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Abstract

Operating rooms (ORs) demand precise coordination among surgeons, nurses,
and equipment in a fast-paced, occlusion-heavy environment, necessitating ad-
vanced perception models to enhance safety and efficiency. Existing datasets either
provide partial egocentric views or sparse exocentric multi-view context, but do
not explore the comprehensive combination of both. We introduce EgoExOR,
the first OR dataset and accompanying benchmark to fuse first-person and third-
person perspectives. Spanning 94 minutes (84,553 frames at 15 FPS) of two
emulated spine procedures, Ultrasound-Guided Needle Insertion and Minimally
Invasive Spine Surgery, EgoExOR integrates egocentric data (RGB, gaze, hand
tracking, audio) from wearable glasses, exocentric RGB and depth from RGB-D
cameras, and ultrasound imagery. Its detailed scene graph annotations, cover-
ing 36 entities and 22 relations (568,235 triplets), enable robust modeling of
clinical interactions, supporting tasks like action recognition and human-centric
perception. We evaluate the surgical scene graph generation performance of two
adapted state-of-the-art models and offer a new baseline that explicitly leverages
EgoExOR’s multimodal and multi-perspective signals. This new dataset and
benchmark set a new foundation for OR perception, offering a rich, multimodal
resource for next-generation clinical perception. Our code and data are available at
https://github.com/ardamamur/EgoExOR.
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Figure 1: Overview of one timepoint from the EgoExoR dataset, showcasing synchronized multi-view
egocentric RGB and exocentric RGB-D video streams, live ultrasound monitor feed, audio, a fused
3D point-cloud reconstruction, and gaze, hand-pose and scene graph annotations. The "closeTo"
predicate is not visualized for brevity.

Table 1: Comparison of EgoExOR with existing operating room (OR) datasets. EgoExOR is the
first to combine synchronized multi-view egocentric and exocentric recordings with gaze, hand pose,
screen capture, and dense scene graph annotations.

Dataset Ego. Multi-View
Ego

Multi-View
Exo Gaze Hand

Pose
Screen

Recording
Scene
Graphs

Annotated
Timepoints

MVOR [1] ✓ 732
4D-OR [2] ✓ ✓ 6,743
MM-OR [3] ✓ ✓ ✓ 25,277
EgoSurgery [4, 5] ✓ ✓ 15,437
EgoExOR (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 84,553

1 Introduction

Modern operating rooms (ORs) are dynamic, safety-critical environments where diverse agents, such
as surgeons, nurses, anaesthetists, mobile robots, and the patient, must coordinate seamlessly within a
tightly confined space [6, 7]. Every participant has a distinct role, visual perspective, and attentional
focus shaped by their responsibilities: a nurse may monitor tool availability, a surgeon may focus
on a sub-millimetre needle movement, while an anaesthetist may track patient vitals. Crucially, a
scene can evolve in seconds from a calm setup to a crowded, high-stakes intervention. This dynamic
development and the multiplicity of perspectives makes the OR a uniquely complex environment,
where a momentary lapse or misjudgment can jeopardize patient safety.

Capturing and understanding this complexity requires perception models that move beyond static,
ceiling-mounted views and integrate multi-perspective, task-driven viewpoints that reflect the rich
structure of human attention and interaction. Perspective-aware and accurate 4D scene understanding,
capturing spatial and temporal dynamics of surgical workflows, would enable applications such as
automatic documentation, improved team coordination, context-aware robotic or AR guidance, paving
the way toward surgical automation. However, enabling such capabilities and making the first steps
towards automated surgery is first and foremost a data problem. Progress across computer vision has
consistently followed the release of large-scale public datasets, such as MNIST [8] and ImageNet [9]
in early classification; KITTI [10], Cityscapes [11], and Waymo Open [12] for autonomous driving
and Epic-Kitchens [13], Ego4D [14], and Ego-Exo4D [15] for egocentric activity understanding.
Surgical Data Science (SDS) has seen similar advances in endoscopic vision, supported by internal
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datasets for laparoscopy and arthroscopy [16, 17]. Existing OR datasets, such as MVOR [1], 4D-
OR [2], MM-OR [3], and EgoSurgery [4, 5], have advanced scene modeling through multi-view,
multimodal, or egocentric data; however, they lack the critical combination of multi-perspective
egocentric and exocentric views, gaze, hand pose, and dense scene graphs. This limits holistic OR
perception, specifically where multiple agents interact, occlusions are common, and fine-grained
manipulations must be inferred from both global context and individual perspectives, hindering
applications like context-aware robotic guidance and real-time team coordination.

These limitations highlight the need for a paradigm shift, from relying solely on static, top-down
exocentric views to including task-specific perspectives of the OR staff. These perspectives often face
the sterile field, circumventing the frequent occlusions in ceiling mounted cameras. Further, each
team member has a unique view of the procedure, showing detailed gestures, tools and anatomical
landmarks. Modern smart-glasses allow to record sub-millimetre eye-tracking; gaze vectors and
hand-tracking, additionally to egocentric views, where each actors’ gaze reveals intent and focus
and their hand movements reflect granular actions such as grasping a scalpel or manipulating a
needle. Together, these elements provide a comprehensive view of surgical activities from each
staff’s standpoint, essential for developing advanced computer vision models tailored to the OR.
Furthermore, as wearable devices do not require modifications to the OR environment, they can be
integrated more easily into existing operating rooms.

No existing dataset provides multi-member egocentric perspectives synchronized with exocentric OR
views and dense frame-level scene graph annotations. To this end, we introduce EgoExOR, a new
dataset and benchmark designed to advance OR scene understanding through an egocentric lens. For
the first time, EgoExOR combines multiview egocentric recordings from wearable glasses, including
RGB video, audio, gaze, and hand pose data, with multiview exocentric views from RGB-D cameras
and screen recordings of ultrasound imaging, as visualized in Figure 1 and described in Table 1.
Recorded in a simulated OR environment to ensure ethical and practical feasibility, EgoExOR spans
94 minutes across 41 takes, comprising 84,553 timepoints recorded at 15 FPS. Simulating two key
surgical workflows, needle insertion and microsurgery, it delivers synchronized, multimodal data
accompanied by scene graph annotations. We establish a new benchmark for surgical scene graph
generation, evaluate two state-of-the-art OR scene graph generation models, and introduce a new
baseline that leverages all the modalities in EgoExOR.

By uniting the staff members’ visual experience with multi-view context and structured annotations,
EgoExOR sets the stage for methods that reason jointly about gaze, dexterous manipulation, and the
wider clinical scene. Finally, as EgoExOR is the first dataset to combine multiple egocentric and
multiple exocentric viewpoints in a synchronized setup and capture simultaneous parallel actions from
different agents, we believe it will serve as a cornerstone for the next generation of OR perception
models and, more broadly, for any domain where human expertise, attention, and fine motor skill
intersect in complex, occluded environments.

2 Related Work

Surgical Data Science. Surgical Data Science (SDS) has advanced significantly, leveraging deep
learning for tasks like action recognition [18, 19], phase identification [20], instrument detection [21],
enabled by large datasets like Cholec80 [16] and ArthroPhase [17]. These datasets focus on internal
patient views (e.g., laparoscopy, arthroscopy), offering rich annotations but missing the broader OR
context, such as interactions among clinical staff or external equipment. Capturing the entire operating
theatre is more difficult because cameras must be non-intrusive, patient privacy is paramount and
lighting is challenging. The Multi-View Operating Room (MVOR) dataset [1] uses three synchronized
RGB-D cameras, capturing 732 frames with coarse pose labels, but its limited scale and coarse
annotations restrict its utility. 4D-OR[2] introduced semantic scene graphs for holistic OR modeling,
annotating 6,743 timepoints from six ceiling-mounted RGB-D cameras with clinical roles, tools, and
interactions. MM-OR [3] scaled this effort, integrating multimodal data and panoptic segmentations
for robotic knee surgeries, with an order of magnitude more annotations. However, both rely solely
on exocentric views, which do not capture the surgical team members’ unique perspectives, are
susceptible to occlusions, and lack gaze or hand pose data. These limitations reduce their utility to
mainly analysing the top-down perspective on the unobstructed OR room.
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Egocentric Vision. In the wider field of Computer Vision multiple ego- (and exo-)centric datasets
have been proposed to tackle video understanding tasks. Epic-Kitchens [13] for example captures
100 hours of cooking tasks with annotations for actions, objects, and narrations. Epic-Fields [22]
extends Epic-Kitchens to include camera poses and sparse SfM pointclouds, enabling object track-
ing and more comprehensive 3D understanding. HD-EPIC [23] (41h) extends 3D reconstruction
annotations and manually curate coarse meshes of the entire scene, which is highly promising for
improving the precision of object tracking methods. All the aforementioned datasets, however, focus
on cooking and are recorded solely in kitchens, limiting their broader applicability. In contrast,
Ego4D [14] was recorded in diverse scenes and settings and spans 3,670 hours, introducing a variety
of different benchmarks, from episodic memory over hand-object interaction to action anticipation.
For multimodal sensing, Ego-Exo4D [15] combines synchronized egocentric and exocentric views
across a combined 1,286 hours (221.26 ego-hours) of skilled activities (e.g., sports, cooking, music),
enabling 3D human pose reconstruction and skill assessment. Another multimodal dataset was
proposed in HOI4D [24], where a head-mounted RGB-D camera was used to capture egocentric
video of human-object interactions. Aria Digital Twin (ADT) [25], recorded with Project Aria glasses,
provides 3D reconstructions, audio, and gaze. For procedural tasks, Assembly101 [26] offers 4,321
clips captured from ego and exo perspectives of toy assembly with hand pose annotations.

While these datasets provide important building blocks for general computer vision tasks such as
human-object interaction and video understanding in diverse settings, methods developed on them
will not generalise to the OR without training data and method design that takes into account the
complicated environment of the OR [3]. Except for one work, EgoSurgery [4], there have been no
significant efforts to capture egocentric surgical videos, which could provide crucial views of the
surgical staffs hands. Specifically, EgoSurgery provides a first-person view from surgeon-mounted
camera, with phase and tool labels, capturing actions like suturing but it lacks perspectives from the
other staff, exocentric context, team dynamics, or dense scene graphs.

In summary, no single dataset integrates synchronized egocentric and exocentric video, eye tracking,
6-DoF hand-tool trajectories, and dense scene graphs in a clinically realistic OR, which is limiting
development of holistic perception methods. EgoExOR addresses this gap with a multimodal, multi-
view dataset tailored to precision tasks like needle insertion and microscopic operations, featuring
rich annotations that enable reasoning about surgeon attention, intent, action, and clinical context,
paving the way for next-generation ego-exocentric OR perception.

3 Dataset Acquisition

This section details the acquisition of the EgoExOR dataset, including the recording environment,
sensor configurations, participant roles, and emulated surgical procedures, outlining the methodology
for acquiring multimodal, multiview data in an OR setting.

3.1 Recording Environment

EgoExOR was recorded in an university-affiliated surgical simulation center, previously utilized for
the 4D-OR [2] and MM-OR [3] datasets. The center is equipped with surgical tables, anesthesia
machines, overhead surgical lights, and standard OR equipment. The layout includes a sterile field
with instrument tables and a circulation area for surgical team movement, ensuring a controlled
setting for high-fidelity surgical simulations approximating real-world conditions without involving
real patients. This approach mitigates privacy and safety concerns associated with patient data.
While recording data from live surgeries would provide the highest level of realism, such recordings
are rarely made publicly available due to strict privacy regulations and ethical considerations [27,
28]. Simulation-based data collection thus remains the most practical approach for creating open,
reproducible datasets for surgical scene understanding.

3.2 Technical Setup

To capture the rich dynamics of each scenario, we instrumented the environment and participants with
a comprehensive set of synchronized sensors, enabling both egocentric (first-person) and exocentric
(third-person) views of the action. The following describes the equipment, camera placements,
synchronization, and data processing pipeline.
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Egocentric Recording. We used Project Aria Glasses [29] to capture first-person perspectives from
participants (head surgeon, assistant, circulating nurse (circulator), anaesthetist) and non-human
viewpoints (surgical microscope for MISS, OR light for Ultrasound). Key specifications were:

• RGB Cameras: 1440×1440 resolution at 15 FPS, providing first perspective views of the
wearer, essential for resolving subtle actions like needle handling or micro-suture pickup.

• Eye Tracking Cameras: 320×240 resolution delivers gaze samples at 120 Hz with sub-
millimeter accuracy (2D pixel + depth), enabling precise analysis of surgical intent (e.g., the
surgeon’s gaze switching between the ultrasound screen and patient).

• Microphones: Stereo at 48 kHz, capturing dialogue and ambient sounds.

Wearable cameras were also placed on the microscope (MISS) and OR light to simulate views that
would be possible to get from next-generation robotic equipment or OR lights equipped with cameras.

Exocentric Recording. To capture the global OR context, we used Azure Kinect Cameras, strategi-
cally positioned at the ceiling for full-room coverage. Each records RGB-D images at 15 FPS, offering
complementary external views of staff interactions and equipment, and enabling the creation of col-
ored point clouds per timepoint. Camera placements were calibrated using a checkerboard pattern to
compute intrinsic and extrinsic parameters, enabling spatial alignment and 3D reconstruction.

Ultrasound Screen Recordings. We used an HDMI capture device to record the screen of the
ultrasound machine, providing real-time imaging at 15 FPS.

Synchronization. Azure Kinect cameras were connected in a master-slave configuration, ensuring
frame-level alignment. To ensure all wearable cameras, ultrasound recording, and external recordings
were in sync with each other, we used a clapper at the beginning of each take, clearly visible to every
camera and audible to all Aria microphones, and manually synchronized the streams. We did not
observe any drift in the streams during the duration recordings.

3.3 Participants and Roles

EgoExOR features emulated surgical teams composed of biomedical engineers trained to enact
specific clinical roles. To enhance procedural variability and mitigate role-specific biases, roles
were rotated across recordings, with individuals performing multiple roles and each role executed by
different participants. All participants provided written consent for the recording and public release
of the dataset, ensuring compliance with ethical standards.

• Head Surgeon: Directed the procedures, simulating primary tasks like needle insertion or
disc removal.

• Assistant: Supported the head surgeon by handing instruments, adjusting equipment, and
monitoring the surgical field.

• Circulator: Managed the OR environment, prepared tools, and maintained the sterile field.

• Anaesthetist: Oversaw the patient’s vitals and anesthesia.

3.4 Surgical Procedures

EgoExOR models two precision-oriented interventions, Ultrasound-Guided Needle Insertion (UI)
and Minimally Invasive Spine Surgery (MISS), selected for their prominence in modern spine
practice, their representation of distinct imaging-guidance paradigms and their sequential role in
treating lumbar disc herniation, a leading cause of lumbar spine surgeries affecting approximately
5 to 20 per 1,000 adults each year [30] and causing radicular pain or lower back pain due to
disc pressure on spinal nerves. Lumbar injections such as UI are a widely practiced intervention,
with over 1 million lumbar epidural steroid injections administered annually in the United States
alone [31]. MISS, particularly lumbar microdiscectomy, is the next step when the injections prove
insufficient, removing the herniated disc fragments through a minimally invasive approach, with
more than 300,000 procedures performed annually in the U.S. [32]. Although UI and MISS differ in
invasiveness and therapeutic scope, they both heavily rely on precise, skillful interaction between
the clinicians, tools and patient anatomy in a complex OR environment, making them suitable for
studying OR dynamics in a clinically meaningful context. EgoExOR emulated these procedures
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following surgical textbooks [33], training videos [34–36], and consultation with clinicians, ensuring
alignment with clinical practice guidelines. We defined a phase taxonomy based on standard clinical
workflows, segmenting procedures into distinct steps. Recording was organized around this phase
structure, and each take corresponds to one or more procedural phases. All takes were scripted and
rehearsed in advance to ensure both authenticity and clinical relevance.

Ultrasound-Guided Needle Insertion (UI). Simulates an epidural steroid or nerve-root block, where
a spinal needle is advanced under real-time ultrasound. Phases:

• Patient Introduction & Positioning: The circulator prepares the OR, verbally confirming
tool readiness (e.g., ”Syringes ready, probe cover in place”), while the head surgeon and
assistant position the patient and apply antiseptic.

• Ultrasound Setup & Target Identification: The head surgeon adjusts the ultrasound probe
to locate landmarks, with the assistant preparing the needle and confirming angles.

• Medication Injection: The head surgeon inserts the needle, injects steroids, and observes
the spread on the ultrasound screen, while the circulator monitors vitals.

• Post-Procedure Cleanup: The needle is removed, a dressing applied, and the team cleans
the probe and OR.

Minimally Invasive Spine Surgery (MISS). Simulated using a surgical microscope and tubular
retractors to remove herniated disc fragments. Phases:

• OR Preparation & Patient Setup: The circulator organizes instruments and checks the
microscope, while the anaesthetist sets up monitors. The assistant drapes the patient, and
the head surgeon confirms positioning.

• Incision & Initial Access: The head surgeon makes a small incision, places dilators, and
uses the microscope to target the disc, with the assistant monitoring fluoroscopy.

• Microscope-Guided Discectomy: The head surgeon removes disc fragments using micro-
forceps, confirming decompression, while the assistant ensures a clear field.

• Wound Closure & Turnover: The incision is closed with sutures, the patient is woken, and
the team sterilizes equipment.

Furthermore, we also designed realistic deviations from typical protocols to reflect the variability
observed in surgeries. We scripted complication for each phase, such as dropped instruments (e.g.,
assistant dropping gauze), needle contamination, ultrasound gel drying, microscope misalignment,
syringe jams, or vital-sign fluctuations. Participants responded per standard protocols (e.g., replacing
contaminated tools, re-sterilizing gloves), increasing diversity and creating challenging edge cases.

4 Dataset Description

This section describes the post-acquisition pipeline that transforms raw multimodal recordings into a
structured dataset tailored for OR perception research. We outline the data modalities, processing
steps, recording segmentation, statistical overview, and annotation process, providing a comprehensive
view of EgoExOR’s composition and utility.

4.1 Data Processing and Modalities

The EgoExOR dataset comprises multiple synchronized data modalities captured in an OR environ-
ment. After acquisition, all data streams undergo a standardized processing pipeline to produce a
final, compact dataset suitable for efficient training and evaluation. The following summarizes all
included data modalities, their processing and final representations as available in the dataset:

• Egocentric RGB Video: Multi-view RGB, down-sampled to 336×336 pixels, providing
first-person perspectives of the OR.

• Exocentric RGB-D Video: Multi-view RGB and depth data, downsampled to 336×336
pixels, offering external perspectives of the OR scene.
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Table 2: Distribution of surgical takes, duration, and frames across procedures in EgoExOR.

Procedure # Takes Time [min] # Frames

Ultrasound-Guided Injection (UI) 24 69 62,547
Minimally Invasive Spine Surgery (MISS) 17 25 22,006

Total 41 94 84,553

• Point Cloud: Depth maps are processed into colored point clouds using calibrated camera
extrinsics and reduced to 2,500 points per timepoint.

• Gaze Tracking: Eye-tracking data provided as normalized 2D coordinates relative to the
egocentric image frame, combined with depth estimates for each gaze sample.

• Hand Tracking: Hand pose data from the glasses, with 16 points tracked (8 for the left
wrist and palm, 8 for the right wrist and palm).

• Audio: Two-channel stereo audio at 48 kHz, normalized to a [-1, 1] range, capturing verbal
communication and environmental sounds. Both full audio recordings, aligned with the take,
and one-second audio snippets, aligned with individual timepoints are provided.

• Ultrasound Screen Recordings: Video captures of ultrasound display, downsampled to
336×336 pixels, enabling synchronized analysis alongside egocentric and exocentric views.

All modalities are temporally synchronized at a uniform rate of 15 FPS, and stored in a consolidated
HDF5 archive for easy access. This ensures that visual, auditory, spatial, and other signals are
consistently aligned across all timepoints, enabling robust multimodal learning and evaluation.

4.2 Dataset Composition and Statistics

EgoExOR consists of 41 takes capturing clinically inspired phases of two emulated surgical proce-
dures: Ultrasound-Guided Injection (UI) and Minimally Invasive Spine Surgery (MISS), as detailed
in Table 2. All takes are annotated and synchronized across modalities. The dataset contains a total
of 84,553 frames recorded at 15 FPS, spanning 94 minutes. For benchmarking, the dataset is split
into training, validation, and test sets at take level, ensuring phase and scenario diversity. Specifically,
26 takes are used for training, 8 takes for validation, and 7 takes for testing. The dataset is 195 GB in
size, providing a comprehensive resource for developing and benchmarking OR perception models.
A detailed description of the data structure and modalities is provided in the supplementary material.

Edge-Case Deviations. In addition to “normal” workflows, EgoExOR systematically integrates
edge cases that represent realistic deviations from surgical protocols (e.g., dropped instruments, gel
drying, microscope misalignment). Out of the 41 total takes, 15 contain no scripted deviations, while
26 takes include at least one edge case. These 26 takes account for approximately 54k out of 84k
total frames (∼64% of the dataset). Importantly, edge cases are restricted to specific sub-phases, and
not all frames within such takes depict anomalies. Each edge-case take typically contains multiple
instances of the targeted deviation, and role assignments are varied across takes to capture different
team dynamics. To support systematic evaluation, we provide a metadata file mapping each take to
its surgical sub-phase and indicating whether it includes edge-case events.

4.3 Annotations

EgoExOR follows previous works [2, 3], and includes per-frame scene graph annotations to provide
structured semantic context, capturing entities (e.g., surgeons, tools, patient) and their relations
(e.g., inserting, cutting). Annotations were created manually using a custom interface that allowed
annotators to navigate frames, zoom into details, and overlay multimodal data (e.g., gaze points on
RGB frames). For each frame, one trained annotator labeled entities and relations, with a second
annotator verifying the output to ensure accuracy.

The annotation schema comprises 36 entity classes (e.g., head_surgeon, scalpel,
ultrasound_probe, patient) and 22 relation classes (e.g., holding, using, closeTo), reflect-
ing clinical roles, tools, anatomical landmarks, and their interactions. On average, each frame contains
6.8 ± 2.5 relation triplets (median = 7, max = 13), with a total of 568,235 triplets across all 84,553
frames. In the appendix we provide exact statistics for the distribution of all classes.
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5 Scene Graph Generation Benchmark

This section presents our benchmark for surgical scene graph generation, trained and evaluated on
the EgoExOR dataset. All experiments were conducted on a single NVIDIA A40 GPU (48GB) using
PyTorch 2.0.1, CUDA 11.7, and Python 3.11, and training time was approximately 5 days.

Image Encoder

Audio Encoder

Branch Pooler

PC Encoder

Image Pooler

Projection

Projection

Image Encoder Image Pooler

Hand Encoder Projection

Gaze Encoder Projection

Branch Pooler

Large Vision Language M
odel

Scene G
raph Triplets

Egocentric RGB Video

Hand Tracking 

Eye Gaze/Depth

Exocentric RGB-D Video

Ultrasound Screen

Audio

Point Cloud

C
oncatenation &

 Projection

Egocentric Branch

Exocentric Branch

Figure 2: Overview of the proposed EgoExOR model for surgical scene graph generation. The model
employs a dual-branch architecture to separately process egocentric and exocentric modalities. Fused
embeddings are passed to a large language model (LLM) to autoregressively generate scene graph
triplets representing entities and their interactions.

The surgical scene graph generation task [37, 2, 38, 39] aims at generating structured graph represen-
tations of OR scenes with nodes as entities (e.g., surgeon, patient, tools) and edges as interactions
(e.g., holding, lying on), summarizing the semantics of the scene. Following prior work [40, 3], we
represent scene graphs as triplets (subject, predicate, object), capturing dynamic interactions like
(assistant, aspirating, patient) and spatial relationships like (patient, lying on, operating table). We
train and evaluate two baseline models, ORacle [40] and MM2SG [3], adapted to process EgoExOR’s
ego-exo images. ORacle employs a 2D multi-view visual encoder to embed OR scenes, where as
MM2SG extends this incorporating additional modalities such as point clouds, ultrasound screen
recordings, and audio. Both use a large language model (LLM) to autoregressively predict scene
graph triplets. Both process egocentric and exocentric RGB inputs jointly within a single shared
encoder, and lack dedicated fusion mechanisms for perspective-specific features, and are unable to
leverage EgoExOR’s hand and gaze tracking signals.

EgoExOR Model. To fully exploit EgoExOR’s rich multi-perspective data, we introduce a new
baseline model featuring a dual-branch architecture Figure 2. The egocentric branch processes first-
person RGB, hand pose, and gaze data, while the exocentric branch handles third-person RGB-D,
ultrasound recordings, audio, and point clouds. Each branch uses a 2-layer transformer to fuse its
inputs into N feature embeddings. These are concatenated and fed into the LLM for triplet prediction.
By explicitly separating and fusing perspective-specific features, our model better captures actions
and staff interactions, outperforming single-stream baselines in modeling complex OR dynamics.

Evaluation Metric. Following established protocols [2, 40, 3], we evaluate performance using the
macro F1-score over predicates, assigning equal weight to each class to account for class imbalance.

Implementation Details. All models use LLaVA-7B [41] as the starting point, with Vicuna-7B [42]
as the LLM and CLIP ViT [43] as the image encoder. We fine-tune using LoRA [44] for the LLM and
adapt the last 12 layers of the image encoder for the OR domain, following MM2SG [3]. The number
of fixed image tokens N is set to 576. Audio is encoded with CLAP [45], and point clouds with
Point Transformer V3 [46]. For the EgoExOR model, both hand pose data and gaze/gaze-depth data
are encoded using MLPs, and then projected into a shared latent space as single tokens. All models
were trained for 4 epochs. The adapted ORacle and MM2SG baselines also process EgoExOR’s
egocentric RGB alongside exocentric data, however in a unified stream, lacking the EgoExOR
model’s specialized branch for egocentric signals.

Results. Overall the results, shown in Table 3 and Figure 3, demonstrate that more modalities lead
to improved results, and while the existing works perform satisfactorily, the dual-branch EgoExOR
model achieves the highest macro F1. Several predicates such as injecting, aspirating, holding,
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Table 3: Scene graph generation results on EgoExOR. The table reports macro F1 scores for two
surgical procedures: Ultrasound-Guided Injection (UI) and Minimally Invasive Spine Surgery (MISS).
Used modalities such as egocentric and exocentric RGB images (Images), ultrasound screen (Ultra.),
audio, point cloud (PC), gaze and hand pose (Hand) are indicated with a checkmark.

Model Images Ultra. Audio PC Gaze Hand UI MISS Overall

ORacle [40] ✓ 0.65 0.66 0.63
MM2SG [3] ✓ ✓ ✓ ✓ 0.72 0.66 0.67
EgoExOR (Ours) ✓ ✓ ✓ ✓ ✓ ✓ 0.79 0.68 0.72

controlling in EgoExOR rely on understanding transient tool-hand trajectories, and fine-grained action
cues. This emphasizes the importance of explicitly modeling multiple viewpoints and leveraging
all available modalities to improve OR scene understanding. However, it still struggles with low-
frequency predicates such as cutting, positioning. We provide detailed per-predicate performance
metrics and further visualizations in the supplementary material.
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Figure 3: Qualitative examples from EgoExOR. Correctly predicted entities and predicates are
highlighted in green, wrong ones are left white. The "closeTo" predicate is not visualized for brevity.

6 Conclusion

EgoExOR marks a significant advance in surgical data science, delivering a comprehensive dataset that
captures the intricate dynamics of operating rooms through synchronized egocentric and exocentric
viewpoints. Across 84,553 frames of two simulated spine procedure, it combines diverse modalities
with rich scene graph annotations to model clinical workflows holistically. Our benchmark, comparing
existing OR perception models against a new method designed for EgoExOR, underscores its value
for developing intelligent systems, from automated documentation to context-aware robotic assistance.
EgoExOR’s fine-grained action detection, presents unique challenges, making it a valuable resource
for advancing capabilities essential for advancing OR perception and human-centric AI in complex,
safety-critical environments. We believe EgoExOR will catalyze innovation in OR perception, paving
the way for smarter, safer surgical environments, with implications for any field requiring precise
human-robot collaboration in complex environments.

Ethical Considerations. By employing simulated procedures, EgoExOR avoids privacy concerns
inherent to clinical data, enabling unrestricted public release and reproducibility in alignment with
NeurIPS ethical standards. All participants provided informed consent for data collection and
publication. Potential positive societal impacts include accelerating the development of intelligent
clinical assistance systems that improve surgical safety, support clinical decision-making, and enhance
training through rich multimodal datasets. As with any technology in sensitive domains, there is
also a potential negative impact if such models are deployed prematurely or without sufficient
human oversight, potentially leading to over-reliance on automated systems in high-stakes clinical
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environments. We emphasize that EgoExOR is intended as a research resource, not as a clinical
decision-making system.

Limitations. While the simulated procedures in EgoExOR provide a valuable ressource for multi-
perspective and multi-sensor OR understanding, its simulated setup can not fully reflect the intricacies
of expert surgical performance in live clinical settings. Additionally, the recordings are limited to a
specifically equipped operating room that enabled high-quality, synchronized multimodal data but
may restrict the adaptability of models to varied OR configurations. Future work could expand this
scope, building on EgoExOR’s robust foundation.
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environment, and Felix Holm and Miruna-Alexandra Gafencu for their help in data acquisition.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state EgoExOR’s contributions, including
its novelty as the first dataset combining egocentric and exocentric views with scene graph
annotations for OR scene understanding.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper highlights limitations in the corresponding section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper focuses on dataset creation and empirical contributions, not theoreti-
cal results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Detailed recording setup, data processing, and annotation schema are provided,
enabling reproduction of the dataset’s multimodal streams and scene graphs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The dataset is publicly released with Python/PyTorch loaders and instructions.
Our code and data are available at https://github.com/ardamamur/EgoExOR.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detail this in the corresponding benchmark and experiments section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow the evaluation standard of previous works.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the size of the dataset as well as the necessary compute required to
train the models in section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Simulated data avoids privacy issues, and participant consent was obtained,
aligning with NeurIPS ethical standards.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the broader impacts section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The simulated surgery dataset poses no high-risk misuse concerns, requiring
no specific safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Not applicable as we collect our own data.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: EgoExOR is released with comprehensive documentation, including metadata
and usage instructions at https://github.com/ardamamur/EgoExOR.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve human research, as all participants are fellow
researchers and biomedical engineers from the same chair, collaborating as part of shared
research goals, and performing a simulated surgery without any risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subject research was conducted, as the dataset is simulated with
participant consent for data use.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: While the main contribution, the dataset and benchmark, do not involve any
LLMs, all the baseline models use an LLM in their architecture.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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