
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIMPLE POLICY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-free reinforcement learning algorithms have seen remarkable progress, but
key challenges remain. Trust Region Policy Optimization (TRPO) is known for
ensuring monotonic policy improvement through conservative updates within a
trust region, backed by strong theoretical guarantees. However, its reliance on
complex second-order optimization limits its practical efficiency. Proximal Policy
Optimization (PPO) addresses this by simplifying TRPO’s approach using ratio
clipping, improving efficiency but sacrificing some theoretical robustness. This
raises a natural question: Can we combine the strengths of both methods? In
this paper, we introduce Simple Policy Optimization (SPO), a novel unconstrained
first-order algorithm. SPO integrates the surrogate objective with Total Variation
(TV) divergence instead of Kullback-Leibler (KL) divergence, achieving a bal-
ance between the theoretical rigor of TRPO and the efficiency of PPO. Our new
objective improves upon ratio clipping, offering stronger theoretical properties and
better constraining the probability ratio within the trust region. Empirical results
demonstrate that SPO outperforms PPO with a simple implementation, particu-
larly for training large, complex network architectures end-to-end.

Q b e r
t
H e r o

B a n k
H e i s t

B r e a
k o u

t

U p N D o w n

I c e H
o c k

e y

F i s h i
n g D

e r b
y

C h o p
p e r

C o m m a n dB o x i n
g

S p a c
e I n v

a d e
r s
P o n g

C r a z y
C l i m b e r

N a m e T h i s G
a m e

C e n t i
p e d

e

K u n g
F u M a s t e

r

T i m e P i l o t

S e a q
u e s

t
A s t e r

i x

A s t e r
o i d s
A s s a

u l t
P h o e

n i x

T u t a n
k h a

m
R o b o

t a n k
B e r z e

r k
B o w l i n g

J a m
e s b

o n d

W i z a r
d O f W o r A l i e n

S t a r G
u n n

e r
T e n n

i s

B e a m
R i d e r

G r a v i
t a r

D e m o n A
t t a c

k

B a t t l e
Z o n e

Z a x x
o n

- 5 0
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

Pe
rfo

rm
an

ce
 im

pro
ve

me
nt

(%
)

Figure 1: The performance of SPO compared to PPO across 35 games in Atari 2600.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has achieved great success in recent years, notably in board
games (Silver et al., 2016; 2017; 2018), video games (Mnih et al., 2015; Berner et al., 2019; Vinyals
et al., 2019; Ye et al., 2020), autonomous driving (Kiran et al., 2021; Zhu & Zhao, 2021; Teng et al.,
2023), and robotics (Makoviychuk et al., 2021; Brunke et al., 2022; Han et al., 2023). Policy gradient
(PG) methods (Sutton & Barto, 2018; Lehmann, 2024), as a major paradigm in RL, have been widely
adopted by the academic community. One main practical challenge of PG methods is to reduce the
variance of the gradients while keeping the bias low (Sutton et al., 2000; Schulman et al., 2015b). In
this context, a widely used technique is to add a baseline (usually the value function) when sampling
an estimate of the action-value function (Greensmith et al., 2004). Another challenge of PG methods

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

5 10 15 20
Update epoch

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y
ra

tio

Data points of PPO

5 10 15 20
Update epoch

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y
ra

tio

Data points of SPO

5 10 15 20
Update epoch

2.24

2.25

2.26

Av
er

ag
e

su
rro

ga
te

 o
bj

ec
tiv

e

Surrogate objective

PPO
SPO

Figure 2: Optimization behavior of PPO (left) and SPO (middle). The optimization process of PPO
and SPO in the Hopper-v4 environment is visualized, with the red line representing the probability
ratio bound. Although PPO achieves better optimization of the surrogate objective, it does so by
breaking the ratio constraints. In contrast, SPO optimizes the objective more effectively while ad-
hering to the constraint.

is to estimate the proper step size for the policy update (Kakade & Langford, 2002; Schulman et al.,
2015a). Given that the training data strongly depends on the current policy, a large step size may
result in a collapse of policy performance, whereas a small one may impair the sample efficiency of
the algorithm.

To address these challenges, in Trust Region Policy Optimization (TRPO), Schulman et al. (2015a)
proved that minimizing a certain surrogate objective guarantees policy improvement with non-trivial
step sizes. Subsequently, the TRPO algorithm was derived through a series of approximations,
which impose a trust region constraint during the policy iterations, leading to monotonic policy im-
provement in theory. However, given the complexity of second-order optimization, TRPO is highly
inefficient and can be hard to extend to large-scale RL environments. Proximal Policy Optimization
(PPO) (Schulman et al., 2017) is designed to enforce comparable constraints on the difference be-
tween successive policies during the training process, while only using first-order optimization. By
clipping the current data that exceeds the probability ratio limit to a constant, PPO attempts to re-
move the high incentive for pushing the current policy away from the old one. It has been shown that
PPO can be effectively extended to large-scale complex control tasks (Ye et al., 2020; Makoviychuk
et al., 2021).

Despite its success, the optimization behavior of PPO remains insufficiently understood. Although
PPO aims to constrain the probability ratio deviations between successive policies, it often fails to
keep these ratios within bounds (Ilyas et al., 2018; Engstrom et al., 2020). In some tasks, the ratios
can even escalate to values as high as 401 (Wang et al., 2020). Furthermore, studies have revealed
that PPO’s performance is highly dependent on “code-level optimizations” (Andrychowicz et al.,
2021). The implementation of PPO includes numerous code-level details that critically influence its
effectiveness (Engstrom et al., 2020; Huang et al., 2022a;b).

In this paper, we propose a new algorithm named Simple Policy Optimization (SPO) designed to
more effectively bound probability ratios through a novel objective function. The differences in
optimization behavior between PPO and SPO are illustrated in Fig. 2. Our main contributions are
as follows:

• We theoretically prove that optimizing a tighter performance lower bound using Total Vari-
ation (TV) divergence constrained space results in more consistent policy improvement.

• To overcome PPO’s limitation in constraining probability ratios, we propose a new objec-
tive function, leading to the development of the proposed SPO algorithm.

• Experiments benchmark various policy gradient algorithms across different environments,
showing that SPO can achieve competitive performance with a simple implementation,
improved sample efficiency, and easier training of deeper policy networks.

1The clipping parameter ϵ is set to 0.2, so the upper clipping range is 1.2.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING

Online reinforcement learning is a mathematical framework for sequential decision-making, which
is generally defined by the Markov Decision Process (MDP)M = (S,A, r,P, ρ0, γ), where S and
A represent the state space and action space, r : S×A 7→ R is the reward function, P : S×A×S 7→
[0, 1] is the probability distribution of the state transition function, ρ0 : S 7→ [0, 1] is the initial state
distribution, while γ ∈ (0, 1] is the discount factor.

Suppose that an agent interacts with the environment following policy π, i.e., a ∼ π(·|s) and obtains
a trajectory τ = (s0, a0, r0, . . . , st, at, rt, . . .), where rt = r(st, at). The goal of RL is to learn a
policy that maximizes the expected return Eτ∼π [

∑∞
t=0 γ

trt]
2. The state-value function and value

function are defined as

Qπ(st, at) = Est+1,at+1,...

[∞∑
k=0

γkr(st+k, at+k)

]
, Vπ(st) = Eat∼π(·|st) [Qπ(st, at)] . (1)

Given Qπ and Vπ , the advantage function can be expressed as Aπ(st, at) = Qπ(st, at)− Vπ(st).

2.2 TRUST REGION POLICY OPTIMIZATION

Classic policy gradient methods cannot reuse data and are highly sensitive to the hyperparameters.
To address these issues, in Trust Region Policy Optimization (TRPO), Schulman et al. (2015a)
derived a lower bound for policy improvement. Before that, Kakade & Langford (2002) first proved
the following policy performance difference theorem:
Theorem 2.1. (Kakade & Langford, 2002) Let P(st = s|π) represents the probability of the
t-th state equals to s in trajectories generated by the agent following policy π, and ρπ(s) =∑∞

t=0 γ
tP(st = s|π) represents the unnormalized discounted visitation frequencies. Given any

two policies, π and π̃, their performance difference can be measured by

η(π̃)− η(π) = Es∼ρπ̃(·),a∼π̃(·|s) [Aπ(s, a)] =
∑
s

ρπ̃(s)
∑
a

π̃(a|s) ·Aπ(s, a), (2)

where η(π) = Eτ∼π [
∑∞

t=0 γ
tr(st, at)]. The notation Eτ∼π indicates the expected return of the

trajectory τ generated by the agent following policy π, i.e., s0 ∼ ρ0(·), at ∼ π(·|st), rt ∼
r(st, at), st+1 ∼ P(·|st, at).

The proof of Theorem 2.1 see Appendix F. The key intuition is that the new policy π̃ will improve
(or remain constant) as long as it has a nonnegative expected advantage at every state s. Then, define
Lπ(π̃) = η(π) + Es∼ρπ(·),a∼π̃(·|s) [Aπ(s, a)], the following performance lower bound is given:
Theorem 2.2. (Schulman et al., 2015a) Given any two policies, π and π̃, the following bound holds:

η(π̃) ≥ Lπ(π̃)−
4ϵγ

(1− γ)2
·Dmax

TV (π, π̃)2, (3)

where ϵ = maxs,a |Aπ(s, a)|, DTV(p, q) = 1
2

∑
|pi − qi| is the Total Variation (TV) divergence

and Dmax
TV means maxs DTV.

Given this lower bound, we can actually achieve the monotonic improvement of policy performance.
According to the inequality between the TV divergence and the KL divergence DTV(π, π̃)

2 ≤
DKL(π, π̃), we have η(π̃) ≥ Lπ(π̃) − 4ϵγ

(1−γ)2 · D
max
KL (π, π̃). Then, define Mπ(π̃) = Lπ(π̃) − C ·

Dmax
KL (π, π̃), where C = 4ϵγ/(1− γ)2. It follows that η(π̃) ≥Mπ(π̃) and η(π) = Mπ(π).

Consequently, the difference η(π̃)−η(π) is bounded below by Mπ(π̃)−Mπ(π). This implies that the
original objective η can be optimized indirectly by maximizing the lower bound Mπ . Specifically,

η(π̃)− η(π) ≥Mπ(π̃)−Mπ(π) = Es∼ρπ(·),a∼π(·|s)

[
π̃(a|s)
π(a|s)

·Aπ(s, a)

]
−C ·Dmax

KL (π, π̃). (4)

2Note that we are discussing an infinite-horizon Markov Decision Process (MDP) here. For a finite MDP of
length T , all reward values beyond T are set to zero.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

At this point, the subscripts of the expectation in Eq. (2) are replaced from s ∼ ρπ̃(·) and a ∼ π̃(·|s)
to s ∼ ρπ(·) and a ∼ π(·|s), which means that we can now reuse the current data. Through
a heuristic approximation, the maximum KL divergence Dmax

KL in Eq. (4) is approximated as the
average KL divergence and then used as a constraint to obtain the formalization of TRPO:

max
θ

E(st,at)∼πθold

[
πθ(at|st)
πθold(at|st)

· Â(st, at)

]
,

s.t. E [DKL(πθold , πθ)] ≤ δ.

(5)

This problem includes a constraint where δ is a hyperparameter that limits the KL divergence be-
tween successive policies, typically set to 0.01. Â(st, at) is an estimate of the advantage function,
and the objective is called “surrogate objective”.

2.3 PROXIMAL POLICY OPTIMIZATION

Due to the necessity of solving a constrained optimization problem (5) in each update, TRPO is
highly inefficient and can be challenging to apply to large-scale reinforcement learning tasks.

Schulman et al. (2017) proposed a new objective called “clipped surrogate objective”, in which the
algorithm is named Proximal Policy Optimization (PPO). PPO retains some of the benefits of TRPO
but is much easier to implement and involves only unconstrained first-order optimization.

The “clipped surrogate objective”, also called PPO-Clip, adopts a ratio clipping function, which is

Jclip(θ) = E
(st,at)∼πθold

{
min

[
rt(θ) · Â(st, at), clip (rt(θ), 1− ϵ, 1 + ϵ) · Â(st, at)

]}
, (6)

where

rt(θ) =
πθ(at|st)
πθold(at|st)

, clip (rt(θ), 1− ϵ, 1 + ϵ) =

1− ϵ, rt(θ) < 1− ϵ;

rt(θ), 1− ϵ ≤ rt(θ) ≤ 1 + ϵ;

1 + ϵ, rt(θ) > 1 + ϵ.

(7)

The gradient of PPO-Clip, given the training data (st, at), can be expressed as follows:

∇θJclip(θ) =

∇θrt(θ) · Â(st, at), Â(st, at) > 0, rt(θ) ≤ 1 + ϵ;

∇θrt(θ) · Â(st, at), Â(st, at) < 0, rt(θ) ≥ 1− ϵ;

0, otherwise.

(8)

In other words, PPO-Clip aims to remove the high incentive for pushing the current policy away from
the old one. PPO-Clip has gained wide adoption in the academic community due to its simplicity
and superior performance.

3 METHODOLOGY

PPO attempts to limit the differences between successive policies through ratio clipping. However,
Wang et al. (2020) proved the following theorem:

Theorem 3.1. (Wang et al., 2020) Assume that for discrete action space tasks where |A| ≥ 3 or
continuous action space tasks where the output of the policy πθ follows a multivariate Gaussian
distribution. Let Θ = {θ|1− ϵ ≤ rt(θ) ≤ 1 + ϵ}, we have supθ∈Θ DKL(πθold(·|st), πθ(·|st)) =
+∞ for both discrete and continuous action space tasks.

Theorem 3.1 demonstrates that the KL divergence DKL(πθold(·|st), πθ(·|st)) is not necessarily
bounded even if the probability ratio rt(θ) is bounded. However, this theorem considers only an
extreme case involving a single data point, which is less typical than the batch processing used in
training data. On a broader scale, the clipped ratio strategy employed by Proximal Policy Opti-
mization (PPO) aims to bound the total variation (TV) divergence for sufficient batch sizes. This

relationship is formalized as Dmax
TV (π, π̃)2 = 1

4 maxs

[
Ea∼π(·|s)

∣∣∣ π̃(a|s)π(a|s) − 1
∣∣∣]2. Details on how this

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

bounding strategy relates to the probability ratio are provided in Appendix G. Furthermore, using
this approach, the performance lower bound (3) can be expressed as

η(π̃) ≥ Lπ(π̃)−
4ϵγ

(1− γ)2
· 1
4
max

s

[
Ea∼π(·|s)

∣∣∣∣ π̃(a|s)π(a|s)
− 1

∣∣∣∣]2 . (9)

Similar to (4), the performance difference lower bound of PPO can be derived (Queeney et al., 2021):

η(π̃)−η(π) ≥ Es∼ρπ(·),a∼π(·|s)

[
π̃(a|s)
π(a|s)

·Aπ(s, a)

]
− C

4
·max

s

[
Ea∼π(·|s)

∣∣∣∣ π̃(a|s)π(a|s)
− 1

∣∣∣∣]2 . (10)

Finally, we also found that PPO, which aims to bound the TV divergence, can offer a larger solution
space compared to methods that incorporate a looser KL divergence as a constraint (e.g., TRPO). To
illustrate this, we present the following proposition:

Proposition 3.2. Given any state s ∈ S and the old policy π, define the solution spaces under the
TV and KL divergence constraints as follows:

ΩTV = {π̃ | DTV [π(·|s), π̃(·|s)]2 ≤ δ, ∀s ∈ S}, ΩKL = {π̃ | DKL [π(·|s), π̃(·|s)] ≤ δ, ∀s ∈ S},
(11)

where δ is a predefined threshold. Under these constraints, we establish that ΩKL ⊂ ΩTV.

Proof. For any s ∈ S and π̃ ∈ ΩKL, using Pinsker’s inequality, we have DTV [π(·|s), π̃(·|s)]2 ≤
DKL [π(·|s), π̃(·|s)] ≤ δ, therefore π̃ ∈ ΩTV, which means ΩKL ⊂ ΩTV, concluding the proof.

Additionally, the optimal solution to the performance difference lower bound in the TV divergence-
constrained space, ΩTV, is expected to be superior. We now present the following theorem:

Theorem 3.3. Given the old policy π, and ΩTV,ΩKL presented in Proposition 3.2, let

LTV
π (π̃) = Lπ(π̃)−Lπ(π)−C ·Dmax

TV (π, π̃)2, LKL
π (π̃) = Lπ(π̃)−Lπ(π)−C ·Dmax

KL (π, π̃) (12)

be the lower bounds of performance improvement with TV divergence and KL divergence. Denote
π̃∗
TV = argmax

π̃∈ΩTV

LTV
π (π̃) and π̃∗

KL = argmax
π̃∈ΩKL

LKL
π (π̃), then LTV

π (π̃∗
TV) ≥ LKL

π (π̃∗
KL).

Proof. Since ΩKL ⊂ ΩTV, we have

LTV
π (π̃∗

TV) ≥ LTV
π (π̃∗

KL) = Lπ(π̃
∗
KL)− Lπ(π)− C ·Dmax

TV (π, π̃∗
KL)

2

≥ Lπ(π̃
∗
KL)− Lπ(π)− C ·Dmax

KL (π, π̃∗
KL) = LKL

π (π̃∗
KL),

(13)

concluding the proof.

Based on the Proposition 3.2 and Theorem 3.3, we have the following conclusion:

Conclusion

Optimizing the lower bound with TV divergence constrains offers a more effective solution
space than using KL divergence constrains, leading to better policy improvement.

As a result, we aim to solve the following constrained optimization problem:

max
θ

E(st,at)∼πθold

[
πθ(at|st)
πθold(at|st)

· Â(st, at)

]
,

s.t.
∣∣∣∣ πθ(at|st)
πθold(at|st)

− 1

∣∣∣∣ ≤ ϵ, ∀(st, at) ∼ πθold .

(14)

Notably, similar forms have already been obtained in previous work (Vuong et al., 2018). PPO
attempts to satisfy the constraints of (14) through ratio clipping, but this does not prevent excessive
ratio deviations (see Fig. 2). The underlying reason, however, is that ratio clipping causes certain
data points to stop contributing to the gradient updates according to (8). Over multiple iterations,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Simple Policy Optimization (SPO)

1: Initialize: Policy network πθ, value network Vϕ, probability ratio deviation hyperparameter ϵ,
value loss coefficient c1, policy entropy coefficient c2

2: Output: Optimal policy network πθ∗

3: while not converged do
Data collection

4: Collect data X = {(si, ai, ri)}Ni=1 using the current policy network πθ

The networks before updating
5: πθold ← πθ, Vϕold

← Vϕ

Estimate the advantage Â(st, at) based on Vϕold

6: Use GAE (Schulman et al., 2015b) technique to estimate the advantage Â(st, at)

Estimate the return R̂t

7: R̂t ← Vϕold
(st) + Â(st, at)

8: for each training epoch do
Compute policy loss Lp (This is the only difference between SPO and PPO)

9: Lp ← −
{
rt(θ) · Â(st, at)− |Â(st,at)|

2ϵ · [rt(θ)− 1]
2
}

Compute policy entropy Le and value loss Lv

10: Le ← H(πθ(·|st)), Lv ← 1
2 [Vϕ(st)− R̂t]

2

Compute total loss L
11: L ← Lp + c1Lv − c2Le

Update parameters θ and ϕ through backpropagation, λθ and λϕ is the step sizes
12: θ ← θ − λθ∇θL, ϕ← ϕ− λϕ∇ϕL
13: end for
14: end while

this can lead to uncontrollable updates, as the absence of corrective gradients prevents the policy
from recovering. To overcome this issue with ratio clipping, we propose the following objective:

J(θ) = E
(st,at)∼πθold

{
rt(θ) · Â(st, at)−

|Â(st, at)|
2ϵ

· [rt(θ)− 1]
2

}
. (15)

The details of the objective J(θ) will be discussed in the following section, and the pseudo-code is
shown in Algorithm 1.

4 THEORETICAL RESULTS

In this section, we provide some theoretical analysis of the differences between PPO and SPO,
demonstrate that SPO can be more effective in constraining probability ratios during training.

4.1 OBJECTIVE CLASS

We consider the class of objectives and present the following definition:

Definition 4.1 (ϵ-aligned). We say that the objective function f(r,A, ϵ) is ϵ-aligned, if f involves
rA term, and for any given Ā ̸= 0 and ϵ̄ > 0, the function g(r) = f(r, Ā, ϵ̄) is convex and attains
its maximum value at r = 1 + sign(Ā) · ϵ̄, where sign(·) is the sign function.

The objective of PPO in (6) can be expressed as

fppo = min [rA, clip(r, 1− ϵ, 1 + ϵ)A] . (16)

It can be immediately obtained that fppo is not ϵ-aligned, as fppo does not contain the term rA in
some cases according to (7). Next, we will demonstrate several desirable properties of the function
f that satisfies the ϵ-aligned condition.

Theorem 4.2. Given an objective function f(r,A, ϵ), which is ϵ-aligned. If f is also differentiable
with respect to r, then for any given Ā ̸= 0, ϵ̄ > 0, and any initial r ∈ (0,+∞), the gradient ascent

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

algorithm r ← r +∇rf will drive f to converge to the optimal solution r∗ = argmaxr f(r, Ā, ϵ̄),
which is also the optimal solution to the constrained optimization problem with ratio bound:

max
r

rĀ, s.t. |r − 1| ≤ ϵ̄. (17)

Proof. Given that f is differentiable with respect to r and f is ϵ-aligned, it follows that the function
g(r) = f(r, Ā, ϵ̄) is convex and differentiable with respect to r, enabling it to converge to the optimal
solution r∗ = 1 + sign(Ā) · ϵ̄. Then, for the constrained optimization problem (17), the objective is
linear, so the optimal solution is

r̃∗ =

{
1− ϵ̄, Ā < 0;

1 + ϵ̄, Ā > 0,
(18)

which means r̃∗ = 1 + sign(Ā) · ϵ̄ = r∗, concluding the proof.

Theorem 4.2 demonstrates that if the objective f satisfies the ϵ-aligned property, while also being
differentiable with respect to r, then it is capable of converging to an optimal solution that is consis-
tent with the solution of directly solving the constrained problem with ratio bound, while only using
a first-order optimizer (e.g., Adam).

Now, the objective of SPO in (15) can be expressed as

fspo = rA− |A|
2ϵ

(r − 1)
2
. (19)

For fspo, we present the following theorem:

Theorem 4.3. fspo is ϵ-aligned and also differentiable with respect to r.

Proof. Obviously, fspo is differentiable with respect to r since fspo is a quadratic polynomial of r,
which implies that g(r) = f(r, Ā, ϵ̄) is also convex. Let ∂fspo(r,A, ϵ)/∂r = 0, we have

∂fspo(r,A, ϵ)

∂r
= A− |A|

ϵ
(r − 1) = 0, (20)

thus r∗ = 1 + sign(A) · ϵ is the optimal solution for fspo, concluding the proof.

4.2 ANALYSIS OF NEW OBJECTIVE

PPO SPO

gradient directionwithout gradient

with gradient

Figure 3: In PPO, certain data points exhibit
zero gradients, while in SPO, all data points
generate non-zero gradients that guide towards
the constraint boundary.

We show that the optimization process of SPO
can more effectively bound the probability ratio,
as can be seen from Fig. 3. The largest circular
area in the figure represents the boundary on the
probability ratio. The green circles represent data
points with non-zero gradients during the train-
ing process, while the gray circles represent data
points with zero gradients.

During the training process of PPO, certain data
points that exceed the probability ratio bound
cease to provide gradients. In contrast, all data
points in SPO contribute gradients that guide the
optimization towards the constraint boundary. As
training progresses, PPO will accumulate more
gray circles that no longer provide gradients and
may be influenced by the harmful gradients from
green circles. This phenomenon could potentially push the gray circles further away from the con-
straint boundary. In contrast, the gradient directions of all data points in SPO point towards the
constraint boundary. This indicates that SPO imposes stronger constraints on the probability ratio.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

We report results on the Atari 2600 (Bellemare et al., 2013; Machado et al., 2018) and MuJoCo
(Todorov et al., 2012) benchmarks. In all our experiments, we utilize the RL library Gymnasium
(Towers et al., 2024), which serves as a central abstraction to ensure broad interoperability between
benchmark environments and training algorithms.

5.1 COMPARING ALGORITHMS

Our implementation of SPO is compared against PPO-Clip (Schulman et al., 2017), PPO-Penalty
(Schulman et al., 2017), SPU (Vuong et al., 2018), PPO-RB (Wang et al., 2020), TR-PPO (Wang
et al., 2020), TR-PPO-RB (Wang et al., 2020), and RPO (Gan et al., 2024) in the MuJoCo bench-
mark. For all algorithms, agents collect experience from 8 parallel worker copies into a single buffer,
with each environment running for 256 steps before the next training session.

In all experiments, we use the hyperparameters provided in the Appendix D unless otherwise spec-
ified. For the fairness of the experiments, we referred to the original paper for hyperparameters
specific to the algorithm, otherwise keep them consistent. We compute the algorithm’s performance
across ten separate runs with different random seeds. In addition, we emphasize that in all compar-
ative experiments involving the same settings for SPO and PPO, the only modification in SPO is
replacing the PPO’s objective with Eq. (15), highlighting the simplicity and efficiency of SPO.

Due to the absence of human score baselines in the Mujoco (Todorov et al., 2012), we normalize the
algorithms’ performance across all environments using the training data of PPO-Clip, specifically,

normalized(score) =
score−min

max−min
, (21)

where max and min represent the maximum and minimum validation returns of PPO-Clip during
training, respectively.

0.5 1.0 1.5 2.0 2.5
PPO-Clip

PPO-Penalty
SPO
SPU

TR-PPO
PPO-RB

TR-PPO-RB
RPO

Median

0.5 1.0 1.5 2.0 2.5

IQM

0.5 1.0 1.5 2.0 2.5

Mean

0.00 0.15 0.30 0.45

Optimality Gap

Human Normalized Score

Figure 4: Aggregate metrics on Mujoco-v4 with 95% CIs based on 6 environments. We collected
the validation returns of each algorithm over the last 1% training steps across ten random seeds. In
this context, higher median, IQM and mean scores and lower optimality gap are better.

As suggested in Agarwal et al. (2021), we employ stratified bootstrap confidence intervals to assess
the confidence intervals of the algorithm and evaluate the composite metrics of SPO against other
baselines, as illustrated in Figure 4. It can be observed that SPO achieved the best performance
across nearly all statistical metrics, which fully demonstrates the strong potential of SPO.

For the Atari 2600 benchmark (Bellemare et al., 2013), the main results are presented in the Ap-
pendix H and Fig. 1. Although SPO did not consistently outperform PPO under the same settings,
we will demonstrate in the following section that this is primarily due to the limited expressive
capacity of the network and the overly restrictive ratio constraints imposed by SPO.

5.2 SCALING POLICY NETWORK

The high performance of the PPO algorithm often relies on a carefully designed model architecture
(Huang et al., 2022a). To investigate how scaling policy network size impacts the sample efficiency
of both PPO and SPO in MuJoCo, the number of policy network layers was increased without al-
tering the hyperparameters or other settings. The standard deviation of the algorithm’s performance
was computed and visualized across five separate runs with different random seeds. The results,
shown in Fig. 5, 6 and Tab. 5, where the ratio deviation indicates the largest value of average ratio
deviation in a batch, i.e., 1

|D|
∑

(st,at)∼D |rt(θ)− 1|, which should typically be less than ϵ = 0.2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

2000

4000

Av
er

ag
e

re
tu

rn

Ant-v4

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

HalfCheetah-v4

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

500

1000

1500

Av
er

ag
e

re
tu

rn

Hopper-v4

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Humanoid-v4

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

50000

100000

150000

200000

Av
er

ag
e

re
tu

rn

HumanoidStandup-v4

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

1000

2000

3000

4000

Av
er

ag
e

re
tu

rn

Walker2d-v4

PPO (7 layers) PPO (3 layers) SPO (7 layers) SPO (3 layers)

Figure 5: Training performance of PPO and SPO with different policy network layers in MuJoCo
benchmark. The mean and standard deviation are shown across five random seeds.

0.0 0.8 1.6 2.4
PPO (7 layers, 64)
PPO (3 layers, 64)
PPO (7 layers, 512)
PPO (3 layers, 512)
SPO (7 layers, 64)
SPO (3 layers, 64)
SPO (7 layers, 512)
SPO (3 layers, 512)

Median

0.0 0.8 1.6 2.4

IQM

0.0 0.8 1.6 2.4

Mean

0.00 0.15 0.30 0.45

Optimality Gap

Human Normalized Score

Figure 6: Aggregate metrics on Mujoco-v4 with 95% CIs based on 6 environments, comparing PPO
and SPO with different policy network layers and mini-batch size using PPO-normalized score.

It can be observed that as the network deepens, the performance of PPO collapses in most envi-
ronments, with uncontrollable probability ratio deviations. In contrast, the performance of SPO
outperforms that of shallow networks in almost all environments and constrains the probability ratio
deviation effectively. Furthermore, the statistical metrics of SPO generally outperform PPO’s and
demonstrate relative robustness to variations in network depth and mini-batch size.

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

5000

10000

Av
er

ag
e

re
tu

rn

Assault

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

10000

20000

30000

Av
er

ag
e

re
tu

rn

Asterix

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

2000

4000

Av
er

ag
e

re
tu

rn

BeamRider

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

1000

2000

Av
er

ag
e

re
tu

rn

SpaceInvaders

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

10
3

10
2

10
1

10
0

Av
er

ag
e

ra
tio

 d
ev

ia
tio

n

Assault

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

10
3

10
2

10
1

10
0

Av
er

ag
e

ra
tio

 d
ev

ia
tio

n

Asterix

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

10
3

10
2

10
1

10
0

Av
er

ag
e

ra
tio

 d
ev

ia
tio

n

BeamRider

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

10
3

10
2

10
1

10
0

Av
er

ag
e

ra
tio

 d
ev

ia
tio

n

SpaceInvaders

PPO-0.2 (ResNet-18) PPO-0.1 (ResNet-18) SPO-0.2 (ResNet-18) PPO-0.2 (CNN) SPO-0.2 (CNN)

Figure 7: Training curves of SPO using ResNet-18 as the encoder compared to the PPO and SPO
with original CNN. The mean and standard deviation are shown across three random seeds.

We also trained the ResNet-183 as the encoder on the Atari 2600 benchmark, the results are shown
in Fig. 7. As the network’s capacity increases, the performance of SPO is significantly improved,

3Since Bjorck et al. (2021) demonstrated that batch normalization is harmful to RL, we removed batch
normalization and adjusted ResNet-18 for input and output from our implementation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

particularly in the Asterix environment, where the final reward is almost seven times the original. We
speculate that ResNet-18 is capable of extracting deeper pixel-level information, which expands the
function class that the policy network can learn from. Furthermore, SPO can still maintain a good
probability ratio constraint, thereby benefiting from the theoretical lower bound (10). In contrast,
it is challenging to train large neural networks with PPO because the probability ratio can not be
controlled during training, even employing a smaller ϵ = 0.1.

5.3 CONSTRAINING RATIO DEVIATION

We are not the first to attempt to constrain the differences between successive policies during train-
ing. For instance, TRPO (Schulman et al., 2015a) explicitly limits the KL divergence to ensure trust
region constraints, while TR-PPO (Wang et al., 2020) employs KL divergence-based clipping objec-
tive. Empirically, there have also been efforts to design adaptive learning rates to prevent aggressive
policy updates (Achiam et al., 2017; Heess et al., 2017; Queeney et al., 2021; Rudin et al., 2022).

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

10
1

10
0

10
1

10
2

Av
er

ag
e

ra
tio

 d
ev

ia
tio

n

PPO-0.2 (Linear)
PPO-0.2 (Adaptive)

PPO-0.1 (Linear)
SPO-0.2 (Linear)

PPO-0.05 (Linear)
TR-PPO (Linear)

Figure 8: Ratio deviation curves and training perfor-
mance of SPO and other methods. Where “linear”
denotes a linear decay and “adaptive” denotes an ad-
justment based on the KL divergence.

The most successful adaptive learning rates
are based on KL divergence, which has
been empirically proven to be highly effec-
tive (Rudin et al., 2022). Additionally, TR-
PPO (Wang et al., 2020) offers an efficient
approach for constraining successive poli-
cies. We demonstrate their ratio deviations
in the Humanoid-v4 environment, employ-
ing a seven-layer policy network. Further-
more, we compare them with PPO utilizing
a smaller ϵ, results are shown in Fig. 8.

It can be observed that naively reducing ϵ
does not match the ratio deviation curve
of SPO. In contrast, KL divergence-based
learning rate effectively constrains the ratio
deviations of PPO and improves its perfor-
mance, though it often result in overly conservative policy updates (with the learning rate nearly
maintained at the minimum value of 1e-5 during training). Additionally, while TR-PPO can miti-
gate PPO’s ratio deviations to some extent, it does not contribute to performance improvement.

In summary, despite the efforts made by the aforementioned work to constrain the probability ratio
between successive policies, the constraints on the probability ratio during training are (i) either
limited, resulting in insignificant performance improvements, or (ii) they significantly constrain the
probability ratio but lead to overly conservative policy updates. In contrast, SPO stands out with
its simple implementation and superior performance, positioning itself as an efficient and promising
alternative for model-free policy optimization algorithms.

6 CONCLUSION

In this paper, we introduced Simple Policy Optimization (SPO), a novel unconstrained first-order
algorithm that effectively combines the strengths of Trust Region Policy Optimization (TRPO) and
Proximal Policy Optimization (PPO). By incorporating TV divergence into the surrogate objective,
SPO maintains optimization within the trust region, benefiting from TRPO’s theoretical guarantees
while preserving the efficiency of PPO. Our experimental results demonstrate that SPO can achieve
competitive performance across various benchmarks with a simple implementation. Moreover, SPO
can simplify the training of deep policy networks, addressing a key challenge faced by existing
algorithms. These findings indicate that SPO is a promising approach for advancing model-free
reinforcement learning. In future work, SPO holds potential for impactful applications in areas such
as autonomous driving, robotic control, game AI, and financial modeling. With further research and
refinement, we believe, SPO could drive innovation and breakthroughs across these fields.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural informa-
tion processing systems, 34:29304–29320, 2021.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël
Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, et al. What
matters for on-policy deep actor-critic methods? a large-scale study. In International conference
on learning representations, 2021.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Nils Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement learning
with spectral normalization. Advances in neural information processing systems, 34:8242–8255,
2021.

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems, 5(1):411–444, 2022.

Yuhu Cheng, Longyang Huang, and Xuesong Wang. Authentic boundary proximal policy optimiza-
tion. IEEE Transactions on Cybernetics, 52(9):9428–9438, 2021.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep policy gradients: A case study
on ppo and trpo. arXiv preprint arXiv:2005.12729, 2020.

Yaozhong Gan, Renye Yan, Zhe Wu, and Junliang Xing. Reflective policy optimization. arXiv
preprint arXiv:2406.03678, 2024.

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gradient
estimates in reinforcement learning. Journal of Machine Learning Research, 5(9), 2004.

Dong Han, Beni Mulyana, Vladimir Stankovic, and Samuel Cheng. A survey on deep reinforcement
learning algorithms for robotic manipulation. Sensors, 23(7):3762, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Nicolas Heess, Dhruva Tb, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of locomotion behaviours in rich environ-
ments. arXiv preprint arXiv:1707.02286, 2017.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and Weixun
Wang. The 37 implementation details of proximal policy optimization. The ICLR Blog Track
2023, 2022a.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and JoÃĢo GM AraÃšjo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022b.

11

https://github.com/openai/baselines
https://github.com/openai/baselines

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Are deep policy gradient algorithms truly policy gradient algo-
rithms. arXiv preprint arXiv:1811.02553, 2018.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In Proceedings of the Nineteenth International Conference on Machine Learning, pp. 267–274,
2002.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

Matthias Lehmann. The definitive guide to policy gradients in deep reinforcement learning: Theory,
algorithms and implementations. arXiv preprint arXiv:2401.13662, 2024.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

James Queeney, Yannis Paschalidis, and Christos G Cassandras. Generalized proximal policy op-
timization with sample reuse. Advances in Neural Information Processing Systems, 34:11909–
11919, 2021.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using
massively parallel deep reinforcement learning. In Conference on Robot Learning, pp. 91–100.
PMLR, 2022.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

H Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer,
Jack W Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, et al. V-mpo: On-policy
maximum a posteriori policy optimization for discrete and continuous control. arXiv preprint
arXiv:1909.12238, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Satinder Singh, and David McAllester. Comparing policy-gradient algorithms.
IEEE Transactions on Systems, Man, and Cybernetics, 2000.

Siyu Teng, Xuemin Hu, Peng Deng, Bai Li, Yuchen Li, Yunfeng Ai, Dongsheng Yang, Lingxi Li,
Zhe Xuanyuan, Fenghua Zhu, et al. Motion planning for autonomous driving: The state of the art
and future perspectives. IEEE Transactions on Intelligent Vehicles, 8(6):3692–3711, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Quan Vuong, Yiming Zhang, and Keith W Ross. Supervised policy update for deep reinforcement
learning. arXiv preprint arXiv:1805.11706, 2018.

Yuhui Wang, Hao He, and Xiaoyang Tan. Truly proximal policy optimization. In Uncertainty in
artificial intelligence, pp. 113–122. PMLR, 2020.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,
Xipeng Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforce-
ment learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
6672–6679, 2020.

Zeyu Zhu and Huijing Zhao. A survey of deep rl and il for autonomous driving policy learning.
IEEE Transactions on Intelligent Transportation Systems, 23(9):14043–14065, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED WORK

Previous studies have explored policy improvement within the trust region. For instance, Queeney
et al. (2021) developed an off-policy sample reuse method that combines the stability of on-policy
approaches with the sample efficiency of off-policy methods, implementing a mechanism similar
to the clipping mechanism in PPO. Achiam et al. (2017) proposed constrained policy optimization
(CPO), which restricts policy improvement to a safe region, based on new theoretical results. There
has also been work focused on developing novel clipping mechanisms to prevent aggressive policy
updates (Wang et al., 2020; Cheng et al., 2021). In terms of implementation, some studies have
designed adaptive learning rates based on TV divergence or KL divergence (Heess et al., 2017;
Queeney et al., 2021; Rudin et al., 2022), which have been shown to effectively enhance the stability
of clipping objectives. Additionally, some work has explored non-parametric methods for policy
optimization (Vuong et al., 2018; Song et al., 2019). Empirically, code-level optimizations have
proven to be effective in improving the performance of PPO and the implementation details of PPO
have been widely adopted (Huang et al., 2022a;b; Dhariwal et al., 2017).

B IMPLEMENTATION DETAILS

Our code implementation is primarily based on the high-quality open-source reinforcement learning
libraries, CleanRL (Huang et al., 2022b), with all code runs on an NVIDIA GeForce RTX 3090.
For details on code-level optimizations, please refer to the mujoco and atari folders in the supple-
mentary materials. We emphasize that no further code-level tuning is applied to SPO, except for
modifications to the policy loss. Anyone can run our code to reproduce our results.

C COMPARING ALGORITHMS

Table 1: Average return of the entire training process across ten separate runs with different random
seeds in MuJoCo benchmark, using policy networks with three layers.

Environment PPO-Clip PPO-Penalty SPO SPU PPO-RB TR-PPO TR-PPO-RB RPO

Ant-v4 4234.7 1684.6 3779.7 1985.02 767.0 3795.3 2719.4 4248.0
HalfCheetah-v4 2964.6 3287.9 2515.9 2537.9 1262.7 2664.8 2846.1 3095.2

Hopper-v4 1306.9 1221.0 1507.5 1381.8 549.2 1347.2 1120.7 1311.3
Humanoid-v4 778.5 1089.2 1808.3 1514.8 852.9 838.5 869.2 884.3

HumanoidStandup-v4 139434.6 120696.0 150395.0 143019.9 124482.4 141321.6 142652.0 143434.4
Walker2d-v4 3025.1 2206.6 2738.2 2102.7 644.3 2901.6 2279.2 2933.1

Total average return 25290.7 21697.6 27124.1 25423.7 21426.4 25478.2 25414.4 25984.4

D HYPERPARAMETER SETTINGS

Table 2: Detailed hyperparameters in Atari 2600 and MuJoCo.

Hyperparameters Atari 2600 (Bellemare et al., 2013) MuJoCo (Todorov et al., 2012)

Number of actors 8 8
Horizon 128 256

Learning rate 2.5 × 10−4 3 × 10−4

Learning rate decay Linear Linear
Optimizer Adam Adam
Total steps 1 × 107 1 × 107

Batch size 1024 2048
Update epochs 4 10
Mini-batches 4 32, 4

Mini-batch size 256 64, 512
GAE parameter λ 0.95 0.95
Discount factor γ 0.99 0.99

Value loss coefficient c1 0.5 0.5
Entropy loss coefficient c2 0.01 0.0

Probability ratio parameter ϵ 0.2 0.2

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

E SENSITIVITY ANALYSIS

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0.0

0.1

0.2

0.3

0.4

Av
er

ag
e

ra
tio

 d
ev

ia
tio

n

SPO-0.1
SPO-0.4

SPO-0.2
SPO-0.5

SPO-0.3

Figure 9: Training curves of ratio deviation
of SPO with different ϵ in Humanoid-v4 en-
vironment. The mean and standard devia-
tion are shown across five random seeds.

We conducted a sensitivity analysis on the hyperpa-
rameter ϵ of SPO, setting it to 0.1, 0.2, 0.3, 0.4 and
0.5, respectively, the results are shown in Tab. 3. We
can see that the best performance of SPO is usually
achieved when ϵ is set to 0.1 and 0.2, while SPO-0.5
usually performs the worst, as it is too loose for the
probability ratio constraint in the performance differ-
ence lower bound (10).

Similar to Tab. 5, we also present the largest value
of average ratio deviation during training, which can
be seen from Tab. 4. It is clear that the PPO’s ratio
deviation is not under control, as its maximum ratio
deviation in most environments exceeds a staggering
1000, which is much larger than the expected value of
ϵ = 0.2. That’s why in Tab. 3, even though SPO-0.5
performs the worst, it is still better than PPO in all
environments. We visualize the ratio deviation curves
in the Humanoid-v4 environment, which can be seen
in Fig. 9. It is clear that the ratio deviation of SPO
can be effectively controlled by the hyperparameter ϵ.

0 1 2 3 4 5
Timesteps 1e7

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

re
tu

rn

0 1 2 3 4 5
Timesteps 1e7

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Av
er

ag
e

ra
tio

 d
ev

ia
tio

n

PPO-0.2 (7 layers) SPO-0.2 (7 layers)

Figure 10: Training performance of PPO and SPO with super large batch size in Humanoid-v4,
where batch size and mini-batch size are set to 65536 and 32768, while all other hyperparameters
remain consistent. The mean and standard deviation are shown across five random seeds.

Table 3: Average return of SPO with different ϵ of the entire training process across five separate
runs with different random seeds in MuJoCo benchmark, using policy networks with seven layers.

Environment SPO-0.1 SPO-0.2 SPO-0.3 SPO-0.4 SPO-0.5 PPO-0.2

Ant-v4 3013.7 3222.4 3176.4 2925.7 2701.7 928.0
HalfCheetah-v4 1903.8 3764.6 2842.6 3358.9 2522.8 1950.8

Hopper-v4 1649.3 1461.2 1237.7 1149.2 1351.4 1107.1
Humanoid-v4 2202.1 2637.0 2457.0 2510.6 1531.9 595.1

HumanoidStandup-v4 141551.8 154103.6 145723.4 148864.2 139806.3 96899.1
Walker2d-v4 2776.9 2572.3 2555.8 2178.7 1845.4 1098.5

Table 4: The largest value of average ratio deviation of SPO with different ϵ during the entire training
process across five separate runs with different random seeds in MuJoCo benchmark, using policy
networks with seven layers. The maximum value in each column is bolded.

Environment SPO-0.1 SPO-0.2 SPO-0.3 SPO-0.4 SPO-0.5 PPO-0.2

Ant-v4 0.126 0.190 0.328 0.519 0.597 548.060
HalfCheetah-v4 0.121 0.188 0.381 0.528 0.591 1675.340

Hopper-v4 0.094 0.194 0.548 0.334 0.555 113.178
Humanoid-v4 0.095 0.191 0.367 0.378 0.452 2411.845

HumanoidStandup-v4 0.093 0.187 0.281 0.382 0.505 4018.718
Walker2d-v4 0.096 0.157 0.272 0.393 0.604 998.101

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

F PROOF OF THEOREM 2.1

According to the definition of unnormalized discounted visitation frequencies, we have

Es∼ρπ̃(·),a∼π̃(·|s) [Aπ(s, a)]

=
∑
s

∞∑
t=0

γtP(st = s|π̃)
∑
a

π̃(a|s) ·Aπ(s, a)

=

∞∑
t=0

∑
s

P(st = s|π̃)
∑
a

π̃(a|s) · γtAπ(s, a)

=Eτ∼π̃

[∞∑
t=0

γtAπ(st, at)

]

=Eτ∼π̃

{ ∞∑
t=0

γt [r(st, at) + γVπ(st+1)− Vπ(st)]

}

=Eτ∼π̃

{ ∞∑
t=0

γtr(st, at) +

∞∑
t=0

γt+1Vπ(st+1)−
∞∑
t=0

γtVπ(st)

}

=Eτ∼π̃

{ ∞∑
t=0

γtr(st, at)− Vπ(s0)

}
=η(π̃)− η(π),

(22)

concluding the proof.

G TV DIVERGENCE AND PROBABILITY RATIO

Assumption G.1. Given the current policy π̃ and the old policy π, we assume that the support of π̃
is contained in the support of π.

According to the definition of TV divergence and Assumption G.1, we have

Dmax
TV (π, π̃)2 =

[
max

s

1

2

∑
a∈A
|π̃(a|s)− π(a|s)|

]2

=
1

4

[
max

s

∑
a∈A

π(a|s)
∣∣∣∣ π̃(a|s)π(a|s)

− 1

∣∣∣∣
]2

, (23)

then, following the definition of expectation,

Dmax
TV (π, π̃)2 =

1

4
max

s

[
Ea∼π(·|s)

∣∣∣∣ π̃(a|s)π(a|s)
− 1

∣∣∣∣]2 . (24)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

H TRAINING CURVES ON ATARI 2600 ENVIRONMENTS

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

500

1000

1500

2000
Av

er
ag

e
re

tu
rn

Alien

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

200

400

600

800

Av
er

ag
e

re
tu

rn

Amidar

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Assault

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

1000

2000

3000

4000

Av
er

ag
e

re
tu

rn

Asterix

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

1000

1500

2000

Av
er

ag
e

re
tu

rn

Asteroids

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

500

1000

Av
er

ag
e

re
tu

rn

BankHeist

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

10000

20000

30000

Av
er

ag
e

re
tu

rn

BattleZone

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

1000

2000

Av
er

ag
e

re
tu

rn

BeamRider

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

500

1000

Av
er

ag
e

re
tu

rn

Berzerk

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

20

40

60

80

Av
er

ag
e

re
tu

rn

Bowling

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

25

50

75

100

Av
er

ag
e

re
tu

rn

Boxing

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

100

200

300

400

Av
er

ag
e

re
tu

rn

Breakout

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

2000

2500

3000

3500

4000

Av
er

ag
e

re
tu

rn

Centipede

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

2000

4000

Av
er

ag
e

re
tu

rn

ChopperCommand

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

50000

100000

Av
er

ag
e

re
tu

rn

CrazyClimber

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

20000

40000

Av
er

ag
e

re
tu

rn

Defender

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

5000

10000

15000

20000

Av
er

ag
e

re
tu

rn

DemonAttack

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

100

50

0

Av
er

ag
e

re
tu

rn

FishingDerby

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

500

1000

1500

2000

Av
er

ag
e

re
tu

rn

Gravitar

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

10000

20000

30000

Av
er

ag
e

re
tu

rn

Hero

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

12

10

8

6

4

Av
er

ag
e

re
tu

rn

IceHockey

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

5000

10000

15000

Av
er

ag
e

re
tu

rn

Qbert

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

2500

5000

7500

10000

Av
er

ag
e

re
tu

rn

Riverraid

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

5

10

15
Av

er
ag

e
re

tu
rn

Robotank

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

500

1000

1500

Av
er

ag
e

re
tu

rn

Seaquest

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

250

500

750

1000

1250

Av
er

ag
e

re
tu

rn

SpaceInvaders

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

20000

40000

Av
er

ag
e

re
tu

rn

StarGunner

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

20

10

0

Av
er

ag
e

re
tu

rn

Tennis

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

2000

4000

6000

Av
er

ag
e

re
tu

rn

TimePilot

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

100

200

Av
er

ag
e

re
tu

rn

Tutankham

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

100000

200000

Av
er

ag
e

re
tu

rn

UpNDown

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

50000

100000

Av
er

ag
e

re
tu

rn

VideoPinball

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

2000

4000

6000

8000

Av
er

ag
e

re
tu

rn

WizardOfWor

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

2500

5000

7500

10000

Av
er

ag
e

re
tu

rn

Zaxxon

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

200

400

600

800

Av
er

ag
e

re
tu

rn

Jamesbond

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

10000

20000

30000

40000

Av
er

ag
e

re
tu

rn

KungFuMaster

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

500

1000

1500

2000

2500

Av
er

ag
e

re
tu

rn

MsPacMan

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

2000

3000

4000

5000

6000

Av
er

ag
e

re
tu

rn

NameThisGame

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

0

5000

10000

15000

Av
er

ag
e

re
tu

rn

Phoenix

0.00 0.25 0.50 0.75 1.00
Timesteps 1e7

20

10

0

10

20

Av
er

ag
e

re
tu

rn

Pong

PPO SPO

Figure 11: Training performance of PPO and SPO in Atari 2600 benchmark. The mean and standard
deviation are shown across three random seeds.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

I MORE EXPERIMENTAL RESULTS

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

10
2

10
0

10
2

Av
er

ag
e

ra
tio

 d
ev

ia
tio

n
(lo

g)

Ant-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

10
2

10
0

10
2

Av
er

ag
e

ra
tio

 d
ev

ia
tio

n
(lo

g)

HalfCheetah-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

10
3

10
1

10
1

Av
er

ag
e

ra
tio

 d
ev

ia
tio

n
(lo

g)

Hopper-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

10
2

10
0

10
2

Av
er

ag
e

ra
tio

 d
ev

ia
tio

n
(lo

g)

Humanoid-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

10
2

10
0

10
2

Av
er

ag
e

ra
tio

 d
ev

ia
tio

n
(lo

g)

HumanoidStandup-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

10
3

10
1

10
1

Av
er

ag
e

ra
tio

 d
ev

ia
tio

n
(lo

g)

Walker2d-v4

PPO (7 layers) PPO (3 layers) SPO (7 layers) SPO (3 layers) Ratio deviation boundary 0.2

Figure 12: Ratio deviation curves of PPO and SPO with different policy network layers in MuJoCo
benchmark. The mean is shown across five random seeds.

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

Ant-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

HalfCheetah-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0

1000

2000

3000

4000

5000
Av

er
ag

e
re

tu
rn

Walker2d-v4

SPO-0.2 (3 layers) SPO-0.3 (3 layers)

Figure 13: Training performance of SPO with different ϵ in MuJoCo benchmark. The mean and
standard deviation are shown across five random seeds.

Table 5: Average return of PPO and SPO in the last 10% training steps across five separate runs with
different random seeds, with their maximum ratio deviation of the entire training process.

Environment Index 3 layers 7 layers
PPO SPO PPO SPO

Ant-v4 Average return (↑) 5323.2 4911.3 1002.8 4672.5
Ratio deviation (↓) 0.229 0.101 548.060 0.190

HalfCheetah-v4 Average return (↑) 4550.2 3602.4 2242.3 5307.3
Ratio deviation (↓) 0.225 0.086 1675.340 0.188

Hopper-v4 Average return (↑) 1119.4 1480.3 975.9 1507.6
Ratio deviation (↓) 0.164 0.067 113.178 0.194

Humanoid-v4 Average return (↑) 795.1 2870.0 614.1 4769.9
Ratio deviation (↓) 3689.957 0.179 2411.845 0.191

HumanoidStandup-v4 Average return (↑) 143908.8 152378.7 92849.7 176928.9
Ratio deviation (↓) 2547.499 0.182 4018.718 0.187

Walker2d-v4 Average return (↑) 3352.3 2870.2 1110.9 3008.1
Ratio deviation (↓) 0.170 0.070 998.101 0.157

18

	Introduction
	Preliminaries
	Reinforcement Learning
	Trust Region Policy Optimization
	Proximal Policy Optimization

	Methodology
	Theoretical Results
	Objective Class
	Analysis of New Objective

	Experiments
	Comparing Algorithms
	Scaling Policy Network
	Constraining Ratio Deviation

	Conclusion
	Related Work
	Implementation Details
	Comparing Algorithms
	Hyperparameter Settings
	Sensitivity Analysis
	Proof of Theorem 2.1
	TV Divergence and Probability Ratio
	Training Curves on Atari 2600 Environments
	More Experimental Results

