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VisualQuestion Answering Driven Eye Tracking Paradigm for
Identifying Children with Autism Spectrum Disorder

Anonymous Authors

ABSTRACT
As a non-contact method, eye-tracking data can be used to diag-
nose people with Autism Spectrum Disorder (ASD) by comparing
the differences of eye movements between ASD and healthy peo-
ple. However, existing works mainly employ a simple free-viewing
paradigm or visual search paradigm with restricted or unnatural
stimuli to collect the gaze patterns of adults or children with an
average age of 6-to-8 years, hindering the early diagnosis and in-
tervention of preschool children with ASD. In this paper, we pro-
pose a novel method for identifying children with ASD in three
unique features: First, we design a novel eye-tracking paradigm that
records Visual Question Answering (VQA) driven gaze patterns
in complex natural scenes as a powerful guide for differentiating
children with ASD. Second, we contribute a carefully designed
dataset, named VQA4ASD, for collecting VQA-driven eye-tracking
data from 2-to-6-year-old ASD and healthy children. To the best
of our knowledge, this is the first dataset focusing on the early
diagnosis of preschool children, which could facilitate the com-
munity to understand and explore the visual behaviors of ASD
children; Third, we further develop a VQA-guided cooperative ASD
screening network (VQA-CASN), in which both task-agnostic and
task-specific visual scanpaths are explored simultaneously for ASD
screening. Extensive experiments demonstrate that the proposed
VQA-CASN achieves competitive performance with the proposed
VQA-driven eye-tracking paradigm. The code and dataset will be
publicly available.

CCS CONCEPTS
• Information systems → Multimedia databases; • Applied
computing → Health informatics; Psychology.

KEYWORDS
Eye movement, Autism Spectrum Disorder, Dataset, Visual Ques-
tion Answer, Visual attention

1 INTRODUCTION
Autism Spectrum Disorder (ASD) is a disorder of very early brain
development. Current clinical diagnosis methods such as Social
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(a) Free-viewing task

(b) VQA task (Q: Is the dog looking at the frisbee in the hand?)

Figure 1: The fixation maps of healthy people in two
paradigms. In (a) free-viewing task, due to the absence of
specific guidance, the diversity of the eye movement pat-
terns is evident, where different subjects prefer to observe
different parts of the cow. Instead, in (b) VQA task, guided
by the explicit question, healthy subjects invariably watch
the dog’s eyes and the frisbee, which could reduce the intra-
variance and benefit the ASD screening.

Responsiveness Scale-2 (SRS-2) [5] and Repetitive Behavior Scale-
Revised (RBS-R) [4] all depend greatly upon symptomatic observa-
tions and subjective judgments from clinicians. Therefore, develop-
ing automatic and objective ASD screening methods is an urgent
need for the early diagnosis of ASD people.

It is evidenced that the eye movement patterns of people with
ASD are significantly different from those of healthy people, thus
revealing the potential of applying eye-tracking techniques to sub-
jectively diagnose people with ASD [12, 14, 15, 28–31, 38]. Inspired
by this, manyworks [6, 11, 26, 34, 39] try to analyze the eye-tracking
data using machine-learning-based methods for diagnosis. Recently,
benefiting from the strong learning ability of deep-learning tech-
nologies, some methods adopt deep neural networks [1, 7, 22, 40]
and achieve promising results in diagnosing ASD.

However, early eye-tracking-based methods [2, 35, 41] usually
utilize a simple visual search paradigm for identifying ASD, where
only restricted or unnatural stimuli (e.g., faces or letters) in isola-
tion or even stimuli with low-level features are used for analysis.
Recent studies [7, 22] attempt to develop new paradigms under
complex scenes with natural background to analyze the difference
between ASD and healthy people, but they mainly rely on the
simple free-viewing paradigm, such as watching images or videos
without any specific purpose. Due to the lack of explicit guidance
in the free-viewing style, the eye movements are susceptible to
individual preference, leading to large intra-variance (i.e., the eye
movements of different healthy people are highly dissimilar when
viewing the same image). As shown in Fig. 1a, the gaze patterns of
different healthy people are significantly diverse when watching
the same image, making the ASD classification quite challenging.
Besides, since collecting eye-tracking data from preschool children
is much more difficult, the eye-tracking-based datasets are mainly

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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taken from adults [3, 20, 22] or children with an average age of
6-to-8 years [12, 16], which highly limits the early diagnosis and
intervention of young children.

To tackle the above issues, in this paper, we propose a novel
eye-tracking paradigm in which the Visual Question Answering
(VQA) task is designed to collect distinctive eye movement patterns,
which provides a better understanding of how visual attention is
deployed in the brain of children with ASD in real-life behaviors.
In our eye-tracking experiments, the images combined with the
corresponding questions are shuffled and presented in consecutive
trials. The subjects are required to search the related regions of
the images to answer the given questions. Introducing the VQA-
driven eye-tracking paradigm provides powerful guidance to get
the subject concentrated, which can alleviate the effect of large
intra-variance in the free-viewing paradigm. As shown in Fig. 1b,
with the guidance of the VQA task, the gaze patterns of different
healthy people are highly similar, which can benefit the follow-
ing identification. Moreover, the VQA task requires the subjects
to interact and reason for answering the questions, and thus can
partially reflect the interaction ability of the subjects, which also
helps the accurate prediction of ASD classification.

To evaluate the effectiveness of the VQA paradigm, we launch
recruitment for preschool children diagnosed with and without
ASD to voluntarily take part in our experiments. So far, we have
successfully collected effective eye movements from 42 ASD and
26 typically developed (TD) children (control group). There are no
statistical differences between the two groups in terms of visual
acuity, age, etc. To our knowledge, our collected dataset, named
VQA4ASD, is the first eye movement dataset focusing on 2-6-year-
old children, allowing the community a better comprehension of
the mechanism of how visual attention influences ASD’s behaviors.

Furthermore, built upon the collected dataset, we propose a novel
model, VQA-guided cooperative ASD screening network (VQA-
CASN), which consists of two branches to identify ASD and healthy
people jointly. In the proposed VQA-CASN, one branch captures
the eye movement features in a task-agnostic manner, where the
differences in gaze patterns across the whole image are utilized
for classification. The other branch only focuses on the differences
in the regions of interest, i.e., question-related regions, aiming at
reducing the variance of TD group to better differentiate ASD and
healthy people in a task-specificmanner. These two branches jointly
learn the subject’s attention under the VQA task, which provides a
more efficient solution in real clinical scenarios. We conduct a series
of experiments on our collected dataset and achieve state-of-the-art
performance.

Overall, this paper has four main contributions:

• We design a novel eye-tracking paradigmwhere Visual Ques-
tion Answering (VQA) driven gaze patterns are employed
for ASD screening. The proposed paradigm can not only mit-
igate the large intra-variance in the previous free-viewing
paradigm but also assess the interaction ability of ASD chil-
dren through visual patterns.

• We construct a delicately designed dataset, namedVQA4ASD,
for collecting VQA-driven eye-tracking data from 2-6-year-
old ASD and TD children. To our knowledge, this is the first
dataset focusing on preschool children in the vision-based

ASD intervention community, which could benefit the early
objective diagnosis greatly.

• We further develop a VQA-guided cooperative ASD screen-
ing network (VQA-CASN) where the task-agnostic and task-
specific branches jointly learn the gaze patterns for better
ASD screening.

• We conduct comprehensive experiments on our collected
dataset. Results show that our method achieves state-of-
the-art performance, demonstrating the effectiveness of our
proposed paradigm and designed model for ASD screening.

2 RELATEDWORK
2.1 Eye Tracking Paradigm
Current ASD diagnosis is usually performed by subjective and
manual screening methods. However, these subjective measure-
ments are both time-consuming and clinically demanding. Since
it has been verified that the visual attention of people with ASD
presents distinctive characteristics from healthy people, recent stud-
ies [25, 26, 36, 39] aim at developing objective and automatic screen-
ing methods to distinguish the ASD individuals, where the subjects
are asked to freely view a set of images or videos and an eye tracker
is used to collect the subjects’ eye movements.

In order to collect distinctive gaze patterns for identifying ASD
precisely, various paradigms have been explored. Gong et al. [16]
use dynamic images with repetitive movements. Hochhauser et
al. [20] utilize changed blindness paradigm and social films. Chita-
Tegmark et al. [8] present visual and auditory stimuli in pairs. Au-
Yeung et al. [3] display the paired visual stimuli simultaneously.
Some works [27, 33] use the visual search paradigm with simple
stimuli to ask the subjects to locate the predefined objects. Re-
cently, [7, 22] develop image free-viewing (IV) paradigm, where
the subjects watch natural images or videos. Such free-viewing par-
adigm cannot provide useful guidance, leading to a large variance
among healthy people. In contrast, our VQA-driven task can allevi-
ate the negative effect of intra-variance under explicit guidance.

The visual search paradigm is most related to our VQA paradigm,
but our work is superior to the previous visual search paradigm in
three aspects: 1) Previous visual paradigms mainly use restricted or
unnatural stimuli (e.g., faces or letters) in isolation or even stimuli
with only low-level features. Our VQA paradigm explores visual
attention with more natural stimuli (e.g., complex scenes taken with
a natural background), providing a better understanding of how
attention is deployed in children with ASD when viewing the real
world. 2) Our VQA paradigm designs more kinds of questions (e.g.,
how many, is it, where, what) than visual search (count), which can
reveal the impairments of both communication and social interac-
tion in ASD children. More importantly, the VQA task has been fully
studied in the multimedia field, so abundant datasets and models
can bring new insights about visual saliency for ASD screening. 3)
Most previous visual search paradigms published in medical-related
articles did not release the dataset. So far, only [12] has released an
image-viewing dataset collected from school children and adults.
In this work, we collect the first VQA-driven dataset focusing on
identifying preschool children with ASD, which is not explored in
most previous works due to the difficulty of data collection. We
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How many pillows are in the image? Is it the old lady holding the bike? What is the woman doing? What color are the mushrooms? Where is the puppy?

(a) The examples of abstract scene images and the corresponding questions.

How many cars are in the image? Is the man watching TV? What is the red vegetable? What color are the plates? Where is the television?

(b) The examples of real scene images and the corresponding questions.

Figure 2: The examples of VQA stimuli and the corresponding questions in our VQA4ASD.

believe that our dataset can largely enrich the studies of automatic
computer-aided diagnosis and multimedia applications.

2.2 ASD Screening Methods
To analyze the collected eye-tracking data, some works introduce
machine learning-based methods [26, 37, 39] to distinguish ASD.
Thanks to the powerful representation abilities of deep learning
techniques, deep learning-based methods have achieved significant
performance in ASD screening. Jiang and Zhao [22] propose the first
deep neural network to identify ASD. Chen and Zhao [7] present to
use multi-modality (i.e., photo-taking and image-viewing) in ASD
screening and achieve state-of-the-art performance.

Compared with previous works which usually adopt a single-
branch architecture, our proposed dual-branch network has an
additional task-specific branch that focuses on analyzing the gaze
patterns in question-related regions. Benefiting from the explicit
guidance of the VQA task, adding the task-specific branch can
reduce the large variance of the gaze patterns within the TD group,
leading to a better diagnosis performance.

3 DATASET
In this section, we construct a VQA-driven eye-tracking dataset,
named VQA4ASD, for the early diagnosis of ASD children with two
objectives: (1) to reduce the intra-variance in the control group by
introducing explicit guidance; (2) to reveal the social and commu-
nication skills, especially the ability to receive questions and make
corresponding reactions, which indicates the social and attentional
deficits of subjects. Compared with the existing datasets [7, 22],
our VQA4ASD provides the first VQA-driven eye movement data
collected from preschool children, ranging from 2 to 6 years, which
can benefit the early diagnosis of preschool children with ASD.
Some VQA stimuli and the corresponding questions of ASD and
control group are provided in Fig. 2. More examples are given in
the supplementary material.

3.1 Visual Stimuli
To construct our VQA4ASD dataset for diagnosing ASD children,
we choose the images and the corresponding questions from VQA

0

2

4

6

8

10

12

14

16

How many Is What What color Where

All Abstract Real

Figure 3: The statistics of the types of questions.

v2.0 dataset [17], where 25 images are selected from real scenarios
and 25 images are selected from abstract scenarios. To guarantee
that the images contain a large variety of scenes, we carefully select
the images covering common scenarios of daily life for children.
Specifically, the abstract scene images include 1 indoor image with
single person, 2 outdoor images with single person, 2 indoor images
with multiple persons, 6 outdoor images with multiple persons, 7
indoor images with people and animals, and 7 outdoor images with
people and animals. The real scene images include 1 image with
natural scene, 1 image with single person, 2 images with person
and animals, 3 images with multiple persons, 5 images with single
person and objects, 5 images with animals, and 8 images with
buildings or objects. Additionally, we also arrange an image free-
viewing task accompanied by VQA task for a fair comparison with
free-viewing paradigm (see details in Section 5.1).

Besides, since children with ASD may show a center bias [12, 39]
and some questions of VQA may be difficult for preschool children,
all of the questions we choose are relatively simple and most of the
answers to the questions cannot be directly found in the center of
the screen. The distribution of question types is shown in Fig. 3. We
can see that the types of questions are abundant, including “How
much”, “Is this”, “What”, and “Where”, to ensure that gaze patterns
can be recorded in various scenarios.

3.2 Subjects
We collect eye-tracking data from 68 preschool children aged 2-to-6
years old, including 69 children with 42 ASD and 27 TD. All ASD
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children are determined by an expert-level clinician and evaluated
by Autism Behavior Checklist (ABC) [24] and Childhood Autism
Rating Scale (CARS) [32], which can exclude unqualified children
who may also suffer from other non-ASD developmental disabili-
ties. Before the experiments, we obtained informed consent from
children’s parents. Besides, due to social interaction disorder, it is
difficult for children with ASD to cooperate on finishing the ex-
periment tasks and even calibration, and several TD children also
fail to complete all experiments due to losing patience and interest.
Therefore, only 24 children with ASD and 24 TD, whose ages are
4.0 ± 1.2 and 4.6 ± 0.8, complete all experiments.

3.3 Apparatus and Experimental Procedure
We use SensoMotoric Instruments (SMI) IView X RED eye tracker
to record the subjects’ eye movements by showing the stimuli on a
displayer with 1280 × 768 resolution.

During training, we set the sampling frequency of the eye tracker
to 120 Hz. In order to avoid the subjects from losing their concen-
tration due to the long-time continuous experiment, we split VQA
tasks into two parts, each consists of 25 images. Before each trial
begins, a five-point calibration is attached to ensure the precision
of the eye movement data. During each trial, a gray image is first
displayed for three seconds and accompanied by the corresponding
question, and then the image is presented for five seconds. We
ask the question again during the image presentation to avoid the
situation where children do not hear the question clearly. When
we observe that children are distracted from the displayer, we will
remind them to view the screen with a non-leading sentence (e.g.,
“Let’s look at the screen"). The duration of each subject finishing
the VQA experiments is about 15 minutes.

3.4 Data Processing
For the obtained raw eye movement data, we need to further pro-
cess the data for the training of the diagnosis model. In the raw data,
the sequences of continuous fixation events separated by saccades
or blinks are considered fixations. So we first generate the location
of each fixation by averaging the continuous fixation events’ hori-
zontal and vertical positions. The duration of the averaged fixation
is calculated as the time from the first fixation event of the fixation
sequence to the first non-fixation event after that. Since the sub-
ject’s first fixation is often the last fixation position on the previous
gray image, it is meaningless and cannot reflect the subject’s inter-
est. In order to eliminate such possible distractions, we discard the
first fixation for all subjects. Finally, we generate eye movements
that are rounded to integers and recorded for further training and
testing.

It should be noted that all eye movement data in our dataset are
recorded, including the visual stimuli, the corresponding questions,
the raw data, as well as processed data, which will be made publicly
available upon publication of the work.

3.5 Statistics of VQA4ASD
The comparison between the previous dataset Saliency4ASD [12]
and our VQA4ASD are summarized in Table 1. We can see that
our collected VQA4ASD involves more individuals and younger

children. Besides, VQA4ASD includes both VQA and image free-
viewing (IV) paradigms, which facilities the fair comparison be-
tween different paradigms.

Table 1: The advantages of VQA4ASD over Saliency4ASD [12].

Saliency4ASD [12] VQA4ASD (ours)

#Subjects 28 (14 ASD & 14 TD) 48 (24 ASD & 24 TD)
Age range 5-12 (avg. 8) 2-6 (avg. 4)
Paradigm IV VQA & IV

4 METHOD
4.1 Overview
The overview of our proposed VQA-guided cooperative ASD screen-
ing network (VQA-CASN) is shown in Fig. 4. The intuition behind
our design is to cooperate with the task-agnostic (the gaze pat-
terns across the whole image) and task-specific (the gaze patterns
within the question-related region), which can largely reduce the
intra-variance of TD group and further leverage the identification
performance under the guidance of VQA task.

Specifically, VQA-CASN contains three modules, i.e., image fea-
ture extraction, fixation sequence feature extraction, and classi-
fication. The first component of our model is extracting feature
representations of images, which is shared between the following
two branches. Then, in the fixation sequence feature extraction
module, we design a dual-branch architecture for extracting both
task-agnostic and task-specific features of the fixation sequences.
The task-agnostic branch focuses on extracting features from the
whole fixation sequence. The task-specific branch attempts to ob-
tain local features from VQA task-related regions. Finally, after
fusing the two above features and the location and duration of
fixations, we feed the concatenated features to a fully connected
(FC) layer with a sigmoid function to compute the probability of
suffering from ASD in the final classification module by weighting
the contributions of different gaze patterns. Benefiting from the
cooperation of the above modules, VQA-CASN can simultaneously
learn the difference of gaze patterns on both task-agnostic and
question-related regions, where two branches are complementary
to each other and yield favorable accuracy.

4.2 Image Feature Extraction
In order to learn the effective image representation of the subject’s
scanpath, we use the popular feature extractor ResNet-50 [19] to
learn the image features. For one image 𝑥 , we extract a 2048-𝑑
feature from the top convolutional layer of ResNet-50 as the image
feature of each fixation point which is shared in the following
two-branch module.

4.3 Fixation Sequence Feature Extraction
After obtaining the image feature of the image 𝑥 , given the cor-
responding gaze pattern of one subject watching the image 𝑥 , we
further generate the feature of the fixation sequence by a dual-
branch architecture, where two branches adopt the same network
structure, i.e., a variant [18] of Long Short Term Memory (LSTM)
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Figure 4: The overview of our proposed VQA-CASN. We first use a ResNet-50 [19] to extract the image feature which is
concatenated with the location and duration of the fixation point. Then, we design a dual-branch architecture to extract the
feature for the fixation sequence. Specifically, the task-agnostic branch captures the feature across the whole image using
LSTM [18] network, and the task-specific branch acquires the LSTM feature within the question-related region, which is
generated according to the fixation map of the TD group. Finally, the two features are concatenated and fed to a fully connected
(FC) layer with sigmoid function for identification.

network [21], to encode the temporal information of the gaze pat-
tern. Note that the two LSTMs do not share the parameters to
capture abundant features for different purposes.

Task-agnostic branch. In order to analyze the difference be-
tween ASD and TD across the whole image, we first extract the
feature of the fixation sequence in a task-agnostic manner. Specifi-
cally, we first extract the 2048-𝑑 visual feature at each fixation and
concatenate it with the location and duration as a 2051-𝑑 feature
of each fixation. Then we stack the feature of each location in tem-
poral order to generate the feature of the fixation sequence. To
reduce the interference of the redundant fixations, we manually
control the maximum number of fixations as 𝐿 and discard the rest
fixations. Consequently, we get the feature representation of the
fixation sequence denoted as 𝐹 ∈ R𝐿×2051.

To obtain more powerful features, we further feed 𝐹 into the
LSTM [18] in the task-agnostic branch to capture the temporal
information by updating the hidden state repeatedly. We treat the
final hidden state as the task-agnostic feature 𝑆𝑡𝑎 of one gaze pattern
as follows:

𝑆𝑡𝑎 = LSTM𝜙 (𝐹 ) , (1)

where 𝜙 is the parameters of LSTM in task-agnostic branch.
Task-specific region generation. Thanks to the VQA task, ex-

cept for the task-agnostic feature, we can pay more attention to the
task-specific regions to further differentiate the gaze patterns be-
tween ASD and healthy people. Before generating the task-specific
features, we should know where the regions are related to the ques-
tion and answer. We achieve this goal by regarding the fixation
maps of the control group as possible question-related regions. This

strategy is reasonable since our VQA task is performed in an in-
teractive Q&A manner, which is much more attractive to healthy
children, so they are very likely to cooperate in the collection pro-
cess, which guarantees that the TD group’s fixation maps are highly
relevant with the corresponding questions and answers. We have
empirically validated this by comparing the results with manually
labeling the task-relevant regions. The results are relatively close
(see Sec. 5.4 for details). Considering that manual labeling requires
extra annotations, we therefore design the task-specific branch by
averaging all TD children’s fixation maps, making our model easily
extendable to other new VQA stimuli because it does not require
any additional annotations.

Specifically, we first gather the fixation points of the control
group by setting the location of fixation points to 1 and other pixels
to 0. Then we follow [12] to obtain the averaged fixation map
𝑀 of the control group by applying the Gaussian smoothing and
min-max normalization. Subsequently, we can get the task-specific
region 𝑅 by using binarization on the averaged fixation map.

Task-specific branch. The task-specific branch focuses on the
gaze patterns within the question-related regions, so we first obtain
the task-specific feature of the fixation sequence, denoted as 𝐹𝑡𝑠 ∈
R𝐿×2051, with the guidance of the task-specific region𝑅 by replacing
the feature that falls outside the question-related region with 0.

Similar to the task-agnostic branch, the task-specific feature of
the fixation sequence 𝐹𝑡𝑠 is then forwarded into LSTM [18] in the
task-specific branch to capture the question-related feature of the
gaze pattern 𝑆𝑡𝑠 :

𝑆𝑡𝑠 = LSTM𝜑 (𝐹𝑡𝑠 ) , (2)
where 𝜑 is the parameters of LSTM in task-specific branch.
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4.4 Classification
Once the 𝑆𝑡𝑎 and 𝑆𝑡𝑠 have been obtained, they are concatenated
and forwarded to a multilayer perceptron (MLP), i.e., an FC layer
with sigmoid function, to acquire the predicted score 𝑦 which can
estimate whether the gaze pattern belongs to a subject with ASD
or not.

𝑆 = Concat(𝑆𝑡𝑎, 𝑆𝑡𝑠 )
𝑦 = MLP𝜃 (𝑆) , (3)

where 𝜃 is the parameters of the MLP layer.
As different visual stimuli show distinct abilities for diagnosing

ASD, we design an adaptive weighting loss to better differentiate
ASD and TD. Specifically, for each visual stimulus, we calculate the
cosine similarity of the corresponding fixation maps of ASD and
TD groups to define a weighted cross entropy loss:

𝑤 = softmax(1 − cos(�̄�𝐴𝑆𝐷 , �̄�𝑇𝐷 )), (4)

L (𝑦,𝑦) = −𝑤
(
𝑦log (𝑦) + (1 − 𝑦) log (1 − 𝑦)

)
, (5)

where𝑀 is the fixation map of the subject for single visual stimulus.
�̄�𝐴𝑆𝐷 , �̄�𝑇𝐷 represent the averaged fixation map of ASD group
and TD group for single visual stimulus, respectively.𝑦 ∈ {0, 1} and
𝑦 ∈ {0, 1} denote the ground-truth label and the predicted score (1
is ASD and 0 is TD).

In the inference, given one subject, we generate the final sub-
ject’s predicted score by averaging the predictions obtained from
all stimuli using (4) as a weighting function, and a pre-defined
threshold of 0.5 is used to identify ASD.

5 EXPERIMENTAL RESULTS
5.1 Experiment Settings
Dataset. We conduct all experiments on our VQA4ASD dataset
which is divided into two parts, the abstract and real scenes, named
VA and VR, respectively. Besides, in order to give a comparison
with previous approaches [7] and facilitate future works, we also
arrange an additional image free-viewing (IV) paradigm to collect
the eye movements while constructing VQA4ASD dataset. We set
the ratio of the number of IV images to VQA images to 1:1 and
conduct experiments on the same subjects who complete all tasks.
The dataset consists of a total of 4800 samples, with 2400 samples for
IV and VQA, respectively. The details of three kinds of paradigms
are as follows:

• IV (Image free-viewing, abbreviated as IV) is collected by
asking the subjects to freely view images without guidance.
It contains the most distinctive top 50 images out of a total of
300 images according to a Fisher-score-based image selection
strategy [7, 22] from Saliency4ASD dataset [12].

• VA (Abstract scene in VQA4ASD, abbreviated as VA) includes
25 clipart-style images selected from the abstract scenes in
VQA v2.0 dataset [17].

• VR (Real scene in VQA4ASD, abbreviated as VR) includes 25
images selected from the real scenes in VQA v2.0 dataset [17].
The details of VA and VR have been given in Sec. 3.

Training details. All images are resized to 800 × 600 and nor-
malized (i.e., make the mean and standard deviation of the images
0 and 1). The parameters of ResNet-50 [19] are initialized using
pre-trained parameters on ImageNet [10]. The size of the hidden

state of LSTM [18] is 512. The length of the fixation sequence 𝐿 is
14. During the training stage, we set the batch size to 10. All models
are trained for 10 epochs using the Adam [23] optimizer with the
learning rate of 10−3 and the weight decay of 10−5. The gradient
clip strategy is applied by keeping the gradient no larger than 10.

Evaluation metrics. Following previous work [7], we use the
leave-one-subject-out method for cross-validation and evaluate
the models with four metrics, including accuracy (Acc), sensitivity
(Sen), specificity (Spec), and area under the ROC curve (AUC). In
addition to evaluating the subject-level performance of each subject,
we also evaluate the the scanpath-level performance of each gaze
pattern to validate which model can select more distinctive gaze
patterns for diagnosis.

Baseline methods.We are the first to propose VQA-driven eye-
tracking data for ASD diagnosis, and Jiang et al. [22] and Chen et
al. [7] use the free image-viewing task, which are the most related
works and thus are chosen as our compared methods. For fairness,
we use the same hyper-parameters in [22] and [7] except the batch
size of 10. Besides, we also implement a non-deep-learning sim-
ple baseline to verify the effectiveness of VQA paradigm, where
the Fisher score method [13] is used to extract the gaze pattern’s
feature [7, 22] followed by a linear Support Vector Machine (SVM)
classifier [9] for classification.

5.2 Effectiveness of VQA Paradigm
Qualitative analysis. As shown in Fig. 1, the guidance of the
question effectively gather the TD subjects’ attention on the dog’s
eyes. In contrast, TD subjects will view the different parts of the
cow in the free-viewing task. Furthermore, as shown in Fig. 5, the
visual patterns of TD subjects and ASD subjects show significant
difference in VQA task. Since TD subjects can communicate and
interact with us normally, their gaze patterns are highly related
to the questions. In contrast, due to the social interaction disorder,
ASD subjects do not respond to the questions and will view the
images according to their personal consciousness.

Quantitative analysis. To show the superiority of the VQA
paradigm, we make comprehensive comparisons between differ-
ent paradigms. We perform experiments on VQA (VA+VR) and IV
paradigms using four models, i.e., Fisher score method, Jiang and
Zhao [22], Chen and Zhao [7], and our proposed VQA-CASN. The
comparisons are summarized in Table 2.

For the simple Fisher score method, we can see that the VQA
paradigm achieves better performance than IV in all metrics. Con-
sidering that the 50 images of IV paradigm are chosen from 300
images based on the analysis of collected gaze patterns [7], our
paradigm simply chooses 50 images from VQA dataset [17] without
any guidance of gaze patterns, but still achieves better performance,
which can suggest the effectiveness of the designed paradigm.

Besides, we compare two paradigms using the model proposed
by Jiang and Zhao [22]. Compared with IV paradigm, our VQA para-
digm gains better performance in terms of accuracy, sensitivity, and
AUC in subject-level (e.g., an AUC improvement of 20.3%). Noted
that the model [22] fuses the scanpath features before prediction,
so we do not evaluate the performance on scanpath level. We also
compare two paradigms using the model proposed by Chen and
Zhao [7]. Compared with IV paradigm, our VQA paradigm achieves
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(a) The examples of abstract scene images and the corresponding visual patterns.
Visual Patterns of TD Subjects Visual Patterns of ASD SubjectsWhat's in the water?

(b) The examples of real scene images and the corresponding visual patterns.

Figure 5: The examples of VQA stimuli and the corresponding visual patterns in VQA task.

Table 2: The comparison between different paradigms on
four models, including Fisher score, Jiang and Zhao [22],
Chen and Zhao [7] and our proposed VQA-CASN model.

Metric Paradigm Acc Sen Spec AUC

Fi
sh
er

Sc
or
e

Subject-level IV 0.646 0.583 0.708 0.750
VA+VR 0.792 0.750 0.833 0.884+13.4%

Scanpath-level IV 0.623 0.606 0.638 0.660
VA+VR 0.697 0.608 0.776 0.742+8.2%

[2
2] Subject-level IV 0.771 0.708 0.833 0.682

VA+VR 0.792 0.750 0.833 0.885+20.3%

[7
] Subject-level IV 0.938 0.917 0.958 0.977

VA+VR 0.938 0.958 0.917 0.981+0.4%

Scanpath-level IV 0.653 0.644 0.661 0.682
VA+VR 0.744 0.719 0.768 0.807+12.5%

VQ
A
-C
A
SN Subject-level IV 0.917 1.000 0.833 0.971

VA+VR 0.958 1.000 0.917 0.991+2.0%

Scanpath-level IV 0.792 0.858 0.726 0.837
VA+VR 0.833 0.872 0.794 0.863+2.6%

better accuracy, sensitivity, and AUC score in subject-level and all
metrics in scanpath-level performance (e.g., an AUC improvement
of 0.4% in subject-level and 12.5% in scanpath-level).

Furthermore, we compare two paradigms tested on our proposed
VQA-CASN model. By introducing task-specific guidance, VQA
paradigm can better employ helpful stimuli and question-related
clues to benefit the identification, leading to a performance gain
compared with IV paradigm (e.g., an AUC improvement of 2.0% in
subject-level and 2.6% in scanpath-level). By contrast, IV paradigm
tested on VQA-CASN cannot obtain useful guidance from the TD
group’s fixation maps and results in the performance drop, espe-
cially in the subject-level performance compared with [7] (from
0.977 to 0.971 in AUC), which also verifies that free-viewing para-
digm has the disadvantage of large variance in the TD group.

5.3 The Superiority of VQA-CASN
We conduct the comparison experiments between different models
on VA, VR, and VA+VR and the results are summarized in Table 3. It
should be noted that the result of VA+VR is supposed to be within
the range of VA and VR’s results since VA+VR is the average of VA
and VR on the scanpath-level.

We first report the comparison for the performance on subject-
level. For VA or VR, ourmodel achieves the best accuracy, sensitivity,
andAUC, and only a little drop in specificity. For VA+AR,we achieve
the best results on all metrics. Furthermore, we also report the
comparison for the prediction performance on scanpath-level. On
VA, VR, and VA+VR, VQA-CASN shows significant improvements
on all metrics (e.g., For VA+AR, 8.9% in Acc, 15.3% in Sen, 2.6% in
Spec, 5.6% in AUC), which clearly demonstrate that our VQA-CASN
can select more distinctive gaze patterns for diagnosis.

5.4 Ablation Study
Our VQA-CASN proposes several strategies to boost performance.
To verify their effectiveness, we conduct ablations to explore the
role of each strategy, and the results are shown in Table 4.

Effect of the dual branch. As shown in the first and second
rows of Table 4, removing either the task-specific or task-agnostic
branch leads to a performance drop. In terms of AUC, removing
the task-specific branch leads to a performance reduction of 1.7%
and removing the task-agnostic branch also drops 0.7%. It is not
surprising because the question-related guidance can help identify
the abnormal visual attention of ASD children and the task-agnostic
branch can also guarantee the model identifies healthy people more
accurately. Besides, the task-specific branch is more effective than
the task-agnostic branch, because the task-specific branch has a
closer relation with the VQA paradigm and fully utilizes the addi-
tional information from the VQA paradigm.

Effect of the weighting loss. To figure out the impact of the
weighted loss in VQA-CASN, we conduct an ablation study on
VA+VR by removing the weighted loss. As shown in the third row
of Table 4, our weighted loss can largely improve the performance
of ASD identification (8.3% in accuracy, 12.5% in sensitivity, 4.2%
in specificity, and 2.4% in AUC), due to the consideration of the
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Table 3: The comparison results of Jiang et al. [22], Chen et al. [7] and our proposed VQA-CASN method. Since the method [22]
fuses the features of scanpaths before prediction, we cannot evaluate the performance on scanpath level.

Paradigm #Images Method Subject-level Scanpath-level

Acc Sen Spec AUC Acc Sen Spec AUC

VA 25
Jiang and Zhao [22] 0.729 0.750 0.708 0.790 - - - -
Chen and Zhao [7] 0.917 0.875 0.958 0.967 0.764 0.737 0.792 0.831
VQA-CASN (Ours) 0.938 0.958 0.917 0.974 0.832 0.855 0.808 0.867

VR 25
Jiang and Zhao [22] 0.750 0.708 0.792 0.797 - - - -
Chen and Zhao [7] 0.896 0.875 0.917 0.964 0.723 0.702 0.745 0.780
VQA-CASN (Ours) 0.938 1.000 0.875 0.990 0.834 0.888 0.780 0.860

VA+VR 50
Jiang and Zhao [22] 0.792 0.750 0.833 0.885 - - - -
Chen and Zhao [7] 0.938 0.958 0.917 0.981 0.744 0.719 0.768 0.807
VQA-CASN (Ours) 0.958 1.000 0.917 0.991 0.833 0.872 0.794 0.863

Q:How many pets in the image?

Q:How many planes in the image?

Q:Who is holding the ball?

Q:What is the red vegetable?

The fixation map of ASD group The fixation map of TD group

(a) The fixation maps of VQA samples with lower weights.

Q:Who is holding the ball?

Q:What is the red vegetable?

The fixation map of ASD group The fixation map of TD group

(b) The fixation maps of VQA samples with higher weights.

Figure 6: The visualizations of fixation maps on ASD and TD
group.

Table 4: The ablation studies for VQA-CASN on VA+VR.

Method Acc Sen Spec AUC

w/o task-specific branch 0.958 1.000 0.917 0.974
w/o task-agnostic branch 0.958 1.000 0.917 0.984

w/o weighting loss 0.875 0.875 0.875 0.967
w/o location and duration 0.958 0.958 0.958 0.990
labeling task-specific region manually 0.917 0.917 0.917 0.988

VQA-CASN 0.958 1.000 0.917 0.991

different contributions of each visual stimuli. Besides, we show
some images and corresponding fixation maps in Fig. 6, where the
top two rows give examples with lower weights due to the similar

0.9

0.92

0.94

0.96

0.98

1

14 12 10

Accuracy Sensitivity Specificity AUC

Figure 7: The results on different lengths of fixation sequence
𝐿.

fixation maps of ASD and TD group, and the bottom two rows are
the images with higher weights with significant diverse fixation
maps of ASD and TD group.

Effect of the location and duration of fixation points. To
verify the effect of the location and duration of fixation points for
generating distinctive representations, we remove the location and
duration and the result is given in the fourth row of Table 4. We can
see that adding location and duration is beneficial for improving
performance in terms of Sen and AUC.

Effect of using TD group’s fixationmap as the task-specific
region. To verify the effect of TD group’s fixation map as the task-
specific region, we use themanually labeled task-specific region and
the result is given in the fifth row of Table 4. We can see that using
manually labeled task-specific region can lead to a performance
drop in terms of Acc, Sen and AUC (4.1%, 8.3% and 0.3%).

Length of fixation sequence.We investigate the effect of the
length of fixation sequence 𝐿. As shown in Fig. 7, by setting 𝐿 to
14, we achieve the best performance in terms of AUC.

6 CONCLUSION
In this paper, we propose a novel VQA-driven paradigm for ealy
diagnosis ASD children. We construct the first VQA4ASD dataset,
which contains the data from 2-to-6-year-old preschool children.
Moveover, we design a dual-branch VQA-CASN model to identify
ASD and healthy individuals. The results show the effectiveness of
our proposed VQA paradigm and the VQA-CASN model.
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