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Abstract

Artificial Neural Networks (ANNs) trained with Backpropagation and Stochastic Gradient
Descent (SGD) suffer from the problem of Catastrophic Forgetting; when learning tasks
sequentially, the ANN tends to abruptly forget previous knowledge upon being trained
on a new task. On the other hand, biological neural networks do not suffer from this
problem. Spiking Neural Networks (SNNs) are a class of Neural Networks that are closer
to biological networks than ANNs and their intrinsic properties inspired from biology could
alleviate the problem of Catastrophic Forgetting. In this paper, we investigate if the firing
threshold mechanism of SNNs can be used to gate the activity of the network in order to
reduce catastrophic forgetting. To this end, we evolve a Neuromodulatory Network that
adapts the thresholds of an SNN depending on the spiking activity of the previous layer.
Our experiments on different datasets show that the neurmodulated SNN can mitigate
forgetting significantly with respect to a fixed threshold SNN. We also show that the evolved
Neuromodulatory Network can generalize to multiple new scenarios and analyze its behavior.

1 Introduction

Agents in nature have the ability to learn novel tasks while still retaining previously acquired knowledge, it
is a fundamental quality of biological neural networks. In contrast, Artificial Neural Networks (ANNs) suffer
from the infamous problem of Catastrophic Forgetting (CF) (McCloskey & Cohen, 1989; French, 1999), where
learning a new task causes the ANN to completely and abruptly forget previously learned tasks. Usually,
this problem is not encountered when the the data is shuffled aka independent and identically distributed
(i.i.d.). Most, if not all, of deep learning’s (DL) achievements are in the i.i.d. case. However, a large portion
of problems in the real world requires agents to learn sequentially from new encountered data.

Spiking Neural Networks (SNNs) are a class of neural networks which are more biologically inspired than
standard ANNs (Maass, 1997). In SNNs, neurons are stateful and emit a spike only when their potential
exceeds a certain threshold. Recently, it has been made possible to train deep SNNs using backpropagation
and gradient descent through surrogate gradients (Neftci et al., 2019; Zenke et al., 2021) to achieve good
performance on classification tasks. Furthermore, SNNs make an interesting candidate for many real world
applications due to their properties such as energy efficiency and fast inference when implemented on neuro-
morphic hardware. However, the field of SNNs is still in its early phases, and their properties are still under
study.

When learning sequentially using an ANN, training on a new task with backpropagation and SGD will
continue to modify the weights of the network, including weights that were important for previous tasks,
and push them in the direction of the new task. This is not the case in SNNs, as weight update only
occurs when the corresponding pre-synaptic neuron’s membrane potential reaches a threshold and emits a
spike, unlike ANNs where the weights of a neuron with a very small activation value still gets updated. This
mechanism could potentially serve as a task-dependent gating, where weights that are important for previous
tasks are preserved if the corresponding neurons do not fire during the learning of new tasks. Previous works
have explored artificially reproducing this mechanism in ANNs: Masse et al. (2018) used a gating signal
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which informs the network explicitly of the task it is being trained or tested on and Beaulieu et al. (2020)
used a neuromodulatory network that produces an element-wise multiplicative mask to gate the activations.

In this paper, we investigate if the intrinsic mechanisms of SNNs can be leveraged to gate neural activity in a
way that mitigates catastrophic forgetting. To achieve this, we use a neuromodulatory network that adapts
the firing threshold of neurons. This neurmodulatory network only has access to the local information of
the previous layer’s spiking activity, and not the network input data as in Beaulieu et al. (2020). Instead of
introducing an artificial gating mechanism, we use the inherent gating of SNNs and take direct inspiration
from neuromodulatory mechanisms in the brain by acting on the threshold of spiking neurons.

2 Background

2.1 Neuron Models

The neuron models we use for our SNNs are The Leaky Integrate-and-Fire (LIF) model (Gerstner et al.,
2014) for dynamic datasets and the Integrate-and-Fire (IF) model (without leak) for static datasets. The LIF
model is widely used in computational neuroscience and machine learning for its simplicity and performance.

The sub-threshold dynamics of the ith LIF/IF neuron are described by the following differential equation:

τ
dV i

dt
= f(V i(t), Ii(t)) (1)

where f is a function that depends on the neuron’s model, for the LIF and IF, f is described by Eq.2 and
Eq.3 respectively.

f(V i(t), Ii(t)) = −(V i(t)− Vrest) + Ii(t) (2)
f(V i(t), Ii(t)) = Ii(t) (3)

In the equations above, V i is the neuron’s membrane potential, Ii is the input current received by the neuron,
τ is the membrane time constant and Vrest is the neuron’s potential at rest.

For numerical simulation, following Fang et al. (2021), we use discrete-time equations that are an approxi-
mation of the differential equations above:

Hi[t] = f(V i[t− 1], Ii[t]) + V i[t− 1] (4)
V i[t] = Hi[t](1− Si[t]) + VrestS

i[t] (5)
Si[t] = Θ(Hi[t]− Vth) (6)

where Hi[t] and V i[t] are the membrane potential of the ith neuron at time-step t, after the integration
of the input current Ii[t] (Eq. 4) and after the spiking dynamics (Eq. 5 and 6), respectively. Θ is the
Heaviside function; Si[t] equals 1 if the membrane potential is above the firing threshold Vth (neuron i fires
at time-step t) and 0 otherwise. If a spike occurs, the membrane potential is instantly reset to Vrest, which
corresponds to a so-called “hard reset”, otherwise it follows the sub-threshold dynamics (Eq.5). As suggested
by Zenke & Vogels (2021), we ignore the neuronal reset when computing gradients by detaching them from
the computational graph.

The input current Ii[t] is defined as
Ii[t] =

∑
j

wijSj [t] (7)

where wij denotes the synaptic weight between neuron i and the afferent neuron j.

If a neuron i is subject to neuromodulation, its firing threshold V i
th[t] at time t is not constant, but instead

it is a function of time and the network’s spiking activity:
V i

th = g(t, S[t]). (8)
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2.2 Surrogate Gradient Learning

Recently, it has been made possible to train deep SNNs in a supervised manner using backpropagation and
gradient descent as in ANNs through surrogate gradient learning (SGL) (Neftci et al., 2019; Zenke et al.,
2021). One of the key challenges in this method is the non-differentiability of the spiking function. The
derivative of Eq.6 is required by backpropagation, however, the Heaviside function’s derivative is zero almost
everywhere and not defined at zero, which makes LIF neurons unsuitable for gradient based optimization.

To overcome this issue, Neftci et al. (2019) proposed using a surrogate gradient as a smooth continuous
relaxation to the spiking function. During the forward pass, the spiking function is unchanged, whereas in
the backward pass the derivative of the Heaviside function is approximated by the derivative of a smooth
continuous function. In our work, we use the sigmoid function for static datasets.

Θ′(x) ≈ f ′(x) = σ′(x) = 1
1 + e−x

(9)

and atan (arc tangent) function for the dynamic dataset

Θ′(x) ≈ f ′(x) = arctan′(x) = 1
1 + x2 . (10)

2.3 Continual Learning

Continual Learning concerns the problem in which a single neural network must learn the tasks T =
(T1, T2, ..., Tn) in a sequential manner and under the condition that only the data of the current task is
available for training, without catastrophically forgetting the previously learned tasks. This differs from
standard learning in ANNs, where data from multiple tasks T are presented in mixed mini-batches sampled
independently and which are meant to be identically distributed (i.i.d.).

However, due to differences in experimental protocols, the difficulty of the problem can change drastically. A
categorization scheme is proposed in van de Ven & Tolias (2019), where different continual learning scenarios
are defined based on the availability of the task-ID to the network during training. Task-IL, domain-IL and
Class-IL (in order increasing difficulty, where IL stands for Incremental Learning) denote the scenarios where
the task-ID is provided, task-ID is not provided and task-ID needs to be inferred, respectively. Another
categorization scheme proposed by Farquhar & Gal (2018) is based on the architecture of the network to
distinguish between multi-headed and single-headed architectures. A multi-headed architecture has separate
output layer parameters for each task (and requires the task-ID to switch between heads), while in the
single-headed architecture, all the parameters are shared between tasks.

Multiple solutions have been proposed to alleviate the problem of catastrophic forgetting, such as replaying
certain data, adding new parameters, adjusting learning through meta-learning, and finally selective learning
of a subset of network parameters.

Replay methods (Rolnick et al., 2019) rely on storing previously encountered data or a representation of it
in order to be combined with new data which leads to an approximation of an i.i.d. sampling over all of the
sequentially encountered data. In these methods, the learning system is retrained over previous data many
times. While replay methods can greatly alleviate catastrophic forgetting, they do not scale well with the
number of sequential tasks.

Similarly, other solutions such as Rusu et al. (2016) avoids interference between tasks by adding new separate
parameters for each new task. These new parameters are trained exclusively on the new task, inheriting in-
formation from layers in previous tasks with frozen weights. While this approach allows for high performance
in the different task sub-networks, it similarly suffers from poor scaling with the number of tasks.

Several works use meta-learning (Finn et al., 2017) to adjust the learning process for continual learning (Javed
& White, 2019; Xu et al., 2020; Harrison et al., 2020). Meta-learning aims to optimize the learning of a model
over a distribution of learning tasks such that learning generalizes to other tasks, usually through few-shot
learning on a test set of tasks. Such approaches can therefore naturally be expanded to continuous learning,
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as in Javed & White (2019) which learns high-level representations which aim to minimize catastrophic
interference between tasks.

The approaches which are closest to this work use selective plasticity to control the modification of parameters
during weight update. In Kirkpatrick et al. (2017) and Zenke et al. (2017) the modification of parameters
during training is controlled by a regularization term that penalizes changes to important parameters. In
Masse et al. (2018) and Beaulieu et al. (2020), a gating signal is fed to the network in order to block some
neurons from being activated or mask certain parameters to prevent them from being updated during new
tasks. Our method uses threshold modulation to control which parts of the network can spike more or less
easily which then influences weight update.

3 Methods

3.1 Task

The scenario of Continual Learning we adopt in this study is single-headed Class Incremental-Learning
(van de Ven & Tolias, 2019; Farquhar & Gal, 2018). The model is neither informed of the task ID nor of
the occurrence of a change in tasks and all of the parameters of the model are shared between tasks. This
is considered the most difficult Continual Learning scenario in van de Ven & Tolias (2019)

In the experiments presented in this paper, a task Ti consists of learning to correctly classify a single class
Ci from a dataset D. More precisely, in step i the model is trained using a small number k of instances of
class Ci. Seeing that all the parameters (including the output layer) are shared, the challenge is to learn to
classify the current class Ci correctly with few examples without forgetting the previously learned classes
(Cj)j<i.

To achieve this, we modulate the spiking thresholds of the final fully connected (FC) layer of our model using
an external network that we call the Neuromodulator Network (NmN), that has been evolved to mitigate
catastrophic forgetting. SNNs equipped with an NmN are referred to as Neuromodulated-SNN (Nm-SNN)
and standard SNNs without neuromodulation are referred to as SNN.

Each dataset D is divided into three partitions with different classes: classes in Dpre are used for pre-training,
classes in Devo are used in the evolutionary optimization of the NmN and classes in Dtest are used to test
the generalization of our method.

3.2 Neuromodulated SNN

We present the Nm-SNN’s architecture (Figure 1), which consists of two separate networks, a convolutional
SNN that learns the classification task and the Neuromodulator Network (NmN) which is responsible for
adapting the spiking thresholds of the final fully connected (FC) layer of the SNN. We chose to only modulate
the last layer as the first layers have been shown to have only a small contribution to the observed forgetting
in neural networks (Ramasesh et al., 2021).

The convolutional SNN, as shown in Figure 1, is composed of a spiking convolutional block with a depth
that depends on the complexity of the task T which performs a two dimensional convolution operation on
the input with an activation using a LIF model for dynamic datasets or IF model for static datasets. This is
followed by a Max Pooling layer and a fully connected layer (FC) of nfc LIF (or IF) neurons with adaptive
thresholds. Finally, the output layer has nclasses spiking neurons.

We use a direct input encoding; the first layer neuron’s input currents correspond to the pixel intensities
of the current frame x[t] (for static datasets, x[t] = x is constant throughout the simulation time T ). The
prediction of the network is chosen based on the spike count over the whole simulation time T in the output
layer where each output neuron corresponds to a certain predefined class.

The SNN’s convolutional block and its subsequent fully connected layer are pre-trained using SGL on classes
from Dpre and are frozen during the CL scenario. We found that this pre-training step can improve perfor-
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Figure 1: The Nm-SNN architecture is composed of two spiking networks: a SNN and the NmN. The
convolutional SNN performs classification; the first convolutional blocks and the subsequent linear weights
are pre-trained on Dpre using SGL and frozen during the CL scenario. The two-layer fully connected spiking
network (NmN) takes as input the spiking activity of the final SNN convolutional layer and outputs the
threshold adaptation value for each spiking neuron in the final hidden layer of the SNN during each time-
step.

mance significantly, seeing that we use a very small number of examples for each class. The classes in Dpre

are neither used in the evolutionary optimization nor in the testing phase.

The SNN is equipped with a threshold Neuromodulator Network (NmN) which is a simple Fully connected
Spiking Neural Network with two hidden FC layers of LIF neurons. The NmN interacts with the SNN
by modulating the spiking thresholds of its final FC neurons, as seen in Figure 1. More precisely, at each
time-step t, the NmN takes as input Sconv[t] the spikes emitted from the convolutional block at time-step
t and outputs a vector ∆Vth[t] that has the same size as the SNN’s FC layer, with values in [−1, 1] that
corresponds the change to apply to the threshold of each neuron in the FC layer. After T time-steps (the
total simulation time for an input instance), all the spiking thresholds are reset to a base value Vth,0 (see
Algorithm 1 1).

During each task of the CL scenario, the SNN’s trainable parameters are optimized using SGL, while the
NmN’s parameters are frozen and are optimized after the end of the CL scenario using an Evolutionary
Strategy detailed in subsection 3.3.

3.3 Neuromodulator Optimization

An approach to optimize the NmN would be to run a CL scenario (i.e. learn n sequential tasks containing
k examples, with the Nm-SNN) and then backpropagate the error using the surrogate gradient through a

1Code available at https://anonymous.4open.science/r/Nm-SNN-19AD
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Algorithm 1 : Neuromodulated training step
Require: SNN, NmN, T : Total timesteps,

x : Input, y : Label, h : Predictions

Reset SNN and NmN tresholds
for t = 1, 2, ..., T do

Sconv[t]← SNN.conv_block(x[t]) ▷ Get the conv block’s spiking activity
∆Vth[t]← NmN(Sconv[t]) ▷ The adaptation value from the NmN
SNN.FC.Vth[t]← SNN.FC.Vth[t] + ∆Vth[t] ▷ Adapt the SNN’s FC thresholds
h[t]← SNN.FC(Sconv[t])

end for
loss← calculate_loss(h, y)
Update SNN’s weights using loss

computational graph constructed over all the sequential tasks. However, this approach is very demanding
in terms of computation and especially memory and can only be used for very small n and k.

To overcome this limitation, we use a canonical (µ/λ) Evolutionary Strategy ((µ/λ)−ES) (Chrabąszcz et al.,
2018) to optimize the NmN, where µ and λ are the parent population size and the offspring population size,
respectively. The population is composed of vectors that correspond to the parameters of NmN. Individuals
are generated by adding random noise from N (0, σ2) to a distribution center and then updating the center
based on fitness information from the individuals. With this approach, we can optimize the NmN parameters
without the gradient signal which requires an infeasible memory capacity. However, the downside of this
method is the computation time (each generation takes a considerable amount of time to compute) and the
critical choice of the fitness function that we optimize for.

Algorithm 2 : Fitness function
Require: SNN, NmN, T : Tasks, P : Set of permutations

α : Positional coefficients

SNN = reinitialize_SNN() ▷ reinitialize neuron’s potentials and thresholds
SNN.nmn = NmN ▷ equip current NmN to SNN
for p in P do ▷ iterate through all task ordering permutations

for i = 1, 2, ..., n do ▷ n is the number of tasks in T
for x in Tip do

SNN ← train(SNN, Nm, x) ▷ Algorithm 1
end for
for j = 1, 2, ..., i do

for x in Tjp do
f ← evaluate(SNN, Nm, x) ▷ evaluate on previous tasks (Algorithm 1)
accijp ← αijf

end for
end for

end for
end for
return Mean(acc)

We chose a fitness function (Algorithm 2) that encompasses the entirety of the CL scenario, by taking the
weighted mean of the classification accuracies accij over all learned tasks (including the current one) at every
step of the CL scenario. accij denotes the classification accuracy of task j at the CL step i (where i ≥ j ),
thus we take into consideration the accuracy of remembering previous tasks j < i as well as the accuracy
of learning the current task i at every step of the CL scenario. We evaluate the fitness of each NmN in the
population by equipping it to the SNN and carrying out the CL scenario for different task permutations. In
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Algorithm 2, Tip denotes the ith task in permutation p, accijp denotes the classification accuracy of task j
evaluated at step i of the CL scenario with permutation p.

We observed that the order at which the sequential tasks are learned by the network has a significant
effect on the severity of catastrophic forgetting; it is possible to find a task ordering where the interference
between different tasks is minimal and thus allows for an easier retention of information. Furthermore, the
performance of an Nm-SNN optimized on a single specific task ordering does not necessarily generalize to
different orderings. For this reason, our fitness function evaluates an individual on multiple permutations of
the task ordering: for n tasks, we use n permutations obtained by a translation to the right.

Finally, we use positional coefficients α to calculate the weighted mean of accuracies to compensate for the
differences in the difficulties between tasks. For example, at CL step i, remembering the immediate previous
task i− 1 is significantly easier than remembering the first learned task 1.

4 Results

Our goal was to compare the performance of a standard SNN and a Nm-SNN, where both networks have the
same architecture, same parameter size, same pre-trained frozen weights and the same trainable parameter
initialization. The difference between the two lies in the spiking thresholds of the final FC layer. For the
SNN, the spiking thresholds are constant with Vth = 1 for all neurons, while in the case of the Nm-SNN, the
spiking thresholds are adaptive and are modulated by the NmN.

To this end, we use two different type of datasets: a neuromorphic dataset DVS128 Gesture (Amir et al.,
2017) composed of hand gestures captured with an event-based camera, and static image datasets EMNIST
(Extended-MNIST) letters (Cohen et al., 2017) composed of images of handwritten uppercase and lowercase
letters and MNIST (Deng, 2012). For all experiments, the tasks (as defined in subsection 3.1) consist of
learning to correctly classify a single class. For our implementations, we used SpikingJelly (Fang et al., 2020)
which is a PyTorch-based open-source deep learning framework for SNNs.

We validated our method by three tests of generalization. First, we test the generalization to new instances
from the tasks used for the evolutionary optimization Devo. Second, we test the generalization to new tasks
Dtest, unseen during both the evolution and pre-training. Third, we test the generalization to a bigger
number of sequential tasks n than the one used for the evolutionary optimization. For each of these settings,
we also test the generalization to a larger number of gradient steps than the one used during evolution.

For each setting, we also test on n different permutation of the tasks ordering (as defined in subsection 3.3).
The SNN is reinitialized for every CL scenario and is optimized using SGL and the neurmodulator is the
evolved NmN with the best fitness during evolution (with frozen weights).

4.1 DVS128 Gesture

For DVS128 Gesture, the evolution configuration is as follows: we use the classes from Devo with n = 3
sequential tasks, each class is learned through 20 SGD updates where we have k = 40 instances of each
class and a batch size of 2, each instance consists of T = 16 frames (after pre-processing of the event data)
which is also our simulation time. The evolution of the NmN lasted approximately 600 generations until
convergence.

For the third test, due to having only 11 different classes, we mix Devo and Dtest (we alternate tasks from
each dataset instead of concatenation for more difficulty) to obtain n = 6 sequential tasks, we note this
dataset as D6.

Table 1 shows that the Nm-SNN significantly outperforms the standard SNN in terms of mean accuracy
and successfully generalizes to new settings. The mean is taken over all accuracies at every stage of the
sequential learning (previous classes accuracies are re-calculated whenever a new class is learned, and not
just at the end) and all n permutations and different random seeds. We note for the hardest setting of D6
(50), with n = 6 sequential classes and 50 SGD updates per class, there is a sharp drop in mean accuracy
due to forgetting, however the performance improvement between the Nm-SNN and standard SNN is still
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Table 1: Mean accuracies for DVS128 Gesture

Setting SNN (20) Nm-SNN (20) SNN (50) Nm-SNN (50)
Devo 66.89% 98.09% 61.98% 85.19%
Dtest 75.35% 99.02% 64.87% 91.72%
D6 45.32% 64.65% 39.89% 56.37%

similar to the easier settings. Finally, the performances on Dtest are better than Devo for Nm-SNN, even
though it has been optimized for Devo. This might be due to the fact that the classes of Dtest have less
interference between them as seen in the imporvement of the standard SNN as well.

Figure 2 allows for a more thorough comparison of the Nm-SNN and SNN accuracy distributions. The figure
shows that the mean accuracy for paired samples in both settings is significantly higher for Nm-SNN, the
paired t_test value for Dtest (20) is 13.751 (with p = 2.79 × 10−10 ) and 7.12 (with a p = 2.43 × 10−06

) for Dtest (50). A remarkable difference between the (20) and (50) distributions is that the interquartile
range is much larger in the (50). We presume that this is due to the fact that some permutations become
significantly harder as the number of SGD updates grows.
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Figure 2: Distribution of accuracies of Nm-SNN (in blue) and SNN (in orange), for the settings of Dtest (20)
Figure 2a and Dtest (50) Figure 2b for DVS128 Gesture Dataset

As we previously mentioned in subsection 3.3, the order in which the classes are learned is crucial to the
performance of the network in terms of retaining previous information; some permutations are favorable
to continual learning in such as learning the new task naturally does not cause interference, while some
completely overwrite retained information. Table 2a and Table 2b show the difference in accuracy during
sequential learning (standard SNN without Nm) for two different permutations. We note that the second
permutation (Table 2b) is harder than the first one, as the first two tasks were completely forgotten at step
3.

Table 2: Accuracies of two different permutations

(a) Permutation (1, 2, 3)

Steps Task 1 Task 2 Task 3
1 100% . .
2 95.83% 100% .
3 12.50% 33.33% 100%

(b) Permutation (3, 1, 2)

Steps Task 3 Task 1 Task 2
1 100% . .
2 33.33% 100% .
3 4.17% 0% 100%
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To assess this, we calculate the total number of individual accuracies below a certain accuracy threshold
throughout all permutations, stages of sequential learning, and random seeds, to capture the cases where
catastrophic forgetting occurs (see Figure 3). In the setting of Dtest(20) Figure 3a, we see that for Nm-SNN,
no individual accuracy is below the threshold of 90%, and only 5% of accuracies are below 95%. On the other
hand, the standard SNN clearly suffers from catastrophic forgetting; some classes are completely forgotten,
4% of accuracies are 0% and approximately 22% are below 40%. In the more difficult setting of Dtest(50)
Figure 3b, we observe heightened forgetting in the SNN; 15% of accuracies are 0%. While we see a decrease
in performance for Nm-SNN compared to learning with 20 SGD updates, catastrophic forgetting is still
mitigated as only 5% are below 50% and no task is completely forgotten.
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Figure 3: Percentage of individual accuracies (y-axis) that are below a certain threshold (x-axis) in DVS128
Gesture (lower is better). The total number of accuracies is calculated for the Dtest (20) Figure 3a and Dtest

(50) Figure 3b throughout all stages of sequential learning, all permutations, and multiple random seeds.
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Figure 4: Evolution of the accuracy of the first learned class as new batches (SGD updates) of new classes
are learned in the Dtest(50) setting. The vertical dotted line represents the end of the second sequential task.
Finally, the green and red lines represent the accuracy of the third and final learned task.

Figure 4 shows the evolution of the accuracy of the first learned class with respect to every new SGD update
on newer classes. At first, both the Nm-SNN and SNN accuracies are at 100%, and as soon as the 50 SGD
updates of learning the second task have been completed (at the vertical dotted line) we can see that the
SNN falls sharply to 40% while the Nm-SNN is at 90%. An interesting phenomena that we observe at the
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beginning of the third and final step of the sequential learning is the sudden increase in accuracy of the SNN
on the first task even though it is learning the third task. An analysis of the spiking activity of the output
layer of the SNN shows that during the first few batches, the output neuron corresponding to the current
class does not spike at all and the accuracy is 0% at this stage (green dotted line). While learning task 3, the
SGD updates tend to increase the synaptic weights of the SNN to encourage spiking. Due to the fact that
some of these weights are also used for the first task, a spike in the output neuron corresponding to the first
task occurs before, and we can see that once the accuracy of the third task increases (corresponding to a
spike in the output neuron of the third task), the SNN starts forgetting the first task. However, even though
the same phenomenon occurs for Nm-SNN, it is mitigated; we only observe a small increase in the first task
and we also notice that learning the current task takes much longer (red dotted line). This is due to the
fact that shared weights are being protected from the update by inhibiting the spiking of their pre-synaptic
neurons through threshold modulation.

4.2 EMNIST / MNIST

EMNIST letters is a more challenging test for our method since each class is composed of both uppercase
and lowercase instances of letters, so the individual tasks are more difficult to learn and to retain. We also
use more sequential tasks n = 5 for Devo and Dtest since we are not constrained with the total number of
classes (26 letters) as in DVS128 Gesture. For the pre-training of the convolutional layers, we use the first
10 letters as classes noted by Dpre. We ran the evolution for approximately 1000 generations using the next
5 letters. Each class is learned through 20 SGD updates with a batch size of 4 and 80 instances.

For the third test, we use a completely new dataset, MNIST, and double the number of sequential tasks to
n = 10. We note this setting by Dmnist,10.

Table 3: Mean accuracies for EMNIST/MNIST

Settings SNN (20) Nm-SNN (20) SNN (50) Nm-SNN (50)
Devo 51.63% 66.17% 48.92% 60.25%
Dtest 37.04% 52.67% 34.31% 41.23%
Dmnist,10 35.66% 44.23% 32.13% 39.95%

Even though the gap between SNN and Nm-SNN is smaller in EMNIST compared to DVS10 Gesture (see
Table 3), especially in the hardest setting of Dmnist,10 which tests the generalization to a completely new
dataset, our method can effectively slow down forgetting in all settings in terms of mean accuracy. Figure 5
also shows the improvement in retaining previous information between the two networks. However, we see
that catastrophic forgetting still occurs in both cases (0% accuracies), a closer inspection shows that this
occurs only in some permutations for Nm-SNN, while all permutations suffer from this problem for the case
of SNN. It is possible that a better neuromodulator optimization protocol could solve this issue.

The comparison of the two distributions in Figure 6. indicates the improvement between paired accuracy
samples, the t_test value for Dtest (20) is 15.545 (with a p_value of 2.66×10−15 ) and 14.98 (with a p_value
of 2.43× 10−15 ) for Dtest (50).

10



Under review as submission to TMLR

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
Accuracy threshold

0

10

20

30

40

50

60

70

80
Pe

rc
en

ta
ge

20 SGD updates
NM
No-NM

(a)

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
Accuracy threshold

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge

50 SGD updates
NM
No-NM

(b)

Figure 5: Percentage of individual accuracies (y-axis) that are below a certain threshold (x-axis) in EMNIST
letters, the total number of accuracies is calculated for the Dtest (20) Figure 5a and Dtest (50) Figure 5b
throughout all stages of sequential learning, all permutations and multiple random seeds.
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Figure 6: Distribution of accuracies of Nm-SNN (in blue) and SNN (in orange), for the settings of Dtest (20)
Figure 6a and Dtest (50) Figure 6b for EMNIST letters

4.3 Analyzing Neuromodulatory Behavior

The motivation behind our work was that the NmN could potentially evolve to adapt the firing thresholds of
neurons in such a way that enables a task-specific gating, so that the important neurons for previous tasks
would not spike for new tasks. However, we did not use any constraints to enforce this behavior during the
evolutionary optimization; the only criteria was the performance on the continual learning scenario. In this
section, we analyze the behavior of an evolved NmN on the DVS128 Gesture setting (similar results were
found on EMNIST/MNIST).

An evolved NmN’s output converges to approximately binary threshold adaptation values of {−1, 1} as
shown in Figure 7a. During a complete CL scenario, about 63% of the NmN output values are positive,
which indicates that most outputs tend to restrain neurons from spiking which is consistent with the gating we
expected. However, about 37% of outputs are negative, meaning that at some times neurons are encouraged
to spike. Overall, if we compare the Nm-SNN to a standard SNN that’s been through the same CL scenario,
we find that the Nm-SNN has about 54% less spikes than the SNN. Thus, on the network level, the behavior
of the NmN is more inhibitory.
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Figure 7: (a) represents the distribution of NmN outputs during a whole CL scenario; the output values are
mainly grouped near −1 and 1. (b) represents the distribution of the total spike count of individual neurons;
each bar represents the number of neurons that have a total spike count in the corresponding bin, for the
Nm-SNN (blue upright) and SNN (orange upside down); for example, the first bar shows that there is 20
neurons in the Nm-SNN and 14 for the SNN that have a spike count between 0 and 30.

To assess how the network’s spiking activity is distributed between neurons of the neuromodulated FC layer,
we can look at the distribution of the total spike count of individual neurons. Figure 7b shows this distribution
for both Nm-SNN (in blue) and a standard SNN (in orange), and demonstrates that neuromodulation allows
for a more regular distribution of spiking activity. The Nm-SNN’s distribution shows that most neurons are
concentrated on the lower total spike count region (less than 1000 spikes), while only few neurons spike more
than 1000 times during the CL scenario. In comparison, the standard SNN’s distribution doesn’t show this
regularity, with an important difference at the high total spike count regions. Without neuromodulation,
there is a higher number of neurons that spike more than 1000 times. This difference could be explained by
the outputs of the NmN, as the positive values restrain the most active neurons.

On the network level, the neuromodulator’s behavior tends to reduce the overall spiking activity while evenly
distributing it over the FC layer’s neurons, these properties are suitable to mitigate catastrophic forgetting.
If the spiking activity is concentrated in a few neurons, their corresponding weights would be updated each
time they spike; a sparse and evenly distributed spiking activity could potentially allow for a separation of
network parameters that are used for each task.

To analyze the NmN on a neuron level, we pick the same individual neuron and compare its characteristics
while neuromodulated and while having a constant threshold. Figure 8 represents the membrane potential
and threshold values of the neuron (1st row), its spikes while neuromodulated and its correspondent NmN
output value with which its threshold was adapted during that time-step (2nd row) and finally the spikes
of the neuron while not being neuromodulated (3rd row). The vertical lines in black separates between the
three different sequential tasks in this CL scenario.

In the first row, the periodicity of the threshold value is due to the fact that after each input instance (16
time-steps) the threshold is reset to its base value of 1. The second row shows that the NmN outputs (red
dots) are consistent with the previous network level analysis as they are mostly concentrated near the values
{−1, 1} with some exceptions that fall in between. Moreover, the figure shows that for this neuron, the NmN
exhibits a task-specific behavior; we can see that for the first task, most of the NmN outputs are negative
thus encouraging the neuron to spike; while for the remaining two, most outputs are positive and restrain
the neuron from spiking. This can also be seen by comparing the spike trains in the second and third row;
we have 19% more spikes with neuromodulation for the first task and 23% and 88% less on the second
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Figure 8: The characteristics of an individual neuron in the FC layer for every time-step of a full CL scenario,
the vertical black lines separates between the three different sequential tasks. The first row represents the
membrane potential and the firing threshold value, the second row represents the spikes (blue vertical bar)
and the NmN output for the neuron’s threshold adaption, and the third bar represents the spikes of the
same neuron while not being neuromodulated.

and third tasks respectively. The behavior of the NmN on the final two tasks is what we were expecting:
gating the activity can protect weights from being updated. This can be seen in particular for the third
task where the extensive spiking activity of the neuron without neuromodulation leads to a lot of updates of
its correspondent weights and ultimately to catastrophic forgetting. Furthermore, the NmN also encourages
spiking in the first task. This shows that this neuron is mostly important for the first task and is restrained
for the others. However, the behavior of the NmN is different for other neurons, where some are restrained
on the first task and encouraged on others, while some are completely restrained on all tasks and so on.

While the overall behavior is task-specific, the NmN outputs in Figure 8 for the first and second task aren’t
exclusively negative or positive respectively: the NmN behaves differently for each input frame in every time-
step. This could be explained by the fact that even though the input tasks are different, individual frames
from the different tasks (for hand gestures for example) could have a resemblance, and thus the NmN treats
them differently. This is especially true for dynamic datasets, which could explain why the performance
of Nm-SNN is better for DVS128 Gesture compared to EMNIST/MNIST (where all frames of an instance
are identical). This frame-specific behavior shows that using only the CL scenario performance as a metric
during the evolutionary optimization can lead to richer and more flexible behaviors compared to imposing
constraints or using handcrafted gating mechanisms.

5 Discussion

The study of SNNs and their properties could potentially lead to the development of faster and energy
efficient neural networks that are less prone to the fundamental problems that plague standard ANNs. In
this work, we demonstrated that threshold modulation could leverage an intrinsic property of SNNs to
mitigate catastrophic forgetting in a continual learning setting where all network weights are shared and no
task information is available, and where our neuromodulator has access only to local input, which is the
previous convolutional layer’s spiking activity. We used an evolutionary strategy to optimize our NmN where
the criteria of selection is the performance on the continual learning scenario. This has lead to an NmN
with a rich task-specific and frame-specific behavior; which is also generalizable to new tasks unseen during
pre-training and evolutionary optimization.
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Although our method was tested on simple networks and a small number of sequential taks, it opens the
door for improved methods that leverage the intrinsic properties of SNNs. Our approach could be scaled to
larger networks and a bigger number of sequential tasks, if more computational power is available for the
evolutionary algorithm. General purpose neuromodulators could also be possible, where an evolved NmN
generalizes to completely new datasets. Thus we are paving the road for fast and energy efficient SNNs
deployed on neuromorphic hardware that could learn continually in real world scenarios.
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