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Abstract

We consider the neural contextual bandit problem.
In contrast to the existing work which primarily
focuses on ReLU neural nets, we consider a gen-
eral set of smooth activation functions. Under this
more general setting, (i) we derive non-asymptotic
error bounds on the difference between an over-
parameterized neural net and its corresponding
neural tangent kernel, (ii) we propose an algo-
rithm with a provable sublinear regret bound that
is also efficient in the finite regime as demon-
strated by empirical studies. The non-asymptotic
error bounds may be of broader interests as a tool
to establish the relation between the smoothness
of the activation functions in neural contextual
bandits and the smoothness of the kernels in ker-
nel bandits.

1. Introduction
The stochastic contextual bandit has been extensively
studied in the literature (see, Langford & Zhang, 2007;
Lattimore & Szepesvári, 2020, and references therein). In
this problem, at each discrete sequential step, a context
is revealed by the environment. Then, a bandit agent
chooses one of the K available actions. Choosing each
action yields a random reward, the distribution of which
is determined by the context. The problem was primarily
studied under a linear setting where the expected reward
of each arm is a linear function of the context (Chu et al.,
2011; Li et al., 2019b; Chen et al., 2021). It was later
extended to kernel-based models (Valko et al., 2013),
where the expected reward function associated with the
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context-action pairs belongs to the reproducing kernel
Hilbert space (RKHS) determined by a known kernel.
Recently, a variation of the problem has been proposed
where the expected reward function associated with the
context-action pairs is modeled using a neural net (Zhou
et al., 2020; Zhang et al., 2021; Gu et al., 2021; Kassraie
& Krause, 2022). The three contextual bandit settings
mentioned above are increasingly more complex in the
following order: Linear→ Kernel-based→ Neural.

Contextual bandits find application in recommender sys-
tems, information retrieval, healthcare and finance (see a
survey on applications in Bouneffouf & Rish (2019)). The
problem can also be seen as a middle step from classic
stochastic bandits (Auer et al., 2002) and (non-contextual)
linear bandits (Abbasi-Yadkori et al., 2011) towards a re-
inforcement learning (RL) problem on a Markov decision
process (MDP), where the contexts resemble the states of
the MDP. One of the first formulations of linear contextual
bandits was referred to as associative RL with linear value
function (Auer, 2002). Nonetheless, contextual bandit is
different from RL in that the contexts are determined ar-
bitrarily (adversarially) rather than following a stochastic
Markovian process.

1.1. Existing Results on Neural Contextual Bandits

With neural nets demonstrating a great representation power
(much more general than linear models), there has been an
increasing interest in modeling bandit and RL problems
based on neural nets. This setting can be implemented using
the typical neural net toolboxes. The neural contextual
bandit has been considered in several works: (Zhou et al.,
2020) and (Zhang et al., 2021), respectively, adopted the
upper confidence bound (UCB) and Thompson sampling
(TS) algorithms to the neural bandit setting. The algorithms
are, respectively, referred to as NeuralUCB and NeuralTS.
(Gu et al., 2021) considered a batch observation setting,
where the reward function can be evaluated only on batches
of data. (Kassraie & Krause, 2022) provided analysis for
a variation of NeuralUCB algorithm with diminishing
instantaneous regret.

The analysis of neural bandits has been enabled through

1

http://arxiv.org/abs/2206.00099
http://arxiv.org/abs/2206.00099


Provably and Practically Efficient Neural Contextual Bandits

the theory of neural tangent (NT) kernel (Jacot et al., 2018)
which approximates an overparameterized neural net with
the kernel corresponding to its infinite width, and the bounds
on the approximation error (e.g., see, Arora et al. (2019)).
Zhou et al. (2020), Zhang et al. (2021) and Gu et al. (2021)
proved Õ(Γk(T )

√
T )1 bounds on cumulative regret, where

T is the number of steps and Γk(T ) is a complexity term
determined by the neural tangent kernel k associated with
the particular neural network. Specifically, Γk(T ) is the
information gain corresponding to k for datasets of size T .
For the ReLU neural nets on d-dimensional domains con-
sidered in Zhou et al. (2020), Zhang et al. (2021) and Gu
et al. (2021), Γk(T ) = Õ(T

d−1
d ) is the best upper bound

known for the information gain (Kassraie & Krause, 2022;
Vakili et al., 2021b). Inserting this bound on Γk(T ), the
aforementioned regret bounds become trivial (superlinear)
generally when d > 1, unless further restrictive assump-
tions are made on the contexts. Kassraie & Krause (2022)
addressed this issue by considering the Sup variant of Neu-
ralUCB (referred to as SupNeuralUCB). The Sup variant
is an adoption of SupLinUCB, which was initially intro-
duced in Chu et al. (2011) for linear contextual bandits, to
the neural setting. Kassraie & Krause (2022) proved an
Õ(
√
Γk(T )T ) regret bound for SupNeuralUCB in the case

of ReLU neural nets, which solved the issue of superlinear
regret bound (non-diminishing instantaneous regret).

1.2. Contribution

All the existing works mentioned above, are limited to
neural nets with ReLU activation functions. This limitation
is rooted in the fact that the existing error bound between
an overparameterized neural net and the corresponding NT
kernel (Arora et al., 2019, Theorem 3.2) holds only for
the ReLU neural nets. In Theorem 1, which may be of
broader interest, we extend this result by providing error
bounds for neural nets with arbitrarily smooth activation
functions. Using Theorem 1, together with the recently
established bounds on Γk(T ) corresponding to arbitrarily
smooth neural nets (Vakili et al., 2021b), we provide regret
bounds for neural contextual bandits under a more general
setting than only ReLU activation function. In particular,
in Theorem 3, we prove an Õ(T

2d+2s−3
2d+4s−4 ) upper bound

on regret, where s is the smoothness parameter of the
activation functions (s = 1 in the case of ReLU, and s
grows larger as the activations become smoother). Our
regret bounds recover that of Kassraie & Krause (2022)
for ReLU activations, and can become as small as Õ(

√
T )

when the activations become infinitely smooth.

Broadening the scope of neural bandits to general smooth

1The notations O and Õ are used for mathematical order and
that up to logarithmic factors, respectively.

activations is of interest in two aspects. Firstly, as shown
in (Li et al., 2019a; Opschoor et al., 2022), deep neural
nets constructed using smoother activation functions
like Rectified Power Units or RePUs provide better
approximation guarantees than those with ReLUs. This is
particularly true when the function to be approximated is
smooth, which is generally the case in practical applications.
Additionally, smoother activation functions have also been
shown to more suitable for certain applications like implicit
representations (Sitzmann et al., 2020). We explore whether
such advantages of smoother activations reflect in the neural
bandit settings. In particular, the regret bounds with ReLU
neural nets, although sublinear, grow at a fast Õ(T 2d−1

2d )
rate, that quickly approaches the linear rate as d grows. We
show that using neural nets with smoother activations can
significantly reduce rate and thereby affirmatively establish
the benefits of employing smoother activations in neural
nets. Secondly, our results help establish connections
between varying smoothness of activations in neural
bandits and varying smoothness of kernels in kernel-based
bandits . Kernel-based bandits (Srinivas et al., 2010) and
Kernel-based contextual bandits (Valko et al., 2013) are well
studied problems with regret bounds reported for popular
kernels such as Matérn family, which is perhaps the most
commonly used family of kernels in practice (Snoek et al.,
2012; Shahriari et al., 2015). Our regret bound for a neural
contextual bandit problem with activations with smoothness
parameter s is equivalent to the regret bound in the case of
kernel-based bandits with a Matérn kernel (Valko et al.,
2013; Li & Scarlett, 2022) with smoothness parameter
s− 1

2 . This connection may be of general interest in terms
of contrasting neural nets and kernel-based models through
NT kernel theory.

In Theorem 2, we prove confidence intervals for overpa-
rameterized neural nets with smooth activation functions,
which are later used in the analysis of our algorithm. The
confidence intervals are a consequence of our Theorem 1
and those for kernel regression. In contrast to prior work,
our confidence intervals are tighter and hold for a general
set of smooth activation functions (see Sec. 3).

In addition to the above analytical results for neural ban-
dits with general smooth activation functions, we propose
a practically efficient algorithm. The Sup variants of UCB
algorithms are known to perform poorly in experiments (Ca-
landriello et al., 2019; Li & Scarlett, 2022), including Sup-
NeuralUCB presented in Kassraie & Krause (2022), due
to over-exploration. We propose NeuralGCB, a neural con-
textual bandit algorithm guided by both upper and lower
confidence bounds to provide a finer control of exploration-
exploitation trade-off to avoid over-exploration. In the ex-
periments, we show that NeuralGCB outperforms all other
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existing algorithms, namely NeuralUCB (Zhou et al., 2020),
NeuralTS (Zhang et al., 2021) and SupNeuralUCB (Kass-
raie & Krause, 2022).

1.3. Other Related Work

Linear bandits have been considered also in a non-contextual
setting, where the expected rewards are linear in the actions
in a fixed domain (e.g., see the seminal work of Abbasi-
Yadkori et al., 2011). The kernel-based bandits (also re-
ferred to as Gaussian process bandits) have been extensively
studied under a non-contextual setting (Srinivas et al., 2010;
Chowdhury & Gopalan, 2017). The GP-UCB and GP-TS
algorithms proposed in this setting also show suboptimal
regret bounds (see Vakili et al. (2021c) for details). Recently
there have been several works offering optimal order regret
bounds for kernel-based (non-contextual) bandits (Salgia
et al., 2021; Camilleri et al., 2021; Li & Scarlett, 2022).
These results however do not address the additional difficul-
ties in the contextual setting.

There is a large body of work that studies the performance of
overparametrized neural nets (see, for example, Cao & Gu,
2019; 2020; Allen-Zhu et al., 2019) which is closely related
to the NTK approximation studied in this work. While there
are similarities, our proposed technical approach introduces
non-trivial novel analysis over all these studies. Specifically,
all of them consider neural nets with ReLU activation func-
tions. In our work, we derive new results and lemmas that
hold for a larger class of activation functions as opposed
to only the ReLU activation function. A notable exception
to activation function being ReLU is the work by Du et al.
(2019) where the authors also consider “smooth” activation
functions. However, the activation functions considered in
that work are “smooth” in the sense that the derivative of
the activation function is globally Lipschitz. This is not
necessarily true for the class of activation functions consid-
ered in this work, especially for s ≥ 3. Consequently, our
work extends the results in Du et al. (2019) to a new class
of activation functions.

2. Preliminaries and Problem Formulation
In the stochastic contextual bandit problem, at each discrete
sequential step t = 1, 2, . . . , T , for each action a ∈ [K] :=
{1, 2, . . . ,K}, a context vector xt ∈ X is revealed, where
X is a compact subset of Rd. Then, a bandit agent chooses
an action at ∈ [K] and receives the corresponding reward
rt = h(xt,at

) + ξt, where h : Rd → R is the underlying
reward function and ξt ∈ R is a zero-mean martingale noise
process. The goal is to choose actions which maximize
the cumulative reward over T steps. This is equivalent to
minimizing the cumulative regret, that is defined as the
total difference between the maximum possible context-

dependent reward and the actually received reward

R(T ) =

T∑
t=1

(h(xt,a∗
t
)− h(xt,at)), (1)

where a∗t ∈ argmaxa∈[K] h(xt,a) is the context-dependent
maximizer of the reward function at step t. Following is a
formal statement of the assumptions on X , f and ξt. These
are mild assumptions which are shared with other works on
neural bandits and NT kernel.
Assumption 1. (i) The input space is the d dimensional
hypersphere: X = Sd−1. (ii) The reward function h
belongs to the RKHS induced by the NT kernel, and
h(x) ∈ [0, 1], ∀ x ∈ X . (iii) ξt are assumed to
be conditionally ν-sub-Gaussian, i.e., for any ζ ∈ R,
ln(E[eζξt |ξ1, . . . , ξt−1]) ≤ ζ2ν2/2.

2.1. The Neural Net Model and Corresponding NT
Kernel

In this section, we briefly outline the neural net model and
the associated NT kernel. Let f(x;W) be a fully connected
feedforward neural net with L hidden layers of equal width
m. We can express f using the following set of recursive
equations:

f(x;W) =

√
cs
m
W(L+1)σs(f

(L)(x)), (2)

f (1)(x) = W(1)x, f (l)(x) =

√
cs
m
W(l)σs(f

(l−1)(x))

for 1 < l ≤ L

Let W = (Wl)1≤l≤L+1 denote the collection of all
weights. The dimensions of weight matrices satisfy:
W(1) ∈ Rm×d; for 1 < l ≤ L, W(l) ∈ Rm×m;
W(L+1) ∈ R1×m. All the weights W

(l)
i,j , ∀ l, i, j, are

initialized to N (0, 1) and cs := 2/(2s − 1)!!. With
an abuse of notation, σs : Rm → Rm is used for
coordinate-wise application the activations of the form
σs(u) = (max(0, u))s to the outputs of each layer. Note
that σs is s− 1 times differentiable everywhere which gives
our results a general interpretability across smoothness of
activations and the resulting function classes and allows us
to draw parallels between our results and well established
results for kernel-based bandits.

It has been shown that gradient based training of the neural
net described above reaches a global minimum where the
weights remain within a close vicinity of random initializa-
tion. As a result the model can be approximated with its
linear projection on the tangent space at random initializa-
tion W0:

f(x;W) ≈ f(x;W0) + (W −W0)
⊤g(x;W0),
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where the notation g(x;W) = ∇Wf(x;W) is used for
the gradient of f with respect to the parameters. The ap-
proximation error can be bounded by the second order term
O(∥W−W0∥2), and shown to be diminishing as the width
m grows, where the implied constant depends on the spec-
tral norm of the Hessian matrix (Liu et al., 2020). The NT
kernel corresponding to this neural net when m grows to in-
finity is defined as the kernel in the feature space determined
by the gradient at initialization:

k(x,x′) = lim
m→∞

g⊤(x;W0)g(x;W0).

The particular form on the NT kernel depends on the activa-
tion function and the number of layers. For example, for a
two layer neural net with ReLU activations, we have

k(x,x′) =
1

π

(
2u(π − arccos(u)) +

√
1− u2

)
where u = x⊤x′. For the closed form derivation of NT
kernel for other values of s and L, see Vakili et al. (2021b).

2.2. Assumptions on Neural Net and NT Kernel

The following technical assumptions are mild assumptions
which are used in the handling of the overparameterized
neural nets using NT kernel. These assumptions are com-
mon in the literature and often are fulfilled without loss of
generality (Arora et al., 2019; Zhou et al., 2020; Zhang et al.,
2021; Gu et al., 2021; Kassraie & Krause, 2022).

Assumption 2. (i) Consider H ∈ RKT×KT such that
[H]i,j = k(zi, zj) for all pairs in Z × Z , where Z =
{{xt,a}Ka=1}Tt=1. We assume H ≽ λ0I, where λ0 > 0.
(ii) f(x;W0) is assumed to be 0. (iii) The number of
epochs during training, J , and the learning rate, η, sat-
isfy J = 2

cλT log(T ) and η = c′/T for some constants
c, c′ > 0 and λ > 0 is the regularization parameter.

2.3. Information Gain

The regret bounds for neural bandits are typically given
in terms of maximal information gain (or the effective di-
mension) of the NT kernel. The maximal information gain
is defined as the maximum log determinant of the kernel
matrix (Srinivas et al., 2010):

Γk(t) = sup
Xt⊆X

log

(
det

(
I+

1

λ
kXt,Xt

))
. (3)

It is closely related to the effective dimension of the kernel,
which denotes the number of features with a significant
impact on the regression model and can be finite for a finite
dataset even when the feature space of the kernel is infinite
dimensional (Zhang, 2005; Valko et al., 2013). It is defined
as

d̃k(t) = tr
(
kXt,Xt(kXt,Xt + λI)−1

)
. (4)

It is known that the information gain and the effective dimen-
sion are the same up to logarithmic factors (Calandriello
et al., 2019). We give our results in terms of information
gain; nonetheless, that can be replaced by effective dimen-
sion.

3. Approximation Error and Confidence
Bounds

As discussed earlier, the error between an overparameterized
neural net and the associated NT kernel can be quantified
and shown to be small for large m. To formalize this, we
recall the technique of kernel ridge regression. Given a
dataset Dt = {(xi, yi)}ti=1, let fNTK denote the regressor
obtained by kernel ridge regression using NT kernel. In
particular, we have

fNTK(x) = k⊤Xt
(x)(λIt + kXt,Xt

)−1Yt, (5)

where kXt
(x) = [k(x1,x), . . . , k(xt,x)]

⊤ is the NT ker-
nel evaluated between x and t data points, kXt,Xt =
[k(xi,xj)]

t
i,j=1 is the NT kernel matrix evaluated on the

data, Yt = [y1, . . . , yt]
⊤ is the vector of output values, and

λ ≥ 0 is a free parameter. Note that fNTK can be com-
puted in closed form (without training a neural net). In
addition, let fNN be prediction of the neural net at the end
of training using Dt. Theorem 3.2 of Arora et al. (2019)
states that, when the activations are ReLU and m is suffi-
ciently large, we have, with probability at least 1− δ, that
|fNN(x) − fNTK(x)| ≤ ϵ. In this theorem, the value of m
should be sufficiently large in terms of t, L, δ, ϵ, and λ0. We
now present a bound on the error between the neural net and
the associated NT kernel for smooth activations.

Theorem 1. Consider the neural net f(x;W) defined
in (2) consisting of L hidden layers each of width m ≥
poly(1/ε, s, 1/λ0, |D|, log(1/δ)) with activations σs. Let
fNTK and fNN be the kernel ridge regressor and trained
neural net using a dataset D. Then for any x ∈ X , with
probability at least 1− δ over the random initialization of
the neural net, we have,

|fNTK(x)− fNN(x)| ≤ ε.

Theorem 1 is an generalization of Theorem 3.2 in Arora et al.
(2019) to the class of smooth activation functions {σs, s ∈
N}. To prove Theorem 1, we show the following bound
on the error between NT kernel and the kernel induced by
the finite width neural net at initialization. This result is
an generalization of Theorem 3.1 in Arora et al. (2019) to
smooth activation functions.

Lemma 1. Consider the neural net f(x;W) defined
in (2) consisting of L hidden layers each of width
m ≥ O( s

LL2c2s
ε2 log2(sL/δε)) with activations σs. Let

4



Provably and Practically Efficient Neural Contextual Bandits

g(x;W) = ∇Wf(x;W) and k be the associated NT ker-
nel, as defined in Section 2.1. Fix ε > 0 and δ ∈ (0, 1).
Then for any x,x′ ∈ X , with probability at least 1− δ over
the initialization of the network, we have,∣∣g⊤(x;W0)g(x

′;W0)− k(x,x′)
∣∣ ≤ (L+ 1)ε.

The proof entails a non-trivial generalization of various
lemmas used in the proof of Arora et al. (2019, Theorem
3.2) to the class of smooth activation functions. We defer the
detailed proof of the lemma and theorem to supplementary
material.

Confidence Intervals: The analysis of bandit problems
classically builds on confidence intervals applicable to the
values of the reward function. The NT kernel allows us to
use the confidence intervals for kernel ridge regression, in
building confidence intervals for overparameterized neural
nets. In particular, given a dataset Dt, let

Vt = λI+
t∑

i=1

g(xi;W0)g
⊤(xi;W0) (6)

be the Gram matrix in the feature space determined by the
gradient. Taking into account the linearity of the model
in the feature space, we can define a (surrogate) posterior
variance as follows,

σ̂2
t (x) = g⊤(x)V−1

t g(x), (7)

that can be used as a measure of uncertainty in the prediction
provided by the trained neural net. Using Theorem 1 in
conjunction with the confidence intervals for kernel ridge
regression, we prove the following confidence intervals for
a sufficiently wide neural net.

Theorem 2. Let Dt = {(xi, ri)}ti=1 denote a dataset
obtained under the observation model described in Sec-
tion 2 such that the points {xi}ti=1 are independent of
the noise sequence {ξi}ti=1. Suppose Assumptions 1
and 2 hold. Suppose the neural net defined in (2)
consisting of L hidden layers each of width m ≥
poly(T, s, L,K, λ−1, λ−1

0 , log(1/δ)) is trained using this
dataset. Then, with probability at least 1− δ, the following
relation holds for any x ∈ X :

|h(x)− f(x;Wt)| ≤
Cs,Lt

λm
+ βtσ̂t(x), (8)

where Wt denotes the parameters of the trained model,
βt = S + 2ν

√
log(1/δ) + C ′

s,Lt(1 − ηλ)J/2
√
t/λ +

C ′′
s,L

√
t3/λm, S is the RKHS (corresponding to the NT

kernel) norm of h and Cs,L, C
′
s,L, C

′′
s,L are constants de-

pending only on s and L.

Both results presented in this section may be of broader
interest in neural net literature. We would like to emphasize

a couple of points here. Similar to (Vakili et al., 2021a;
Kassraie & Krause, 2022), the independence of query points
from the noise sequence is fundamental to obtain these
tighter bounds and hence cannot be directly used to improve
the regret bounds of adaptive algorithms like NeuralUCB.
Secondly, these bounds hold for all activation functions
{σs : s ∈ N} improving upon the existing results which
hold only for ReLU activation function. Furthermore, this
bound is tighter than the one derived in Kassraie & Krause
(2022), even for the case of ReLU activation function. The
confidence intervals are important building blocks in the
analysis of NeuralGCB in Section 4. Please refer to the
supplementary material for a detailed proof of the theorem.

4. Algorithm
The UCB family of algorithms achieve optimal regret in
classic stochastic finite action bandits (Auer et al., 2002).
The optimal regret, however, hinges on the statistical inde-
pendence of the actions. In more complex settings such as
kernel-based and neural bandits, the inherent statistical de-
pendence across adaptively chosen actions leads to skewed
posterior distributions, resulting in sub-optimal and poten-
tially trivial (i.e., superlinear) regret guarantees of UCB
based algorithms (Vakili et al., 2021c). To address this issue,
one approach adopted in the literature is to use samples with
limited adaptivity. These algorithms are typically referred
to as Sup variant of UCB algorithms, and have been devel-
oped for linear (Chu et al., 2011), kernel-based (Valko et al.,
2013) and neural (Kassraie & Krause, 2022) contextual ban-
dits. These Sup variants, however, are known to perform
poorly in practice due to their tendency to overly explore
suboptimal arms.

We propose NeuralGCB, a neural bandit algorithm guided
by both upper and lower confidence bounds to avoid
over-exploring, leading to superior performance in practice
while preserving the nearly optimal regret guarantee.
The key idea of NeuralGCB is a finer control of the
exploration-exploitation tradeoff based on the predictive
standard deviation of past actions. This finer control
encourages more exploitation and reduces unnecessary
exploration. Specifically, NeuralGCB partitions past
action-reward pairs into R = log T subsets (some subsets
may be empty at the beginning of the learning horizon).
Let {Ψ(r)}Rr=1 denote these subsets of action-reward pairs
where the index r represents the level of uncertainty about
the data points in that set (with r = 1 representing the
highest uncertainty). Upon seeing a new context at time t,
NeuralGCB traverses down the subsets starting from r = 1.
At each level r, it evaluates the largest predictive standard
deviation among current set of candidate actions, Ar, and
compares it with 2−r.
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Algorithm 1 NeuralGCB

1: Require: Time horizon T , maximum initial variance
σ0, error probability δ

2: Initialize: R← ⌈log2 T ⌉, Ensemble of R Neural Nets
with W

(r)
0 = W0, Ψ(r)

0 ← ∅, ∀ r ∈ [R], H ← ∅,
arrays ctr, max mu, fb of size R with all elements
set to 0, batch sizes {qr}Rr=1

3: for t = 1, 2, 3, . . . T do
4: r ← 1, Âr(t) = [K]
5: while True do
6: Receive the context-action pairs {xt,a}Ka=1

7: {f(xt,a;W
(r)
t ), σ̂

(r)
t−1(xt,a)}Ka=1,W

(r)
t ,fb[r] ←

GetPredictions
(
H,Ψ(r)

t−1, {xt,a}Ka=1,fb[r],W
(r)
t−1, qr

)
8: σ̃

(r)
t−1 ← maxa∈Âr(t)

σ̂
(r)
t−1(xt,a)

9: max mu[r]← argmaxa∈Âr(t)
f(xt,a;W

(r)
t−1)

10: if σ̃(r)
t−1 ≤ σ02−r then

11: aUCB ← argmaxa∈Âr(t)
UCB(r)

t−1(xt,a)

12: if σ(r)
t−1(xt,aUCB) ≤ η0/

√
t then

13: Choose at ← aUCB and set υt ← 1
14: Receive yt = h(xt,at

) + ξt and updateH ←
H∪ {(xt,at , yt)}

15: Set Ψ
(r+1)
t ← Ψ

(r+1)
t−1 ∪ {(t, υt)} and

Ψ
(r′)
t ← Ψ

(r′)
t−1 for all r′ ∈ [R] \ {r + 1}

16: break
17: else
18: Âr+1(t) ← {a ∈ Âr(t) : UCB(r)

t−1(xt,a) ≥
maxa′∈Âr(t)

LCB(r)
t−1(xt,a′)}, r ← r + 1

19: end if
20: else
21: if r = 1 or ctr[r] > α04

r then
22: Choose any at ∈ Âr(t) such that

σ̂
(r)
t−1(xt,a) > σ02

−r and set υt ← 2
23: else
24: Choose at ← max mu[r− 1] and set υt ← 3
25: end if
26: Receive yt = h(xt,at

) + ξt and update H ←
H∪ {(xt,at , yt)}, ctr[r]← ctr[r] + 1

27: Set Ψ(r)
t ← Ψ

(r)
t−1∪{(t, υt)} and Ψ(r′)

t ← Ψ
(r′)
t−1

for all r′ ∈ [R] \ {r}
28: break
29: end if
30: end while
31: end for

If this value is smaller than 2−r, NeuralGCB checks if it
can exploit based on predictions at the rth level. Specifically,
if the predictive standard deviation of the action that
maximizes the UCB score is O(1/

√
t) (indicating a high

reward with reasonably high confidence), then NeuralGCB

plays that action. Otherwise, it updates Ar by eliminating
actions with small UCB score and moves to the next level.
This encourages exploitation of less certain actions in a
controlled manner as opposed to SupNeuralUCB which
exploits only actions with much higher certainty.

On the other hand, if the value is greater than 2−r,
NeuralGCB directly exploits the maximizer of the mean
computed using data points in Ψ(r−1) until the allocated
budget for exploitation at level r is exhausted. It then resorts
to more exploratory actions by choosing actions with large
values of σ̂(r)

t−1. The exploitation budget is set to match
the length of exploration sequence at the corresponding
level to ensure an optimal balance of exploitation and
exploration and preserve the optimal regret order while
boosting empirical performance.

In addition to improved empirical performance, NeuralGCB
takes into consideration the practical requirements for train-
ing the neural nets. Specifically, as pointed out in Gu et al.
(2021), it is practically more efficient to train the neural net
over batches of observations, rather than sequentially at
each step. Consequently, before evaluating the mean and
variance at any level r, NeuralGCB retrains the neural net
corresponding to that level only if qr samples have been
added to that level since it was last trained. This index-
dependent choice of batch size, qr lends a natural adaptivity
to the retraining frequency by reducing it as time progresses.

A pseudo code of the algorithm is outlined in Algorithm 1.
In the pseudo code, UCB(r)

t and LCB(r)
t refer to the up-

per and lower confidence scores respectively at time t cor-
responding to index r and are defined as UCB(r)

t (·) =

f(·;W(r)
t ) + βσ̂

(r)
t (·) and LCB(r)

t (·) = f(·;W(r)
t ) −

βσ̂
(r)
t (·). GetPredictions is a local routine that calculates

the predictive mean and variance after appropriately retrain-
ing the neural net (see supplementary for a pseudo code).
Lastly, the arrays ctr, max mu and fb are used to store the
exploitation count, maximizer of the neural net output and
feedback time instants. We now formally state the regret
guarantees for NeuralGCB in the following theorem.
Theorem 3. Suppose Assumptions 1 and 2 hold. Con-
sider NeuralGCB given in Algorithm 1, with R neural
nets, as defined in (2) with L hidden layers each of width
m ≥ poly(T, L,K, s, λ−1, λ−1

0 , S−1, log(1/δ)). Suppose
NeuralGCB is run with a fixed batch size for each group,
then the regret defined in (1) satisfies

R(T ) = Õ
(√

TΓk(T ) +
√
TΓk(T ) log(1/δ)+

max
r
qrΓk(T )

)
As suggested by the above theorem, NeuralGCB preserves
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the regret guarantees of SupNeuralUCB which are much
tighter than those of NeuralUCB. Moreover, these guaran-
tees hold even for smooth activation functions as opposed
to just for ReLU activation. In particular, on plugging in
the upper bound on Γk(T ) obtained in Vakili et al. (2021b),
we obtain that the regret incurred by NeuralGCB satisfies
Õ(T

2d+2s−3
2d+4s−4 ), which is a sublinear function of T , imply-

ing convergence to the maximizer. For s = 1, i.e., the
ReLU activation function, it reduces to Õ(T 2d−1

d ), match-
ing the known regret bound for ReLU neural nets (Kassraie
& Krause, 2022). Moreover, the regret bound for neural
nets with activation functions with smoothness parameter
s matches the optimal order of regret for optimization of a
function in an RKHS corresponding to the Matérn kernel
with smoothness s− 1/2. This equivalence paves a path to
enable us extend known results for Matérn kernels for NTK
theory. Furthermore, the above regret guarantees also show
that the retraining neural nets only at the end of batches of
observations increases the regret at most with an additive
term in the batch size. Our results also hold with an adaptive
batch size (see Appendix D).

5. Empirical Studies
In this section, we provide numerical experiments
on comparing NeuralGCB with several representative
baselines, namely, LinUCB (Chu et al., 2011), Neu-
ralUCB (Zhou et al., 2020), NeuralTS (Zhang et al., 2021),
SupNeuralUCB (Kassraie & Krause, 2022) and Batched
NeuralUCB (Gu et al., 2021).

We perform the empirical studies on three synthetic and
two real-world datasets. We first compare NeuralGCB with
the fully sequential algorithms (LinUCB, NeuralUCB, Neu-
ralTS ans SupNeuralUCB). We then compare the regret
incurred and the time taken by NeuralGCB, NeuralUCB
and Batch NeuralUCB. We perform both set of experiments
with two different activation functions. The construction
of the synthetic datasets and the experimental settings are
described below.

5.1. Datasets

For each of the synthetic datasets, we construct a contextual
bandit problem with a feature dimension of d = 10 andK =
4 actions per context running over a time horizon of T =
2000 rounds. The set of context vectors {{xt,a}Ka=1}Tt=1 are
drawn uniformly from the unit sphere. Similar to Zhou et al.
(2020), we consider the following three reward functions:

h1(x) = 4|a⊤x|2; h2(x) = 4 sin2(a⊤x); h3(x) = ∥Ax∥2.
(9)

For the above functions, the vector a is drawn uniformly
from the unit sphere and each entry of matrix A is randomly

generated from N (0, 0.25).

We also consider two real datasets for classification namely
Mushroom and Statlog (Shuttle), both of which are available
on the UCI repository (Dua & Graff, 2017). The classifi-
cation problem is then converted into a contextual bandit
problem using techniques outlined in Li et al. (2010). Each
datapoint in the dataset (x, y) ∈ Rd×R is transformed into
K vectors of the form x(1) = (x,0, . . . ,0), . . . ,x(K) =
(0, . . . ,0,x) ∈ RKd corresponding to the K actions associ-
ated with context x. Here K denotes the number of classes
in the original classification problem. The reward function
is set to h(x(k)) = 1{y = k}, that is, the agent receives
a reward of 1 if they classify the context correctly and 0
otherwise. We present the results for h1(x), h2(x) and the
Mushroom dataset in the main paper, and the additional
results in the supplementary material.

5.2. Experimental Setting

For all the experiments, the rewards are generated by adding
zero mean Gaussian noise with a standard deviation of 0.1
to the reward function. All the experiments are run for a
time horizon of T = 2000. We report the regret averaged
over 10 Monte Carlo runs with different random seeds.
For the real datasets, we shuffle the context vectors for
each Monte Carlo run. For all the algorithms, we set the
parameter ν to 0.1, and S, the RKHS norm of the reward,
to 4 for synthetic functions, and 1 for real datasets. The
exploration parameter βt is set to the value prescribed by
each algorithm.

We consider a 2 layered neural net for all the experiments
as described in Equation (2). We carry two sets of experi-
ments each with different activation functions, namely σ1
(or equivalently, ReLU) and σ2. For the experiments with
σ1 as the activation, we set the number of hidden neurons to
m = 20 and m = 50 for synthetic and real datasets respec-
tively. Similarly, for σ2, m is set to 30 and 80 for synthetic
and real datasets, respectively. For all the experiments, we
perform a grid search for λ and η over {0.05, 0.1, 0.5} and
{0.001, 0.01, 0.1}, respectively, and choose the best ones
for each algorithm. The number of epochs is set to 200 for
synthetic datasets and Mushroom, and to 400 for Statlog.
For the experiments with sequential algorithms, we retrain
the neural nets at every step, including NeuralGCB. For
Batched NeuralUCB, we use a fixed batch size of 10 for
synthetic datasets, and 20 for Mushroom. For NeuralGCB
we set batch size to qr = 5 · 2r−1 for synthetic datasets, and
qr = 5 · 2r+1 for Mushroom. More details and additional
experiments are given in the supplementary material.
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(a) h1(x) with σ1(x)
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(c) Batched algorithms on h1(x)
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(d) h2(x) with σ1(x)
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(f) Batched algorithms on h2(x)
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(g) Mushroom with σ1(x)
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(h) Mushroom with σ2(x)
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(i) Batched algorithms on Mushroom

Figure 1: First, second and third rows correspond to the reward functions h1(x), h2(x) and the Mushroom dataset,
respectively. The two leftmost columns show the cumulative regret incurred by the algorithms against number of steps, with
σ1 activation functions for the first column and σ2 for the second. The rightmost column compares the regret incurred and
the time taken (in seconds) for batched and sequential versions of NeuralUCB and NeuralGCB.

5.3. Results

The two leftmost columns in Fig. 1show that NeuralGCB
outperforms other algorithms in the case of both synthetic
and real world datasets, corroborating the theoretical claims.
That holds true for both set of experiments with different
activation functions, further bolstering the practical
efficiency of the proposed algorithm. In addition, the regret
incurred by the algorithms in experiments with σ2 as the
activation is less than that for the experiments with σ1 as
the activation, demonstrating the effect of smooth kernels
on the performance of the algorithms in practice.

In the third column, we compare the regret and running
time between the batched and the sequential versions of
NeuralUCB and NeuralGCB. We plot the regret incurred
against time taken for different training schedules for 10
different runs. For all functions, the regret incurred by
the batched version is comparable to that of the sequen-
tial version while having a significantly less running time.
Furthermore, NeuralGCB has a smaller regret compared to
Batched NeuralUCB for comparable running times.
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6. Conclusion
In this work, we considered the problem of neural contextual
bandits with general set of smooth activation functions. We
established non-asymptotic error bounds on the difference
between an overparametrized neural net and its correspond-
ing NT kernel along with confidence bounds for prediction
using neural nets under this general setting. Furthermore,
we proposed a new algorithm that incurs sublinear regret
under this general setting is also efficient in practice, as
demonstrated by extensive empirical studies.
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Appendix
We present the proofs of the theorems and lemmas stated in the main paper, as well as additional empirical results, in the
appendix. The appendix is structured as follows: In Appendix A, we provide the proof of Theorem 1, while we defer the
proof of auxiliary lemmas to Appendix B. Proof of Theorem 2 is given in Appendix C. Further details on NeuralGCB and
proof of Theorem 3 are provided in Appendix D. Lastly, the details on empirical studies and further results are reported in
Appendix E.

A. Proof of Theorem 1
Before we provide the proof of Theorem 1, we first set up some preliminaries and notation that would be useful throughout
the proof.

A.1. Proof Preliminaries

A.1.1. NOTATION

For any n ∈ N, [n] denotes the set {1, 2, . . . , n}. For any vector v ∈ Rn, diag(v) is the Rn×n diagonal matrix with the
elements on v on its diagonal entries. ∥v∥ denotes the L2 norm of the vector v. ∥M∥2 and ∥M∥F denotes the spectral and
Frobenius norms respectively of a matrix M. For events A and B, we define A⇒ B := ¬A ∨B. For matrix A, we denote
the projection matrix for the column space of A by ΠA := AA†, where A† denotes the pseudo-inverse of A. Similarly, we
denote the orthogonal projection matrix as Π⊥

A := I−AA†. For two random variables, X and Y , X d
=A Y means X is

equal to Y in distribution conditioned on the σ-algebra generated by the event A. For any ρ ∈ [−1, 1], we use Σρ to denote

the matrix
(
1 ρ
ρ 1

)
. Lastly, for n ∈ N, we define (2n− 1)!! =

∏n
i=1(2i− 1). For example 3!! = 3 and 5!! = 15.

A.1.2. FULLY CONNECTED NEURAL NETWORK

In this proof, we consider a general fully connected neural net consisting of L hidden layers defined recursively as follows:

f (l)(x) = W(l)h(h−1)(x) ∈ Rdl , h(l)(x) =

√
cσ
dl
σ
(
f (l)(x)

)
∈ Rdl , l = 1, 2, . . . , L, (10)

where h(0)(x) = x and x ∈ X is the input to the network. In the above expression, W(l) ∈ Rdl×dl−1 is the weight
matrix in the lth layer for l ∈ [L] and d0 = d, σ(·) : R → R is a coordinate-wise activation function and the constant
cσ :=

(
Ez∼N (0,1)[σ(z)

2]
)−1

. The output of the neural network is given by its last layer defined as follows:

f(x;W) = f (L+1)(x) = W(L+1)h(L)(x), (11)

where W(L+1) ∈ R1×dL is the weight matrix in the final layer, and W = (W(1),W(2), . . . ,W(L+1)) represents all the
parameters of the network. Recall that the domain is assumed to be the hypersphere Sd−1. Consequently, ∥x∥ = 1 for
all x ∈ X . This is just the generalization of the of the neural net defined in eqn. (2) with possibly different width in each layer.

The partial derivative of the output of the neural network with respect to a particular weight matrix is given as

∂f(x;W)

∂W(l)
= b(l)(x) ·

(
h(l−1)(x)

)⊤
, l = 1, 2, . . . , L+ 1, (12)

where b(l)(x) is defined recursively as

b(l)(x) =

1 l = L+ 1,√
cσ
dl

D(l)(x)
(
W(l+1)

)⊤
b(l+1)(x) l = 1, 2, . . . , L.

(13)

In the above definition,

D(l)(x) := diag
(
σ′
(
f (l)(x)

))
∈ Rdl×dl , (14)
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is a diagonal matrix, where σ′(·) is the derivative of the activation function σ and is also applied coordinate wise. Note
that b(l)(x) ∈ Rdl for l = 1, 2, . . . , L and b(L+1)(x) ∈ R. In other words, b(l)(x) is the gradient of output of the neural
network f(x;W) with respect to f (l), the pre-activation of layer l.

A.2. Neural Tangent Kernel

In the infinite width limit, the pre-activation functions f (l) at every hidden layer l ∈ [L] has all its coordinates tending to
i.i.d. centered Gaussian Processes with covariance matrix Σ(l−1) : Rd × Rd → R defined recursively for l ∈ [L] as:

Σ(0)(x,x′) = x⊤x′,

Λ(l)(x,x′) =

[
Σ(l−1)(x,x) Σ(l−1)(x,x′)
Σ(l−1)(x′,x) Σ(l−1)(x′,x′)

]
,

Σ(l)(x,x′) = cσE(u,v)∼N (0,Λ(l)(x,x′))[σ(u)σ(v)]. (15)

Similar to Σ(l)(x,x′), we also define Σ̇(l)(x,x′) as follows:

Σ̇(l)(x,x′) = cσE(u,v)∼N (0,Λ(l)(x,x′))[σ
′(u)σ′(v)], (16)

for l ∈ [L] and Σ̇(L+1)(x,x′) = 1 for x,x′ ∈ X . The final NTK expression for the fully-connected network is given as

Θ(L)(x,x′) =

L+1∑
l=1

Σ(l−1)(x,x′)

L+1∏
j=l

Σ̇(j)(x,x′)

 . (17)

Note that this is same as k(x,x′) referred to in the main text.

A.3. The Activation Function

In this work, we assume that the activation function σ ∈ Aσ, where Aσ = {σs(x) : s ∈ N} and σs(x) = (max(0, x))s.
Note that σ1(x) corresponds to the popular ReLU activation function and existing results hold only for σ1(x).

We state some definitions which we will be later used to establish certain properties of activation functions in A.

Fact 1. (Vakili et al. (2021b)) The normalizing constant cσs
=

2

(2s− 1)!!
for all σs ∈ A.

For simplicity of notation we use cs instead of cσs
for the rest of the proof.

Definition 1. A function f : R→ R is said to be α-homogeneous, if f(λx) = λαf(x) for all x ∈ R and λ > 0.

It is straightforward to note that σs(x) is s-homogeneous.

LetM+(d) denote the set of positive semi-definite matrices of dimension d, that is,M+ = {M ∈ Rd×d : x⊤Mx ≥
0 ∀ x ∈ Rd}. Similarly, we useM++(d) to denote the class of positive definite matrices of dimension d. For γ ∈ [0, 1],
we denote

Mγ
+ =

{(
Σ11 Σ12

Σ12 Σ22

)
∈M+(2)

∣∣∣∣1− γ ≤ Σ11,Σ22 ≤ 1 + γ

}
. (18)

Definition 2. The dual of an activation function σ(·) is the function σ̄ : [−1, 1]→ R defined as

σ̄(ρ) = cσE(X,Y )∼N (0,Σρ)[σ(X)σ(Y )]. (19)

Note that from definition of cσ , σ̄(ρ) ∈ [−1, 1] and σ̄(1) = 1.

Fact 2 (Daniely et al. (2016), Lemma 11). The dual σ̄ is continuous in [−1, 1], smooth in (−1, 1), convex in [0, 1] and is
non-decreasing.

12
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The dual of an activation function can be extended to σ̆ :M+(2) → R as σ̆(Σ) = cσE(X,Y )∼N (0,Σ)[σ(X)σ(Y )]. Note

that if Σ =

(
Σ11 Σ12

Σ12 Σ22

)
and σ is k-homogeneous, we have,

σ̆(Σ) = (Σ11Σ22)
k/2σ̄

(
Σ12√
Σ11Σ22

)
.

Let σ̄s be the dual function of σs ∈ Aσ for all s ∈ N and Āσ = {σ̄s : s ∈ N} denote the set of dual functions. It is not
difficult to note that σ̄s(−1) = 0 and σ̄s(1) = 1 for all s ∈ N. Since σ̄s is non-decreasing, σ̄s(ρ) ∈ [0, 1] for all ρ ∈ [−1, 1].
Fact 3 (Vakili et al. (2021b), Lemma 1). The functions in Āσ satisfy,

σ̄′
s(ρ) =

s2

2s− 1
σ̄s−1(ρ) (20)

for s > 1. Here σ̄′
s denotes the derivative of σ̄s.

Consequently, |σ̄′
s(ρ)| ≤

s2

2s− 1
|σ̄s−1(ρ)| ≤

s2

2s− 1
. Thus, σ̄s is s2/(2s− 1) Lipschitz.

Definition 3. For any function σs ∈ Aσ , we define µs,ρ := E(X,Y )∼N (0,Σρ)[σs(X)σs(Y )] =
σ̄s
cs

.

A.4. Proof of Lemma 1

The central piece in the proof of Theorem 1 is Lemma 1. We focus our attention on first proving Lemma 1. Since the proof
is involved, we first provide an outline of the proof to give the reader an overview of the approach before delving into the
technical details.

Informally, Lemma 1 states that for sufficiently large network widths, the following relation holds with probability of at
least 1− δ over the random initialization of the network weights.∣∣∣∣〈∂f(x;W)

∂W
,
∂f(x′;W)

∂W

〉
−Θ(L)(x,x′)

∣∣∣∣ ≤ (L+ 1)ε.

Firstly, note that 〈
∂f(x;W)

∂W
,
∂f(x′;W)

∂W

〉
=

L+1∑
l=1

〈
∂f(x;W)

∂W(l)
,
∂f(x′;W)

∂W(l)

〉
and recall that

Θ(L)(x,x′) =

L+1∑
l=1

Σ(l−1)(x,x′)

L+1∏
j=l

Σ̇(j)(x,x′)

 .

Using these relations, note that it is sufficient to show that,∣∣∣∣∣∣
〈
∂f(x;W)

∂W(l)
,
∂f(x′;W)

∂W(l)

〉
− Σ(l−1)(x,x′)

L+1∏
j=l

Σ̇(j)(x,x′)

∣∣∣∣∣∣ ≤ ε (21)

holds for all l ∈ [L] with probability 1− δ. Furthermore, we have,〈
∂f(x;W)

∂W(l)
,
∂f(x′;W)

∂W(l)

〉
=

〈
b(l)(x) ·

(
h(l−1)(x)

)⊤
,b(l)(x′) ·

(
h(l−1)(x′)

)⊤〉
=
〈
h(l−1)(x),h(l−1)(x)′

〉〈
b(l)(x),b(l)(x′)

〉
.

13
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The proof revolves around establishing
〈
h(l−1)(x),h(l−1)(x′)

〉
is close to Σ(l−1)(x,x′) while

〈
b(l)(x),b(l)(x′)

〉
is close

to
∏L+1

j=l Σ̇(j)(x,x′). On combining these two relations, we obtain the result in (21) and consequently prove the theorem.

Throughout the proof, we fix some s ∈ N and hence σ = σs. Recall from equation (15), we have,

Σ(0)(x,x′) = x⊤x′,

Λ(l)(x,x′) =

[
Σ(l−1)(x,x) Σ(l−1)(x,x′)
Σ(l−1)(x′,x) Σ(l−1)(x′,x′)

]
,

Σ(l)(x,x′) = csE(u,v)∼N (0,Λ(l)(x,x′))[σs(u)σs(v)].

Since ∥x∥ = 1 for all x ∈ X , Σ(0)(x,x) = 1 for all x ∈ X . Using induction, we can establish that Σ(l)(x,x) = 1 for
all x ∈ X , for all l ∈ {0, 1, 2, . . . , L}. The base case follows immediately as Σ(0)(x,x) = 1 for all x ∈ X . Assume true

for l − 1. Consequently, we have, Λ(l)(x,x) =

[
1 1
1 1

]
. On plugging this value in the definition of Σ(l)(x,x), we obtain

Σ(l)(x,x) = 1, completing the inductive step. As a result, |Σ(l)(x,x′)| ≤ 1 for all x,x′ ∈ X and hence we can write
Σ(l)(x,x′) = σ̄s(Σ

(l−1)(x,x′)).

As the final step before the proof, we define a sequence of events which will be used throughout the proof. Let ∆(l)(x,x′) :=
D(l)(x)D(l)(x′). We define the following events:

• Al(x,x′, ε1) =

{∣∣∣∣(h(l)(x)
)⊤

h(l)(x′)− Σ(l)(x,x′)

∣∣∣∣ ≤ ε1},

• Āl(x,x′, ε1) = Al(x,x′, ε1) ∩ Al(x,x, ε1) ∩ Al(x′,x′, ε1)

• Ā(x,x′, ε1) =

L⋂
l=0

Āl(x,x′, ε1)

• Bl(x,x′, ε2) =


∣∣∣∣∣∣
〈
b(l)(x),b(l)(x′)

〉
−

L+1∏
j=l

Σ̇(j)(x,x′)

∣∣∣∣∣∣ ≤ ε2


• B̄l(x,x′, ε2) = Bl(x,x′, ε2) ∩ Bl(x,x, ε2) ∩ Bl(x′,x′, ε2)

• B̄(x,x′, ε2) =

L+1⋂
l=1

B̄l(x,x′, ε2)

• C̄(x,x′, ε3) = {|f(x;W)| ≤ ε3, |f(x′;W)| ≤ ε3}

• Dl(x,x′, ε4) =

{∣∣∣∣∣cs tr(∆(l)(x,x′))

dl
− Σ̇(l)(x,x′)

∣∣∣∣∣ < ε4

}

• D̄l(x,x′, ε4) = Dl(x,x′, ε4) ∩ Dl(x,x, ε4) ∩ Dl(x′,x′, ε4)

• D̄(x,x′, ε4) =

L+1⋂
l=1

D̄l(x,x′, ε4)

• E l(x,x′, ε5) =
{
∥∆(l)(x,x′)∥2 < ε5

}
• Ē l(x,x′, ε5) = E l(x,x′, ε4) ∩ E l(x,x, ε4) ∩ E l(x′,x′, ε5)

• Ē(x,x′, ε5) =

L+1⋂
l=1

Ē l(x,x′, ε5)

14
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We also state the following two Lemmas taken from Arora et al. (2019) which are used at several points in the proof before
beginning with the first part.

Lemma 2. For any two events, A and B, Pr(A⇒ B) ≥ Pr(B|A).
Lemma 3. Let w ∼ N (0, Id), G ∈ Rd×k be a fixed matrix and F = w⊤G be a random matrix. Then, conditioned on the
value of F, w remains Gaussian in the null space of the row space of G. Mathematically,

Π⊥
Gw

d
=F=w⊤G Π⊥

Gw̃,

where w̃ is a i.i.d. copy of w.

A.4.1. PRE-ACTIVATIONS ARE CLOSE TO THE NTK MATRIX

In the first step, we show that
〈
h(l−1)(x),h(l−1)(x′)

〉
is close to Σ(l−1)(x,x′). We formalize this idea in the following

lemma.

Lemma 4. For σ(z) = σs(z) and [W(l)]ij
i.i.d.∼ N (0, 1) for all i ∈ [dl+1], j ∈ [dl] and l ∈ {0, 1, 2, . . . , L}. There exist

constants c1, c2 > 0 such that if minl dl ≥ c1 sLL2c2s
ε2 log2(sL/δε) and ε ≤ c2/s, then for fixed x,x′ ∈ X ,∣∣∣〈h(l)(y),h(l)(y′)

〉
− Σ(l)(y,y′)

∣∣∣ ≤ ε,
holds with probability at least 1− δ for all l ∈ {0, 1, . . . , L} and all (y,y′) ∈ {(x,x), (x,x′), (x′,x′)}. In other words,
Pr(Ā(ε)) ≥ 1− δ, for fixed x,x′.

Proof. The proof of this Lemma relies on following lemmas.

Lemma 5. Let ρ ∈ [−1, 1] and (X,Y ) ∼ N (0,Σρ). If (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are independent samples from
N (0,Σρ) and Sn = 1

n

∑n
i=1 σs(Xi)σs(Yi) for some σs ∈ A, then for any t ≥ 0,

Pr(Sn − µs ≥ t) ≤


(n+ 1) exp

(
− nt2

2
√

3µ4s,ρ

)
if t ≤ t∗(n),

(n+ 1) exp

(
− (nt)1/s

8(1 + ρ)

)
if t > t∗(n).

Pr(Sn − µs ≤ −t) ≤ exp

(
− nt2

2µ2s,ρ

)
,

where t∗(n) =

(√
3µ4s,ρ

4(1 + ρ)

)2−1/s

n−(
s−1
2s−1 ). Consequently, if n ≥ n∗(s, δ, ρ), then

Pr

|Sn − µs,ρ| ≥

√
2(
√
3µ4s,ρ + µ2s,ρ)

n
log

(
n+ 1

δ

) ≤ δ,
where n∗(s, δ, ρ) := min

{
m ∈ N : m ≥ (8(1 + ρ))2s

2
√
3µ4s,ρ

[
log

(
m+ 1

δ

)]2s−1
}

+ 1

For simplicity of notation, we define φs(n, δ, ρ) :=

√
2(
√

3µ4s,ρ+µ2s,ρ)

n log
(
n+1
δ

)
. Thus, the result of Lemma 5 can be

restated as Pr(|Sn − µs,ρ| ≥ φs(n, δ, ρ)) ≤ δ.

Lemma 6. For a given s ∈ N, the dual activation function σ̆s is βs-Lipschitz inMγs

+ w.r.t. the∞-norm for γs ≤ 1/s and
βs ≤ 6s.
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Lemma 7 ((Daniely et al., 2016)). For σ(z) = σs(z) and [W(l)]ij
i.i.d.∼ N (0, 1) for all i ∈ [dl+1], j ∈ [dl] and

l ∈ {0, 1, 2, . . . , L}. If minl∈[L] dl ≥ n∗s
(

ε
BL,s

, δ
8d̄

)
, then for fixed x,x′ ∈ X ,∣∣∣〈h(l)(y),h(l)(y′)

〉
− Σ(l)(y,y′)

∣∣∣ ≤ ε,
holds with probability at least 1 − δ for all l ∈ {0, 1, . . . , L} and all (y,y′) ∈ {(x,x), (x,x′), (x′,x′)}. In the above
expression, BL,s =

∑L−1
j=0 β

i
s, d̄ =

∑L+1
l=1 dl and n∗s(ε, δ) = min{n : φs(n, δ) ≤ ε}.

Lemma 4 follows immediately from Lemma 7 which in turn follows from the previous lemmas. The proofs of Lemma 5
and 6 are provided in Appendix B.

A.4.2. PRE-ACTIVATION GRADIENTS ARE CLOSE TO NTK DERIVATIVE MATRICES

In the second step, we show that
〈
b(l)(x),b(l)(x′)

〉
is close to

∏L+1
j=l Σ̇(j)(x,x′). We formalize this idea in the following

lemma.

Lemma 8. For σ = σs and [W(l)]ij
i.i.d.∼ N (0, 1) for all i ∈ [dl+1], j ∈ [dl] and l ∈ {0, 1, 2, . . . , L}. There exist constants

c1, c2 > 0 such that if minl dl ≥ c1 sLL2c2s
ε2 log2(sL/δε) and ε ≤ c2s−L+2/L, then for fixed x,x′ ∈ X ,∣∣∣∣∣∣

〈
b(l)(y),b(l)(y′)

〉
−

L+1∏
j=l

Σ̇(j)(y,y′)

∣∣∣∣∣∣ ≤ L(βs + 1)sL+1ε,

holds with probability at least 1− δ for all l ∈ {0, 1, . . . , L} and all (y,y′) ∈ {(x,x), (x,x′), (x′,x′)}. In other words,

if minl dl ≥ c1
sLL2c2s

ε21
log2(sL/δε1) and ε1 ≤ c2s

−L+2/L, then for fixed x,x′, Pr
(
Ā(ε1/2) ∧ B̄(L(βs + 1)sL+1ε1)

)
≥

1− δ.

Proof. We first state some helper lemmas that will be used in the proof followed by the proof of the above lemma.

Lemma 9 (Arora et al. (2019), Lemma E.4).

Pr

[
ĀL(ε/2)⇒ C̄

(
2

√
log

(
4

δ

))]
≥ 1− δ ∀ ε ∈ [0, 1], ∀ δ ∈ (0, 1).

Lemma 10. If ĀL(ε1/2) ∧ B̄l+1(ε2) ∧ C̄(ε3) ∧ D̄l(ε4) ∧ Ē l(ε5) for any pair of points x,x′ ∈ X , then for any (y,y′) ∈
{(x,x), (x,x′), (x′,x′)}, we have∣∣∣∣∣∣cs tr(∆

(l)(y,y′))

dl

〈
b(l+1)(y),b(l+1)(y′)

〉
−

L∏
j=l

Σ̇(l)(y,y′)

∣∣∣∣∣∣ ≤ sL−lε4 + sε2.

Lemma 11. If ĀL(ε1/2) ∧ B̄l+1(ε2) ∧ C̄(ε3) ∧ D̄l(ε4) ∧ Ē l(ε5) for any pair of points x,x′ ∈ X , then for any (y,y′) ∈
{(x,x), (x,x′), (x′,x′)}∣∣∣∣csdl

(
b(l+1)(y)

)⊤
W(l+1)Π⊥

G∆(l)(y,y′)Π⊥
G

(
W(l+1)

)⊤
b(l+1)(y)− cs

dl
tr(∆(l)(y,y′))

〈
b(l+1)(y),b(l+1)(y′)

〉∣∣∣∣
≤ cs

(〈
b(l+1)(y),b(l+1)(y)

〉
+
〈
b(l+1)(y′),b(l+1)(y′)

〉)(√ 2

dl
log

(
3

δ

)
+

1

dl
log

(
3

δ

))
ε5

+
2cs
dl

〈
b(l+1)(y),b(l+1)(y′)

〉
ε5.
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holds with probability at least 1− δ. Consequently, for any y ∈ {x,x′},√
cs
dl

∥∥∥∥(b(l+1)(y)
)⊤

W(l+1)Π⊥
GD(l)(y)

∥∥∥∥ ≤√2cs
〈
b(l+1)(y),b(l+1)(y)

〉
ε5.

Lemma 12. If ĀL(ε1/2) ∧ B̄l+1(ε2) ∧ C̄(ε3) ∧ D̄l(ε4) ∧ Ē l(ε5) for any pair of points x,x′ ∈ X , then for any (y,y′) ∈
{(x,x), (x,x′), (x′,x′)}

cs
dl

∣∣∣∣ (b(l+1)(y)
)⊤

W(l+1)∆(l)(y,y′)
(
W(l+1)

)⊤
b(l+1)(y′)

−
(
b(l+1)(y)

)⊤
W(l+1)Π⊥

G∆(l)(y,y′)Π⊥
G

(
W(l+1)

)⊤
b(l+1)(y′)

∣∣∣∣ ≤
csε5√
dl

[
(s(L−l)/2 + ε2)

√
2 log

(
8

δ

)
+ sL−lε3

√
2

]
×{

1√
dl

[
(s(L−l)/2 + 1)

√
2 log

(
8

δ

)
+ sL−lε3

√
2

]
+
√
8(s(L−l)/2 + 1)

}

holds with probability at least 1− δ.

Lemma 13. For any ε1 ∈ [0, 1/s], ε2, ε4 ∈ [0, 1] and ε3, ε5 ≥ 0,

Pr
[
ĀL(ε1/2) ∧ B̄l+1(ε2) ∧ C̄(ε3) ∧ D̄l(ε4) ∧ Ē l(ε5)⇒ B̄l(ε′)

]
≥ 1− δ,

where

ε′ = 2cs(s
L−l + 1)

(√
2

dl
log

(
6

δ

)
+

1

dl
log

(
6

δ

))
ε5 +

2cs
dl

(sL−l + 1)ε5 + sL−lε4 + sε2

+
csε5√
dl

[
(s(L−l)/2 + 1)

√
2 log

(
16

δ

)
+ sL−lε3

√
2

]
×{

1√
dl

[
(s(L−l)/2 + 1)

√
2 log

(
16

δ

)
+ sL−lε3

√
2

]
+
√
8(s(L−l)/2 + 1)

}
.

We now prove Lemma 8 by using induction on Lemma 13. Before the inductive step, we note some relations that will
be useful to us during the analysis. Firstly, using Lemma 4, we can conclude that if dl ≥ n∗s(ε/BL,s, δ/32d̄(L+ 1)) and
ε ≤ c2/s, then

Pr
[
ĀL(ε/2)

]
≥ 1− δ/4. (22)

From Lemma 9, we can conclude that

Pr

[
ĀL(ε/2)⇒ C̄

(
2

√
log

(
16

δ

))]
≥ 1− δ/4. (23)

If dl ≥ n∗s(ε/3, δ/24(L + 1)), then we can conclude that 3s2φs−1((minl dl), δ/24(L + 1)) + s2βsε
2s−1 ≤ (β + 1)s2ε.

Consequently for ε ≤ 2/s,

Pr
[
Ā(ε/2)⇒ D̄((βs + 1)s2ε) ∧ Ē (ε′′)

]
≥ 1− δ/4, (24)
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where ε′′ = 3s2
[
2 log

(
6(L+ 1)(maxl dl)

δ

)]s−1

. Applying the union bound on (22), (23) and (24), we obtain that

Pr

[
Ā(ε/2) ∧ C̄

(
2

√
log

(
16

δ

))
∧ D̄((βs + 1)s2ε) ∧ Ē (ε′′)

]
≥ 1− 3δ/4. (25)

Let dl be chosen large enough to ensure that

sL−l+2ε ≥ 2cs(s
L−l + 1)

(√
2

dl
log

(
24(L+ 1)

δ

)
+

1

dl

(
+ log

(
24(L+ 1)

δ

)))
ε′′

+ csε
′′
√

8

dl
(s(L−l)/2 + 1)

[
(s(L−l)/2 + 1)

√
2 log

(
64(L+ 1)

δ

)
+ 4sL−l

√
log

(
16(L+ 1)

δ

)]

+
csε

′′

dl

[
(s(L−l)/2 + 1)

√
2 log

(
64(L+ 1)

δ

)
+ 4sL−l

√
log

(
16(L+ 1)

δ

)]2
.

Define υl := (L + 1 − l)(βs + 1)sL−l+2ε for l = 0, 1, . . . , L + 1. Invoking Lemma 13 with ε1 = ε, ε2 = υl+1,

ε3 = 2
√
log
(
16
δ

)
, ε4 = (βs + 1)s2ε and ε5 = ε′′ gives us that

Pr

[
ĀL(ε/2) ∧ B̄l+1(υl+1) ∧ C̄

(
2

√
log

(
16

δ

))
∧ D̄l((βs + 1)s2ε) ∧ Ē l(ε′′)⇒ B̄l(υl)

]
≥ 1− δ

4(L+ 1)
.

Thus,

Pr
[
Ā(ε/2) ∧ B̄(υ1)

]

≥ Pr

Ā(ε/2) ∧ C̄
(
2

√
log

(
16

δ

))
∧ D̄((βs + 1)s2ε) ∧ Ē(ε′′)︸ ︷︷ ︸

:=F(ε)

∧

(
L+1⋂
l=1

B̄l(υl)

)
≥ Pr

F(ε) ∧ B̄L+1(υL+1) ∧
L⋂

l=0

F(ε) ∧
 L+1⋂

j=L+1−l

B̄j+1(υj+1)

⇒ B̄L−l(υL−l)




≥ Pr

[
F(ε) ∧ B̄L+1(υL+1)∧

L⋂
l=0

{
ĀL(ε/2) ∧ C̄

(
2

√
log

(
16

δ

))
∧ D̄l((βs + 1)s2ε) ∧ Ē l(ε′′) ∧ B̄l+1(υl+1)⇒ B̄l(υl)

}]

≥ 1− Pr

[
¬

{
Ā(ε/2) ∧ C̄

(
2

√
log

(
16

δ

))
∧ D̄((βs + 1)s2ε) ∧ Ē(ε′′)

}]
− Pr

[
¬B̄L+1(υL+1)

]
−

L∑
l=0

Pr

[
¬

{
ĀL(ε/2) ∧ C̄

(
2

√
log

(
16

δ

))
∧ D̄h((βs + 1)s2ε) ∧ Ē l(ε′′) ∧ B̄l+1(υl+1)⇒ B̄l(υl)

}]

≥ 1− 3δ

4
−

L∑
l=0

δ

4(L+ 1)

≥ 1− δ.

Thus, Pr
[
Ā(ε/2) ∧ B̄(L(βs + 1)sL+1ε)

]
≥ 1−δ, as required. The proof of the helper lemmas are provided in Appendix B.
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Now, it is straightforward to note that Lemma 1 immediately follows from the Lemma 4 and Lemma 8. With Lemma 1 in
place, the rest of the proof of Theorem 1 follows similar to the proof of Theorem 3.2 in Arora et al. (2019). The only step
in the proof of Theorem 3.2 that is dependent on kernel being ReLU, is Lemma F.6, where they bound the perturbation
in gradient based on the amount of perturbation in the weight matrices. We would like to emphasize that this is only step
apart from the ones which use Theorem 3.1. Such steps follow immediately by invoking Lemma 1 proven above, instead
of Theorem 3.1. Using the result from Liu et al. (2020, Theorem 3.2), we know that the spectral norm of the Hessian
of the neural net is O(m−1/2). Here the implied constant only depends on s and L. Thus for the a perturbation in the
weight matrices of the order of O(

√
mω), the corresponding perturbation in the gradient is O(ω), with the implied constant

depending only on s and L. On substituting this relation in place of Lemma F.6, the claim of Theorem 1 follows using the
same arguments as the ones used in the proof of Theorem 3.2 of Arora et al. (2019).

B. Proof of Helper Lemmas
We first state some additional intermediate lemmas which are used in the proofs several helper lemmas then provide a proof
of all the lemmas.

Definition 4.

G(l)(x,x′) = [h(l)(x) h(l)(x′)] ∈ Rdl×2

G̃(l)(x,x′) = [G(l)(x,x′)]⊤G(l)(x,x′) =

[〈
h(l)(x),h(l)(x)

〉 〈
h(l)(x),h(l)(x′)

〉〈
h(l)(x′),h(l)(x)

〉 〈
h(l)(x′),h(l)(x′)

〉] ≡ [G11 G12

G12 G22

]
Lemma 14.

Pr

[
Āl(ε)⇒ D̄l+1

(
3s2φs−1(dl, δ/6, 1) +

2s2βsε

2s− 1

)
∧ Ē l+1

(
3s2

[
2 log

(
6dl
δ

)]s−1
)]
≥ 1− δ

∀ ε ∈ [0, 1/s], δ ∈ (0, 1).

Lemma 15. Let

ε′ = 3s2φs−1((min
l
dl), δ/6(L+ 1), 1) +

2s2βsε

2s− 1
, ε′′ = 3s2

[
2 log

(
6(L+ 1)(maxl dl)

δ

)]s−1

.

Then,

Pr
[
Ā(ε)⇒ D̄(ε′) ∧ Ē(ε′′)

]
≥ 1− δ ∀ ε ∈ [0, 1/s], δ ∈ (0, 1).

Lemma 16. For any 1 ≤ l ≤ L, any fixed {W(i)}l−1
i=1 and x,x′ ∈ X , with probability 1− δ over the randomness of W(l),

we have, ∣∣∣∣∣cs tr(∆(l)(x,x′))

dl
− s2

2s− 1
σ̆s−1

(
G̃(l)(x,x′)

)∣∣∣∣∣ ≤ s2(G11G22)
(s−1)

2 φs−1(dl, δ/2, ρG),

and

∥∆(l)(x,x′)∥2 ≤ s2
[(√

G11G22 +G12

)
log

(
2dl
δ

)]s−1

,

where ρG = G12√
G11G22

.

Lemma 17 ((Boucheron et al., 2013)). Let ξ ∼ N (0, In) be an n-dimensional unit Gaussian random vector and A ∈ Rn×n

be a symmetric matrix, then for any t > 0,

Pr
(∣∣∣ξ⊤Aξ − E

[
ξ⊤Aξ

]∣∣∣ > 2∥A∥F
√
t+ 2∥A∥2t

)
≤ exp(−t),
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or equivalently,

Pr
(∣∣∣ξ⊤Aξ − E

[
ξ⊤Aξ

]∣∣∣ > t
)
≤ exp

(
− t2

4∥A∥2F + 4∥A∥2

)
.

Lemma 18. If ĀL(ε1/2)∧ B̄l+1(ε2)∧ C̄(ε3)∧ D̄l(ε4)∧ Ē l(ε5) for any pair of points x,x′ ∈ X , then for any y ∈ {x,x′}∥∥∥∥ΠG

(
W(l+1)

)⊤
b(l+1)(y)

∥∥∥∥ ≤ (s(L−l)/2 + 1)

√
2 log

(
4

δ

)
+ sL−lε3

√
2.

holds with probability at least 1− δ.

B.1. Proof of Lemma 5

We fix a particular s ∈ N. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be n independent samples from N (0,Σρ) and let
Zi = σs(Xi)σs(Yi). Define Sn := 1

n

∑n
i=1 Zi. Note that E[Sn] = E[Z1] = µs. To prove the bound, we first bound

Pr(Zi > t) for any t ≥ 0 and then using techniques borrowed from Gantert et al. (2014), we obtain an upper bound on
Pr(Sn − µs > t). The bound on Pr(Sn − µs < −t) follows from Cramer’s Theorem (Cramér, 1938).

We begin with bounding Pr(Zi > t) for any t ≥ 0. Since Zi = (σ1(Xi)σ1(Yi))
s, we just focus on bounding

Pr(σ1(X)σ1(Y ) > t) for (X,Y ) ∼ N (0,Σρ). Fix a t ≥ 0. We have,

Pr(σ1(X)σ1(Y ) > t) = E [1 {σ1(X)σ1(Y ) > t}]
= E [1 {XY > t,X ≥ 0, Y ≥ 0}] .

Using a change of variables define U = (X + Y )/
√
2 and V = (X − Y )/

√
2. Note that U and V are zero-mean Gaussian

random variables with Cov(U, V ) = 0 implying that they are independent. Also Var(U) = 1 + ρ and Var(V ) = 1 − ρ.
Thus,

Pr(σ1(X)σ1(Y ) > t) = EX,Y [1 {XY > t,X ≥ 0, Y ≥ 0}]
= EU,V

[
1
{
U2 − V 2 > 2t, U ≥ 0, V ∈ [−U,U ]

}]
≤ EU,V

[
1
{
U2 > V 2 + 2t, U ≥ 0

}]
≤ EV

[
Pr
(
U >

√
V 2 + 2t

)]
≤ EV

[
exp

(
− V

2 + 2t

2(1 + ρ)

)]
≤ 1√

2π(1− ρ)

∫ ∞

−∞
exp

(
− v2 + 2t

2(1 + ρ)

)
exp

(
− v2

2(1− ρ)

)
dv

≤ e−t/(1+ρ)√
2π(1− ρ)

∫ ∞

−∞
exp

(
− v2

(1− ρ2)

)
dv

≤ exp

(
− t

1 + ρ

)√
1 + ρ

2

≤ exp

(
− t

1 + ρ

)
.

In the sixth line we used the concentration bound for Gaussian random variable and in the eighth line we used the Gaussian
integral. Consequently,

Pr(Zi > t) = Pr(σ1(X)σ1(Y ) > t1/s) ≤ exp

(
− t1/s

1 + ρ

)
. (26)
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Using this relation, we now move on to bound Pr(Sn ≥ x) for x ≥ µs,ρ. For the rest of the proof we drop the argument ρ
for simplicity. Firstly, note that

Pr(Sn ≥ x) ≤ Pr

(
max
j∈[n]

Zj ≥ n(x− µs)

)
︸ ︷︷ ︸

An
1

+Pr

(
Sn ≥ x, max

j∈[n]
Zj < n(x− µs)

)
︸ ︷︷ ︸

An
2

.

We begin with the first term.

Pr

(
max
j∈[n]

Zj ≥ n(x− µs)

)
≤ nPr(Zi ≥ n(x− µs)) ≤ n exp

(
−n

1/s(x− µs)
1/s

1 + ρ

)
.

Let βζ(n) = ζn1/s

1+ρ > 0 for some ζ > 0 which will be specified later. We have,

An
2 = Pr

(
Sn ≥ x, max

j∈[n]
Zj < n(x− µs)

)
= Pr

(
exp (βζ(n)Sn) ≥ exp (βζ(n)x) , max

j∈[n]
Zj < n(x− µs)

)
≤ exp (−βζ(n)x)E

[
exp (βζ(n)Sn)1

{
max
j∈[n]

Zj < n(x− µs)

}]
≤ exp (−βζ(n)x)

n∏
j=1

E
[
exp

(
βζ(n)Zj

n

)
1 {Zj < n(x− µs)}

]

=⇒ log (An
2 ) ≤ −βζ(n)x+

n∑
j=1

Γζ
(j)(n),

where Γζ
(j)(n) = log

(
E

[
exp

(
βζ(n)Zj

(n)

n

)])
and Zj

(n) := Zj1 {Zj < n(x− µs)}. Using the relations log(1 +

x) ≤ x and ex ≤ 1 + x+ x2

2 e
x, we have,

n∑
j=1

Γζ
(j)(n) =

n∑
j=1

log

(
E

[
exp

(
βζ(n)Zj

(n)

n

)])

≤
n∑

j=1

log

1 + E

[
βζ(n)Zj

(n)

n

]
+

1

2
E

(βζ(n)Zj
(n)

n

)2

exp

(
βζ(n)Zj

(n)

n

)
≤

n∑
j=1

E

[
βζ(n)Zj

(n)

n

]
+

1

2
E

(βζ(n)Zj
(n)

n

)2

exp

(
βζ(n)Zj

(n)

n

) .

Note that,

n∑
j=1

E

[
βζ(n)Zj

(n)

n

]
=

n∑
j=1

βζ(n)

n
E
[
Zj

(n)
]

≤ βζ(n)µs.

For the second term we have,

E

(βζ(n)Z1
(n)

n

)2

exp

(
βζ(n)Z1

(n)

n

) ≤ (βζ(n)
n

)2

E

[(
Z1

(n)
) 2(1+η)

η

] η
1+η

E

[
exp

(
(1 + η)βζ(n)Z1

(n)

n

)] 1
1+η
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for some η > 0 by using Hölder’s inequality. Since E
[(
Z1

(n)
)2(1+η)/η

]η/(1+η)

=
[
µ 2s(1+η)

η

] η
1+η

, we focus on the other

term. We have,

E

[
exp

(
(1 + η)βζ(n)Z1

(n)

n

)]

= 1 +

∫ n(x−µs)

0

(1 + η)βζ(n)

n
exp

(
(1 + η)βζ(n)z

n

)
Pr(Z1 > z) dz

= 1 + n(x− µs)

∫ 1

0

(1 + η)βζ(n)

n
exp

(
(1 + η)βζ(n)n(x− µs)y

n

)
Pr(Z1 > n(x− µs)y) dy

≤ 1 + (x− µs)

∫ 1

0

(1 + η)βζ(n) exp

(
(1 + η)βζ(n)(x− µs)y −

(n(x− µs)y)
1/s

1 + ρ

)
dy

≤ 1 + (x− µs)(1 + η)βζ(n)

∫ 1

0

exp

(
βζ(n)

[
(1 + η)(x− µs)y −

(x− µs)
1/sy1/s

ζ

])
dy.

For ζ ≤ (x− µs)
1/s−1

2(1 + η)
, we have,

E

[
exp

(
(1 + η)βζ(n)Z1

(n)

n

)]

≤ 1 + (x− µs)(1 + η)βζ(n)

∫ 1

0

exp

(
βζ(n)

[
(1 + η)(x− µs)y −

(x− µs)
1/sy1/s

ζ

])
dy

≤ 1 + (x− µs)(1 + η)βζ(n)

∫ 1

0

exp

(
−1

2
βζ(n)(1 + η)(x− µs)y

)
dy

≤ 3.

On combining all the equations, we obtain that for ζ ≤ (x−µs)
1/s−1

2(1+η) and η > 0

log (An
2 ) ≤ −βζ(n)(x− µs) +

(βζ(n))
2

2n

([
µ 2s(1+η)

η

] η
1+η

3
1

1+η

)
We set η = 1. Thus for ζ ≤ 0.25(x− µs)

1/s−1, we have,

log (An
2 ) ≤ −

ζn1/s(x− µs)

1 + ρ
+
ζ2n2/s−1

2(1 + ρ)2

√
3µ4s.

Note that the RHS is minimized at ζ∗ =
n1−1/s(x− µs)(1 + ρ)√

3µ4s
. However, ζ∗ ≤ 0.25(x− µs)

1/s−1 only for (x− µs) ≤( √
3µ4s

4(1 + ρ)

)2−1/s

n−(
s−1
2s−1 )︸ ︷︷ ︸

:=t∗(n)

. Thus, for (x− µs) ≤ t∗(n), we can plug in ζ = ζ∗ in the above expression to obtain

log (An
2 ) ≤ −

n(x− µs)
2

2
√
3µ4s

.

For (x− µs) > t∗(n), we plug in ζ = 0.25(x− µs)
1/s−1 to obtain

log (An
2 ) ≤ −

n1/s(x− µs)
1/s

8(1 + ρ)
.
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On combining the two, we obtain that for any t ≥ 0

Pr(Sn − µs ≥ t) =


(n+ 1) exp

(
− nt2

2
√
3µ4s

)
if t ≤ t∗(n),

(n+ 1) exp

(
− (nt)1/s

8(1 + ρ)

)
if t > t∗(n).

We now consider the other side. Consider any x ≤ µs and λ > 0. We have,

Pr(Sn ≤ x) = Pr
(
exp(−λSn) ≥ e−λx

)
≤ E [exp(−λSn)] e

λx

≤ E
[
1− λSn +

λ2S2
n

2

]
eλx

≤
(
1− λE[Sn] +

λ2E[S2
n]

2

)
eλx

≤
(
1− λµs +

λ2µ2s

2n

)
eλx

≤ exp

(
−λµs +

λ2µ2s

2n
+ λx

)
≤ exp

(
λ(x− µs) +

λ2µ2s

2n
+ λx

)
.

Minimizing this over λ yields λ∗ = −n(x− µs)

µ2s
> 0. On plugging this value, we obtain,

Pr(Sn ≤ x) ≤ exp

(
−n(x− µs)

2

2µ2s

)
.

Consequently for any t ≥ 0, we have,

Pr(Sn − µs ≤ −t) ≤ exp

(
− nt2

2µ2s

)
.

On combining the relations, we can conclude that if n ≥ n∗(s, δ, ρ), then

Pr

(
|Sn − µs| ≥

√
2(
√
3µ4s + µ2s)

n
log

(
n+ 1

δ

))
≤ δ.

B.2. Proof of Lemma 6

Fix a s ∈ N. We drop the subscript s for the remainder of the proof for ease of notation. We need to show that the

dual activation function σ̆ is β-Lipschitz inMγ
+ w.r.t. the∞-norm. Let Σ =

(
Σ11 Σ12

Σ12 Σ22

)
∈ Mγ

+. In order to prove

β-Lipschitzness w.r.t. the∞-norm, it is sufficient to show that,

∥∇σ̆s∥1 =

∣∣∣∣ ∂σ̆s∂Σ12

∣∣∣∣+ ∣∣∣∣ ∂σ̆s∂Σ11

∣∣∣∣+ ∣∣∣∣ ∂σ̆s∂Σ22

∣∣∣∣ ≤ β.
Recall that since σs is s-homogeneous,

σ̆s(Σ) = (Σ11Σ22)
s/2σ̄s

(
Σ12√
Σ11Σ22

)
.
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Using this relation, we have,

∂σ̆s
∂Σ12

= (Σ11Σ22)
s−1
2 σ̄′

s

(
Σ12√
Σ11Σ22

)
∂σ̆s
∂Σ11

=
s

2
(Σ11Σ22)

s
2−1Σ22σ̄s

(
Σ12√
Σ11Σ22

)
− 1

2
(Σ11Σ22)

s−1
2 σ̄′

s

(
Σ12√
Σ11Σ22

)
Σ12

Σ11

= Σ22

{
s

2
(Σ11Σ22)

s
2−1σ̄s

(
Σ12√
Σ11Σ22

)
− 1

2
(Σ11Σ22)

s−1
2 σ̄′

s

(
Σ12√
Σ11Σ22

)
Σ12

Σ11Σ22

}
∂σ̆s
∂Σ22

=
s

2
(Σ11Σ22)

s
2−1Σ11σ̄s

(
Σ12√
Σ11Σ22

)
− 1

2
(Σ11Σ22)

s−1
2 σ̄′

s

(
Σ12√
Σ11Σ22

)
Σ12

Σ22

= Σ11

{
s

2
(Σ11Σ22)

s
2−1σ̄s

(
Σ12√
Σ11Σ22

)
− 1

2
(Σ11Σ22)

s−1
2 σ̄′

s

(
Σ12√
Σ11Σ22

)
Σ12

Σ11Σ22

}
.

Consequently,

∥∇σ̆s∥1 = (Σ11Σ22)
s−1
2

∣∣∣∣σ̄′
s

(
Σ12√
Σ11Σ22

)∣∣∣∣+
(Σ11 +Σ22)(Σ11Σ22)

s
2−1

2

∣∣∣∣sσ̄s( Σ12√
Σ11Σ22

)
− σ̄′

s

(
Σ12√
Σ11Σ22

)
Σ12√
Σ11Σ22

∣∣∣∣ .
For simplicity, let ρ̃ = Σ12√

Σ11Σ22
. For s = 1, Arora et al. (2019) showed that the above expression is 1 + o(γ). We consider

the case for s > 1. Using (20), we have,

∥∇σ̆s∥1 =
s2

2s− 1
(Σ11Σ22)

s−1
2 |σ̄s−1 (ρ̃)|+

(Σ11 +Σ22)(Σ11Σ22)
s
2−1

2

∣∣∣∣sσ̄s (ρ̃)− s2

2s− 1
σ̄s−1 (ρ̃) ρ̃

∣∣∣∣
≤ 2s

3
(Σ11Σ22)

s−1
2 +

3s

4
(Σ11 +Σ22)(Σ11Σ22)

s
2−1

≤ 13s

6
(1 + γ)s−1

If γ ≤ 1/s, then ∥∇σ̆s∥1 ≤ 6s, as required.

B.3. Proof of Lemma 10

We have,

∣∣∣∣∣∣cs tr(∆
(l)(y,y′))

dl

〈
b(l+1)(y),b(l+1)(y′)

〉
−

L∏
j=l

Σ̇(j)(y,y′)

∣∣∣∣∣∣
≤

∣∣∣∣∣cs tr(∆(l)(y,y′))

dl
− Σ̇(l)(y,y′)

∣∣∣∣∣ ∣∣∣〈b(l+1)(y),b(l+1)(y′)
〉∣∣∣+

∣∣∣Σ̇(l)(y,y′)
∣∣∣
∣∣∣∣∣∣
〈
b(l+1)(y),b(l+1)(y′)

〉
−

L∏
j=l+1

Σ̇(j)(y,y′)

∣∣∣∣∣∣
≤
∣∣∣〈b(l+1)(y),b(l+1)(y′)

〉∣∣∣ ε4 + s2

2s− 1
σ̆s−1

(
Λ(l)(x,x′)

)
ε2
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Since B̄l+1(ε2),
〈
b(l+1)(y),b(l+1)(y′)

〉
≤
∏L

j=l+1 Σ̇
(j)(y,y′) + ε2 ≤

∏L
j=l+1 Σ̇

(j)(y,y′) + 1. Moreover, since

Σ̇(l)(y,y′) = s2

2s−1 σ̆s−1

(
Λ(l)(y,y′)

)
≤ s2

2s−1 , we have,∣∣∣∣∣∣cs tr(∆
(l)(y,y′))

dl

〈
b(l+1)(y),b(l+1)(y′)

〉
−

L∏
j=l+1

Σ̇(j)(y,y′)

∣∣∣∣∣∣ ≤

((
s2

2s− 1

)L−l

+ 1

)
ε4 + sε2

≤ sL−lε4 + sε2.

B.4. Proof of Lemma 11

Fix any (y,y′) ∈ {(x,x), (x,x′), (x′,x′)}. Recall that G(l)(y,y′) = [h(l)(y) h(l)(y′)] ∈ Rdl×2. Similarly define,
F(l+1)(y,y′) = [f (l+1)(y) f (l+1)(y′)] ∈ Rdl×2. Using Lemma 3 for each row of W(l+1), we can conclude that

W(l+1)Π⊥
G

d
=F(l+1)=W(l+1)G(l) W̃Π⊥

G,

where W̃ is a i.i.d. copy of W(l+1).

Note that
[(
b(l+1)(y)

)⊤
W̃
(
b(l+1)(y′)

)⊤
W̃
]⊤
∈ R2dl ∼ N (0,Σ) where Σ =

[
bIdl

b′Idl

b′Idl
b′′Idl

]
. In the definition of

Σ, b =
〈
b(l+1)(y),b(l+1)(y)

〉
, b′ =

〈
b(l+1)(y),b(l+1)(y′)

〉
and b′′ =

〈
b(l+1)(y′),b(l+1)(y′)

〉
. If M is such that

Σ = MM⊤, then [(
b(l+1)(y)

)⊤
W̃
(
b(l+1)(y′)

)⊤
W̃

]⊤
d
= Mξ,

where ξ ∼ N (0, I2dl
). Thus, for fixed G(l) and conditioned on the value of {b(l+1)(y),b(l+1)(y′),h(l)(y),h(l)(y′)}, we

have, (
b(l+1)(y)

)⊤
W(l+1)Π⊥

G∆(l)(y,y′)Π⊥
G

(
W(l+1)

)⊤
b(l+1)(y)

d
=
(
b(l+1)(y)

)⊤
W̃Π⊥

G∆(l)(y,y′)Π⊥
G

(
W̃
)⊤

b(l+1)(y)

d
= ([Idl

0]Mξ)⊤Π⊥
G∆(l)(y,y′)Π⊥

G([0 Idl
]Mξ)

d
=

1

2
ξ⊤M⊤

[
0 Π⊥

G∆(l)(y,y′)Π⊥
G

Π⊥
G∆(l)(y,y′)Π⊥

G 0

]
Mξ

Define

A :=
1

2
M⊤

[
0 Π⊥

G∆(l)(y,y′)Π⊥
G

Π⊥
G∆(l)(y,y′)Π⊥

G 0

]
M.

Then we have,

E[ξ⊤Aξ] = tr(A) =
1

2
tr

([
0 Π⊥

G∆(l)(y,y′)Π⊥
G

Π⊥
G∆(l)(y,y′)Π⊥

G 0

]
Σ

)
= b′tr(Π⊥

G∆(l)(y,y′)Π⊥
GIdl

)

= b′tr(∆(l)(y,y′)Π⊥
G)

= b′tr(∆(l)(y,y′)(Idl
−ΠG))

= b′
[
tr(∆(l)(y,y′))− tr(∆(l)(y,y′)ΠG)

]
.

Since tr(ΠG) = rank(ΠG)) ≤ 2, we have,

0 ≤ tr(∆(l)(y,y′)ΠG) ≤ ∥∆(l)(y,y′)∥2tr(ΠG) ≤ 2∥∆(l)(y,y′)∥2.
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Consequently, ∣∣∣E[ξ⊤Aξ]− b′tr(∆(l)(y,y′))
∣∣∣ ≤ 2b′∥∆(l)(y,y′)∥2.

For the upper bound on the spectrum, note that ∥M∥22 = ∥Σ∥2 ≤ b+ b′′. Hence,

∥A∥2 ≤
1

2
∥M∥22∥Π

⊥
G∆(l)(y,y′)Π⊥

G∥2

≤ 1

2
(b+ b′′)∥Π⊥

G∥2∥∆
(l)(y,y′)∥2∥Π⊥

G∥2

≤ b+ b′′

2
∥∆(l)(y,y′)∥2.

Thus, on using Lemma 17 with t = log(3/δ), we have with probability at least 1− δ/3∣∣∣ξ⊤Aξ − E[ξ⊤Aξ]
∣∣∣ ≤ 2(∥A∥F

√
t+ ∥A∥2t)

≤ 2∥A∥2(
√
2dlt+ t)

≤ (b+ b′′)∥∆(l)(y,y′)∥2

(√
2dl log

(
3

δ

)
+ log

(
3

δ

))
.

Consequently,∣∣∣∣csdl
(
b(l+1)(y)

)⊤
W(l+1)Π⊥

G∆(l)(y,y′)Π⊥
G

(
W(l+1)

)⊤
b(l+1)(y)− cs

dl
tr(∆(l)(y,y′))

〈
b(l+1)(y),b(l+1)(y′)

〉∣∣∣∣
≤ cs
dl

∣∣∣ξ⊤Aξ − E[ξ⊤Aξ]
∣∣∣+ cs

dl

∣∣∣E[ξ⊤Aξ]− b′tr(∆(l)(y,y′))
∣∣∣

≤ cs(b+ b′′)∥∆(l)(y,y′)∥2

(√
2

dl
log

(
3

δ

)
+

1

dl
log

(
3

δ

))
+

2b′cs
dl
∥∆(l)(y,y′)∥2,

holds with probability at least 1− δ/3. The lemma follows by taking a union bound over all possible choices of (y,y′).

We can use the above result to obtain the following bound for any y ∈ {x,x′}√
cs
dl

∥∥∥∥(b(l+1)(y)
)⊤

W(l+1)Π⊥
GD(l)(y)

∥∥∥∥
≤
{
cs
dl

(
b(l+1)(y)

)⊤
W(l+1)Π⊥

G∆(l)(y,y)Π⊥
G

(
W(l+1)

)⊤
b(l+1)(y)

}1/2

≤

{
cs
dl
tr(∆(l)(y,y))b+ 2csb∥∆(l)(y,y)∥2

(√
2

dl
log

(
3

δ

)
+

1

dl
log

(
3

δ

))
+

2bcs
dl
∥∆(l)(y,y′)∥2

}1/2

≤
√
bcs∥∆(l)(y,y)∥2 ·

{
1 + 2

(√
2

dl
log

(
3

δ

)
+

1

dl

(
1 + log

(
3

δ

)))}1/2

≤
√

2bcs∥∆(l)(y,y)∥2,

where b =
〈
b(l+1)(y),b(l+1)(y)

〉
and the last step uses the relation the bound on dl.
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B.5. Proof of Lemma 12

Fix any (y,y′) ∈ {(x,x), (x,x′), (x′,x′)}. For ease of writing let V(l+1)(x) :=
(
W(l+1)

)⊤
b(l+1)(x). We are interested

in bounding the following expression.(
V(l+1)(y)

)⊤
∆(l)(y,y′)V(l+1)(y′)−

(
V(l+1)(y)

)⊤
Π⊥

G∆(l)(y,y′)Π⊥
GV(l+1)(y′)

=
(
V(l+1)(y)

)⊤
(ΠG +Π⊥

G)D(l)(y)D(l)(y′)(ΠG +Π⊥
G)V(l+1)(y′)−(

V(l+1)(y)
)⊤

Π⊥
GD(l)(y)D(l)(y′)Π⊥

GV(l+1)(y′)

=
(
V(l+1)(y)

)⊤
ΠGD(l)(y)D(l)(y′)ΠGV(l+1)(y′) +

(
V(l+1)(y)

)⊤
ΠGD(l)(y)D(l)(y′)Π⊥

GV(l+1)(y′)+(
V(l+1)(y)

)⊤
Π⊥

GD(l)(y)D(l)(y′)ΠGV(l+1)(y′).

Consequently,

cs
dl

∣∣∣∣(V(l+1)(y)
)⊤

∆(l)(y,y′)V(l+1)(y′)−
(
V(l+1)(y)

)⊤
Π⊥

G∆(l)(y,y′)Π⊥
GV(l+1)(y′)

∣∣∣∣
=
cs
dl

∣∣∣∣ (V(l+1)(y)
)⊤

ΠGD(l)(y)D(l)(y′)ΠGV(l+1)(y′) +
(
V(l+1)(y)

)⊤
ΠGD(l)(y)D(l)(y′)Π⊥

GV(l+1)(y′)+(
V(l+1)(y)

)⊤
Π⊥

GD(l)(y)D(l)(y′)ΠGV(l+1)(y′)

∣∣∣∣
≤ cs
dl

∥∥∥∥(b(l+1)(y)
)⊤

W(l+1)ΠGD(l)(y)

∥∥∥∥∥∥∥∥D(l)(y′)ΠG

(
W(l+1)

)⊤
b(l+1)(y′)

∥∥∥∥+
cs
dl

∥∥∥∥(b(l+1)(y)
)⊤

W(l+1)ΠGD(l)(y)

∥∥∥∥∥∥∥∥D(l)(y′)Π⊥
G

(
W(l+1)

)⊤
b(l+1)(y′)

∥∥∥∥+
cs
dl

∥∥∥∥(b(l+1)(y)
)⊤

W(l+1)Π⊥
GD(l)(y)

∥∥∥∥∥∥∥∥D(l)(y′)ΠG

(
W(l+1)

)⊤
b(l+1)(y′)

∥∥∥∥
≤ cs
dl

[
(s(L−l)/2 + 1)

√
2 log

(
8

δ

)
+ sL−lε3

√
2

][
(s(L−l)/2 + 1)

√
2 log

(
8

δ

)
+ sL−lε3

√
2

]
∥D(l)(y)∥2∥D(l)(y′)∥2+

cs

√
2

dl

[
(s(L−l)/2 + 1)

√
2 log

(
8

δ

)
+ sL−lε3

√
2

]
∥D(l)(y)∥2∥b(l+1)(y′)∥∥D(l)(y′)∥2+

cs

√
2

dl

[
(s(L−l)/2 + 1)

√
2 log

(
8

δ

)
+ sL−lε3

√
2

]
∥D(l)(y)∥2∥b(l+1)(y)∥∥D(l)(y′)∥2

≤ cs
dl

[
(s(L−l)/2 + 1)

√
2 log

(
8

δ

)
+ sL−lε3

√
2

]2
∥∆(l)(y,y′)∥2+

cs

√
8

dl

[
(s(L−l)/2 + 1)

√
2 log

(
8

δ

)
+ sL−lε3

√
2

]
(s(L−l)/2 + 1)∥∆(l)(y,y′)∥2

≤ csε5√
dl

[
(s(L−l)/2 + 1)

√
2 log

(
8

δ

)
+ sL−lε3

√
2

]
×

‘

{
1√
dl

[
(s(L−l)/2 + 1)

√
2 log

(
8

δ

)
+ sL−lε3

√
2

]
+
√
8(s(L−l)/2 + 1)

}
,

where we used Lemma 11 and 18 in fourth step and the condition of B̄l+1(ε2) ∧ Ē l(ε5) in the last step. Both lemmas hold
with probability at least 1− δ/2, ensuring that the overall expression is true with probability at least 1− δ.
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B.6. Proof of Lemma 13

Fix any (y,y′) ∈ {(x,x), (x,x′), (x′,x′)}. Conditioned on ĀL(ε1/2) ∧ B̄l+1(ε2) ∧ C̄(ε3) ∧ D̄l(ε4) ∧ Ē l(ε5), we begin
with bounding

∣∣∣〈b(l)(y),b(l)(y′)
〉
−
∏L+1

j=l Σ̇(j)(x,y′)
∣∣∣. Using the definition of b(l)(y) we have,

∣∣∣∣∣∣
〈
b(l)(y),b(l)(y′)

〉
−

L+1∏
j=l

Σ̇(j)(y,y′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣csdl
(
b(l+1)(y)

)⊤
W(l+1)∆(l)(y,y′)

(
W(l+1)

)⊤
b(l+1)(y′)−

L+1∏
j=l

Σ̇(j)(y,y′)

∣∣∣∣∣∣
≤ cs
dl

∣∣∣∣ (b(l+1)(y)
)⊤

W(l+1)∆(l)(y,y′)
(
W(l+1)

)⊤
b(l+1)(y′)

−
(
b(l+1)(y)

)⊤
W(l+1)Π⊥

G∆(l)(y,y′)Π⊥
G

(
W(l+1)

)⊤
b(l+1)(y′)

∣∣∣∣
+

∣∣∣∣∣csdl
(
b(l+1)(y)

)⊤
W(l+1)Π⊥

G∆(l)(y,y′)Π⊥
G

(
W(l+1)

)⊤
b(l+1)(y)−

cs
dl
tr(∆(l)(y,y′))

〈
b(l+1)(y),b(l+1)(y′)

〉 ∣∣∣∣∣
+

∣∣∣∣∣∣cs tr(∆
(l)(y,y′))

dl

〈
b(l+1)(y),b(l+1)(y′)

〉
−

L+1∏
j=l

Σ̇(l)(y,y′)

∣∣∣∣∣∣
≤

(
csε5√
dl

[
(s(L−l)/2 + 1)

√
2 log

(
16

δ

)
+ sL−lε3

√
2

]
×{

1√
dl

[
(s(L−l)/2 + 1)

√
2 log

(
16

δ

)
+ sL−lε3

√
2

]
+
√
8(s(L−l)/2 + 1)

})

+ cs

(〈
b(l+1)(y),b(l+1)(y)

〉
+
〈
b(l+1)(y′),b(l+1)(y′)

〉)(√ 2

dl
log

(
6

δ

)
+

1

dl
log

(
6

δ

))
ε5

+
2cs
dl

〈
b(l+1)(y),b(l+1)(y′)

〉
ε5 + sL−lε4 + sε2

≤

(
csε5√
dl

[
(s(L−l)/2 + 1)

√
2 log

(
16

δ

)
+ sL−lε3

√
2

]
×{

1√
dl

[
(s(L−l)/2 + 1)

√
2 log

(
16

δ

)
+ sL−lε3

√
2

]
+
√
8(s(L−l)/2 + 1)

})

+ 2cs(s
L−l + 1)

(√
2

dl
log

(
6

δ

)
+

1

dl
log

(
6

δ

))
ε5 +

2cs
dl

(sL−l + 1)ε5 + sL−lε4 + sε2.

In the fourth step, we used Lemma 10, 12 and 11 with the last two each holding with probability at least 1 − δ/2.
Consequently, the above expression holds with probability at least 1− δ.

B.7. Proof of Lemma 14

We carry out the analysis conditioned on Āl(ε). Since
∣∣∣(h(l)(y)

)⊤
h(l)(y′)− Σ(l)(y,y′)

∣∣∣ ≤ ε for all (y,y′) ∈
{(x,x), (x,x′), (x′,x′)} we can conclude that ∥G̃(l) − Λ(l)∥∞ ≤ 2ε. Since σ̆s−1 is βs−1-Lipschitz in Mγs−1

+ w.r.t.

28



Provably and Practically Efficient Neural Contextual Bandits

∞-norm, we have,

|σ̆s−1(G
(l))− σ̆s−1(Λ

(l+1))| ≤ βs−1∥G̃(l) − Λ(l+1)∥∞ ≤ 2βs−1ε,

for ε ≤ γs−1. Fix any (y,y′) ∈ {(x,x), (x,x′), (x′,x′)}. We have that,

∣∣∣∣∣cs tr(∆(l+1)(y,y′))

dl+1
− Σ̇(l+1)(y,y′)

∣∣∣∣∣ ≤
∣∣∣∣∣cs tr(∆(l)(y,y′))

dl
− s2

2s− 1
σ̆s−1

(
Λ(l+1)(y,y′)

)∣∣∣∣∣
≤

∣∣∣∣∣cs tr(∆(l)(y,y′))

dl
− s2

2s− 1
σ̆s−1

(
G̃(l)(y,y′)

)∣∣∣∣∣+
s2

2s− 1
|σ̆s−1(G̃

(l))− σ̆s−1(Λ
(l+1))|

≤ s2(1 + ε)s−1φs−1(dl, δ/2,min{1,Σ(l)(y,y′) + ε}) + 2s2βsε

2s− 1
,

holds with probability 1− δ. The last step follows from Lemma 16. On taking a union bound, we can conclude that

∣∣∣∣∣cs tr(∆(l+1)(y,y′))

dl+1
− Σ̇(l+1)(y,y′)

∣∣∣∣∣ ≤ s2(1 + ε)s−1φs−1(dl, δ/6, 1) +
2s2βsε

2s− 1
,

holds for all (y,y′) ∈ {(x,x), (x,x′), (x′,x′)} with probability 1− δ. Since we have already invoked Lemma 16, it also
gives us that

∥∆(l+1)(x,x′)∥2 ≤ s2
[
2 (1 + ε) log

(
6dl
δ

)]s−1

,

holds for all (y,y′) ∈ {(x,x), (x,x′), (x′,x′)} with probability 1− δ. Using this result along with Lemma 2 and ε ≤ 1/s
yields us

Pr

[
Āl(ε)⇒ D̄l+1

(
3s2φs−1(dl, δ/6, 1) +

2s2βsε

2s− 1

)
∧ Ē l+1

(
3s2

[
2 log

(
6dl
δ

)]s−1
)]
≥ 1− δ,

as required.
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B.8. Proof of Lemma 15

Consider,

Pr
[
Ā(ε)⇒ D̄(ε′) ∧ Ē(ε′′)

]
= Pr

[(
L⋂

l=0

Āl(ε)

)
⇒

(
L⋂

l=0

{
D̄l+1(ε′) ∧ Ē l+1(ε′′)

})]

= Pr

[
¬

(
L⋂

l=0

Āl(ε)

)
∨

(
L⋂

l=0

{
D̄l+1(ε′) ∧ Ē l+1(ε′′)

})]

= 1− Pr

[(
L⋂

l=0

Āl(ε)

)
∧

(
L⋃

l=0

¬
{
D̄l+1(ε′) ∧ Ē l+1(ε′′)

})]

= 1− Pr

[(
L⋃

l=0

(
L⋂

l=0

Āl(ε)

)
∧ ¬

{
D̄l+1(ε′) ∧ Ē l+1(ε′′)

})]

≥ 1−
L∑

l=0

Pr

[(
L⋂

l=0

Āl(ε)

)
∧ ¬

{
D̄l+1(ε′) ∧ Ē l+1(ε′′)

}]

≥ 1−
L∑

l=0

Pr
[
Āl(ε) ∧ ¬

{
D̄l+1(ε′) ∧ Ē l+1(ε′′)

}]
≥ 1−

L∑
l=0

Pr
[
¬
(
Āl(ε)⇒ D̄l+1(ε′) ∧ Ē l+1(ε′′)

)]
≥ 1−

L∑
l=0

δ

L+ 1

≥ 1− δ,

where the eighth line follows from Lemma 14 and the choice of ε′ and ε′′.

B.9. Proof of Lemma 16

We can rewrite tr
(
∆(l)(x,x′)

)
as follows:

tr(∆(l)(x,x′)) = tr
[
D(l)(x)D(l)(x′)

]
= tr

[
diag

(
σ′
s

(
f (l)(x)

))
diag

(
σ′
s

(
f (l)(x′)

))]
=
〈
σ′
s

(
f (l)(x)

)
, σ′

s

(
f (l)(x′)

)〉
= s2

〈
σs−1

(
W(l)h(l−1)(x)

)
, σs−1

(
W(l)h(l−1)(x′)

)〉
.

Note that since all the matrices {W(i)}l−1
i=1 are fixed, h(l−1)(·) is a fixed function. Consequently, each term of the vector

W(l)h(l−1)(x) is distributed as N
(
0,
〈
h(l)(x),h(l)(x)

〉)
and is independent of others. If (w(l)

j )⊤ denotes the jth row of
the matrix W(l), then we can write the inner product as

tr(∆(l)(x,x′)) = s2
〈
σs−1

(
W(l)h(l−1)(x)

)
, σs−1

(
W(l)h(l−1)(x′)

)〉
= s2

dl∑
j=1

σs−1

((
w

(l)
j

)⊤
h(l−1)(x)

)
σs−1

((
w

(l)
j

)⊤
h(l−1)(x′)

)

= s2
dl∑
j=1

Zj ,
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where Zj are all independent and identically distributed as σs−1(X)σs−1(Y ) where (X,Y ) ∼ N
(
0, G̃(l−1)(x,x′)

)
. If

we define Z̃j := (G11G22)
− (s−1)

2 , then Z̃j are all independent and identically distributed as σs−1(X̃)σs−1(Ỹ ) where
(X̃, Ỹ ) ∼ N (0,ΣρG

) and ρG = G12√
G11G22

. From Lemma 5, we know that∣∣∣∣∣∣ 1dl
dl∑
j=1

Z̃j − E[Z̃1]

∣∣∣∣∣∣ ≤ φs−1(dl, δ, ρG)

with probability at least 1− δ. Consequently,∣∣∣∣∣∣ 1dl
dl∑
j=1

Zj − E[Z1]

∣∣∣∣∣∣ ≤ (G11G22)
(s−1)

2 φs−1(dl, δ, ρG)

with probability at least 1 − δ. Note that E[Z1] = E
(X,Y )∼N(0,G̃(h)(x,x′))

[σs−1(X)σs−1(Y )] = 1
cs−1

σ̆s−1

(
G̃(l)(x,x′)

)
and cs−1 = cs(2s− 1). On combining this with the previous result, we can conclude that,∣∣∣∣∣cs tr(∆(l)(x,x′))

dl
− s2

2s− 1
σ̆s−1

(
G(l−1)(x,x′)

)∣∣∣∣∣ ≤ s2
∣∣∣∣∣∣ 1dl

dl∑
j=1

Zj − E[Z1]

∣∣∣∣∣∣
≤ s2(G11G22)

(s−1)
2 φs−1(dl, δ/2, ρG),

holds with probability 1− δ/2. For the spectral norm of ∆(l)(x,x′), we have,

∥∆(l)(x,x′)∥2 = s2 max
j∈dl

Zj = s2(G11G22)
(s−1)

2 max
j∈dl

Z̃j .

Using (26), we can show that

Pr

(
max
j∈dl

Z̃j >

[
(1 + ρG) log

(
dl
δ

)]s−1
)
≤ dl Pr

(
Z̃1 >

[
(1 + ρG) log

(
dl
δ

)]s−1
)

≤ dl exp
(
−1 + ρG
1 + ρG

log

(
dl
δ

))
≤ δ.

Consequently,

∥∆(l)(x,x′)∥2 = s2(G11G22)
(s−1)

2 max
j∈dl

Z̃j

≤ s2(G11G22)
(s−1)

2

[
(1 + ρG) log

(
2dl
δ

)]s−1

holds with probability 1− δ/2. Thus, both the hold simultaneously with probability at least 1− δ.

B.10. Proof of Lemma 18

We will prove the claim for y ∈ {x,x′}. Recall that G(l)(y,y′) = [h(l)(y) h(l)(y′)] ∈ Rdl×2. For simplicity, we drop the
arguments from h(l) and b(l+1). Define Πh = hh⊤ and ΠG/h = ΠG −Πh. Note that ΠG/h is still a projection matrix
of rank 0 or 1.

Recall that b(l+1) is the gradient with respect to the pre-activation layer l+ 1 given by f (l+1) = W(l+1)h(l). If we view the
output f as a function of h(l),W(l+1), . . . ,W(L+1), then we have the following relation:

∂

∂h(l)
f(h(l),W(l+1), . . . ,W(L+1)) =

(
b(l+1)

)⊤
W(l+1).
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Recall that σs is s-homogeneous,that is, σs(λx) = λsσs(x) for any λ > 0. Using this recursion repeatedly, we have,

f(λh(l),W(l+1), . . . ,W(L+1)) = λs
L−l

f(h(l),W(l+1), . . . ,W(L+1))

=⇒ ∂

∂λ
f(λh(l),W(l+1), . . . ,W(L+1)) = sL−lλ(s

L−l−1)f(h(l),W(l+1), . . . ,W(L+1)).

Using this, we can write,

f(h(l),W(l+1), . . . ,W(L+1)) = sl−L ∂

∂λ
f(λh(l),W(l+1), . . . ,W(L+1))

∣∣∣∣
λ=1

= sl−L ∂

∂(λh(l))
f(λh(l),W(l+1), . . . ,W(L+1))

∣∣∣∣
λ=1

∂(λh(l))

∂λ

∣∣∣∣
λ=1

= sl−L ∂

∂(λh(l))
f(λh(l),W(l+1), . . . ,W(L+1))

∣∣∣∣
λ=1

h(l)

= sl−L
(
b(l+1)

)⊤
W(l+1)h(l).

By definition of Πh, we have,∥∥∥∥Πh

(
W(l+1)

)⊤
b(l+1)

∥∥∥∥ =

∥∥∥∥ 1

∥h(l)∥2
· h(l)

(
h(l)
)⊤ (

W(l+1)
)⊤

b(l+1)

∥∥∥∥
= sL−l |f(y;W)|

∥h(l)∥
.

Since ĀL(ε1/2) ∧ C̄(ε3), ∥h(l)∥ ≥ 1− ε1/2 ≥ 1/2 and |f(y;W)| ≤ ε3. Consequently,∥∥∥∥Πh

(
W(l+1)

)⊤
b(l+1)

∥∥∥∥ ≤ sL−lε3
√
2.

Similar to the proof of Lemma 11, we note that for a fixed h and conditioned on f (l+1) and b(l+1) Lemma 3 gives us that

W(l+1)Π⊥
h

d
=f (l+1)=W(l+1)h(l) W̃Π⊥

h ,

where W̃ is a i.i.d. copy of W(l+1). From the definition of ΠG/h, we can conclude that Π⊤
G/hΠh = 0. Thus, combining

this with the previous equation, we can conclude that

W(l+1)ΠG/h
d
=f (l+1)=W(l+1)h(l) W̃ΠG/h.

If rank(ΠG/h) = 1, then ΠG/h = uu⊤ for some unit vector u. Thus,∥∥∥∥ΠG/h

(
W(l+1)

)⊤
b(l+1)

∥∥∥∥ =

∥∥∥∥uu⊤
(
W(l+1)

)⊤
b(l+1)

∥∥∥∥
=

∣∣∣∣u⊤
(
W(l+1)

)⊤
b(l+1)

∣∣∣∣
d
=
∣∣∣u⊤W̃⊤b(l+1)

∣∣∣ = |t|,
where t ∼ N (0, ∥b(l+1)∥2). Therefore, with probability at least 1− δ/2,

|t| ≤ ∥b(h+1)∥

√
2 log

(
4

δ

)
≤ (s(L−l)/2 + 1)

√
2 log

(
4

δ

)
.
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In the above step, we used similar arguments as used in Appendix. B.7 to bound ∥b(l+1)∥. If rank(ΠG/h) = 0,∥∥∥ΠG/h

(
W(l+1)

)⊤
b(l+1)

∥∥∥ = 0. On combining this with the previous result, we obtain that with probability 1− δ

∥∥∥∥ΠG

(
W(l+1)

)⊤
b(l+1)

∥∥∥∥ ≤ ∥∥∥∥ΠG/h

(
W(l+1)

)⊤
b(l+1)

∥∥∥∥+ ∥∥∥∥Πh

(
W(l+1)

)⊤
b(l+1)

∥∥∥∥
≤ (s(L−l)/2 + 1)

√
2 log

(
4

δ

)
+ sL−lε3

√
2.

Taking the union bound over the two possible choices of y gives us the final result.

C. Proof of Theorem 2
The proof of Theorem 2 involves combining several smaller results, some of which follow from Theorem 1 and the others
are minor modifications of existing results. We begin with stating these results along with proofs, if needed, and then
combine them to prove Theorem 1.

Firstly, using Theorem 1 along with Lemma 5.1 from Zhou et al. (2020), we can conclude that for
m ≥ poly(T, L,K, λ−1, λ−1

0 , S−1, log(1/δ)), there exists a W∗ such that h(x) = ⟨g(x;W0),W
∗ −W0⟩ with

probability at least 1− δ for all x ∈ Z = {{xt,a}Ka=1}Tt=1. Furthermore, ∥W∗ −W0∥2 ≤ S.

Secondly, using Lemma 4 and 8, along with (12), we can conclude that for m ≥ poly(T, L,K, λ−1, λ−1
0 , S−1, log(1/δ)),

∥g(x;W0)∥ ≤ O(sL), independent of m.

Thirdly, we know that the spectral norm of the Hessian of the neural net is O(m−1/2) (Liu et al., 2020, Theorem 3.2) for all
W such that ∥W −W0∥ ≤ R, where R is some finite radius. Here the implied constant depends on s, L and R. Thus, by
choosing m to be sufficiently large, we can conclude that for all ∥W −W0∥ ≤

√
T/λ, ∥H̃(W)∥ ≤ Cs,Lm

−1/3. Here H̃
denotes the Hessian and Cs,L denotes a constant that depends only on s and L. Using this relation, we can conclude that for
any ∥W −W0∥ ≤

√
T/λ, we have

|f(x;W)− f(x;W0)− ⟨g(x;W0),W −W0⟩ | ≤ Cs,Lm
−1/3T/λ

=⇒ |f(x;W)− ⟨g(x;W0),W −W0⟩ | ≤ Cs,Lλ
−1m−1/6,

where the last step follows by choosing a sufficiently large m and Assumption 1. Moreover, the above result holds for any
x ∈ Z .

Lastly, using the relation h(x) = ⟨g(x;W0),W
∗ −W0⟩ along with the result from Vakili et al. (2021a, Theorem 1) on

the kernel defined by neural net at initialization, i.e. k̂(x;x′) = ⟨g(x;W0),g(x
′;W0)⟩, we can conclude that

|h(x)− g⊤(x;W0)V
−1
t r| ≤

(
S + ν

√
2

λ
log(1/δ)

)
σ̂t(x).

In the above equation, Vt and σ̂t are defined with respect to the dataset D and r =
∑t

i=1 yig(xi;W0). Also, we have used
the independence of dataset from noise sequence to invoke the above theorem.
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Using these results we can prove our main result. For any x ∈ Z , we have,

|h(x)− f(x;Wt)| ≤ |h(x)− g⊤(x;W0)V
−1r|+ |g⊤(x;W0)V

−1r− f(x;Wt)|

≤

(
S + ν

√
2

λ
log(1/δ)

)
σ̂t(x) + |g⊤(x;W0)V

−1
t r− f(x;Wt)|

≤ Cs,L

λm1/6
+

(
S + ν

√
2

λ
log(1/δ)

)
σ̂(x) + |g⊤(x;W0)V

−1
t r− ⟨g(x;W0),Wt −W0⟩ |

≤ Cs,L

λm1/6
+

(
S + ν

√
2

λ
log(1/δ)

)
σ̂(x) + ∥Wt −W0 −V−1

t r∥∥Vt∥σ̂(x)

≤ Cs,L

λm1/6
+

(
S + ν

√
2

λ
log(1/δ) + (1− ηλ)J/2

√
t/λ+

C ′
s,L

λm1/6

)
(λ+ C ′′

s,Lt)σ̂(x),

as required. As before Cs,L, C
′
s,L and C ′′

s,L represent constants that depend only on s and L. In the last but one step,
we used the fact that for any positive definite matrix A ∈ Rd×d and x,y ∈ Rd, ⟨x,y⟩ ≤ (xTA−1x) · (yTAy) ≤
(xTA−1x)∥A∥2∥y∥2. And in the last step, we used the results from Zhou et al. (2020, Lemmas B.3,B.5,C.2) along with
the bound on gradient established earlier.

D. Additional Details on NeuralGCB
We first provide all the pseudo codes for NeuralGCB followed by proof of Theorem 3.

D.1. Pseudo Codes

In Alg. 2, UCB(r)
t and LCB(r)

t refer to the upper and lower confidence scores respectively at time t corresponding to index r
and are defined as UCB(r)

t (·) = f(·;W(r)
t )+βtσ̂

(r)
t (·) and LCB(r)

t (·) = f(·;W(r)
t )−βtσ̂(r)

t (·). The arrays ctr, max mu
and fb are used to store the exploitation count, maximizer of the neural net output and feedback time instants respectively.
The exploitation count is tracked to ensure that the exploitation budget is not exceeded. Similarly, the maximizer of the
neural net output is stored to guide the algorithm in exploitation at the next level and the feedback time instants are used to
keep track of last time instant when the neural net was retrained, or equivalently obtained a feedback. Lastly, υt’s provide
analytical and notational convenience and are not crucial to the working of the algorithm.

GetPredictions is a local routine that calculates the predictive mean and variance after appropriately retraining the neural net
and described in Alg. 3 and used as a sub-routine in NeuralGCB. We would like to emphasize that NeuralGCB computes
only the mean with the trained parameters. The predictive variance is computed using the gradients at initialization. This is
made possible by having an additional ad hoc neural net which is just use to compute the gradients for calculating the
variance. This is similar to the setup used in (Kassraie & Krause, 2022).

After computing the predictive variance for the set of current actions, the GetPredictions routine decides whether the neural
net needs to be retrained based on the previous feedback instant tfb and batch parameter q. In particular, we consider two
training schemes, fixed and adaptive. The fixed frequency scheme retrains the neural net if there are an additional of q points
in Ψ after tfb. Consequently, the neural corresponding to the rth subset in the partition is retrained after every qr points are
added to the subset. On the other hand, in the adaptive scheme, inspired by the rarely switching bandits (Abbasi-Yadkori
et al., 2011; Wang et al., 2021), the neural net is retrained whenever det(V) > q det(Vfb) where V and Vfb are as defined
in line 2 and 3 of Alg. 3. Since log(det(V)/ det(λI)) is a measure of information gain, the neural net is effectively retrained
only once sufficient additional information has been obtained since the last time the neural net was trained. We would like to
point out that in the main text, we only refer to the fixed training scheme due to space constraints. However, our NeuralGCB
works even with the adaptive scheme and the regret guarantees under this training schedule are formalized in Appendix D.

Lastly, TrainNN is another local routine that carries out the training of neural net for a given dataset using gradient descent
for J epochs with a step size of η starting with W0.
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Algorithm 2 NeuralGCB

1: Require: Time horizon T , maximum initial variance σ0, error probability δ
2: Initialize: R← ⌈log2 T ⌉, Ensemble of R Neural Nets with W

(r)
0 = W0, Ψ(r)

0 ← ∅, ∀ r ∈ [R],H ← ∅, arrays ctr,
max mu, fb of size R with all elements set to 0, batch sizes {qr}Rr=1

3: for t = 1, 2, 3, . . . T do
4: r ← 1, Âr(t) = [K]
5: while True do
6: Receive the context-action pairs {xt,a}Ka=1

7: {f(xt,a;W
(r)
t ), σ̂

(r)
t−1(xt,a)}Ka=1,W

(r)
t ,fb[r]← GetPredictions

(
H,Ψ(r)

t−1, {xt,a}Ka=1,fb[r],W
(r)
t−1, qr

)
8: σ̃

(r)
t−1 ← maxa∈Âr(t)

σ̂
(r)
t−1(xt,a), max mu[r]← argmaxa∈Âr(t)

f(xt,a;W
(r)
t−1)

9: if σ̃(r)
t−1 ≤ σ02−r then

10: aUCB ← argmaxa∈Âr(t)
UCB(r)

t−1(xt,a)

11: if σ(r)
t−1(xt,aUCB) ≤ η0/

√
t then

12: Choose at ← aUCB and set υt ← 1
13: Receive yt = h(xt,at) + ξt and updateH ← H∪ {(xt,at , yt)}
14: Set Ψ(r+1)

t ← Ψ
(r+1)
t−1 ∪ {(t, υt)} and Ψ

(r′)
t ← Ψ

(r′)
t−1 for all r′ ∈ [R] \ {r + 1}

15: break
16: else
17: Âr+1(t)← {a ∈ Âr(t) : UCB(r)

t−1(xt,a) ≥ maxa′∈Âr(t)
LCB(r)

t−1(xt,a′)}, r ← r + 1
18: end if
19: else
20: if r = 1 or ctr[r] > α04

r then
21: Choose any at ∈ Âr(t) such that σ̂(r)

t−1(xt,a) > σ02
−r and set υt ← 2

22: else
23: Choose at ← max mu[r − 1] and set υt ← 3
24: end if
25: Receive yt = h(xt,at

) + ξt and updateH ← H∪ {(xt,at
, yt)}, ctr[r]← ctr[r] + 1

26: Set Ψ(r)
t ← Ψ

(r)
t−1 ∪ {(t, υt)} and Ψ

(r′)
t ← Ψ

(r′)
t−1 for all r′ ∈ [R] \ {r}

27: break
28: end if
29: end while
30: end for

D.2. Proof of Theorem 3

To analyse the regret of NeuralGCB, we divide the time horizon into three disjoint sets depending on how the action at that
time instant was chosen. In particular, for i = {1, 2, 3}, we define

Ti(s) := {t ∈ ψ(r)
T : υt = i}

Ti :=
R⋃

r=1

Ti(r).

Thus, T1, T2 andT3 consist of all the points chosen by the chosen algorithm at line 12, 21 and 23 respectively. We consider
the regret incurred at time instants in each of these sets separately. We begin with T1. For any t ∈ T1(r),

h(xt,a∗
t
)− h(xt,at) ≤ f(xt,a∗

t
;W

(r)
t−1) + β̃ + βt−1σ̂

(r−1)
t−1 (xt,a∗

t
)− (f(xt,at ;W

(r)
t−1)− β̃ − βt−1σ̂

(r−1)
t−1 (xt,at))

≤ f(xt,at ;W
(r)
t−1) + β̃ + βt−1σ̂

(r−1)
t−1 (xt,at)− f(xt,at ;W

(r)
t−1) + β̃ + βt−1σ̂

(r−1)
t−1 (xt,at)

≤ 2β̃ + 2βt−1σ̂
(r−1)
t−1 (xt,at

)

≤ 2β̃ +
2η0βt−1√

t
,
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Algorithm 3 GetPredictions

1: Input: Set of past actions and their corresponding rewardsH, Index set Ψ, Current set of actions {xt,a}Ka=1, Previous
feedback instant tfb, Wtfb , Batch choice parameter q

2: Z← λI+ 1
m

∑
i∈Ψ g(xi;W0)g(xi;W0)

⊤

3: Zfb ← λI+ 1
m

∑
i∈Ψ,i≤tfb

g(xi;W0)g(xi;W0)
⊤

4: Set σ2(xt,a)← g(xt,a;W0)
⊤Z−1g(xt,a;W0)/m for all a ∈ [K]

5: For fixed batch size: to train = (|Ψ| − tfb == q)
6: For adaptive batch size: to train = (det(Z) > q det(Zfb))
7: if to train then
8: W← TrainNN(m,L, J, η, λ,W0, {(xr, yr) ∈ H : r ∈ Ψ}), tfb ← |Ψ|
9: else

10: W←Wtfb

11: end if
12: return {f(xt,a;W), σ(xt,a)}Ka=1,W, tfb.

Algorithm 4 TrainNN(m,L, J, η, λ,W0, {(xi, yi)}ni=1)

1: Define L(W) =
∑n

i=1(f(xi;W)− yi)2 +mλ∥W −W0∥2
2: for j = 0, 1, . . . , J − 1 do
3: Wj+1 = Wj − η∇WL(Wj)
4: end for
5: return WJ

where we use Theorem 2 in the first step, β̃ =
Cs,L

λm1/6 and βt =
(
S + ν

√
2
λ log(1/δ) + (1− ηλ)J/2

√
t/λ+

C′
s,L

λm1/6

)
(λ+

C ′′
s,Lt). Since this is independent of r, this relation holds for all t ∈ T1. Consequently, the regret incurred over the time

instants in T1 can be bounded as

∑
t∈T1

h(xt,a∗
t
)− h(xt,at) ≤

∑
t∈T1

[
2β̃ +

2η0βt−1√
t

]
≤ 2β̃|T1|+ 2η0βT

√
T .

We now consider a time instant in T2 or T3. Fix any r > 1 and t ∈ T2(r) ∪ T3(r) which implies that at ∈ Âr(t).
Consequently, xt,at

satisfies the following relation:

f(xt,at ;W
(r−1)
t−1 ) + βt−1σ̂

(r−1)
t−1 (xt,at) ≥ max

a′∈Âr(t)
f(xt,a′ ;W

(r−1)
t−1 )− βt−1σ̂

(r−1)
t−1 (xt,a′)

Note that output of the neural net is based on the parameters evaluated during the last time the neural net was trained, which
we denote by tfb. In other words, f(xt,at

;W
(r−1)
t−1 ) = f(xt,at

;W
(r−1)
tfb ). However, σ̂(r−1)

t−1 is evaluated using all the points
in Ψ

(r)
t−1. We can account for the discrepancy using Lemma 12 from Abbasi-Yadkori et al. (2011) which states that for any

two positive definite matrices A ⪰ B ∈ Rd×d and x ∈ Rd, we have x⊤Ax ≤ x⊤Bx ·
√
det(A)/ det(B). Using this result

along with noting that σ̂(r−1)
t−1 (xt,a) = g⊤(xt,a;W0)V

−1
t−1g(xt,a;W0), σ̂

(r−1)
tfb (xt,a) = g⊤(xt,a;W0)V

−1
tfb g(xt,a;W0)

and Vt−1 ⪰ Vfb, we can conclude that σ̂(r−1)
tfb (xt,a) ≤ σ̂(r−1)

t−1 (xt,a) ·
√

det(Vt−1)/ det(Vfb).

For any batch such that det(Vt)/ det(Vfb) ≤ 4, we have, σ̂(r−1)
tfb (xt,a) ≤ 2σ̂

(r−1)
t−1 (xt,a) for all a ∈ [K]. Consequently,

|h(xt,a) − f(xt,at ;W
(r−1)
tfb )| ≤ β̃ + βtfb σ̂

(r−1)
tfb (xt,a) ≤ β̃ + 2βt−1σ̂

(r−1)
t−1 (xt,a). Thus, for any such batch and a time
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instant t ∈ T2(r), using Theorem 2 we have,

f(xt,at ;W
(r−1)
t−1 ) + βt−1σ̂

(r−1)
t−1 (xt,at) ≥ max

a′∈Âr(t)
f(xt,a′ ;W

(r−1)
t−1 )− βt−1σ̂

(r−1)
t−1 (xt,a′)

=⇒ f(xt,at
;W

(r−1)
tfb ) + βt−1σ̂

(r−1)
t−1 (xt,at

) ≥ f(xt,a∗
t
;W

(r−1)
tfb )− βt−1σ̂

(r−1)
t−1 (xt,a∗)

=⇒ h(xt,at
) + 3βt−1σ̂

(r−1)
t−1 (xt,at

) + β̃ ≥ h(xt,a∗)− 3βt−1σ̂
(r−1)
t−1 (xt,a∗)− β̃.

Since Âr(t) ⊆ Âr−1(t), σ̂
(r−1)
t−1 (xt,a) ≤ σ̃(r−1)

t−1 ≤ σ021−r for all a ∈ Âr(t). Thus,

h(xt,a∗
t
)− h(xt,at) ≤ 3βt−1σ̂

(r−1)
t−1 (xt,a) + 3βt−1σ̂

(r−1)
t−1 (xt,a∗

t
) + 2β̃ ≤ 12σ0βt−1 · 2−r + 2β̃.

Similarly, for a time instant t ∈ T3(r), we have,

h(xt,a∗
t
)− h(xt,at

) ≤ f(xt,a∗
t
;W

(r−1)
tfb ) + β̃ + 2βt−1σ̂

(r−1)
t−1 (xt,a∗

t
)− f(xt,at

;W
(r−1)
tfb ) + β̃ + 2βt−1σ̂

(r−1)
t−1 (xt,at

)

≤ 3βt−1σ̂
(r−1)
t−1 (xt,a∗

t
) + 3βt−1σ̂

(r−1)
t−1 (xt,a) + 2β̃ ≤ 12σ0βt−1 · 2−r + 2β̃

≤ 12σ0βt−1 · 2−r + 2β̃,

where the first step uses Theorem 2 and the last step uses the fact that xt,at ∈ Âr−1(t). For any t ∈ T2(1) ∪ T3(1), we use
the trivial bound h(xt,a∗)− h(xt,at

) ≤ 2.

We now bound |T2(r)| using similar techniques outlined in Valko et al. (2013); Auer (2002). Fix any r ≥ 1. Using the fact
that for all t ∈ T2(r), σ̂(r−1)

t−1 (xt,at
) ≥ σ02−r and the bound on the sum of posterior standard deviations from Chowdhury

& Gopalan (2017, Lemma 4), we can write

σ02
−r|T2(r)| ≤

∑
t∈T2(r)

σ̂
(r−1)
t−1 (xt,at

) ≤
√

8|T2(r)|(λΓk(T ) + 1)

=⇒ |T2(r)| ≤ 2r
√
8σ−2

0 |T2(r)|(λΓk(T ) + 1)

We also used the fact that the information gain of the kernel induced by the finite neural net is close to that of NTK for
sufficiently large m (Kassraie & Krause, 2022, Lemma D.5). This also provides a guideline for setting the length of the

exploration sequence. Specifically, we can set α0 such that |T3(r)| also satisfies |T3(r)| ≤ 2r
√

8σ−2
0 |T3(r)|(λΓk(T ) + 1),

or equivalently, α0 = O(Γk(T )). In general, we have |T3(r)| ≤ α04
r =⇒ |T3(r)| ≤ 2r

√
α0|T3(r)|.

We can use these conditions to bound the regret incurred for t ∈ T ′
2 , the subset of T2 that consists only of batches that satisfy

the determinant condition. We have,

∑
t∈T ′

2

h(xt,a∗
t
)− h(xt,at) ≤

R∑
r=1

∑
t∈T ′

2 (r)

h(xt,a∗
t
)− h(xt,at)

≤ |T2(1)|+
R∑

r=2

∑
t∈T2(r)

[
12σ0βt−1 · 2−r + 2β̃

]

≤ |T2(1)|+
R∑

r=2

[
12σ0βt−1 · 2−r + 2β̃

]
|T2(r)|

≤ |T2(1)|+ 2β̃|T2|+
R∑

r=2

(12σ0βt−1 · 2−r) · 2r
√

8σ−2
0 |T2(r)|(λΓk(T ) + 1)

≤ |T2(1)|+ 2β̃|T2|+ 12βT
√
8|T2|R(λΓk(T ) + 1),
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where we used Cauchy-Schwarz inequality in the last step. Using a similar analysis, we can bound the regret incurred for
t ∈ T ′

3 , which is defined similarly to T ′
2 , to obtain,∑

t∈T ′
3

h(xt,a∗
t
)− h(xt,at

) ≤ |T3(1)|+ 2β̃|T3|+ 12βT
√
8|T3|Rα0.

Now, for batches for which the determinant condition is not satisfied, the regret incurred in any batch corresponding to
subset index r can be trivially bounded as qr. We show that the number of such batches is bounded by O(Γk(T )). Fix a
r ≥ 1. Let there be Br such batches for which the determinant condition is not satisfied and T ′(r) denote the set of time
instants at which such batches begin. Then,

4Br ≤
∏

t∈T ′(r)

det(Vt+qr )

det(Vt)
≤ det(VT+1)

det(λI)
.

Since log (det(VT+1)/ det(λI)) isO(Γk(T )), we can conclude that Br is alsoO(Γk(T )). Thus, regret incurred in all such
batches can be bounded as O(maxr qrΓk(T ) log T ) as there are R = log T batches.

We can combine the two cases to obtain the regret incurred over T2 and T3 as∑
t∈T2

h(xt,a∗
t
)− h(xt,at

) ≤ |T2(1)|+ 2β̃|T2|+ 12βT
√

8|T2|R(λΓk(T ) + 1) +O(max
r
qrΓk(T ) log T )∑

t∈T3

h(xt,a∗
t
)− h(xt,at

) ≤ |T3(1)|+ 2β̃|T3|+ 12βT
√

8|T3|Rα0 +O(max
r
qrΓk(T ) log T ).

The overall regret is now obtained by adding the regret incurred over T1, T2 and T3. We have,

R(T ) =

T∑
t=1

h(xt,a∗)− h(xt,at)

=
∑
t∈T1

h(xt,a∗)− h(xt,at
) +

∑
t∈T2

h(xt,a∗)− h(xt,at
) +

∑
t∈T3

h(xt,a∗)− h(xt,at
)

≤ 2β̃(|T1|+ |T2|+ |T3|) + |T2(1)|+ |T3(1)|+ 2η0βT
√
T + 12βT

√
8|T3|Rα0

+ 12βT
√
8|T2|R(λΓk(T ) + 1) +O(max

r
qrΓk(T ) log T )

≤ 2β̃T + 2η0βT
√
T + 12βT

√
8T (λΓk(T ) + 1 + α0) +O(max

r
qrΓk(T ) log T ),

where we again use the Cauchy Schwarz inequality in the last step along with the fact that |T2(1)| and |T3(1)| satisfy
O(Γk(T )). Since m ≥ poly(T ), the first term β̃T is O(1) and using the values of J and η specified in Assumption 2 along
with the bound on m, we have βT ≤ β ≤ 2S + ν

√
2λ−1 log(1/δ). Consequently, the regret incurred by NeuralGCB

satisfies O(
√
TΓk(T ) log(1/δ) +

√
TΓk(T ) +

√
T log(1/δ) + maxr qrΓk(T ) log T ).

The above analysis carries through almost as is for the case of adaptive batch sizes. Since the batches always satisfy the
determinant condition with qr instead of 4, we do not need to separately consider the case where the determinant condition
is not met. Using the same steps as above, we can conclude that the regret incurred by NeuralGCB when run with adaptive
step sizes is O(

√
TΓk(T ) log(1/δ) ·maxr

√
qr). Thus for the adaptive case, we incur an additional multiplicative factor.

This can be explained by the fact that in the adaptive batch setting, the number of times the neural nets are retrained is
O(Γk(T )). However, in the fixed batch setting, even if we use the optimal batch size of

√
T/Γk(T ), we end up retraining

the neural nets about O(
√
TΓk(T )) times, which is more than in the case of the adaptive batch setting. The more frequent

of retraining of neural nets helps us achieve a tighter regret bound in the case of fixed batch setting.

E. Empirical Studies
In this section, we provide further details of the setup used during our experiments. For completeness, we first restate the
construction and preprocessing of the datasets followed by the experimental setup. We then provide the complete array of
results for the all the algorithm on different datasets.
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E.1. Datasets

For each of the synthetic datasets, we construct a contextual bandit problem with a feature dimension of d = 10 and K = 4
actions per context running over a time horizon of T = 2000 rounds. The set of context vectors {{xt,a}Ka=1}Tt=1 are drawn
uniformly from the unit sphere. Similar to Zhou et al. (2020), we consider the following three reward functions:

h1(x) = 4|a⊤x|2; h2(x) = 4 sin2(a⊤x); h3(x) = ∥Ax∥2. (27)

For the above functions, the vector a is drawn uniformly from the unit sphere and each entry of matrix A is randomly
generated from N (0, 0.25).

We also consider two real datasets for classification namely Mushroom and Statlog (Shuttle), both of which are available on
the UCI repository (Dua & Graff, 2017).

Mushroom: The Mushroom dataset consists of 8124 samples with 22 features where each data point is labelled as an
edible or poisonous mushroom, resulting in a binary classification problem. For the purpose of the experiments, we carry out
some basic preprocessing on this dataset. We drop the attributed labeled “veil-type” as it is the same for all the datapoints
resulting in a d = 21 dimensional feature vector. Furthermore, we randomly select 1000 points from each class to create a
smaller dataset of size 2000 to run the experiements.

Statlog: The Statlog (Shuttle) dataset consists of 58000 entries with d = 7 attributes (we do not consider time as an
attribute) each. The original dataset is divided into 7 classes. Since the data is skewed, we convert this into a binary
classification problem by combining classes. In particular, we combine the five smallest classes, namely, 2, 3, 5, 6, 7 and
combine them to form a single class and drop class 4 resulting in a binary classification problem, with points labelled as 1
forming the first class and ones with labels in {2, 3, 5, 6, 7} forming the second. Once again, we select a subset of 2000
points by randomly choosing 1000 points from each class to use for the experiments. Lastly, we normalize the features of
this dataset.

The classification problem is then converted into a contextual bandit problem using techniques outlined in (Li et al., 2010),
which is also adopted in Zhou et al. (2020) and (Gu et al., 2021). Specifically, each datapoint in the dataset (x, y) ∈ Rd ×R
is transformed into K vectors of the form x(1) = (x,0, . . . ,0) . . . ,x(K) = (0, . . . ,0,x) ∈ RKd corresponding to the K
actions associated with context x. Here K denotes the number of classes in the original classification problem. The reward
function is set to h(x(k)) = 1{y = k}, that is, the agent receives a reward of 1 if they classify the context correctly and 0
otherwise. As mentioned above, we have d = 21 for Mushroom dataset and d = 7 for the Shuttle dataset and K = 2 for
both of them.

E.2. Experimental Setting

For all the experiments, the rewards are generated by adding zero mean Gaussian noise with a standard deviation of 0.1 to
the reward function. All the experiments are run for a time horizon of T = 2000. We report the regret averaged over 10
Monte Carlo runs with different random seeds along with an error bar of one standard deviation on either side. For all the
datasets, we generate new rewards for each Monte Carlo run by changing the noise. Furthermore, for the real datasets, we
also shuffle the context vectors for each Monte Carlo run.

Setting the hyperparameters: For all the algorithms, the parameter ν, the standard deviation proxy for the sub-Gaussian
noise, to 0.1, the standard deviation of the Gaussian noise added. Also, the RKHS norm of the reward, S to 4 for synthetic
functions, and 1 for real datasets in all the algorithms. For all the experiments, we perform a grid search for λ and η over
{0.05, 0.1, 0.5} and {0.001, 0.01, 0.1}, respectively, for each algorithm and choose the best ones for the corresponding
algorithm and reward function. The exploration parameter βt is set to the value prescribed by each algorithm. For
NeuralUCB and NeuralTS, the prescribed value for the exploration parameter in the original work was given as:

βt = β0

(
ν

√
log

(
det(Vt)

det(λI)

)
+ C2m−1/6

√
logmL4t5/3λ−1/6 + 2 log(1/δ) + S

)
+ (λ+ C3tL)

[
(1− ηmλ)J/2

√
t/λ+m−1/6

√
logmL7/2t5/3λ−5/3(1 +

√
t/λ)

]
,
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where β0 =
√
1 + C1m−1/6

√
logmL4t7/6λ−7/6. We ignore the smaller order terms and set βt = 2S +

ν

√
log
(

det(Vt)
det(λI)

)
+ 2 log(1/δ) as (λ+ C3tL)(1− ηmλ)J/2

√
t/λ ≤ S for given choice of parameters as shown in Zhou

et al. (2020). For NeuralGCB and SupNNUCB, we apply the same process of ignoring the smaller order terms and bounding

the additional constant term by S to obtain βt = 2S+ν
√

2
λ log(1/δ), which is used in the algorithms. Also for NeuralGCB,

η0 was set to 0.2 and α0 to 20 log T , as suggested in Sec. D, for all experiments. The number of epochs is set to 200 for
synthetic datasets and Mushroom, and to 400 for Statlog.

Neural Net architecture: We consider a 2 layered neural net as described in Equation (2) for all the experiments. We
perform two different sets of experiments with two different activation functions, namely σ1 (or equivalently, ReLU) and σ2.
For the experiments with σ1 as the activation, we set the number of hidden neurons to m = 20 and m = 50 for synthetic
and real datasets respectively. For those with σ2, m is set to 30 and 80 for synthetic and real datasets, respectively.

Training Schedule: For the experiments with sequential algorithms, we retrain the neural nets at every step, including
NeuralGCB. For the batched algorithms, we consider a variety of training schedules. Particularly, for each setting (i.e.,
dataset and activation function) we consider two fixed and two adaptive batch size training schedules, which are denoted
by F1, F2 and A1, A2 respectively. We specify the training schedules below for different dataset and activation functions
beginning with those for σ1 (ReLU). These were chosen to ensure that both algorithms have roughly the same running time
to allow for a fair comparison.

1. For Batched NeuralUCB run on a synthetic function:

• F1: 200 batches, or equivalently retrain after every 10 steps.
• F2: 300 batches, or equivalently retrain after every 6− 7 steps.
• A1: q = 2

• A2: q = 3

2. For Batched NeuralUCB run on Mushroom:

• F1: 100 batches, or equivalently retrain after every 20 steps.
• F2: 200 batches, or equivalently retrain after every 10 steps.
• A1: q = 500

• A2: q = 700

3. For Batched NeuralUCB run on Shuttle:

• F1: 100 batches, or equivalently retrain after every 20 steps.
• F2: 200 batches, or equivalently retrain after every 10 steps.
• A1: q = 5

• A2: q = 10

4. For NeuralGCB run on a synthetic function:

• F1: q1 = 4, q2 = 20, qr = 40 for r ≥ 3 (i.e., retrain after qr steps)
• F2: q1 = 2, q2 = 10, qr = 20 for r ≥ 3.
• A1: q1 = 1.2, q2 = 1.8, qr = 2.7 for r ≥ 3.
• A2: q1 = 1.5, q2 = 2.25, qr = 3.375 for r ≥ 3.

5. For NeuralGCB run on Mushroom:

• F1: q1 = 20, q2 = 40, qr = 80 for r ≥ 3 (i.e., retrain after qr steps)
• F2: q1 = 10, q2 = 20, qr = 40 for r ≥ 3.
• A1: q1 = 300, q2 = 1200, qr = 4800 for r ≥ 3.
• A2: q1 = 500, q2 = 2000, qr = 8000 for r ≥ 3.

6. For NeuralGCB run on Shuttle:
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• F1: q1 = 20, q2 = 40, qr = 80 for r ≥ 3 (i.e., retrain after qr steps)
• F2: q1 = 10, q2 = 20, qr = 40 for r ≥ 3.
• A1: q1 = 5, q2 = 12.5, qr = 31.25 for r ≥ 3.
• A2: q1 = 10, q2 = 25, qr = 62.5 for r ≥ 3.

Similarly, for σ2, the training schedules are given as follows:

1. For Batched NeuralUCB run on a synthetic function:

• F1: 200 batches, or equivalently retrain after every 10 steps.
• F2: 300 batches, or equivalently retrain after every 6− 7 steps.
• A1: q = 3

• A2: q = 4

2. For Batched NeuralUCB run on Mushroom:

• F1: 100 batches, or equivalently retrain after every 20 steps.
• F2: 200 batches, or equivalently retrain after every 10 steps.
• A1: q = 500

• A2: q = 700

3. For Batched NeuralUCB run on Shuttle:

• F1: 50 batches, or equivalently retrain after every 40 steps.
• F2: 100 batches, or equivalently retrain after every 20 steps.
• A1: q = 5

• A2: q = 10

4. For NeuralGCB run on a synthetic function:

• F1: q1 = 4, q2 = 20, qr = 40 for r ≥ 3 (i.e., retrain after qr steps)
• F2: q1 = 2, q2 = 10, qr = 20 for r ≥ 3.
• A1: q1 = 1.2, q2 = 1.8, qr = 2.7 for r ≥ 3.
• A2: q1 = 1.5, q2 = 2.25, qr = 3.375 for r ≥ 3.

5. For NeuralGCB run on Mushroom:

• F1: q1 = 10, q2 = 30, qr = 60 for r ≥ 3 (i.e., retrain after qr steps)
• F2: q1 = 10, q2 = 20, qr = 40 for r ≥ 3.
• A1: q1 = 300, q2 = 1200, qr = 4800 for r ≥ 3.
• A2: q1 = 500, q2 = 2000, qr = 8000 for r ≥ 3.

6. For NeuralGCB run on Shuttle:

• F1: q1 = 5, q2 = 12, qr = 31 for r ≥ 3 (i.e., retrain after qr steps)
• F2: q1 = 5, q2 = 10, qr = 20 for r ≥ 3 (i.e., retrain after qr steps)
• A1: qr = 3 for all r
• A2: qr = 4 for all r

We use this notation of F1, F2, A1 and A2 to refer to the training schedules in the plots shown in the next section.
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(a) h1(x) with σ1(x)
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(b) h1(x) with σ2(x)
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(c) h1(x) with fixed batch and σ1(x)
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(d) h1(x) with adaptive batch and
σ1(x)
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(e) h1(x) with fixed batch and σ2(x)
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(f) h1(x) with adaptive batch and
σ2(x)

Figure 2: Plots with reward function h1(x)

E.3. Plots

In this section, we plot the performance of NeuralGCB against several baselines for different experimental setups and reward
functions. For each reward function, we plot the following 6 figures:

• Fig. (a): We plot the cumulative regret against time (number of rounds) for various baselines for the case where the
activation function of the underlying neural net is σ1, or equivalently, ReLU.

• Fig (b): We plot the cumulative regret against time (number of rounds) for various baselines for the case where the
activation function of the underlying neural net is σ2.

• Fig (c)-(f): We compare the regret and running time (in seconds) between the batched and the sequential versions of
NeuralUCB and NeuralGCB. We plot the regret incurred against time taken (running time, in seconds) for Batched-
NeuralUCB (BNUCB), (Batched)-NeuralGCB (BNGCB), NeuralUCB (NUCB-seq), (Sequential) NeuralGCB (NGCB-
seq) under different training schedules for 10 different runs. In particular, in (c) and (e), we consider fixed batch sizes
with σ1 and σ2 as activation functions respectively and in (d) and (f) with consider adaptive batch sizes with σ1 and σ2
as activation functions respectively. The batch sizes used in the plots are described in the previous section.

From the figures, it is evident that NeuralGCB outperforms all other existing algorithms on variety of datasets, including
both synthetic and real world datasets. Moreover, the conclusion holds equally well for different activation functions,
further bolstering the practical efficiency of the proposed algorithm. Additionally, it can be noted that the regret
incurred by the algorithms in experiments with σ2 as the activation is less than that for the experiments with σ1 as the
activation, thereby demonstrating the effect of smooth kernels on the performance of the algorithms in practice. we
would like to point out that we only focus on algorithms with theoretical guarantees in this study. There are various
approximate TS algorithms that also have good empirical performance (Riquelme et al., 2018) but lack such provable
efficiency, which is central to the motivation of our paper. In addition, the formulation of contextual bandits in Riquelme
et al. (2018) is different from the usual one in the literature (Valko et al., 2013; Zhou et al., 2020; Zhang et al., 2021;
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(a) h2(x) with σ1(x)
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(b) h2(x) with σ2(x)
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(c) h2(x) with fixed batch and σ1(x)
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(d) h2(x) with adaptive batch and
σ1(x)
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(e) h2(x) with fixed batch and σ2(x)
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(f) h2(x) with adaptive batch and
σ2(x)

Figure 3: Plots with reward function h2(x)
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(a) h3(x) with σ1(x)
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(b) h3(x) with σ2(x)
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(c) h3(x) with fixed batch and σ1(x)
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(d) h3(x) with adaptive batch and
σ1(x)
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(e) h3(x) with fixed batch and σ2(x)
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Figure 4: Plots with reward function h3(x)
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(a) Mushroom with σ1(x)
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(b) Mushroom with σ2(x)
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(c) Mushroom with fixed batch and
σ1(x)

200 300 400 500 600
Time (in seconds)

200

250

300

350

400

450

500

550

Re
gr

et

BNUCB-A1
BNUCB-A2
NGCB-A1
NGCB-A2
NUCB-seq
NGCB-seq

(d) Mushroom with adaptive batch
and σ1(x)
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(e) Mushroom with fixed batch and
σ2(x)
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(f) Mushroom with adaptive batch and
σ2(x)

Figure 5: Plots for the dataset Mushroom
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(a) Statlog with σ1(x)
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(b) Statlog with σ2(x)
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(c) Statlog with fixed batch and σ1(x)
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(d) Statlog with adaptive batch and
σ1(x)
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(e) Statlog with fixed batch and σ2(x)
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(f) Statlog with adaptive batch and
σ2(x)

Figure 6: Plots for the dataset Statlog (Shuttle)
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Gu et al., 2021; Kassraie & Krause, 2022), considered in our work, which also makes a direct empirical comparison infeasible.

Lastly, the extensive study with different training schedules shows that batched version performs almost as well as the
fully sequential version in terms of regret on all the datasets while having a considerably smaller running time. It can be
noted from the plots that NeuralGCB has a superior performance compared to Batched-NeuralUCB in terms of regret for
comparable running times on different datasets and with different activation functions which further strengthens the case of
NeuralGCB as a practically efficient algorithm.

All the experiments were carried out using Python3 on a computer (CPU) with 12 GB RAM and Intel i7 processor (3.4
GHz) with an overall compute time of around 250-300 hours.
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