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Abstract

Longitudinal studies of infants’ brains are essential for research and clinical detection of
neurodevelopmental disorders. However, for infant brain MRI scans, effective deep learning-
based segmentation frameworks exist only within small age intervals due to the large im-
age intensity and contrast changes that take place in the early postnatal stages of de-
velopment. However, using different segmentation frameworks or models at different age
intervals within the same longitudinal data set would cause segmentation inconsistencies
and age-specific biases. Thus, an age-agnostic segmentation model for infants’ brains is
needed. In this paper, we present ”Infant-SynthSeg”, an extension of the contrast-agnostic
SynthSeg segmentation framework applicable to MRI data of infants at ages within the
first year of life. Our work mainly focuses on extending learning strategies related to syn-
thetic data generation and augmentation, with the aim of creating a method that employs
training data capturing features unique to infants’ brains during this early-stage develop-
ment. Comparison across different learning strategy settings, as well as a more-traditional
contrast-aware deep learning model (nnU-net) are presented. Our experiments show that
our trained Infant-SynthSeg models show consistently high segmentation performance on
MRI scans of infant brains throughout the first year of life. Furthermore, as the model is
trained on ground truth labels at different ages, even labels that are not present at certain
ages (such as cerebellar white matter at 1 month) can be appropriately segmented via
Infant-SynthSeg across the whole age range. Finally, while Infant-SynthSeg shows consis-
tent segmentation performance across the first year of life, it is outperformed by age-specific
deep learning models trained for a specific narrow age range.

Keywords: Convolutional neural networks, Deep learning, Infant brain segmentation,
Neurodevelopmental Disorders, Data augmentation, Neuroimaging.
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Figure 1: T1-weighted MRIs of the developing brain from 0-12 months, when white/gray
matter contrast inverses. Arrows at 3 months indicate two regions with vastly
different appearances and contrast. Image source: Baby Connectome Project.

1. Introduction

MRI brain segmentation is a crucial step in neuroimaging workflows as it enables both
further processing, e.g. for cortical surface reconstruction and volumetric quantification of
brain structures. In recent years, convolutional neural networks (CNN) have gained con-
siderable interest to provide time-efficient and accurate results to MRI brain segmentation,
particularly with application to the developing brain (Mostapha and Styner, 2019). Such
CNN models reach segmentation accuracy at or above the level of more traditional multi-
atlas approaches (Wang et al., 2014), but at a tiny fraction of the computation time, though
the training process for such CNN models is highly memory intensive.

The processing of MR infant brain images is typically far more challenging than adult
brain MRIs. Infant brain MRI suffers from reduced tissue contrast, large within-tissue inho-
mogeneities, regionally-heterogeneous image appearance, considerable age-related intensity
changes, and severe partial volume effect due to the small brain size (see Fig 1). Since
most of the existing neuroimaging tools were designed for adult brain MRI data, infant-
specific computational neuroanatomy tools have recently been developed (Zöllei et al., 2020;
Makropoulos et al., 2018). Given the large contrast changes during the first year of life, such
infant-specific tools have focused mainly on relatively narrow age ranges or employ differing
segmentation approaches at different ages. Yet, many infant neuroimaging studies employ
longitudinal data (Hazlett et al., 2017; Howell et al., 2019). In order to reduce methodolog-
ical biases in such longitudinal studies, a common, single segmentation framework across
all longitudinal time points is preferable over narrowly trained, single time point methods.

More recently, (Billot et al., 2020) proposed a contrast agnostic training strategy via
synthetically generated MR images only, called SynthSeg. SynthSeg provides a semantic
segmentation framework that could be applied to MRI brain scans of any contrast or modal-
ity. The large contrast changes observed in infant MRI suggests that SynthSeg would be
a well-suited adaptive method for such MR data. Another advantage of SynthSeg is that
it does not require a large number of templates for the trained models to generalize well
because local and global appearance and shape variations are generated. A major issue for
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the extension of SynthSeg is the heterogeneous intensity appearance within a single label
in infant MRI, particularly within the white matter regions (see the 3-months white matter
appearance in Figure 1). Furthermore, due to the contrast inversion taking place during
the first year, multiple contrasts/modalities are needed to appropriately resolve boundaries.

Here, we propose to extend SynthSeg to the infant MRI setting, called Infant-SynthSeg,
such that a single SynthSeg model can properly capture possible appearance and shape
variations in infant MRI during the first year of life. This allows neuroimaging studies
in that time frame to apply a single segmentation model that is efficient, accurate and
reduces methodological bias in longitudinal infant studies. Novelties include the adapted
training scheme that partitions labels into sub-labels when sufficient heterogeneous intensity
variation is present, incorporation of multiple modalities (here: T1 and T2 weighted MRI),
as well as an evaluation of Infant-SynthSeg across the infant age range.

2. Methods

2.1. Data

We employed T1 and T2 weighted infant MRI data at resolution 1x1x1mm3 with manual
segmentations using the FreeSurfer anatomical region of interest labeling scheme. These
datasets were separated into training and testing data for the different experiments. The
dataset consisted of 17 images at 0, 1 at 1, 1 at 2, 8 at 6, and 9 at 8 months.

Two models were built and evaluated: A) a single age model at neonate (0 month) age
using 7 training datasets at 0 month of age, and B) a multi-age model supplementing the
prior model with additionally 4 images at 6 months of age. No training data was used
in the evaluation of the models. Regions of interest, separate for left/right brain (L/R),
include: Cerebral White Matter (WM), Cerebral Cortex (CT), Cerebellum White Matter
(CW), Cerebellum Cortex: (CC), Lateral Ventricle (LV), Ventral Diencephalon (VDC),
Thalamus Proper (TH), Caudate (CA), Putamen (PU), Pallidum (PA), Accumbens Area
(AC), Hippocampus (HP), and Amygdala (AM).

2.2. Segmentation Framework

SynthSeg: We created a framework for automatic semantic segmentation of infant brains
of different age intervals given T1 and T2 weighted MRI scans based on SynthSeg. SynthSeg
generates randomized brain intensity scans using a Gaussian Mixture Model(GMM), where
the intensities, I(s), of each segmentation structure s are characterized by I(s) ∼ N (u, σ).
The u and σ are generally randomly drawn from a normal or uniform distribution. Alter-
natively, SynthSeg allows the use of ”prior distributions”, which are parameters that could
be sampled from available intensity scans. These prior [u, σ] parameters help SynthSeg to
generate image intensities that are similar to those of available template MRIs. A wide
range of data augmentation procedures, including spatial deformation, blurring, bias field,
and skull stripping, are applied to the generated training intensity maps and labels (ground
truth). Then, a traditional 3D U-net model (Ronneberger et al., 2015; Çiçek et al., 2016)
is trained by data obtained from this generation scheme. The network contains 5 levels, 2
convolutions per level with kernel size of 3 ∗ 3 ∗ 3.
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Subdividing labels: Due to the large MRI appearance changes that take place during
early brain development, we subdivided existing labels so that when the GMM parameters
are sampled, the generated images would resemble the infant brain better. By observing
the T2 intensities of one-month infant brains, we find that unmyelinated cerebral white
matter (WM) appears darker compared to the myelinated cerebral WM. Thus, the existing
WM label was manually divided into myelinated and unmyelinated WM regions for the left
and right cerebrum. Then, using the one-month-old MRI data, we generated the statistical
intensity distributions for each labeled structure. As can be seen in Figure 2 (a), we further
found that the brain stem’s intensity distributions are also skewed with a heavy tail of
brighter voxels. This is due to the bright pons tissue. We thus divided the brain stem into
two labels, just as the two cerebral white matter labels. These subdivisions are treated as
completely distinct labels, where their GMM parameters are drawn independently.

Fused label intensities: The generated intensities in the subdivided labels should also
reflect older infant brains, where those regions appear homogeneous (unlike the heteroge-
neous appearance in younger infants). Thus, we have adapted SynthSeg so that, in 50%
of the generated images, the subdivided labels would be ”fused” back together–they will
use the same set of GMM parameters. Every generated image has a 50% chance of being
fused, independent of whether SynthSeg uses prior GMM parameters or not. The process
is visualized in Figure 2 (b).

Multi-contrast segmentation: To improve segmentation performance, particularly
for infant MRIs with differing white/gray matter intensity contrast between the MR images
(e.g., no contrast in T1w, but contrast in T2w) during the age range of low-to-no contrast
setting (5-7 months of age), we trained separate models using prior GMM parameters
sampled from T1 and T2 weighted intensity maps. The T1 model is applied to segment T1
weighted images, and the T2 model is applied to segment T2 weighted images. The two
resulting segmentations are then combined via max posterior labeling. This combined T1w
and T2w segmentation is a first step, which is currently being improved with a full jointly
trained model.

Post-processing: Following the multi-contrast segmentation, we combine the subdivi-
sion labels back to the original labels. Then, an island removal post-processing via connected
component analysis is performed. We preserve the largest components and all other com-
ponents of size larger than 15 voxels. Each voxel that becomes unlabeled via this island
removal is assigned the label that has the largest posterior among all neighboring labels.

2.3. Data processing

Cohesive label maps across infant age range: Due to the contrast differences in the
younger and older infant brains, the manual ground truth labels differ across ages. In order
to combine these age-specific label maps in a single cohesive segmentation model, we applied
the following label map modifications.

1-month label modifications: Due to the missing contrast of the cerebellar white
matter at the age of 1 month, there are no separate labels for cerebellar white and gray
matter at 1 month. To generate those separate cerebellar labels in the 1-month training
data, we first trained SynthSeg models using only the 6-months training labels (with the
separate labels) and applied them to the 1-month training MR images. These segmented

4



SynthSeg for Infant MRI

Infant-
SynthSeg

50%

50%

50%

50%

50%

50%

Random GMM

Fused Labels 

No Fusion

Fused Labels 

No Fusion

Prior GMM

(a) (b)

Figure 2: (a) Upper: Example intensity distribution of brainstem label in a T2-weighted
MRI scan at 1 month. Given the heavy tail of the distribution, this label was sub-
divided into 2 labels, where brighter voxels (inside circle) are assigned a separate
label. (b) flowchart of the proposed approach. In this example, 50% of generated
images use prior distributions. For each generated image, there are four possible
cases: 1, random+fused subdivision; 2, random+subdivision; 3, prior+fused sub-
division; 4, prior+subdivision. The images in the flowchart are actual synthetic
images generated for each case.

cerebellar white matter label from the 6-months only model was used as a mask onto the
single cerebellum region in the 1-month data to generate separate cerebellar labels.

6-months label modifications: Unlike the 1-month labels, older infant data do not
have label maps with subdivided white matter and brainstem labels (see 2.2). Thus, in
the similar fashion to the generated 1-month labels, we generated these additional labels
for the older infant training data. Models were trained on only 1-month datasets with the
subdivided WM and brain stem labels and then applied to the 6-months training data, to
generate separate labels at 6-months.

2.4. Training

Experiment 1: SynthSeg on 1-month data: First, we train our model using 7 one-
month template training data. We alter the proportion of generated images using random
intensities vs. generated images using prior intensities to assess how randomization may
affect the outcome of the models. In particular, we evaluated the models trained by 25%,
50%, and 75% of the images generated from random distributions.

Training sample generation: First, we generate GMM parameters for the prior intensities
I(si) ∼ N (ui, σi) of each structures si from the training samples. Here ui and σi are
the mean and standard deviation of intensities of the voxels that are in the structure si.
Since the parameters ui and σi can vary across subjects, we use Gaussian priors Nui =
N (uui , σui) and Nσi = N (uσi , σσi) for these parameters. The parameters of Nui and Nσi
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are computed from ui and σi across population. Thus, the prior intensity of each structure
si is represented by four parameters [uui , σui , uσi , σσi ]. We have separate sets of parameters
for each modality (T1 and T2). In the ”prior distribution” case, [ui, σi] are drawn from
the given [uui , σui , uσi , σσi ], whereas in the random case, the parameters are drawn from
[uui = 125, σui = 60, uσi = 15, σσi = 5].

Training and post-processing : For each of 25%, 50%, and 75% random, we trained
models using T1 and T2 contrasts and merged the segmentation by max-posterior. In
order to compare the models’ performances independent of the post-processing, the post-
processing step was not performed for this evaluation. The Dice scores compared to the
ground truth were calculated for each structure in each image.
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Figure 3: Left: comparing dice scores of the 25%, 50%, and 75% random model. Right:
comparing dice scores of the one-month model and mix-months model

Experiment 2: mixed-age training: In this experiment, we investigate whether
training the SynthSeg model with samples from multiple ages increases the robustness of
the model across a wider age range of infant brains. In this regard, we train our model with
7 1-month samples and 4 6-months samples.
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Training sample generation: Since the 1mo ground truth and the 6mo ground truth
have different sets of segmentation labels, the prior parameters [uui , σui , uσi , σσi ] for each
structure si are computed from only the training samples in which their corresponding label
maps contain the label si. When generating images during training, in the priors case, we
draw the prior GMM parameters from the given[uui , σui , uσi , σσj ]. For the random case,
we draw [ui, σi] by ui ∼ U(25, 225), and σi ∼ U(5, 25), which encompasses a larger range
of intensities. We apply the label fusing technique specified in section 2.2 for 50% of the
generated image and label pairs to increase the robustness of the model, where the separated
components of the brainstem, cerebellar and cortical WM labels are fused. This enables
the model to work well both for homogeneous and heterogeneous intensity settings.

Training and post-processing : As the 50% randomness has a better overall result in
experiment 1, we decided to use the 50% randomness sampling here. After training, the
segmentation results from T1 and T2 images were merged by max-posterior. We then apply
the post-processing steps introduced in section 2.2 on the merged segmentations. Finally,
we compared the Dice scores with the ground truth for each structure in each image.

Figure 4: Dice score: SynthSeg-infant (SynthS) vs nnU-Net (NNU), each 1 subject at 1, 2,
6, 8 months. While nn-UNet fails at 1 month, it overall performs at a similar or
better level for the other ages.

3. Results

Experiment 1 - 1 month model: Based on the results shown in Figure 3, we observe
that the 25%, 50%, and 75% models have about the same performance on the testing data
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of all ages. However, the 50% model performs slightly better on the large labels for the
6-month data.

Experiment 2 - mixed age model:
Comparing the results obtained from the 1-month model and the mixed-age model, from

Figure 3, we see that the two models have similar performance on one-month infant scans.
However, the mixed-age model performs significantly better than the one-month model on
six-months scans and eight-months scans.

nnU-Net comparison: Compared to an nnU-Net (Isensee et al., 2020) trained on
an age-diverse data set (1 one-month, 2 two-months, 3 six-months, 8 eight-months tem-
plates), as per Figure 4, nnU-Net generally performs better than Infant-SynthSeg for older
infant scans but fails on the only one-month infant scan. Infant-SynthSeg has a relatively
consistent performance across all ages. Except for the one-month nnU-Net result, all seg-
mentations are of sufficient passing quality to be used in an infant neuroimaging study.

Infant-SynthSeg is trained mostly by younger data, where 7 over 11 of the templates
are one-month maps, while the nnU-Net was trained more with data from older infants.
Thus, comparing the results directly for each age may not accurately reflect the ability of
the two segmentation frameworks. However, this does show that Infant-SynthSeg is able to
generalize to older infant scans even though not specifically trained for a particular age (8
months) while retaining a satisfactory performance when applied to one-month data.

It is further noteworthy that Infant-SynthSeg is mainly a training strategy, and its model
architecture is a simple U-Net. The results here show the generalization potential of this
training strategy, but also that the overall performance could be improved if employing
a more advanced model architecture. Specifically, we plan next to exactly do that and
combine Infant-SynthSeg with the following models: nnU-net, HyperDenseNet (Dolz et al.,
2019), and 3D-MASNet (Zeng et al., 2021)

4. Conclusion

Here, we presented a novel adaption of the contrast-agnostic learning strategy SynthSeg
to the infant MRI setting applicable to the full range of ages within the first year of life.
Appropriate segmentation quality by handling intensity heterogeneity, contrast changes,
size, and shape changes expected in that age range is shown in a limited evaluation presented
in the manuscript. Further evaluation on larger datasets and comparison versus other
segmentation models will be our next steps. Furthermore, replacing the relatively simple
U-Net model employed by Infant-SynthSeg with a more sophisticated segmentation model,
such as DeepBrain (Tan et al., 2020) or nnU-Net, is a logical next step.
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Özgün Çiçek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, and Olaf Ron-
neberger. 3d u-net: Learning dense volumetric segmentation from sparse annotation.
In Sebastien Ourselin, Leo Joskowicz, Mert R. Sabuncu, Gozde Unal, and William Wells,
editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016,
pages 424–432, Cham, 2016. Springer International Publishing. ISBN 978-3-319-46723-8.

Jose Dolz, Karthik Gopinath, Jing Yuan, Herve Lombaert, Christian Desrosiers, and Ismail
Ben Ayed. Hyperdense-net: A hyper-densely connected cnn for multi-modal image seg-
mentation. IEEE Transactions on Medical Imaging, 38(5):1116–1126, May 2019. ISSN
1558-254X. doi: 10.1109/TMI.2018.2878669.

Heather Cody Hazlett, Hongbin Gu, Brent C. Munsell, Sun Hyung Kim, Martin Styner,
Jason J Wolff, Jed T Elison, Meghan R Swanson, Hongtu ZHU, Kelly N Botteron,
D Louis Collins, John N Constantino, Stephen R Dager, Annette M Estes, Alan C
Evans, Vladimir S Fonov, Guido Gerig, Penelope Kostopoulos, Robert C McKinstry,
Juhi Pandey, Sarah Paterson, John R Pruett, Robert T Schultz, Dennis W Shaw, Lonnie
Zwaigenbaum, Joseph Piven, IBIS Network, Clinical Sites, Data Coordinating Center,
Image Processing Core, and Statistical Analysis. Early brain development in infants
at high risk for autism spectrum disorder. Nature, 542(7641):348 – 351, 02 2017. doi:
10.1038/nature21369.

Brittany R Howell, Martin Styner, Wei Gao, Pew-Thian Yap, Li Wang, Kristine Baluyot,
Essa Yacoub, Geng Chen, Taylor Potts, Andrew Salzwedel, Gang Li, John H Gilmore,
Joseph Piven, J Keith Smith, Dinggang Shen, Kamil Ugurbil, Hongtu ZHU, Weili Lin,
and Jed T Elison. The UNC/UMN Baby Connectome Project (BCP): An overview of
the study design and protocol development. NeuroImage, 185:891 – 905, 01 2019. doi:
10.1016/j.neuroimage.2018.03.049.

Fabian Isensee, Paul F Jaeger, Simon A A Kohl, Jens Petersen, and Klaus H
Maier-Hein. nnU-Net: a self-configuring method for deep learning-based
biomedical image segmentation. Nature Methods, 12 2020. doi: 10.1038/
s41592-020-01008-z. URL http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.

fcgi?dbfrom=pubmed&id=33288961&retmode=ref&cmd=prlinks.

Antonios Makropoulos, Emma C Robinson, Andreas Schuh, Robert Wright, Sean Fitzgib-
bon, Jelena Bozek, Serena J Counsell, Johannes Steinweg, Katy Vecchiato, Jonathan
Passerat-Palmbach, Gregor Lenz, Filippo Mortari, Tencho Tenev, Eugene P Duff, Matteo
Bastiani, Lucilio Cordero Grande, Emer Hughes, Nora Tusor, Jacques-Donald Tournier,
Jana Hutter, Anthony N Price, Rui Pedro A G Teixeira, Maria Murgasova, Suresh
Victor, Christopher Kelly, Mary A Rutherford, Stephen M Smith, A David Edwards,
Joseph V Hajnal, Mark Jenkinson, and Daniel Rueckert. The developing human con-
nectome project: A minimal processing pipeline for neonatal cortical surface reconstruc-

9

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=33288961&retmode=ref&cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=33288961&retmode=ref&cmd=prlinks


SynthSeg for Infant MRI

tion. NeuroImage, 173:88 – 112, 01 2018. doi: 10.1016/j.neuroimage.2018.01.054. URL
http://linkinghub.elsevier.com/retrieve/pii/S1053811918300545.

Mahmoud Mostapha and Martin Styner. Role of deep learning in infant brain MRI analysis.
Magnetic resonance imaging, 64:171 – 189, 12 2019. doi: 10.1016/j.mri.2019.06.009.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells,
and Alejandro F. Frangi, editors, Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI 2015, pages 234–241, Cham, 2015. Springer International Publishing.
ISBN 978-3-319-24574-4.

Chaozhen Tan, Yue Guan, Zhao Feng, Hong Ni, Zoutao Zhang, Zhiguang Wang, Xiangning
Li, Jing Yuan, Hui Gong, Qingming Luo, and Anan Li. DeepBrainSeg: Automated Brain
Region Segmentation for Micro-Optical Images With a Convolutional Neural Network.
Frontiers in Neuroscience, 14:179, 2020. ISSN 1662-4548. doi: 10.3389/fnins.2020.00179.

Jiahui Wang, Clement Vachet, Ashley Rumple, Sylvain Gouttard, Clémentine Ouziel, Emilie
Perrot, Guangwei Du, Xuemei Huang, Guido Gerig, and Martin Styner. Multi-atlas
segmentation of subcortical brain structures via the AutoSeg software pipeline. Frontiers
in neuroinformatics, 8:7, 00 2014. doi: 10.3389/fninf.2014.00007.

Zilong Zeng, Tengda Zhao, Lianglong Sun, Yihe Zhang, Mingrui Xia, Xuhong Liao, Jiaying
Zhang, Dinggang Shen, Li Wang, and Yong He. 3d-masnet: 3d mixed-scale asymmetric
convolutional segmentation network for 6-month-old infant brain mr images. bioRxiv
preprint bioRxiv:2021.05.23.445294, 2021.

Lilla Zöllei, Juan Eugenio Iglesias, Yangming Ou, P Ellen Grant, and Bruce Fischl. Infant
FreeSurfer: An automated segmentation and surface extraction pipeline for T1-weighted
neuroimaging data of infants 0-2 years. NeuroImage, 218:116946, 05 2020. doi: 10.
1016/j.neuroimage.2020.116946. URL https://linkinghub.elsevier.com/retrieve/

pii/S1053811920304328. 49 pages, 25 figures, submitted to NeuroImage.

10

http://linkinghub.elsevier.com/retrieve/pii/S1053811918300545
https://linkinghub.elsevier.com/retrieve/pii/S1053811920304328
https://linkinghub.elsevier.com/retrieve/pii/S1053811920304328

	Introduction
	Methods
	Data
	Segmentation Framework
	Data processing
	Training

	Results
	Conclusion

