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ABSTRACT

Model-free reinforcement learning algorithms have seen remarkable progress, but
key challenges remain. Trust Region Policy Optimization (TRPO) is known for
ensuring monotonic policy improvement through conservative updates within a
trust region, backed by strong theoretical guarantees. However, its reliance on
complex second-order optimization limits its practical efficiency. Proximal Policy
Optimization (PPO) addresses this by simplifying TRPO’s approach using ratio
clipping, improving efficiency but sacrificing some theoretical robustness. This
raises a natural question: Can we combine the strengths of both methods? In
this paper, we introduce Simple Policy Optimization (SPO), a novel unconstrained
first-order algorithm. SPO integrates the surrogate objective with Total Variation
(TV) divergence instead of Kullback-Leibler (KL) divergence, achieving a bal-
ance between the theoretical rigor of TRPO and the efficiency of PPO. Our new
objective improves upon ratio clipping, offering stronger theoretical properties and
better constraining the probability ratio within the trust region. Empirical results
demonstrate that SPO outperforms PPO with a simple implementation, particu-
larly for training large, complex network architectures end-to-end.
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Figure 1: The performance of SPO compared to PPO across 35 games in Atari 2600.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has achieved great success in recent years, notably in board
games (Silver et al., 2016; 2017; 2018), video games (Mnih et al., 2015; Berner et al., 2019; Vinyals
et al., 2019; Ye et al., 2020), autonomous driving (Kiran et al., 2021; Zhu & Zhao, 2021; Teng et al.,
2023), and robotics (Makoviychuk et al., 2021; Brunke et al., 2022; Han et al., 2023). Policy gradient
(PG) methods (Sutton & Barto, 2018; Lehmann, 2024), as a major paradigm in RL, have been widely
adopted by the academic community. One main practical challenge of PG methods is to reduce the
variance of the gradients while keeping the bias low (Sutton et al., 2000; Schulman et al., 2015b). In
this context, a widely used technique is to add a baseline (usually the value function) when sampling
an estimate of the action-value function (Greensmith et al., 2004). Another challenge of PG methods
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Figure 2: Optimization behavior of PPO (left) and SPO (middle). The optimization process of PPO
and SPO in the Hopper-v4 environment is visualized, with the red line representing the probability
ratio bound. Although PPO achieves better optimization of the surrogate objective, it does so by
breaking the ratio constraints. In contrast, SPO optimizes the objective more effectively while ad-
hering to the constraint.

is to estimate the proper step size for the policy update (Kakade & Langford, 2002; Schulman et al.,
2015a). Given that the training data strongly depends on the current policy, a large step size may
result in a collapse of policy performance, whereas a small one may impair the sample efficiency of
the algorithm.

To address these challenges, in Trust Region Policy Optimization (TRPO), Schulman et al. (2015a)
proved that minimizing a certain surrogate objective guarantees policy improvement with non-trivial
step sizes. Subsequently, the TRPO algorithm was derived through a series of approximations,
which impose a trust region constraint during the policy iterations, leading to monotonic policy im-
provement in theory. However, given the complexity of second-order optimization, TRPO is highly
inefficient and can be hard to extend to large-scale RL environments. Proximal Policy Optimization
(PPO) (Schulman et al., 2017) is designed to enforce comparable constraints on the difference be-
tween successive policies during the training process, while only using first-order optimization. By
clipping the current data that exceeds the probability ratio limit to a constant, PPO attempts to re-
move the high incentive for pushing the current policy away from the old one. It has been shown that
PPO can be effectively extended to large-scale complex control tasks (Ye et al., 2020; Makoviychuk
et al., 2021).

Despite its success, the optimization behavior of PPO remains insufficiently understood. Although
PPO aims to constrain the probability ratio deviations between successive policies, it often fails to
keep these ratios within bounds (Ilyas et al., 2018; Engstrom et al., 2020). In some tasks, the ratios
can even escalate to values as high as 401 (Wang et al., 2020). Furthermore, studies have revealed
that PPO’s performance is highly dependent on “code-level optimizations” (Andrychowicz et al.,
2021). The implementation of PPO includes numerous code-level details that critically influence its
effectiveness (Engstrom et al., 2020; Huang et al., 2022a;b).

In this paper, we propose a new algorithm named Simple Policy Optimization (SPO) designed to
more effectively bound probability ratios through a novel objective function. The differences in
optimization behavior between PPO and SPO are illustrated in Fig. 2. Our main contributions are
as follows:

• We theoretically prove that optimizing a tighter performance lower bound using Total Vari-
ation (TV) divergence constrained space results in more consistent policy improvement.

• To overcome PPO’s limitation in constraining probability ratios, we propose a new objec-
tive function, leading to the development of the proposed SPO algorithm.

• Experiments benchmark various policy gradient algorithms across different environments,
showing that SPO can achieve competitive performance with a simple implementation,
improved sample efficiency, and easier training of deeper policy networks.

1The clipping parameter ϵ is set to 0.2, so the upper clipping range is 1.2.
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2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING

Online reinforcement learning is a mathematical framework for sequential decision-making, which
is generally defined by the Markov Decision Process (MDP)M = (S,A, r,P, ρ0, γ), where S and
A represent the state space and action space, r : S×A 7→ R is the reward function, P : S×A×S 7→
[0, 1] is the probability distribution of the state transition function, ρ0 : S 7→ [0, 1] is the initial state
distribution, while γ ∈ (0, 1] is the discount factor.

Suppose that an agent interacts with the environment following policy π, i.e., a ∼ π(·|s) and obtains
a trajectory τ = (s0, a0, r0, . . . , st, at, rt, . . . ), where rt = r(st, at). The goal of RL is to learn a
policy that maximizes the expected return Eτ∼π [

∑∞
t=0 γ

trt]
2. The state-value function and value

function are defined as

Qπ(st, at) = Est+1,at+1,...

[ ∞∑
k=0

γkr(st+k, at+k)

]
, Vπ(st) = Eat∼π(·|st) [Qπ(st, at)] . (1)

Given Qπ and Vπ , the advantage function can be expressed as Aπ(st, at) = Qπ(st, at)− Vπ(st).

2.2 TRUST REGION POLICY OPTIMIZATION

Classic policy gradient methods cannot reuse data and are highly sensitive to the hyperparameters.
To address these issues, in Trust Region Policy Optimization (TRPO), Schulman et al. (2015a)
derived a lower bound for policy improvement. Before that, Kakade & Langford (2002) first proved
the following policy performance difference theorem:
Theorem 2.1. (Kakade & Langford, 2002) Let P(st = s|π) represents the probability of the
t-th state equals to s in trajectories generated by the agent following policy π, and ρπ(s) =∑∞

t=0 γ
tP(st = s|π) represents the unnormalized discounted visitation frequencies. Given any

two policies, π and π̃, their performance difference can be measured by

η(π̃)− η(π) = Es∼ρπ̃(·),a∼π̃(·|s) [Aπ(s, a)] =
∑
s

ρπ̃(s)
∑
a

π̃(a|s) ·Aπ(s, a), (2)

where η(π) = Eτ∼π [
∑∞

t=0 γ
tr(st, at)]. The notation Eτ∼π indicates the expected return of the

trajectory τ generated by the agent following policy π, i.e., s0 ∼ ρ0(·), at ∼ π(·|st), rt ∼
r(st, at), st+1 ∼ P(·|st, at).

The proof of Theorem 2.1 see Appendix F. The key intuition is that the new policy π̃ will improve
(or remain constant) as long as it has a nonnegative expected advantage at every state s. Then, define
Lπ(π̃) = η(π) + Es∼ρπ(·),a∼π̃(·|s) [Aπ(s, a)], the following performance lower bound is given:
Theorem 2.2. (Schulman et al., 2015a) Given any two policies, π and π̃, the following bound holds:

η(π̃) ≥ Lπ(π̃)−
4ϵγ

(1− γ)2
·Dmax

TV (π, π̃)2, (3)

where ϵ = maxs,a |Aπ(s, a)|, DTV(p, q) = 1
2

∑
|pi − qi| is the Total Variation (TV) divergence

and Dmax
TV means maxs DTV.

Given this lower bound, we can actually achieve the monotonic improvement of policy performance.
According to the inequality between the TV divergence and the KL divergence DTV(π, π̃)

2 ≤
DKL(π, π̃), we have η(π̃) ≥ Lπ(π̃) − 4ϵγ

(1−γ)2 · D
max
KL (π, π̃). Then, define Mπ(π̃) = Lπ(π̃) − C ·

Dmax
KL (π, π̃), where C = 4ϵγ/(1− γ)2. It follows that η(π̃) ≥Mπ(π̃) and η(π) = Mπ(π).

Consequently, the difference η(π̃)−η(π) is bounded below by Mπ(π̃)−Mπ(π). This implies that the
original objective η can be optimized indirectly by maximizing the lower bound Mπ . Specifically,

η(π̃)− η(π) ≥Mπ(π̃)−Mπ(π) = Es∼ρπ(·),a∼π(·|s)

[
π̃(a|s)
π(a|s)

·Aπ(s, a)

]
−C ·Dmax

KL (π, π̃). (4)

2Note that we are discussing an infinite-horizon Markov Decision Process (MDP) here. For a finite MDP of
length T , all reward values beyond T are set to zero.
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At this point, the subscripts of the expectation in Eq. (2) are replaced from s ∼ ρπ̃(·) and a ∼ π̃(·|s)
to s ∼ ρπ(·) and a ∼ π(·|s), which means that we can now reuse the current data. Through
a heuristic approximation, the maximum KL divergence Dmax

KL in Eq. (4) is approximated as the
average KL divergence and then used as a constraint to obtain the formalization of TRPO:

max
θ

E(st,at)∼πθold

[
πθ(at|st)
πθold(at|st)

· Â(st, at)

]
,

s.t. E [DKL(πθold , πθ)] ≤ δ.

(5)

This problem includes a constraint where δ is a hyperparameter that limits the KL divergence be-
tween successive policies, typically set to 0.01. Â(st, at) is an estimate of the advantage function,
and the objective is called “surrogate objective”.

2.3 PROXIMAL POLICY OPTIMIZATION

Due to the necessity of solving a constrained optimization problem (5) in each update, TRPO is
highly inefficient and can be challenging to apply to large-scale reinforcement learning tasks.

Schulman et al. (2017) proposed a new objective called “clipped surrogate objective”, in which the
algorithm is named Proximal Policy Optimization (PPO). PPO retains some of the benefits of TRPO
but is much easier to implement and involves only unconstrained first-order optimization.

The “clipped surrogate objective”, also called PPO-Clip, adopts a ratio clipping function, which is

Jclip(θ) = E
(st,at)∼πθold

{
min

[
rt(θ) · Â(st, at), clip (rt(θ), 1− ϵ, 1 + ϵ) · Â(st, at)

]}
, (6)

where

rt(θ) =
πθ(at|st)
πθold(at|st)

, clip (rt(θ), 1− ϵ, 1 + ϵ) =


1− ϵ, rt(θ) < 1− ϵ;

rt(θ), 1− ϵ ≤ rt(θ) ≤ 1 + ϵ;

1 + ϵ, rt(θ) > 1 + ϵ.

(7)

The gradient of PPO-Clip, given the training data (st, at), can be expressed as follows:

∇θJclip(θ) =


∇θrt(θ) · Â(st, at), Â(st, at) > 0, rt(θ) ≤ 1 + ϵ;

∇θrt(θ) · Â(st, at), Â(st, at) < 0, rt(θ) ≥ 1− ϵ;

0, otherwise.

(8)

In other words, PPO-Clip aims to remove the high incentive for pushing the current policy away from
the old one. PPO-Clip has gained wide adoption in the academic community due to its simplicity
and superior performance.

3 METHODOLOGY

PPO attempts to limit the differences between successive policies through ratio clipping. However,
Wang et al. (2020) proved the following theorem:

Theorem 3.1. (Wang et al., 2020) Assume that for discrete action space tasks where |A| ≥ 3 or
continuous action space tasks where the output of the policy πθ follows a multivariate Gaussian
distribution. Let Θ = {θ|1− ϵ ≤ rt(θ) ≤ 1 + ϵ}, we have supθ∈Θ DKL(πθold(·|st), πθ(·|st)) =
+∞ for both discrete and continuous action space tasks.

Theorem 3.1 demonstrates that the KL divergence DKL(πθold(·|st), πθ(·|st)) is not necessarily
bounded even if the probability ratio rt(θ) is bounded. However, this theorem considers only an
extreme case involving a single data point, which is less typical than the batch processing used in
training data. On a broader scale, the clipped ratio strategy employed by Proximal Policy Opti-
mization (PPO) aims to bound the total variation (TV) divergence for sufficient batch sizes. This

relationship is formalized as Dmax
TV (π, π̃)2 = 1

4 maxs

[
Ea∼π(·|s)

∣∣∣ π̃(a|s)π(a|s) − 1
∣∣∣]2. Details on how this

4
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bounding strategy relates to the probability ratio are provided in Appendix G. Furthermore, using
this approach, the performance lower bound (3) can be expressed as

η(π̃) ≥ Lπ(π̃)−
4ϵγ

(1− γ)2
· 1
4
max

s

[
Ea∼π(·|s)

∣∣∣∣ π̃(a|s)π(a|s)
− 1

∣∣∣∣]2 . (9)

Similar to (4), the performance difference lower bound of PPO can be derived (Queeney et al., 2021):

η(π̃)−η(π) ≥ Es∼ρπ(·),a∼π(·|s)

[
π̃(a|s)
π(a|s)

·Aπ(s, a)

]
− C

4
·max

s

[
Ea∼π(·|s)

∣∣∣∣ π̃(a|s)π(a|s)
− 1

∣∣∣∣]2 . (10)

Finally, we also found that PPO, which aims to bound the TV divergence, can offer a larger solution
space compared to methods that incorporate a looser KL divergence as a constraint (e.g., TRPO). To
illustrate this, we present the following proposition:

Proposition 3.2. Given any state s ∈ S and the old policy π, define the solution spaces under the
TV and KL divergence constraints as follows:

ΩTV = {π̃ | DTV [π(·|s), π̃(·|s)]2 ≤ δ, ∀s ∈ S}, ΩKL = {π̃ | DKL [π(·|s), π̃(·|s)] ≤ δ, ∀s ∈ S},
(11)

where δ is a predefined threshold. Under these constraints, we establish that ΩKL ⊂ ΩTV.

Proof. For any s ∈ S and π̃ ∈ ΩKL, using Pinsker’s inequality, we have DTV [π(·|s), π̃(·|s)]2 ≤
DKL [π(·|s), π̃(·|s)] ≤ δ, therefore π̃ ∈ ΩTV, which means ΩKL ⊂ ΩTV, concluding the proof.

Additionally, the optimal solution to the performance difference lower bound in the TV divergence-
constrained space, ΩTV, is expected to be superior. We now present the following theorem:

Theorem 3.3. Given the old policy π, and ΩTV,ΩKL presented in Proposition 3.2, let

LTV
π (π̃) = Lπ(π̃)−Lπ(π)−C ·Dmax

TV (π, π̃)2, LKL
π (π̃) = Lπ(π̃)−Lπ(π)−C ·Dmax

KL (π, π̃) (12)

be the lower bounds of performance improvement with TV divergence and KL divergence. Denote
π̃∗
TV = argmax

π̃∈ΩTV

LTV
π (π̃) and π̃∗

KL = argmax
π̃∈ΩKL

LKL
π (π̃), then LTV

π (π̃∗
TV) ≥ LKL

π (π̃∗
KL).

Proof. Since ΩKL ⊂ ΩTV, we have

LTV
π (π̃∗

TV) ≥ LTV
π (π̃∗

KL) = Lπ(π̃
∗
KL)− Lπ(π)− C ·Dmax

TV (π, π̃∗
KL)

2

≥ Lπ(π̃
∗
KL)− Lπ(π)− C ·Dmax

KL (π, π̃∗
KL) = LKL

π (π̃∗
KL),

(13)

concluding the proof.

Based on the Proposition 3.2 and Theorem 3.3, we have the following conclusion:

Conclusion

Optimizing the lower bound with TV divergence constrains offers a more effective solution
space than using KL divergence constrains, leading to better policy improvement.

As a result, we aim to solve the following constrained optimization problem:

max
θ

E(st,at)∼πθold

[
πθ(at|st)
πθold(at|st)

· Â(st, at)

]
,

s.t.
∣∣∣∣ πθ(at|st)
πθold(at|st)

− 1

∣∣∣∣ ≤ ϵ, ∀(st, at) ∼ πθold .

(14)

Notably, similar forms have already been obtained in previous work (Vuong et al., 2018). PPO
attempts to satisfy the constraints of (14) through ratio clipping, but this does not prevent excessive
ratio deviations (see Fig. 2). The underlying reason, however, is that ratio clipping causes certain
data points to stop contributing to the gradient updates according to (8). Over multiple iterations,

5
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Algorithm 1 Simple Policy Optimization (SPO)

1: Initialize: Policy network πθ, value network Vϕ, probability ratio deviation hyperparameter ϵ,
value loss coefficient c1, policy entropy coefficient c2

2: Output: Optimal policy network πθ∗

3: while not converged do
# Data collection

4: Collect data X = {(si, ai, ri)}Ni=1 using the current policy network πθ

# The networks before updating
5: πθold ← πθ, Vϕold

← Vϕ

# Estimate the advantage Â(st, at) based on Vϕold

6: Use GAE (Schulman et al., 2015b) technique to estimate the advantage Â(st, at)

# Estimate the return R̂t

7: R̂t ← Vϕold
(st) + Â(st, at)

8: for each training epoch do
# Compute policy loss Lp (This is the only difference between SPO and PPO)

9: Lp ← −
{
rt(θ) · Â(st, at)− |Â(st,at)|

2ϵ · [rt(θ)− 1]
2
}

# Compute policy entropy Le and value loss Lv

10: Le ← H(πθ(·|st)), Lv ← 1
2 [Vϕ(st)− R̂t]

2

# Compute total loss L
11: L ← Lp + c1Lv − c2Le

# Update parameters θ and ϕ through backpropagation, λθ and λϕ is the step sizes
12: θ ← θ − λθ∇θL, ϕ← ϕ− λϕ∇ϕL
13: end for
14: end while

this can lead to uncontrollable updates, as the absence of corrective gradients prevents the policy
from recovering. To overcome this issue with ratio clipping, we propose the following objective:

J(θ) = E
(st,at)∼πθold

{
rt(θ) · Â(st, at)−

|Â(st, at)|
2ϵ

· [rt(θ)− 1]
2

}
. (15)

The details of the objective J(θ) will be discussed in the following section, and the pseudo-code is
shown in Algorithm 1.

4 THEORETICAL RESULTS

In this section, we provide some theoretical analysis of the differences between PPO and SPO,
demonstrate that SPO can be more effective in constraining probability ratios during training.

4.1 OBJECTIVE CLASS

We consider the class of objectives and present the following definition:

Definition 4.1 (ϵ-aligned). We say that the objective function f(r,A, ϵ) is ϵ-aligned, if f involves
rA term, and for any given Ā ̸= 0 and ϵ̄ > 0, the function g(r) = f(r, Ā, ϵ̄) is convex and attains
its maximum value at r = 1 + sign(Ā) · ϵ̄, where sign(·) is the sign function.

The objective of PPO in (6) can be expressed as

fppo = min [rA, clip(r, 1− ϵ, 1 + ϵ)A] . (16)

It can be immediately obtained that fppo is not ϵ-aligned, as fppo does not contain the term rA in
some cases according to (7). Next, we will demonstrate several desirable properties of the function
f that satisfies the ϵ-aligned condition.

Theorem 4.2. Given an objective function f(r,A, ϵ), which is ϵ-aligned. If f is also differentiable
with respect to r, then for any given Ā ̸= 0, ϵ̄ > 0, and any initial r ∈ (0,+∞), the gradient ascent

6
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algorithm r ← r +∇rf will drive f to converge to the optimal solution r∗ = argmaxr f(r, Ā, ϵ̄),
which is also the optimal solution to the constrained optimization problem with ratio bound:

max
r

rĀ, s.t. |r − 1| ≤ ϵ̄. (17)

Proof. Given that f is differentiable with respect to r and f is ϵ-aligned, it follows that the function
g(r) = f(r, Ā, ϵ̄) is convex and differentiable with respect to r, enabling it to converge to the optimal
solution r∗ = 1 + sign(Ā) · ϵ̄. Then, for the constrained optimization problem (17), the objective is
linear, so the optimal solution is

r̃∗ =

{
1− ϵ̄, Ā < 0;

1 + ϵ̄, Ā > 0,
(18)

which means r̃∗ = 1 + sign(Ā) · ϵ̄ = r∗, concluding the proof.

Theorem 4.2 demonstrates that if the objective f satisfies the ϵ-aligned property, while also being
differentiable with respect to r, then it is capable of converging to an optimal solution that is consis-
tent with the solution of directly solving the constrained problem with ratio bound, while only using
a first-order optimizer (e.g., Adam).

Now, the objective of SPO in (15) can be expressed as

fspo = rA− |A|
2ϵ

(r − 1)
2
. (19)

For fspo, we present the following theorem:

Theorem 4.3. fspo is ϵ-aligned and also differentiable with respect to r.

Proof. Obviously, fspo is differentiable with respect to r since fspo is a quadratic polynomial of r,
which implies that g(r) = f(r, Ā, ϵ̄) is also convex. Let ∂fspo(r,A, ϵ)/∂r = 0, we have

∂fspo(r,A, ϵ)

∂r
= A− |A|

ϵ
(r − 1) = 0, (20)

thus r∗ = 1 + sign(A) · ϵ is the optimal solution for fspo, concluding the proof.

4.2 ANALYSIS OF NEW OBJECTIVE

PPO SPO

gradient directionwithout gradient

with gradient

Figure 3: In PPO, certain data points exhibit
zero gradients, while in SPO, all data points
generate non-zero gradients that guide towards
the constraint boundary.

We show that the optimization process of SPO
can more effectively bound the probability ratio,
as can be seen from Fig. 3. The largest circular
area in the figure represents the boundary on the
probability ratio. The green circles represent data
points with non-zero gradients during the train-
ing process, while the gray circles represent data
points with zero gradients.

During the training process of PPO, certain data
points that exceed the probability ratio bound
cease to provide gradients. In contrast, all data
points in SPO contribute gradients that guide the
optimization towards the constraint boundary. As
training progresses, PPO will accumulate more
gray circles that no longer provide gradients and
may be influenced by the harmful gradients from
green circles. This phenomenon could potentially push the gray circles further away from the con-
straint boundary. In contrast, the gradient directions of all data points in SPO point towards the
constraint boundary. This indicates that SPO imposes stronger constraints on the probability ratio.

7
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5 EXPERIMENTS

We report results on the Atari 2600 (Bellemare et al., 2013; Machado et al., 2018) and MuJoCo
(Todorov et al., 2012) benchmarks. In all our experiments, we utilize the RL library Gymnasium
(Towers et al., 2024), which serves as a central abstraction to ensure broad interoperability between
benchmark environments and training algorithms.

5.1 COMPARING ALGORITHMS

Our implementation of SPO is compared against PPO-Clip (Schulman et al., 2017), PPO-Penalty
(Schulman et al., 2017), SPU (Vuong et al., 2018), PPO-RB (Wang et al., 2020), TR-PPO (Wang
et al., 2020), TR-PPO-RB (Wang et al., 2020), and RPO (Gan et al., 2024) in the MuJoCo bench-
mark. For all algorithms, agents collect experience from 8 parallel worker copies into a single buffer,
with each environment running for 256 steps before the next training session.

In all experiments, we use the hyperparameters provided in the Appendix D unless otherwise spec-
ified. For the fairness of the experiments, we referred to the original paper for hyperparameters
specific to the algorithm, otherwise keep them consistent. We compute the algorithm’s performance
across ten separate runs with different random seeds. In addition, we emphasize that in all compar-
ative experiments involving the same settings for SPO and PPO, the only modification in SPO is
replacing the PPO’s objective with Eq. (15), highlighting the simplicity and efficiency of SPO.

Due to the absence of human score baselines in the Mujoco (Todorov et al., 2012), we normalize the
algorithms’ performance across all environments using the training data of PPO-Clip, specifically,

normalized(score) =
score−min

max−min
, (21)

where max and min represent the maximum and minimum validation returns of PPO-Clip during
training, respectively.

0.5 1.0 1.5 2.0 2.5
PPO-Clip

PPO-Penalty
SPO
SPU

TR-PPO
PPO-RB

TR-PPO-RB
RPO

Median

0.5 1.0 1.5 2.0 2.5

IQM

0.5 1.0 1.5 2.0 2.5

Mean

0.00 0.15 0.30 0.45

Optimality Gap

Human Normalized Score

Figure 4: Aggregate metrics on Mujoco-v4 with 95% CIs based on 6 environments. We collected
the validation returns of each algorithm over the last 1% training steps across ten random seeds. In
this context, higher median, IQM and mean scores and lower optimality gap are better.

As suggested in Agarwal et al. (2021), we employ stratified bootstrap confidence intervals to assess
the confidence intervals of the algorithm and evaluate the composite metrics of SPO against other
baselines, as illustrated in Figure 4. It can be observed that SPO achieved the best performance
across nearly all statistical metrics, which fully demonstrates the strong potential of SPO.

For the Atari 2600 benchmark (Bellemare et al., 2013), the main results are presented in the Ap-
pendix H and Fig. 1. Although SPO did not consistently outperform PPO under the same settings,
we will demonstrate in the following section that this is primarily due to the limited expressive
capacity of the network and the overly restrictive ratio constraints imposed by SPO.

5.2 SCALING POLICY NETWORK

The high performance of the PPO algorithm often relies on a carefully designed model architecture
(Huang et al., 2022a). To investigate how scaling policy network size impacts the sample efficiency
of both PPO and SPO in MuJoCo, the number of policy network layers was increased without al-
tering the hyperparameters or other settings. The standard deviation of the algorithm’s performance
was computed and visualized across five separate runs with different random seeds. The results,
shown in Fig. 5, 6 and Tab. 5, where the ratio deviation indicates the largest value of average ratio
deviation in a batch, i.e., 1

|D|
∑

(st,at)∼D |rt(θ)− 1|, which should typically be less than ϵ = 0.2.
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Figure 5: Training performance of PPO and SPO with different policy network layers in MuJoCo
benchmark. The mean and standard deviation are shown across five random seeds.
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Figure 6: Aggregate metrics on Mujoco-v4 with 95% CIs based on 6 environments, comparing PPO
and SPO with different policy network layers and mini-batch size using PPO-normalized score.

It can be observed that as the network deepens, the performance of PPO collapses in most envi-
ronments, with uncontrollable probability ratio deviations. In contrast, the performance of SPO
outperforms that of shallow networks in almost all environments and constrains the probability ratio
deviation effectively. Furthermore, the statistical metrics of SPO generally outperform PPO’s and
demonstrate relative robustness to variations in network depth and mini-batch size.
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Figure 7: Training curves of SPO using ResNet-18 as the encoder compared to the PPO and SPO
with original CNN. The mean and standard deviation are shown across three random seeds.

We also trained the ResNet-183 as the encoder on the Atari 2600 benchmark, the results are shown
in Fig. 7. As the network’s capacity increases, the performance of SPO is significantly improved,

3Since Bjorck et al. (2021) demonstrated that batch normalization is harmful to RL, we removed batch
normalization and adjusted ResNet-18 for input and output from our implementation.
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particularly in the Asterix environment, where the final reward is almost seven times the original. We
speculate that ResNet-18 is capable of extracting deeper pixel-level information, which expands the
function class that the policy network can learn from. Furthermore, SPO can still maintain a good
probability ratio constraint, thereby benefiting from the theoretical lower bound (10). In contrast,
it is challenging to train large neural networks with PPO because the probability ratio can not be
controlled during training, even employing a smaller ϵ = 0.1.

5.3 CONSTRAINING RATIO DEVIATION

We are not the first to attempt to constrain the differences between successive policies during train-
ing. For instance, TRPO (Schulman et al., 2015a) explicitly limits the KL divergence to ensure trust
region constraints, while TR-PPO (Wang et al., 2020) employs KL divergence-based clipping objec-
tive. Empirically, there have also been efforts to design adaptive learning rates to prevent aggressive
policy updates (Achiam et al., 2017; Heess et al., 2017; Queeney et al., 2021; Rudin et al., 2022).
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Figure 8: Ratio deviation curves and training perfor-
mance of SPO and other methods. Where “linear”
denotes a linear decay and “adaptive” denotes an ad-
justment based on the KL divergence.

The most successful adaptive learning rates
are based on KL divergence, which has
been empirically proven to be highly effec-
tive (Rudin et al., 2022). Additionally, TR-
PPO (Wang et al., 2020) offers an efficient
approach for constraining successive poli-
cies. We demonstrate their ratio deviations
in the Humanoid-v4 environment, employ-
ing a seven-layer policy network. Further-
more, we compare them with PPO utilizing
a smaller ϵ, results are shown in Fig. 8.

It can be observed that naively reducing ϵ
does not match the ratio deviation curve
of SPO. In contrast, KL divergence-based
learning rate effectively constrains the ratio
deviations of PPO and improves its perfor-
mance, though it often result in overly conservative policy updates (with the learning rate nearly
maintained at the minimum value of 1e-5 during training). Additionally, while TR-PPO can miti-
gate PPO’s ratio deviations to some extent, it does not contribute to performance improvement.

In summary, despite the efforts made by the aforementioned work to constrain the probability ratio
between successive policies, the constraints on the probability ratio during training are (i) either
limited, resulting in insignificant performance improvements, or (ii) they significantly constrain the
probability ratio but lead to overly conservative policy updates. In contrast, SPO stands out with
its simple implementation and superior performance, positioning itself as an efficient and promising
alternative for model-free policy optimization algorithms.

6 CONCLUSION

In this paper, we introduced Simple Policy Optimization (SPO), a novel unconstrained first-order
algorithm that effectively combines the strengths of Trust Region Policy Optimization (TRPO) and
Proximal Policy Optimization (PPO). By incorporating TV divergence into the surrogate objective,
SPO maintains optimization within the trust region, benefiting from TRPO’s theoretical guarantees
while preserving the efficiency of PPO. Our experimental results demonstrate that SPO can achieve
competitive performance across various benchmarks with a simple implementation. Moreover, SPO
can simplify the training of deep policy networks, addressing a key challenge faced by existing
algorithms. These findings indicate that SPO is a promising approach for advancing model-free
reinforcement learning. In future work, SPO holds potential for impactful applications in areas such
as autonomous driving, robotic control, game AI, and financial modeling. With further research and
refinement, we believe, SPO could drive innovation and breakthroughs across these fields.
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A RELATED WORK

Previous studies have explored policy improvement within the trust region. For instance, Queeney
et al. (2021) developed an off-policy sample reuse method that combines the stability of on-policy
approaches with the sample efficiency of off-policy methods, implementing a mechanism similar
to the clipping mechanism in PPO. Achiam et al. (2017) proposed constrained policy optimization
(CPO), which restricts policy improvement to a safe region, based on new theoretical results. There
has also been work focused on developing novel clipping mechanisms to prevent aggressive policy
updates (Wang et al., 2020; Cheng et al., 2021). In terms of implementation, some studies have
designed adaptive learning rates based on TV divergence or KL divergence (Heess et al., 2017;
Queeney et al., 2021; Rudin et al., 2022), which have been shown to effectively enhance the stability
of clipping objectives. Additionally, some work has explored non-parametric methods for policy
optimization (Vuong et al., 2018; Song et al., 2019). Empirically, code-level optimizations have
proven to be effective in improving the performance of PPO and the implementation details of PPO
have been widely adopted (Huang et al., 2022a;b; Dhariwal et al., 2017).

B IMPLEMENTATION DETAILS

Our code implementation is primarily based on the high-quality open-source reinforcement learning
libraries, CleanRL (Huang et al., 2022b), with all code runs on an NVIDIA GeForce RTX 3090.
For details on code-level optimizations, please refer to the mujoco and atari folders in the supple-
mentary materials. We emphasize that no further code-level tuning is applied to SPO, except for
modifications to the policy loss. Anyone can run our code to reproduce our results.

C COMPARING ALGORITHMS

Table 1: Average return of the entire training process across ten separate runs with different random
seeds in MuJoCo benchmark, using policy networks with three layers.

Environment PPO-Clip PPO-Penalty SPO SPU PPO-RB TR-PPO TR-PPO-RB RPO

Ant-v4 4234.7 1684.6 3779.7 1985.02 767.0 3795.3 2719.4 4248.0
HalfCheetah-v4 2964.6 3287.9 2515.9 2537.9 1262.7 2664.8 2846.1 3095.2

Hopper-v4 1306.9 1221.0 1507.5 1381.8 549.2 1347.2 1120.7 1311.3
Humanoid-v4 778.5 1089.2 1808.3 1514.8 852.9 838.5 869.2 884.3

HumanoidStandup-v4 139434.6 120696.0 150395.0 143019.9 124482.4 141321.6 142652.0 143434.4
Walker2d-v4 3025.1 2206.6 2738.2 2102.7 644.3 2901.6 2279.2 2933.1

Total average return 25290.7 21697.6 27124.1 25423.7 21426.4 25478.2 25414.4 25984.4

D HYPERPARAMETER SETTINGS

Table 2: Detailed hyperparameters in Atari 2600 and MuJoCo.

Hyperparameters Atari 2600 (Bellemare et al., 2013) MuJoCo (Todorov et al., 2012)

Number of actors 8 8
Horizon 128 256

Learning rate 2.5 × 10−4 3 × 10−4

Learning rate decay Linear Linear
Optimizer Adam Adam
Total steps 1 × 107 1 × 107

Batch size 1024 2048
Update epochs 4 10
Mini-batches 4 32, 4

Mini-batch size 256 64, 512
GAE parameter λ 0.95 0.95
Discount factor γ 0.99 0.99

Value loss coefficient c1 0.5 0.5
Entropy loss coefficient c2 0.01 0.0

Probability ratio parameter ϵ 0.2 0.2

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

E SENSITIVITY ANALYSIS

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e 

ra
tio

 d
ev

ia
tio

n

SPO-0.1
SPO-0.4

SPO-0.2
SPO-0.5

SPO-0.3

Figure 9: Training curves of ratio deviation
of SPO with different ϵ in Humanoid-v4 en-
vironment. The mean and standard devia-
tion are shown across five random seeds.

We conducted a sensitivity analysis on the hyperpa-
rameter ϵ of SPO, setting it to 0.1, 0.2, 0.3, 0.4 and
0.5, respectively, the results are shown in Tab. 3. We
can see that the best performance of SPO is usually
achieved when ϵ is set to 0.1 and 0.2, while SPO-0.5
usually performs the worst, as it is too loose for the
probability ratio constraint in the performance differ-
ence lower bound (10).

Similar to Tab. 5, we also present the largest value
of average ratio deviation during training, which can
be seen from Tab. 4. It is clear that the PPO’s ratio
deviation is not under control, as its maximum ratio
deviation in most environments exceeds a staggering
1000, which is much larger than the expected value of
ϵ = 0.2. That’s why in Tab. 3, even though SPO-0.5
performs the worst, it is still better than PPO in all
environments. We visualize the ratio deviation curves
in the Humanoid-v4 environment, which can be seen
in Fig. 9. It is clear that the ratio deviation of SPO
can be effectively controlled by the hyperparameter ϵ.
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Figure 10: Training performance of PPO and SPO with super large batch size in Humanoid-v4,
where batch size and mini-batch size are set to 65536 and 32768, while all other hyperparameters
remain consistent. The mean and standard deviation are shown across five random seeds.

Table 3: Average return of SPO with different ϵ of the entire training process across five separate
runs with different random seeds in MuJoCo benchmark, using policy networks with seven layers.

Environment SPO-0.1 SPO-0.2 SPO-0.3 SPO-0.4 SPO-0.5 PPO-0.2

Ant-v4 3013.7 3222.4 3176.4 2925.7 2701.7 928.0
HalfCheetah-v4 1903.8 3764.6 2842.6 3358.9 2522.8 1950.8

Hopper-v4 1649.3 1461.2 1237.7 1149.2 1351.4 1107.1
Humanoid-v4 2202.1 2637.0 2457.0 2510.6 1531.9 595.1

HumanoidStandup-v4 141551.8 154103.6 145723.4 148864.2 139806.3 96899.1
Walker2d-v4 2776.9 2572.3 2555.8 2178.7 1845.4 1098.5

Table 4: The largest value of average ratio deviation of SPO with different ϵ during the entire training
process across five separate runs with different random seeds in MuJoCo benchmark, using policy
networks with seven layers. The maximum value in each column is bolded.

Environment SPO-0.1 SPO-0.2 SPO-0.3 SPO-0.4 SPO-0.5 PPO-0.2

Ant-v4 0.126 0.190 0.328 0.519 0.597 548.060
HalfCheetah-v4 0.121 0.188 0.381 0.528 0.591 1675.340

Hopper-v4 0.094 0.194 0.548 0.334 0.555 113.178
Humanoid-v4 0.095 0.191 0.367 0.378 0.452 2411.845

HumanoidStandup-v4 0.093 0.187 0.281 0.382 0.505 4018.718
Walker2d-v4 0.096 0.157 0.272 0.393 0.604 998.101
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F PROOF OF THEOREM 2.1

According to the definition of unnormalized discounted visitation frequencies, we have

Es∼ρπ̃(·),a∼π̃(·|s) [Aπ(s, a)]

=
∑
s

∞∑
t=0

γtP(st = s|π̃)
∑
a

π̃(a|s) ·Aπ(s, a)

=

∞∑
t=0

∑
s

P(st = s|π̃)
∑
a

π̃(a|s) · γtAπ(s, a)

=Eτ∼π̃

[ ∞∑
t=0

γtAπ(st, at)

]

=Eτ∼π̃

{ ∞∑
t=0

γt [r(st, at) + γVπ(st+1)− Vπ(st)]

}

=Eτ∼π̃

{ ∞∑
t=0

γtr(st, at) +

∞∑
t=0

γt+1Vπ(st+1)−
∞∑
t=0

γtVπ(st)

}

=Eτ∼π̃

{ ∞∑
t=0

γtr(st, at)− Vπ(s0)

}
=η(π̃)− η(π),

(22)

concluding the proof.

G TV DIVERGENCE AND PROBABILITY RATIO

Assumption G.1. Given the current policy π̃ and the old policy π, we assume that the support of π̃
is contained in the support of π.

According to the definition of TV divergence and Assumption G.1, we have

Dmax
TV (π, π̃)2 =

[
max

s

1

2

∑
a∈A
|π̃(a|s)− π(a|s)|

]2

=
1

4

[
max

s

∑
a∈A

π(a|s)
∣∣∣∣ π̃(a|s)π(a|s)

− 1

∣∣∣∣
]2

, (23)

then, following the definition of expectation,

Dmax
TV (π, π̃)2 =

1

4
max

s

[
Ea∼π(·|s)

∣∣∣∣ π̃(a|s)π(a|s)
− 1

∣∣∣∣]2 . (24)
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H TRAINING CURVES ON ATARI 2600 ENVIRONMENTS
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Figure 11: Training performance of PPO and SPO in Atari 2600 benchmark. The mean and standard
deviation are shown across three random seeds.
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I MORE EXPERIMENTAL RESULTS
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Figure 12: Ratio deviation curves of PPO and SPO with different policy network layers in MuJoCo
benchmark. The mean is shown across five random seeds.
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Figure 13: Training performance of SPO with different ϵ in MuJoCo benchmark. The mean and
standard deviation are shown across five random seeds.

Table 5: Average return of PPO and SPO in the last 10% training steps across five separate runs with
different random seeds, with their maximum ratio deviation of the entire training process.

Environment Index 3 layers 7 layers
PPO SPO PPO SPO

Ant-v4 Average return (↑) 5323.2 4911.3 1002.8 4672.5
Ratio deviation (↓) 0.229 0.101 548.060 0.190

HalfCheetah-v4 Average return (↑) 4550.2 3602.4 2242.3 5307.3
Ratio deviation (↓) 0.225 0.086 1675.340 0.188

Hopper-v4 Average return (↑) 1119.4 1480.3 975.9 1507.6
Ratio deviation (↓) 0.164 0.067 113.178 0.194

Humanoid-v4 Average return (↑) 795.1 2870.0 614.1 4769.9
Ratio deviation (↓) 3689.957 0.179 2411.845 0.191

HumanoidStandup-v4 Average return (↑) 143908.8 152378.7 92849.7 176928.9
Ratio deviation (↓) 2547.499 0.182 4018.718 0.187

Walker2d-v4 Average return (↑) 3352.3 2870.2 1110.9 3008.1
Ratio deviation (↓) 0.170 0.070 998.101 0.157
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