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Abstract: Self-supervised learning has revolutionized the fields of computer vi-1

sion and natural language processing. Despite its potential, its application to2

robotic navigation tasks remains under-explored. This is due to the difficulty of3

defining effective self-supervision signals for robotics. Fortunately, with the re-4

cent development of many large-scale robotic navigation datasets with a variety of5

sensor and action data that can be used as self-supervision signals, self-supervised6

learning has become a viable approach for robotic navigation tasks. In this work,7

we propose a self-supervised method for learning visual features for end-to-end8

robotic navigation systems, using actions as the supervisory signal. This approach9

is motivated by the observation that humans tend to focus on specific regions of10

their frontal view in order to make navigation decisions and produce navigation11

actions. We reverse this procedure, using future actions to learn only the visual12

features that are important for navigation, as opposed to extracted features by13

conventional computer vision models that tend to extract every detail of the envi-14

ronment that can be misleading to a downstream navigation controller. Our results15

show that this approach enables small convolutional neural network-based visual16

encoders to achieve performance comparable to large vision foundation models17

trained on billions of images. This demonstrates the scalability and effectiveness18

of our self-supervised learning method for robotic navigation.19

Keywords: Self-supervised, Navigation, Learning20

1 Introduction21

Recent advances in computer vision and deep learning rely on the development of increasingly large22

and complex Deep Neural Networks (DNNs) [1, 2, 3, 4]. However, training these DNNs from scratch23

can be computationally expensive and requires a large amount of computing resources [5, 6, 7, 8, 9].24

Self-Supervised Learning (SSL) [10, 11, 12, 13] is a machine learning paradigm that can mitigate25

the need for annotated data by enabling DNNs to first pre-train the model from unlabeled data26

and then quickly fine-tune to adapt to specific tasks, avoiding the need to re-train everything from27

scratch, i.e., SSL trains DNNs to complete a pretext task that does not require labels. For example,28

DNNs might be trained to predict the rotation of an image [14] or to reconstruct an image from29

its corrupted/obstructed version [15]. By completing these pretext tasks, DNNs learn to extract30

meaningful features from the data, which can then be used to solve downstream tasks such as image31

classification and object detection [16].32

Despite the effectiveness of SSL in a variety of computer vision tasks, challenges still remain that33

need to be addressed before SSL can be widely adopted in robotics applications. For example,34

SSL models typically require a large amount of data to train, which can be difficult to obtain in35

robotics settings. Additionally, SSL models trained on computer vision datasets such as ImageNet36

ILSVRC-2012 [17] and COCO [18] may not generalize well to robotic navigation tasks, which37

contain a significant amount of dynamic scenes of moving agents that can affect a robot’s trajectory.38
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Figure 1: An illustrative example of the difference between attentive regions from computer vision
models (left) and navigation models (right). With the assumption that everyone respects social
etiquette, some regions become redundant when making navigational decisions.

As shown in Figure 1 left, complex DNN models trained on vision tasks may extract all the existing39

features in the scene that may confuse downstream navigation controllers based on Neural Networks40

(NNs) by providing too much information and leading to improper actions. Although these features41

may be useful for other downstream tasks, e.g., computer vision or mobile manipulation [19], such42

complex features may not be necessary for navigation tasks, e.g., when navigating human-occupied43

spaces where everyone is respecting social etiquette [20]. Another argument for this limitation of44

conventional computer vision models in real-world navigation is that humans only pay attention to45

what is right in front of them to make decisions when navigating an environment. This efficiently46

limits the observation region, as shown in Figure 1 right, which illustrates the difference between47

features extracted by conventional computer vision models and those necessary to enable navigation48

tasks.49

Considering both the success of SSL on a variety of computer vision tasks and the oftentimes re-50

dundant and confusing features provided by generic SSL models for navigation tasks, we present51

a Vision-Action Navigation Pretraining (VANP) approach that completely relies on a pretext task52

to train the visual encoder. The key observation behind VANP is when humans navigate crowded53

spaces, we do not need to pay attention to all the people and objects in the scene, but only the ones54

that affect our navigation trajectory i.e. observations that cause our actions. In this work, we re-55

verse this causality by learning only relevant visual features with the help of future actions. To this56

end, we leverage Barlow Twins’ redundancy-reduction principle [11] to train a visual encoder that57

discards redundant features of an image for navigation using an action latent space (see Figure 2).58

VANP focuses on extracting informative features from images that are aligned with the actions of a59

navigating robot. Our experimental results suggest that VANP-extracted features are more informa-60

tive for a downstream controller. We show that even a simple Convolutional Neural Network (CNN)61

with 8 million parameters trained on only one million images can be as expressive for visual navi-62

gation as a vision foundation model with 21 million parameters pre-trained on 142 million curated63

images out of 1.2 billion source images.64

The contributions of this work can be summarized as follows:65

• We propose an SSL framework to train a visual encoder for robotic navigation tasks.66

• We provide a concrete pre-trained SSL model for deployment in an end-to-end navigation67

pipeline in social environments.68
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2 Related Work69

Our work is motivated by several recent advances in Natural Language Processing (NLP) and com-70

puter vision, driven by the Self-Supervised Learning (SSL) paradigm. In this section, we categorize71

this pretraining paradigm into two groups for robotics and review related works pertaining to each.72

Pretraining for better representation: General purpose models, also known as foundation models,73

pre-trained on pretext tasks can contribute to learning a rich representation that can help the model74

generalize to different downstream tasks in a zero/few-shot manner [16]. Foundation models for75

robot manipulation have been extensively studied in the literature [21, 22, 23, 24, 25, 26, 27]. For ex-76

ample, R3M [28] trained a general visual encoder for manipulation tasks on the Ego4D dataset [29],77

while CLIPort [30] leveraged the CLIP model [31] to enable language instructions for manipulation.78

Dadashi et al. [21] proposed AQuaDem, a framework to learn quantized actions from demonstra-79

tions in continuous action spaces, while VANP is doing the opposite by learning visual features from80

continuous action spaces. Luo et al. [22] improved AQuaDem by using VQ-VAE [32] for offline81

reinforcement learning. Huang et al. [23] proposed Skill Transformer to learn long-horizon robotic82

tasks with the help of transformers [33].83

In autonomous driving Nazeri and Bohlouli [34] proposed two parallel networks, one encodes fea-84

tures from the past, and the other encodes plausible features from the future to expand the ob-85

servation window so the model can make well-informed decisions. Codevilla et al. [35] showed86

that a deeper model can play an important role in training better policies. It is apparent that87

most of the works in AVs use pre-trained computer vision models that are trained on ImageNet88

[36, 35, 37, 38, 34, 39, 40, 41, 42]. However, VANP shows that a visual encoder specific to naviga-89

tion tasks can help in learning better policies compared to pretraining with ImageNet.90

Pretraining for better policies: Foundation models can not only help in learning a rich repre-91

sentation but also be used as a policy to generalize to multiple robotic tasks. SayCan [43] used92

Large Language Models (LLMs) to learn robotics skills by grounding LLMs and value functions93

in the physical world. Li et al. [44] and Reid et al. [45] used pre-trained LLMs as the policy back-94

bone. VPT [46] pseudo-labeled Minecraft YouTube videos to learn a behavior cloning policy that95

can craft diamonds. VPT learns the inverse dynamics while VANP uses dynamics to learn visual96

features. GNM [47] learned a general policy to drive any robot by combining multiple datasets97

of different robot types. ViNT [48] further improved GNM by replacing the policy network with98

a transformer [33]. To the best of our knowledge, no prior work has used actions as the pretext99

training signal to learn visual features for visual navigation.100

Large-Scale Datasets: Large-scale datasets are the primary driver of recent advances in SSL. Data101

collection in computer vision is relatively straightforward compared to interaction-rich robotics nav-102

igation. One reason for this is that collecting a large-scale navigation dataset through human teleop-103

eration is expensive. Additionally, collecting interaction-rich datasets can be potentially dangerous104

due to the risk of collisions between humans and robots. Despite these challenges, the robotics com-105

munity has made tremendous efforts to collect interaction-rich datasets in the real world in recent106

years [49, 50, 51, 52]. SCAND [49] was one of the first efforts to collect navigation data in social107

environments at large by using teleoperated Spot and Jackal robots. MuSoHu [50] is another effort108

to collect 20 hours of human interactions in crowded spaces by using a human wearing a helmet109

equipped with different sensors. SANPO [52] also used humans to collect both real and synthetic110

datasets of nearly 15 hours of annotated videos for both vision tasks and robotics navigation. In111

this work, we combine both SCAND and MuSoHu of both robot and human navigation demonstra-112

tions respectively to create a dataset of nearly 1 million visual navigation samples with real-world113

human-robot interactions.114

3 Methodology115

This section formally defines the end-to-end visual navigation task and describes the Vision-Action116

Navigation Pretraining (VANP) procedure for the visual encoder.117
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Figure 2: VANP first maps the sequence of actions to a sparser, higher-dimensional space Za
(green). Then, leveraging Barlow Twins’ redundancy reduction principle, VANP induces sparsity
on Zi (blue), the visual embedding, by minimizing the mutual information between Zi and Za.

Problem Definition: Visual navigation is the task of navigating an environment with only RGB118

camera input. Unlike conventional geometric navigation tasks using, e.g., LiDARs or depth images,119

this task is challenging due to the lack of explicit geometric information. The visual navigation120

problem can be formalized as follows. Input: The robot is given a sequence of past and current121

images from its front-facing camera, ot = [It−τp , It−τp+1, . . . , It] ∈ O, where t is the current time122

step, τP is the number of past frames, and O is the space of all possible image sequences. The robot123

is also given its current goal e.g. GPS coordinates, pose, image, or next local coordinate in 2D space,124

g ∈ G, which determines the direction it should move in the next time step. Output: The robot must125

select an action, at ∈ A consists of continuous linear and angular velocities, where A ∈ [−1, 1]2 is126

the action space, where [−1, 1] maps to the minimal and maximal linear and angular velocity of the127

robot. Visual Navigation: The goal is to learn a policy, πΘ : O × G → A, where Θ represents the128

policy’s parameters, to determine which action to take at each time step to reach its goal destination129

efficiently while avoiding collisions with other agents and observing underlying social norms.130

End-To-End Model: In end-to-end or holistic models we define the policy πΘ as follow: a =131

πΘ(o, g) = σζ(pϕ(o) ⊕ qψ(g)), where σ is the controller policy parametrized by ζ, p is the image132

encoder parameterized by ϕ, q is the goal encoder parameterized by ψ, and ⊕ is the concatenation of133

two output vectors. To learn these parameters, two common approaches are (1) to learn all of them134

together in an end-to-end manner which makes the training difficult and time-consuming or (2) to135

train the image encoder separately and only fine-tune the goal encoder along with the controller to136

reduce training time.137

3.1 Vision-Action Model138

VANP is inspired by the redundancy reduction principle of Barlow’s Twins to train the image en-139

coder p. However, unlike vision self-supervised learning (SSL) models that work on the joint em-140

bedding of augmented images [53, 54], VANP correlates the action space A with the pixel latent141

space O′. Under the assumption that every dynamic object or person in the environment will adhere142

to social norms, we define VANP pretraining as follows: We sample a batch of (Ii, ait:t+τF ) from143

dataset D where i is the sample number, Ii is a single image at time t and ait:t+τF is a sequence of144

actions starting from t and ending in t + τF , where τF is the number of frames in the future. We145

then feed Ii to pϕ and ait:t+τF to fξ, typically a multilayer perceptron (MLP), to learn image Zi and146

action Za embeddings, respectively. Finally, we use Barlow Twin’s objective function to learn ϕ147

and ξ:148
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Figure 3: Vision-Action Navigation Pretraining and Downstream Navigation Fine-Tuning.

LBT =
∑
i(1− Cii)2︸ ︷︷ ︸

invariance term

+λ
∑
i

∑
j ̸=i C2

ij︸ ︷︷ ︸
redundancy reduction term

(1)

where λ is the trade-off between the first and second terms of the loss, and C is the cross-correlation149

matrix computed between the outputs of the action and image embeddings along the batch dimen-150

sion.151

Leveraging Barlow’s objective function provides the advantage of not requiring negative samples,152

which can be difficult to define in action space. For example, when a person is in front of us, there153

may be two correct actions: overtake from the left or overtake from the right. Therefore, simply154

negating the angular velocity does not give us a negative sample and may introduce ambiguity like155

the example as mentioned earlier. Using actions from another sequence may not provide useful156

information for visual navigation, as the actions are inherently conditioned on the observations.157

Furthermore, the sparse high dimensional action latent space acts as a soft-whitening constraint on158

the image latent space to reduce the redundancy in extracted features from the image [55, 11].159

4 Preliminary Experimental Results160

4.1 Implementation Details161

We implement our method with PyTorch [56] and the training is performed on a single A100 GPU162

with 80 gigabytes of memory. You can find the code here.163

Model architecture: Considering the limited computation resources onboard most mobile robots,164

we choose ResNet-18 [57] without the classification head as a lower latency image encoder and we165

call it VANP-18. We use a multilayer perceptron (MLP) with two hidden layers as the action encoder166

to produce the embeddings of Zi, Za ∈ R512. Both encoders were followed by MLPs with three167

layers as the projection heads to generate the final Z ′i, Z ′a ∈ R8192, the same as Zbontar et al. [11].168

The most important challenge here is that the two distinct networks for producing the embeddings169

have different modalities and therefore the output range significantly varies. Therefore, we initialize170

all the deep networks with the Kaiming Normal initialization [57] with mean zero and variance one171

to mitigate the discrepancy in the output of the networks. For the end-to-end model, we follow the172

model used by Nguyen et al. [50]. We freeze the image encoder and only train the goal encoder and173

controller during downstream task training for all the experiments.174

Optimization: As proposed by Zbontar et al. [11], we use the LARS optimizer [58] and train the175

model for 1000 epochs with a batch size of 16384. For the other hyperparameters, we use a learning176

rate of 0.2 for the weights and 0.0048 for the biases. We use the first ten epochs as the warm-up177

phase and update the learning rate by a factor of 8 during these epochs. We observe that, as suggested178

by Zbontar et al. [11], using any other factor than 8 results in gradient explosion during training.179
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Dataset: We leverage two unique datasets: SCAND [49] and MuSoHu [50], both of which encap-180

sulate robot and human navigation data from the egocentric perspective. Both large-scale real-world181

datasets are collected in a variety of natural crowded public spaces. MuSoHu comprises approxi-182

mately 20 hours of data captured from human egocentric motion. The recordings capture human183

walking patterns in public spaces, providing insights for learning human-like, socially compliant184

navigation behaviors. SCAND is an autonomous robot navigation dataset that captures 8.7 hours of185

human-teleoperated robot navigation demonstrations in naturally crowded public spaces on a uni-186

versity campus. By combining these two, we create a dataset of over 1 million samples to train the187

image encoder on the pretext task. For pretext task training, we use a single image It ∈ R70×70188

along with a sequence of actions at:t+τF ∈ RτF×2 parsed at 25 Hz, comprising of 4 seconds in the189

future. For the downstream task, we use a sequence of past observations It−τP :t ∈ Rt×70×70 along190

with the polar coordinates of the next local goal g ∈ R2 parsed at 4 Hz, containing 1.5 seconds191

history as the network input to produce the actions At:t+τF ∈ RτF×2 for two seconds in the future.192

In both stages, we use the augmentations proposed by Codevilla et al. [35].193

4.2 Results Discussion194

We report our preliminary results. To evaluate the effectiveness of VANP pretext training, we quan-195

titatively compare it with DINOv2 [12], a self-supervised vision transformer model that learns uni-196

versal features suitable for eight different visual tasks including depth estimation, semantic seg-197

mentation, instance retrieval, dense and sparse matching. DINOv2 models exhibit robust out-of-198

distribution performance, and the learned features can be used directly without fine-tuning. We use199

DINOv2 as the upper performance bound and ResNet-18 trained on ImageNet ILSVRC-2012 as the200

performance baseline. To ensure a fair comparison, the architectures of all other components of the201

end-to-end model are kept fixed. During the downstream navigation task, we only train the goal en-202

coder and controller, and the weights of the image encoder are frozen, regardless of the architecture203

used.204

We use ResNet-18 as the architecture for VANP pretext training (VANP-18). The smoothly de-205

creasing Barlow’s loss in Figure 3a indicates that the learned visual features align with the actions.206

Figure 3b shows the training loss for the downstream visual navigation task. During end-to-end207

training, the weights of the visual encoder ϕ are frozen, and we only train the goal encoder qψ and208

the controller σζ . As shown in the figure, VANP-18 outperforms ResNet-18 with the same archi-209

tecture but a different training paradigm which shows the effectiveness of VANP’s pretext training.210

VANP-18 also achieves slightly better performance than DINOv2, a vision transformer trained on211

billions of images. Figure 3b shows a comparison of parameters for the holistic model when we use212

different visual encoders.213

We separate a few trajectories from the dataset and use them as unseen scenarios for qualitative214

evaluation. After qualitatively comparing the model outputs, we observe that VANP-18 performs215

human avoidance. Figure 4 shows a few examples from the evaluation set. Note that negative values216

for angular velocity denote turning right, and positive values mean turning left. VANP-18’s decisions217

do not agree with human decisions in some scenarios, but it does not mean that they are completely218

wrong: for example, the disagreement in the second red border image is because the human predicts219

the group’s future trajectory, and decides to move from the left while VANP-18 decides to go from220

the right.221

5 Conclusions and Future Work222

In this work, we propose a self-supervised training approach to train visual encoder models specif-223

ically designed for visual navigation. This approach is motivated by the observation that humans224

only pay attention to a small region of their frontal view to make navigation decisions. By reversing225

this observation, we use the decisions to extract only visual features that are relevant to the visual226

navigation task, unlike computer vision models that tend to extract every detail in the environment,227

which can lead to confusion of neural-based controllers.228
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Figure 4: VANP’s qualitative performance on unseen scenarios. Green: VANP outputs align with
the demonstrations; Red: VANP outputs do not align with the demonstrations.

We hope that this work will inspire new ideas in the field of visual navigation. In the future, we229

plan to conduct more real-world experiments and train deeper models, such as VAM-34 and VAM-230

50, based on ResNet-34 and ResNet-50, respectively. In this work, we only use datasets collected231

in social environments. Another future direction is to merge datasets from different environments,232

such as off-road, indoor, outdoor, and social environments, to evaluate the generalizability of the233

proposed approach.234
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