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Abstract

In-silico design of novel materials demands a large number of atom-level calcu-
lations for optimizing the desired properties. In practice, it is extremely time-
consuming and cumbersome to perform density functional theory calculations at
an exponential scale. In the hope of accelerating material discovery, we investigate
the feasibility of an active learning-inspired reinforcement learning approach based
on online reward model fine-tuning to learn a policy that can generate compositions
of crystalline materials optimized for a specific band gap. Through an extensive set
of online learning experiments, we show that while RL policies can be effectively
trained using machine learning-based proxy reward functions, they fail to converge
for DFT-based rewards. This failure of convergence could be related to the inher-
ently noisy nature of DFT in resolving the electronic band structure, which severely
affects policy learning. To this end, we emphasize the need for more specialized
and domain-driven methods for band gap optimization.

1 Introduction

The material discovery process involves computational validation of properties with atomic simulation
frameworks like density functional theory (DFT), which are time-consuming and difficult to perform
[1–6]. However, many other means of faster computational evaluation of materials do not fully
resemble first-principles calculations, and hence their estimation accuracy might be lower [7–9]. This
is particularly true for electronic properties like the band gap, which involves computing the energy
of the highest occupied and the lowest unoccupied electronic states [10]. An important aspect of
automating the material discovery process with machine learning while still relying on first-principles
calculations involves intelligently selecting the appropriate material candidates to perform more
costly simulations. Much recent progress in AI-automated material discovery primarily deals with
crystalline materials, owing to their well-defined structural properties, abundance in public databases,
and practical and industrial applications [11–15]. However, most of them do not directly incorporate
DFT simulations in the learning pipeline or condition on desired properties like the band gap [16, 17].

In this work, we adopt reinforcement learning (RL) to sequentially construct crystals aimed for
band gap optimization and study the effect of different reward models, including ML-based proxies
based on established property estimators [18] and DFT simulation, on the optimal convergence of the
RL policy. Inspired by active learning-based approaches [19], we incorporate an uncertainty-based
strategy for querying DFT by ensembling reward models, which are fine-tuned from band gaps
computed from DFT simulations. Our results demonstrate the difficult nature of considering the
band gap, computed by DFT, as a property of interest – it severely slows down learning and does
not allow the policy to converge to an optimal solution. We therefore hypothesize that the issue
could be relevant to the inaccurate nature of DFT-based band gap estimation[20, 21], including the
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underestimation problem. Further domain-driven investigation and additional RL experiments are
hence required to confirm this hypothesis and to deduce strategies to mitigate the effect of noisy and
potentially inaccurate DFT outputs.

2 Methods

RL Formulation We adapt the general framework by Govindarajan et al. [22] for the RL formu-
lation and environment. It follows an MDP M = ⟨S,A,T, R, γ⟩, where S is the state space, A is
the action space, T(s′|s,a) : S× S×A → [0, 1] is the environment transition probability function,
R(s,a) : S×A → R is the reward function, and γ ∈ [0, 1] is the discount factor. The state space
consists of empty, partially or filled multigraphs (G(V,E)) of crystal structures. The action space
A consists of atomic elements from which the agent assigns an atom at a given site in a crystal.
The action space consists of 21 elements (appendix A.3) in the periodic table that do not include
transition metals, lanthanides, actinides, and rare elements whose presence results in inaccurate and
slow DFT calculations. Intermediate rewards are zero, and the final reward aims to minimize the
distance between the crystal’s estimated band gap p and the target band gap p̂. It also penalizes DFT
failures and crystals with more than 5 atom types, as these are likely to result in unsuccessful DFT
computations. Also, 99.9% of crystals in the training dataset consist of at most 5 unique atom types.

r(sN ) =

{
−1 if more than 5 unique elements (or) DFT fails
exp(−(p− p̂)2) otherwise

(1)

The RL objective is to learn a policy πθ to generate optimal crystals (i.e., terminal state sN ) with
band gap values closer to the target. The estimated band gap p for a given crystal could either be
obtained from a computationally cheaper and less accurate ML model or DFT simulation.

Figure 1: RL pipeline with DFT in the loop for auto-
mated material design. The policy generates a composi-
tion given a crystal skeleton, which is evaluated by the
reward model dynamically trained with DFT outputs.

Pipeline For the band gap prediction model
(referred to as reward model or MLP-BG in
the figures), we fine-tuned a pre-trained back-
bone of CHGNet [18] in a supervised man-
ner. To facilitate uncertainty-based querying,
we trained 5 of those models on disjoint subsets
of the MP-20 dataset (crystals from the Mate-
rials Project database containing crystals with
at most 20 atoms, used by [16]). We choose a
target of p̂ = 1.12 eV, the band gap of Silicon at
room temperature [23]. The components of our
pipeline (fig. 1) are 1) policy learning (DQN), 2)
MLIP2-based structure relaxation, 3) DFT simu-
lation, and 4) reward model fine-tuning. We aim
to see if the online agent converges to an optimal
solution using an ensemble reward model that is
dynamically fine-tuned with DFT outputs. For
DFT calculations, we use Quantum Espresso
v7.1 [24] with PBE functional [21] and CUDA
support. We relax the generated crystal before
simulation using CHGNet [18] with the FIRE
[25] optimizer. DFT is queried either 1) once in
50 episodes or 2) when the standard deviation
(uncertainty) of the band gap predictions from the 5 models is greater than a threshold of 0.2. For
policy learning and reward model fine-tuning, the average of the ensemble is considered. This way,
all the models in the ensemble get fine-tuned when DFT is queried.

3 Experiments

We design four online RL experiments – 1) training DQN to optimize the composition of a single
crystal skeleton for the band gap, which is fully based on the ensemble reward model with no DFT
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involved, 2) training DQN with purely DFT-based rewards, by querying DFT after every episode, 3)
training DQN by dynamically fine-tuning MLP-BG (ensemble model), with values obtained from
DFT simulations, and 4) replace DFT with a suitable proxy in experiment 3. For all experiments,
the initial policy is a randomly initialized graph neural network [26]. In experiment 4, the proxy is
a simple model that explains the relation between the reward model’s predictions and the ground
truth band gap values. This experiment is useful under the assumption that the proxy approximates
DFT’s outputs, and to determine if performing real DFT calculations while training could affect
the policy learning. We run experiments with 2 different proxies in place of DFT simulation – 1) a
linear model that maps the MLP-BG’s (which is trained on the entire training data of MP-20) band
gap predictions to the ground truth values from the Materials Project, 2) use the table containing
MLP-BG and Quantum Espresso (QE) predicted band gaps (including failures) of policy generated
crystals from experiment 2 to perform k-nearest neighbor sampling based on MLP-BG’s online
prediction – this way, we choose the corresponding QE band gap of the sampled nearest neighbor
(further details provided in Appendix A.6). Note that the former is only exposed to the stable
crystals and their band gaps present in the MP-20 dataset, which might not reflect the signals from
Quantum Espresso’s calculations with policy-generated crystals (they are not fully relaxed with DFT).

EXPERIMENT Reward % DFT/Proxy Calls % DFT Success Band Gap

Exp. 1 MLP-BG 0 N/A N/A
Exp. 2 DFT 100 30.61 0.156
Exp. 3 MLP-BG & DFT 2 38.68 0.241
Exp. 4lin MLP-BG & Proxy 2 N/A 0.742+

Exp. 4knn MLP-BG & Proxy 2 N/A 0.396+

Table 1: Insights from online RL experiments – 1) % of DFT
calls made, 2) % successful DFT simulations, 3) average DFT-
computed (proxy-computed for Exp. 4) band gap of the last
500 successful DFT simulations, and 4) average DFT simulation
time. + proxy band gap.

With the latter, there were several failure
cases (close to 50%) encountered during
simulation in experiment 2, which were
also included while sampling from the
k-nearest neighbors, in which case the
reward is -1. This way, we not only have
a proxy that is based on policy-generated
crystals but also one that mimics QE’s
noisy behavior. Lastly, all the experi-
ments deal with optimizing the composi-
tion of a fixed crystal skeleton consisting
of 10 atomic sites, obtained from the Ma-
terials Project (mp-1209282).

4 Results

Figure 2: (a) Learning curve for experiments 1 (blue) and 2 (red). With a
fully MLP-based reward model, the agent learns the optimal policy. With DFT
rewards, it converges to a suboptimal policy. (b) Band gap curves for experiments
1 (MLP values) and 2 (DFT values). The former converged to the target, while
the latter converged to a near-zero value.

We first discuss the ex-
periments without reward
fine-tuning, i.e., experi-
ments 1 & 2. In exper-
iment 1, we show that
by training a DQN model
with a fully MLP-based re-
ward model ensemble, it is
possible to reach an opti-
mal policy (fig. 2), thereby
the desired band gap of
1.12 eV. In experiment
2, where the rewards are
purely based on DFT cal-
culations, the reward in-
creases with more training
but eventually converges
to a suboptimal policy. For this experiment, we relax the crystal structure with CHGNet before
DFT simulation. However, since the computation times of rewards were orders of magnitude higher,
training the model for 1 million steps took approximately 9 days. While each episode demands a DFT
calculation, many failed (table 1) resulting in a reward of -1. Nevertheless, there were more than 5000
successful DFT calls. If the nature of two reward signals, i.e., DFT and MLP-BG is the same (e.g.
process and noise), one would expect both policies to demonstrate a similar learning behavior and
sample efficiency. However, the results indicate much slower learning and convergence to near-zero
band gap. This is not only because of penalizing DFT failures but also due to the underestimation
and inaccuracies of DFT-based band gap calculations.
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(a) Exp 3. Reward learning curve
(b) Exp 3. Average of MLP-
predicted band gaps of the ensem-
ble.

(c) Exp 3. DFT-computed band
gaps

(d) Exp 4. Reward learning curve
(e) Exp 4. Average of MLP-
predicted band gaps of the ensem-
ble.

(f) Exp 4. Proxy-computed band
gaps. NaN values are present in
the kNN version.

Figure 3: Results from experiments 3 and 4. Experiment 3 has two models with a different learning rate for
fine-tuning the band gap model – 0.001 (less rigorous, orange) and 0.005 (more rigorous, green). Experiment 4
(where we set the fine-tuning learning rate as 0.005) has two cases – 1) linear proxy and 2) kNN proxy.

In experiment 3, the agent gets rewards from both the MLP-BG ensemble and DFT, and the former
is fine-tuned after a successful simulation. This is a hard problem because of the additional level
of non-stationarity due to the dynamic reward model. From fig. 3a, we see that while the reward
improves and the MLP-predicted band gap reaches close to the target (fig. 3b), DFT’s band gap values
do not seem to converge near the target. Hence, the policy did not align with DFT’s preferences
(fig. 3c). It has to be investigated further if more training is required for DFT values to converge
to the target. Given the issues concerning the incorporation of DFT calculations in the loop, we
conducted further experiments to determine if replacing DFT with a simple proxy approximator
results in similar issues, in which case we can say that the solution to this problem is likely unrelated
to DFT calculations in particular. In the first case where the proxy is a linear model that maps the
MLP model’s (pre-trained CHGNet originally fine-tuned on all of MP-20 training crystals) outputs to
the ground truth band gap values in the dataset. Note that these are not QE-predicted band gaps. As
seen in fig. 3f, the proxy band gap reaches the target value on average, and the reward reaches the
optimal value (fig. 3d), indicating that it works in this case. In the second case, where the proxy is
a value sampled using a kNN approach, the outputs are noisy due to the stochasticity and multiple
failures being sampled, and hence struggle to reach optimality. However, in 100k episodes, we do not
observe convergence to a lower or near-zero value band gap.

5 Conclusion

Given the impracticality of fully DFT-based online approaches, we emphasize the need for methods
that use both machine learning property predictors and DFT. Here, we integrate RL and DFT
simulations to address the band gap optimization problem – the agent receives rewards from both a
machine learning model and DFT simulations. We highlight important issues in training algorithms
from DFT signals due to their noisy and inaccurate nature. This could be mitigated by relaxing
with DFT or improving the resolution but at the cost of increased simulation time. Given our
deterministic policy learning framework and small-scale experiments, we do not evaluate the diversity
and scalability of our approach, which are important in scientific discovery. We expect that our
pipeline can be tested with language or generative models as backbones with an appropriate feedback
scheme. To conclude, we emphasize the need for domain-driven methods to address property-driven
material design.
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A Appendix / supplemental material

A.1 Compute

For our experiments, we used NVIDIA A100-SXM4-80GB GPUs model training and performing
DFT simulations with Quantum Espresso.

A.2 Graph Representation

We represent crystals in 3 dimensions as multigraphs, following [27]. We follow the exact procedures
of Govindarajan et al. [22] for creating the graphs and crystal skeletons. We also use MEGNet
architecture for the policy, which is a GNN suitable for materials and molecules [26].

A.3 Experimental Details

In our experiments, we aim to optimize the composition of a fixed skeleton of a crystal that is present
in the validation set of MP-20 (ID: mp-1114693). It has 10 atomic sites, and a chemical formula of
Rb3ScF6. The space group number is 225, and is hence cubic. The original band gap of the crystal is
6.2281, which makes it and insulator. The action space consists of 21 elements in the periodic table –
Li, Na, K, Rb, Be, Ca, Mg, Sr, H, C, N, O, P, S, Se, F, Cl, Br, He, Ne, Kr.

A.4 DQN Hyperparameters

• Q-Net: MEGNeT [26]
• Discount factor: 0.99
• Target update frequency: 1000 (steps)
• Sample Batch size: 64
• ϵstart (initial exploration rate): 1.0
• ϵmin (minimum exploration rate): 0.001
• Decay method: Exponential (rate: 10−5)
• Replay buffer size: 200,000

A.5 DFT Settings (Quantum Espresso)

We conducted DFT single-point SCF calculations using the open-source Quantum Espresso v7.1
[24], applying a consistent simulation protocol across all DFT experiments. We utilized solid-state
pseudopotentials from SSSP version 1.3.0 [28], employed (3,3,3) k-points, and used the David
diagonalization method. Simulations were limited to a maximum of 200 iterations. While our DFT
setup for band gap calculations is simpler and faster, it is less accurate compared to methods such as
the B3LYP functional [29] and GW [30].

A.6 Band Gap Model (MLP-BG)

We used a pretrained crystal graph neural network (CHGNet), proposed by Deng et al. [18] with
initial pre-trained weights for force and energy estimation. We performed supervised learning with
the training set of the MP-20 dataset and evaluated it against the validation set.

Ensembling For training the 5 MLP-BG models, we divided the training dataset into five disjoint
subsets and trained them individually. In the RL experiments, the mean of these models was
considered to be the predicted band gap, and the standard deviation was used for querying. In
experiments 3 and 4, all 5 models were fine-tuned after a successful simulation.

Proxy Model

• Case 1: Linear Proxy – This model is obtained by performing a linear regression to map
MLP-BG’s band gap predictions with the ground truth values present in the validation set
of the MP-20 dataset. While querying the linear proxy in experiment 4, we first compute
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MLP-BG’s prediction and use the linear model to map it to the corresponding ground truth
estimate.

• Case 2: kNN Proxy In this case, we leverage the simulations from experiment 2 (i.e.,
online RL with purely DFT-based rewards). In a total of 3 seeds of the experiment, we
obtained around 30k examples of crystals with band bap values calculated by QE. However,
around 70% were failed simulations (denoted by NaN). From this data, we used kNN-based
sampling while querying the proxy. In other words, during query time, we first compute
MLP-BG’s prediction and compute the indices of the k-nearest neighbors from the MLP’s
band gap estimates in the data obtained from experiment 2. We use those indices to select k
corresponding values in the list of Quantum Espresso’s estimates, which include NaN values
too. From these k entries, we randomly choose one value to represent the proxy version
of the true band gap. If the sampled value is NaN, the reward is assigned as -1, and the
algorithm continues without reward model fine-tuning.

A.7 Additional Results

(a) Standard deviation for Exp. 3 (b) Reward model loss for Exp. 3

(c) Standard deviation for Exp. 4 (d) Reward model loss for Exp. 4

Figure 4: Additional results from experiment 3 and 4.

8


	Introduction
	Methods
	Experiments
	Results
	Conclusion
	Appendix / supplemental material
	Compute
	Graph Representation
	Experimental Details
	DQN Hyperparameters
	DFT Settings (Quantum Espresso)
	Band Gap Model (MLP-BG)
	Additional Results


