26.5 27.2 38.5 38.4 29.2 26.3 18.5 22.4 21.7
CTTOD* [31] 14.9 17.0 15.9 14.1 12.4 13.7 7.7 25.5 27.6 39.4 38.8 29.3 27.7 26.3 24.8 22.3

CTTOD-Skip* [31] 14.3 16.2 15.3 14.2 11.9 13.2 7.3 24.0 26.9 39.0 38.9 28.3 26.2 25.4 23.7 21.7

Faster RCNN
(ResNet-101)

Direct Test 11.7 13.8 12.2 15.1 7.1 10.9 5.5 23.3 26.9 42.5 41.8 26.8 18.9 8.7 16.0 18.7
Mean-Teacher* [30] 16.7 20.4 20.1 17.3 15.8 15.9 7.5 29.5 30.7 42.6 41.4 33.1 24.8 13.3 22.0 23.4

STFAR* [2] 20.1 19.3 20.7 17.0 16.6 17.1 8.6 30.6 31.2 42.1 41.7 33.8 29.6 26.1 25.3 25.3

Faster RCNN
(Swin-T)

Direct Test 9.7 11.4 10.0 13.4 7.5 12.1 5.2 20.7 24.8 36.1 36.0 12.9 19.1 4.9 15.8 16.0
CTTOD [31] 13.5 15.8 15.1 14.3 14.2 14.9 8.8 25.1 27.2 37.6 37.0 27.5 28.6 25.2 23.7 21.9

CTTOD-Skip [31] 13.6 15.6 14.8 14.3 13.6 14.3 7.8 24.0 26.7 37.5 36.8 27.0 27.3 23.7 22.6 21.3

Grounding DINO
(Swin-T)

Direct Test 13.7 16.0 15.0 16.8 7.5 13.6 6.7 27.5 32.5 44.2 44.1 21.9 22.5 5.3 21.1 20.6
Mean-Teacher[30] 18.6 20.8 20.4 18.4 11.0 16.6 7.6 30.9 34.6 45.3 44.8 28.8 25.8 12.3 25.7 24.1

Ours 20.2 22.0 21.4 17.8 14.5 16.9 7.9 31.1 34.7 45.1 44.9 30.6 29.9 23.6 29.2 26.0

Pascal-C, we construct COCO-C using the COCO val2017 set, which includes 5k images, to serve as
the target domains.

We adopt the ODinW-13 datasets as a novel cross-dataset benchmark to evaluate the detector’s
performance across 13 diverse object detection datasets, each representing a distinct domain with
different categories. These datasets are labeled as Ae (Aerial Maritime Drone), Aq (Aquarium), Co
(Cottontail Rabbits), Eg (Egohands), Mu (Mushrooms), Pa (Packages), Pv (Pascal VOC), Pi (Pistols),
Po (Pothole), Ra (Raccoon), Sh (Shellfish), Th (Thermal Dogs and People), Ve (Vehicles). We
perform test-time adaptation on the test sets of 13 sub-datasets, providing a comprehensive evaluation
of the model’s adaptability across varying class spaces.

4.2 Implementation Details

In this paper, our method is built upon Grounding DINO with Swin-Tiny[18] as the visual backbone.
We use Grounding DINO pre-trained on Objects365[24], GoldG[12], and Cap4M[12], without any
fine-tuning on source domain data before adaptation. Additionally, we employ DINOv2 with ViT-L[4]
as the feature extractor in the IDM module. For the cross-corruption benchmark, we set the learning
rate of the AdamW optimizer to 0.02 for text prompts and 0.2 for visual prompts, while freezing all
other parameters pre-trained on large-scale data. The batch size is set to 4. For other hyperparameters,
we set thpl to 0.3, thme to 0.3, and thIoU to 0.2. The momentum coefficient γ in Eq. 6 is set to 0.999.
The number m of visual prompts is set to 10, and the maximum capacity |Qc|max of IDM is set to 20.
We set α = 5.0 and β = 5.0 for Pascal-C, while α = 1.0 and β = 5.0 for COCO-C. All experiments
are conducted on a single RTX 3090 GPU. Hyperparameters for the cross-dataset benchmark are
detailed in the appendix.

4.3 Comparisons with State-of-the-art

Results on the Cross-corruption Benchmark. We first compare our method with existing TTAOD
approaches on Pascal-C. As shown in Table 1, adapting BN[7], TENT[28] and T3A[8] to TTAOD
leads to significant performance degradation compared to directly testing using a Faster R-CNN
trained on the source domain. In contrast, self-training based methods such as SHOT[15], Mean-
Teacher and STFAR yield performance gains. When tested directly, Grounding DINO achieves an
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average AP50 of 44.8%, comparable to the previous state-of-the-art STFAR. This demonstrates the
strong generalization capability of the pre-trained vision-language detector. Furthermore, simply
applying self-training to Grounding DINO results in a 6.7% improvement in average AP50. In
comparison, our proposed method achieves the highest average AP50 of 56.2% across 15 corruption
types, outperforming the previous state-of-the-art STFAR by a remarkable margin of 11.0%. Consid-
ering the differences in the adopted detectors, achieving a completely fair comparison is challenging.
Nevertheless, by conducting thorough comparisons with the strong Mean-Teacher baseline built
upon Grounding DINO (51.5% vs. 56.2%), we clearly demonstrate the consistent performance
improvements achieved by our method.

Figure 4: Results on the cross-dataset benchmark
comprising 13 diverse object detection datasets.

We then report the mAP performance on COCO-
C in Table 2, presenting comprehensive com-
parisons with conventional TTAOD approaches
across different backbones. Since CTTOAD
and CTTAOD-Skip are specifically designed
for continuous test-time adaptation (CTTA), we
evaluate their performance under the discrete
adaptation setting on COCO-C. Methods us-
ing ResNet-50 and ResNet-101 are initialized
with SoftTeacher[30] weights pre-trained on
the COCO training set. Since SoftTeacher em-
ploys extensive data augmentation during train-
ing (e.g., brightness jitter, contrast jitter), it
demonstrates superior adaptation capability on
corrupted target domains. Our method achieves
the highest average mAP of 26.0% without uti-
lizing any source domain data, while attaining
state-of-the-art performance on 8 out of 15 cor-
ruption types.

Results on the Cross-dataset Benchmark.
Fig. 4 shows our method’s performance on 13 downstream datasets with different categories. Our
method reaches an average mAP of 54.2%, representing a 1.4% improvement over Direct Test’s
52.8%, while Mean-Teacher with Grounding DINO yields only a 0.3% gain. Our method demon-
strates consistent improvements on almost all ODinW-13 sub-datasets except Mu and Pa. This
phenomenon is primarily attributed to the extremely few test sanples available (5 for Mu, 4 for
Pa), which prevents the vision-language detector from adequately adapting to the target domains.
Experimental results verify the effectiveness of our method in adapting to diverse class datasets
during test time.

4.4 Ablation Studies

Table 3: Ablation study of each component on Pascal-C.
The average AP50 across 15 corruption types is shown.

Methods MPMT IDM Avg
TPT VPT TTWS ME MH

Direct Test 44.8

(1) ✓ 45.4
(2) ✓ 41.4
(3) ✓ ✓ 53.4
(4) ✓ ✓ ✓ 53.9
(5) ✓ 46.1
(6) ✓ ✓ ✓ ✓ 54.9
Ours ✓ ✓ ✓ ✓ ✓ 56.2

Effectiveness of Each Component. We
investigate the contribution of each compo-
nent on Pascal-C across all 15 corruption
types, with results presented in Table 3. Us-
ing only Text Prompt Tuning (TPT) yields
merely a 0.6% improvement in average
AP50 compared to direct testing. When ap-
plying Visual Prompt Tuning (VPT) alone
for TTA, the performance even drops by
3.4%. We attribute this decline to subop-
timal visual prompt initialization, which
impairs the teacher model’s performance
and consequently undermines the adapta-
tion capability of the vision-language de-
tector during test time. Comparing (2) and (3), our proposed Test-time Warm-start (TTWS) strategy
effectively mitigates this issue. Furthermore, the text and visual prompts exhibit complementary
effects. As a training-free strategy, Memory Enhancement (ME) directly enhances the zero-shot
performance of Grounding DINO on test data. Comparing (4) and (6), Memory Hallucination
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(MH) improves adaptation by hallucinating positive samples on challenging images, enabling the
Multi-modal Prompt-based Mean-Teacher (MPMT) to achieve an additional 1.0% performance gain.
By integrating all components, our method achieves state-of-the-art performance.

Table 4: Comparison on the Number of Visual Prompts.
# Prompts 2 4 6 8 10 15 20 30 50

AP50 42.6 44.0 45.0 45.3 45.4 45.2 45.3 45.1 44.2

About the Number of Visual Prompts. We evaluate the impact of the number m of visual prompts
on the Gaussian noise corruption of Pascal-C. As shown in Table 4, the visual-language detector
achieves effective test-time adaptation with only a few visual prompts. While increasing the number
of visual prompts enhances the detector’s adaptability, it also raises the risk of overfitting. For
example, performance begins to decrease when m exceeds 30. Empirically, setting m to 10 provides
an optimal balance.

Figure 5: Comparison on the Maximum
Capacity of IDM.

About the Maximum Capacity of IDM. We analyze
the influence of the maximum capacity |Qc|max of IDM
under Gaussian noise corruption on Pascal-C, which si-
multaneously affects the effectiveness of both the Memory
Enhancement and Memory Hallucination strategies. As
shown in Fig. 5, when |Qc|max is set too low, Memory
Enhancement fails to acquire sufficiently representative
category prototypes vc, thereby limiting its ability to refine
the original predictions. When set too high, noisy pseudo-
labels may be included, compromising the quality of vc
and weakening the effectiveness of Memory Enhancement.
Furthermore, experiments reveal that the introduction of
category prototypes vc confers robustness to Memory En-
hancement. For Memory Hallucination, a too-small |Qc|max leads to repeated use of few-shot images
from IDM for negative image hallucination, causing the detector to overfit and even degrading its
performance. Conversely, a large |Qc|max risks using noisy pseudo-labels during the hallucination
process, misleading test-time adaptation. Considering both the performance of the two strategies and
the storage cost, we set |Qc|max to 20.

Figure 6: Analysis of Memory Enhancement.
Analysis of Memory Enhancement. We observe that Memory Enhancement remains effective even
when only classification scores are modified without changing the predicted labels. Therefore, we
conduct a comprehensive analysis of how Memory Enhancement improves the original predictions. In
Fig. 6, we plot the True Positive (TP) and False Positive (FP) distributions of the original predictions
and enhancement predictions for the category ’bicycle’ on the Gaussian noise corruption of Pascal-C.
It can be seen that Memory Enhancement optimizes the ordering of TP and FP predictions, ensuring
that TP predictions are ranked higher than FP ones, thereby improving detection performance. The
Precision-Recall curve for the ’bicycle’ category further corroborates this result.

5 Conclusion

In this paper, we propose the first foundation model-powered test-time adaptive object detection
method, which requires no source data while overcoming traditional closed-set limitations. The pro-
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posed method employs a parameter-efficient Multi-modal Prompt-based Mean-Teacher framework for
adaptation, incorporating a Test-time Warm-start strategy to preserve the teacher model’s performance.
Moreover, we introduce an Instance Dynamic Memory module, along with Memory Enhancement
and Memory Hallucination strategies, to effectively leverage high-quality pseudo-labels from the
test stream. Extensive evaluations on two benchmarks demonstrate that our method outperforms
the state-of-the-art TTAOD approaches, with successful adaptation to arbitrary cross-domain and
cross-category target data.
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A Appendix

A.1 More Implementation Details

Table 5: Datasets statistics of the cross-
dataset benchmark.

Dataset Classes Test Size

Ae 5 15
Aq 7 127
Co 1 19
Eg 1 480
Mu 2 5
Pa 1 4
Pv 20 3,422
Pi 1 297
Po 1 133
Ra 1 29
Sh 3 116
Th 2 41
Ve 5 250

Hyperparameters on the Cross-dataset Benchmark.
The cross-dataset benchmark is used to evaluate the de-
tector’s adaptability across both domains and categories,
and consists of 13 object detection datasets: Ae (Aerial
Maritime Drone), Aq (Aquarium), Co (Cottontail Rabbits),
Eg (Egohands), Mu (Mushrooms), Pa (Packages), Pv (Pas-
cal VOC), Pi (Pistols), Po (Pothole), Ra (Raccoon), Sh
(Shellfish), Th (Thermal Dogs and People), Ve (Vehicles).
Table 5 presents the detailed statistics of these datasets.

For the cross-dataset benchmark, we set thpl and thme

to 0.3. The number m of visual prompts is set to 5, and
the maximum capacity |Qc|max of IDM is set to 3. We
use α = 1.0 and β = 5.0 across all datasets. All other
hyperparameters follows the settings in the main paper.

Data Augmentation. The strong augmentation consists of
random resizing and one of color space transformation, se-
lected from the following: ColorTransform, AutoContrast,
Equalize, Sharpness, Posterize, Solarize, Color, Contrast, and Brightness. Additionally, it integrates
RandErase, which randomly erases several patches (fewer than 5) with fixed pixel values at arbitrary
locations to simulate occlusions. The weak augmentation consists solely of random resizing, enabling
the teacher model to generate more reliable pseudo-labels for the student model.

A.2 More Experimental Results

Table 6: Full results about the ablation study of each component on Pascal-C.

Methods MPMT IDM Noise Blur Weather Digital Avg
TPT VPT TTWS ME MH Gauss Shot Impul Defoc Glass Motn Zoom Snow Frost Fog Brit Contr Elast Pixel Jpeg

Direct Test 31.8 38.6 35.7 43.3 20.1 36.4 33.1 59.2 64.8 75.9 75.7 54.8 42.1 10.3 49.7 44.8
Mean-Teacher 42.7 48.1 46.6 48.4 30.0 45.6 37.1 64.6 67.1 75.5 75.8 64.4 49.3 19.4 58.3 51.5

(1) ✓ 32.7 39.2 36.5 43.3 22.4 37.2 33.3 60.5 65.0 75.5 75.5 55.2 44.2 9.9 50.7 45.4
(2) ✓ 0.1 45.9 36.4 37.1 13.6 41.7 31.4 63.4 65.7 68.5 75.3 37.6 43.3 0.1 61.4 41.4
(3) ✓ ✓ 45.4 50.0 49.3 46.1 32.0 44.5 36.3 64.0 66.8 76.1 76.3 64.2 51.5 37.6 61.6 53.4
(4) ✓ ✓ ✓ 45.5 50.1 50.1 46.4 32.7 44.9 37.3 64.9 66.8 75.9 76.2 64.3 52.0 39.2 62.2 53.9
(5) ✓ 33.2 39.6 37.2 44.6 20.6 37.9 34.2 61.1 66.4 77.5 77.0 55.6 43.5 10.7 52.0 46.1
(6) ✓ ✓ ✓ ✓ 45.9 50.9 50.2 47.0 36.6 46.7 38.4 65.9 67.3 75.9 76.5 65.4 52.9 41.9 62.1 54.9
Ours ✓ ✓ ✓ ✓ ✓ 46.9 52.0 51.9 47.9 38.6 48.6 39.4 66.7 68.6 77.7 77.8 66.5 54.2 42.8 63.7 56.2

Full Results about the Ablation Study for Each Component. In Table 6, we report the contribution
of each component across all 15 corruption types on Pascal-C, as well as the average AP50. The
proposed components achieve consistent improvements across nearly all types of corruption. We
observe that using only Visual Prompt Tuning can lead to catastrophic failure during TTA on certain
corruptions (e.g. Gaussian noise, Pixelate). Our proposed Test-time Warm-start strategy effectively
addresses this issue.

Table 7: Comparison of the runtime cost and average AP50.

Methods Tuned Params↓
(M)

Latency↓
(ms/img)

Memory↓
(GB)

Avg↑
(%)

Full Fine-tuning 164.964 635.0 20.9 51.5
TPT 0.037 532.9 16.6 45.4
VPT 0.042 562.7 17.6 53.4
MPMT 0.079 582.9 18.0 53.9

Runtime Cost. In Table 7, we present the number of learnable parameters, per-image test-time adap-
tation latency, peak GPU memory footprint, and average AP50 on Pascal-C, measured using an RTX
3090 GPU. Compared to Full Fine-tuning, our proposed Multi-modal Prompt-based Mean-Teacher
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framework requires only 0.05% of the learnable parameters, enabling us to store corresponding
multi-modal prompts for each target domain while sharing a single copy of the pre-trained Grounding
DINO weights. This advantage also facilitates easy extension to Continual Test-time Adaptive
Object Detection (CTTAOD). In addition, our method demonstrates benefits in latency and peak
GPU memory footprint compared to Full Fine-tuning, while achieving a significant improvement in
Average AP50.

Figure 7: Analysis of the Memory En-
hancement threshold.

About the Threshold of Memory Enhancement. Since
Grounding DINO generates 300 predictions per image,
applying Memory Enhancement to all predictions would
significantly reduce inference speed. As shown in Fig. 7,
we select the threshold thme under Gaussian noise cor-
ruption on Pascal-C. When thme is below 0.2, the latency
(blue solid line) increases notably compared to direct test-
ing (blue dashed line). Moreover, we observe that when
thme is below 0.2, Memory Enhancement leads to a perfor-
mance decline (green solid line) compared to direct testing
(green dashed line). This is because, at this threshold, there
are a large number of noisy predictions, and refining noisy
predictions causes greater confusion in the final results.
Considering both latency and detection performance, we
set it to 0.3.

Table 8: Sensitivity analysis of α and β.

α
2.0 3.0 4.0 5.0 6.0 7.0

32.5 32.8 33.0 33.2 32.8 32.7

β
0.5 1.0 3.0 5.0 7.0 9.0

32.6 32.7 33.0 33.2 32.4 32.0

Sensitivity Analysis on the Weighting Factor and
Sharpness Ratio. We conduct a sensitivity analysis of the
hyperparameters α and β on the Gaussian noise corrup-
tion of Pascal-C. As shown in Table 8, we achieve the best
AP50 when setting α to 5.0 and β to 5.0.

Table 9: Comparison of the inference cost and average mAP on COCO-C.

Detectors Methods Source Data Latency
(ms/img) Avg

Faster RCNN
(Res-50)

Direct Test Pre-train 54.2 15.9
Mean-Teacher [30] Pre-train 296.1 18.6

STFAR [2] Pre-train + Statistical Characteristics 327.3 21.7
CTTAOD [31] Pre-train + Statistical Characteristics 143.9 22.3

CTTAOD-Skip [31] Pre-train + Statistical Characteristics 84.9 21.7

Grounding DINO
(Swin-T)

Direct Test × 213.1 20.6
Mean-Teacher [30] × 635.0 24.1

Ours × 693.8 26.0

Detailed Analysis of Inference Costs. TTA not only requires inference but also involves model
adaptation based on the current test data. This process inevitably introduces additional latency
compared to direct testing. As illustrated in Table 9, although previous approaches demonstrate faster
inference speeds, they require pre-training weights for each source domain and extract statistical
characteristics from the source data—both of which incur significant time costs. Compared to the
strong baseline Mean-Teacher, we introduce only minimal additional inference time (693.8 ms/img
versus 635.0 ms/img), and achieve nearly a 2% performance improvement on COCO-C.

On the other hand, some studies have begun to specifically focus on improving efficiency. For
example, CTTAOD-Skip [31] improves average inference speed by skipping some test samples, and
Efficient TTAOD [29] accelerates inference through pruning. We attempted to integrate a relatively
simple Skip strategy into our method, which reduces the latency to 387.7 ms/img while maintaining
comparable performance with a minimal performance drop.

A.3 Visualization

Examples of Memory Hallucination. Fig. 8 shows examples of Memory Hallucination. It can be
observed that Memory Hallucination effectively leverages high-quality instances from the Instance
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Dynamic Memory, as well as negative images without available pseudo-labels, to generate diverse
positive samples.

Figure 8: Examples of Memory Hallucination.

Examples of Memory Enhancement. In Fig. 9, we present the changes in predictions before and
after applying Memory Enhancement. Red boxes indicate false positive (FP) samples, while green
boxes represent true positive (TP) samples. In the first row, the original classification scores of the
two FP samples are higher than those of the two TP samples. After applying Memory Enhancement,
as shown in the second row, the TP samples receive significant enhancement, resulting in their
classification scores surpassing those of the two FP samples. The same trend is observed in the third
and fourth rows. Memory Enhancement improves the recall of high-confidence predictions, enabling
the detector to produce predictions that include more true positives.
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Figure 9: Examples of Memory Enhancement.

Detection Results. We visualize detection results with all comparative methods based on Grounding
DINO. Fig. 10 shows the detection results on Pascal-C under Gaussian noise corruption. Our method
alleviates misclassifications, as seen in the first and second rows, missed detections, as shown in the
third row, and false positives, as illustrated in the fourth row. We also provide visualizations under
different corruption types (Fig. 11) and across various corruption types on different datasets ( Fig. 12),
further demonstrating the effectiveness of our method.
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Ground Truth Direct Test Mean-Teacher Ours

Figure 10: Detection results under Gaussian noise corruption on Pascal-C.

Ground Truth Direct Test Mean-Teacher Ours

Figure 11: Detection results under JPEG compression corruption on Pascal-C.
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Ground Truth Direct Test Mean-Teacher Ours

Figure 12: Detection results under Shot noise corruption on COCO-C.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims made, including the
contributions made in the paper and the scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: This paper provides a detailed analysis and thorough experimentation, with no
obvious limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described the proposed method in Section 3 and the corresponding
implementation details in Section 4.2. Additionally, the code and models will be made
publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The dataset is open-access, and our code and models will be publicly released.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have described the implementation details in Section 4.2. Additionally, the
code and models will be made publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: According to the convention in the field to which the paper belongs, there is
usually no need to report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have described the experiments compute resources in Section 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We have described the potential positive societal impacts in Section 1, and
there is no potential negative societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

21

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper that produced the code package or dataset.
We will also include the acknowledgment and Licenses for existing assets when releasing
the code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: There are no new assets introduced in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Declaration is not required in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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