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Abstract
Recent empirical and theoretical studies have
shown that through in-context learning, transform-
ers can solve various simple machine-learning
problems such as linear regression and decision-
forest prediction. We extend this line of re-
search by analysing the power of transformers’
in-context learning. We experimentally show that
even in the presence of multiple types of pertur-
bations, transformers can in-context learn a range
of function classes. This means that transform-
ers can perform the distributionally-robust opti-
misation (DRO) for those function classes when
trained with appropriate in-context learning tasks.
Our experiments include problems studied in the
DRO community, which consider a single type
of perturbations specified in terms of either total-
variation distance or Wasserstein distance or the
combination of multiple types of perturbations.
Our experimental findings show that transformers
can solve the DRO problems in all these cases.
We also show that while standard algorithms for
DRO are usually limited to linear models, through
in-context learning, transformers can do DRO for
non-linear models, such as kernel regression mod-
els and shallow neural networks.

1. Introduction
The in-context learning of transformers has been a topic of
active research in recent years due to its surprising ability to
improve the reasoning ability of language models (Brown
et al., 2020; Hao et al., 2022; Wei et al., 2022). In particular,
Garg et al. (2022) proposed a framework to study the inner
working mechanism of transformers’ in-context learning
through the problem of learning a function class; given an
unknown target function from the class and a training set
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generated by the target function, they encoded all of the
input-output pairs in the training set and a query input as a
sequence of tokens, gave it to a transformer, and decoded
the next token predicted by the transformer as the output
for the query. They found that transformers can be trained
to in-context learn a range of simple function classes, such
as classes of linear functions, shallow neural networks, and
decision forests.

In this paper, we extend Garg et al. (2022)’s analysis to
the setting of robust learning. Using their framework, we
experimentally show that properly trained transformers can
in-context learn a range of function classes even in the
presence of perturbations, thereby performing a form of
distributionally-robust optimization (DRO) during inference.
Our analysis considers multiple types of perturbations and
function classes, and some of them go beyond what has
been traditionally considered by the DRO community.

Another goal of our work is to show the potential of trans-
formers for solving new types of DRO problems through
in-context learning and thus advancing the DRO research.
DRO is commonly formulated as the min-max optimisation
problem

min
θ∈Θ

max
P∈P

Ez∼P [L(θ; z)] (1)

where P is the set of distributions close to the true distri-
bution, θ is the parameter to be optimised, and L is the
loss function. While often coming with solid theoretical
analysis, the existing works for DRO have some important
drawbacks that block their practical applications. First, the
existing techniques for DRO in machine learning are usually
limited to linear models. Even the kernel regression goes
beyond the scope of these techniques. Second, although in-
teresting theoretical results about DRO exist, they are subtle
and cannot be easily used in practice due to the failure of
the assumptions of these results. The proofs of the results
utilise advanced probability theory or optimisation theory
heavily, so adapting them to new settings in practice is also
difficult. Finally, the approaches for solving DRO problems
with theoretical guarantees often have high time complexity,
and cannot be applied for large-scale instances in practice,
especially when the input dimension is high. For instance,
Zhu et al. (2021a)’s algorithm on linear regression for total-
variation (TV) distance DRO has the O(N2d4 + d12) time
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complexity for the input dimension d and the number of
points N .

Meanwhile, transformers suffer from these drawbacks less
severely. Even when a given DRO problem is over non-
linear models, such as kernel-based models and neural net-
works, the training of a transformer for this problem is
identical to that for linear models. So, at least in principle,
we can train the transformer for the DRO problem over non-
linear models, and apply the trained transformer to solve an
instance of the problem through in-context learning. Fur-
thermore, the issue of high time complexity does not arise
for transformers, because the inference of transformers has
quadratic time complexity in the length of the input se-
quence and the input dimension. Of course, the remaining
question is whether trained transformers can actually solve
DRO problems well in practice. Our paper shows some
positive experimental results in this direction.

This paper is structured as follows. In Section 2, we de-
scribe the design of our experiments, including the pertur-
bations considered and the generation of training sets for
in-context learning. In Section 3, we report the findings of
the experiments. In Section 4, we provide the preliminary
interpretation for the success of transformers’ in-context
learning for DRO. In Section 5, we review the related works
on in-context learning and DRO. Finally, in Section 6, we
conclude our work and suggest possible future works.

2. Design of Experiments
In our experiments, we use the scheme diagramatically de-
scribed in Figure 1 to generate a training dataset for DRO
and train a transformer on the dataset. First, we sample
target functions f∗

1 , . . . , f
∗
M independently from some dis-

tribution on a given function class. Next, for each f
(∗)
k ,

we generate a training dataset {(x̃(k,i), ỹ(k,i))}Ni=1 of per-
turbed input-output pairs as follows. We sample N clean
input-output pairs {(x(k,i), y(k,i))}Ni=1 where x(k,i) is sam-
pled independently from some distribution p and y(k,i) is
set to the output f∗

k (x
(k,i)) with an additive noise ϵ(k,i).

We then perturb these sequences to get the training dataset
{(x̃(k,i), ỹ(k,i))}Ni=1. Third, we represent each of the gen-
erated datasets as a sequence, and feed these sequences
to the transformer so as to obtain the sequences of pre-
dicted outputs {f (k,i)

x }(M,N)
(k,i)=(1,1). Finally, for each k, the

predicted outputs {f (k,i)
x }Ni=1 are compared with the clean

outputs {f∗
k (x̃

(k,i))}Ni=1 on the perturbed inputs {x̃(k,i)}Ni=1,
through a loss function ℓ. Note that these clean outputs can
be computed since the f∗

k are available during training. The
sum of all the computed losses over all M sampled target
functions is used as the training loss for the transformer.

As one can see, there are several placeholders in the above
scheme, in particular, the input distribution p, the class of

target functions, the distribution over this class, and the
type of perturbations. In our experiments, the input distribu-
tion p is set to be a multivariate normal distribution whose
mean and covariance matrix are sampled randomly from the
standard normal distribution and the Wishart distribution,
respectively.

For the class of target functions, we consider the follow-
ing three classes: linear functions, functions based on the
RBF kernel (more precisely, functions in the reproducing
kernel Hilbert space of the RBF kernel), and shallow neural
networks. The choice of the distribution over the target
functions depends on the function class. In the case of linear
functions from Rd to R, we sample a weight w ∈ Rd from
a standard multivariate normal distribution, and define the
target linear function by f∗(x) = ⟨w, x⟩. For the next case
of kernel-based functions, we use the approximation of the
RBF kernel with random Fourier features, and sample func-
tions from the reproducing kernel Hilbert space (RKHS) of
the RBF kernel approximately. Concretely, we approximate
the RBF kernel k : Rd × Rd → R by

K(x, x′) = ⟨Ψ(x), Ψ(x′)⟩

where Ψ : Rd → RF is the random feature map defined by

Ψ(x)i =

√
2

F
cos(⟨zi, x⟩+ bi) (2)

with independent samples bi ∼ Unif([0, 2π]) and zi ∼
N (0, Id) for i = 1, . . . , F . Then, we sample a target func-
tion f∗ by sampling w ∼ N (0, σ2

HIF /F ) for some ap-
propriate choice of σH, and setting f∗(x) = ⟨w,Ψ(x)⟩.
Finally, for the shallow neural networks, we consider a shal-
low ReLU network f∗ with 100 neurons:

f∗(x) =
1√
100

100∑
i=1

aiReLU(⟨wi, x⟩+ bi) (3)

and sample such a network by randomly setting its parame-
ters: wi ∼ N (0, σ2Id/d), ai ∼ N (0, 2), and bi ∼ N (0, 1).

For the type of perturbations, we consider three options. Let
µ be the distribution of the clean input-output pair for a fixed
target function, and let ν be the distribution of the perturbed
input-output pair for the same function. The first type is the
perturbations specified in terms of the total-variation (TV)
distance. It fixes the distribution set P in Equation 1 to

P = {ν : TV(µ, ν) ≤ ϵ}

for some ϵ > 0, where TV(µ, ν) is the total-variation dis-
tance between µ and ν and is defined as the superimum of
|µ(A) − ν(A)| over all measurable subsets A ∈ Rd × R.
Intuitively, this type means that the up-to-ϵ proportion of
the clean input-output pairs in the training dataset can be
perturbed arbitrarily. The second type is the perturbations
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specified in terms of the Wasserstein-2 distance, which is
defined by

W2(µ, ν) = inf
π∈P(µ×ν)

(∫
(Rd×R)2

d(x, x′)2dπ(x, x′)

)1/2

where d(x, y) is the metric on Rd × R (i.e., the space of
input-output pairs), and P(µ × ν) is the set of particular
distributions on (Rd×R)2 called couplings between µ and ν.
Now the distribution set P in Equation 1 is set to

P = {ν : W2(µ, ν) ≤ ρ}

for some ρ > 0. Informally, the upper bound by ρ in this
case limits the amount that they are perturbed, because of
the incorporation of the distance d in the definition of W2.
The last type of perturbations we consider is the combina-
tion of the first two types, which has been studied in the
outlier-robust Wasserstein DRO by Nietert et al. (2023).
Specifically, we set

P = {ν : W ϵ
2 (µ, ν) ≤ ρ}

for some ϵ, ρ > 0, where W ϵ
2 is the ϵ-outlier-robust

Wasserstein-2 distance defined by

W ϵ
2 (µ, ν) = inf

µ′∈Pr(Rd×R)
TV(µ,µ′)≤ϵ

W2(µ
′, ν).

Informally, the DRO under this type of perturbation consid-
ers the scenario where the up-to-ϵ portion of the input-output
pairs in the training dataset is changed arbitrary first and
then the further perturbations but with ρ-limited changes (in
the sense of Wasserstein-2 distance) occur in the resulting
pairs.

In all of these three types of perturbations, generating a per-
turbed dataset from a clean dataset efficiently is not straight-
forward due to the upper bound in the definition of P . In
Appendix C, we explain how we address this issue in our
experiments.

3. Experimental Results
We now report the findings of the experiments on DRO
and the in-context learning of transformers, which were
conducted according to the setup described in Section 2 and
with GPT2 as the transformer architecture. For baselines,
we consider several existing learning algorithms, including
the ones that are not designed for DRO as well as the 3-
nearest neighbour algorithm which is known to be robust
to perturbations (Wang et al., 2018) for diverse classes of
functions.

For the distribution set in Equation 1, we consider the fol-
lowing choices: when µ is an unperturbed distribution of

Perturbation

Seq2seq model

Figure 1. Visualisation of the scheme for generating a perturbed
training dataset and training a transformer for this dataset for its
in-context learning.

the input-output pairs,

PTV = {ν : TV (µ, ν) ≤ 0.1},
PW = {ν : W2(µ, ν) ≤ 1.0},

PTVW = {ν : W 0.05
2 (µ, ν) ≤ 0.5}.

These sets formalise the three types of perturbations based
on bounded TV distance, bounded Wasserstein-2 distance,
and bounded outlier-robust Wasserstein-2 distance. We use
gpt2 tv, gpt2 w, gpt2 tvw to denote the transformers trained
for these three types of perturbations. For the function
classes, we chose both σH in the initialisation of Equation 2
and σ in Equation 3 to be

√
20.

Figure 2 shows the results of the experiments on the problem
of learning a linear function under the three types of pertur-
bations and the different sizes of the in-context samples. All
of gpt2 tv, gpt2 w, and gpt2 tvw are tested in all three cases
of perturbations. The baselines are vanilla linear regression
(LinearRegression), ridge regression (RidgeRegression), L1-
regularised linear regression (LassoRegression), WassDRO
proposed by Blanchet et al. (2019) but without cost learning,
and the simple averaging estimator w = 1

N

∑N
i=1 x

(i)y(i)

(Averaging). Note that all the baselines except the Wass-
DRO perform poorly, and also that in all the three types of
perturbations, the trained transformer trained on the corre-
sponding perturbation type outperforms all the baselines in
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this DRO problem. Another interesting observation comes
from the transformer gpt2 tvw trained on the third type of
perturbations. This transformer performs well in all three
types of perturbations, even though the strength of perturba-
tions in the third type can be weaker than those perturbations
in the first two types due to the use of tighter upper bounds
0.05 and 0.5 in PTVW than 0.1 and 1.0 in PTV and PW. This
indicates the possible out-of-distribution generalisation of
gpt2 tvw against the perturbations.

In Section B of the appendix, we provide additional experi-
ments on this out-of-distribution generalisation, where we
train our model on different levels of perturbation, and com-
pare the performance of the model trained on different level
of perturbation. We observe that the model trained on a
moderate level of perturbation matches the performance of
the model trained on a weaker or stronger level of perturba-
tion, which indicates the out-of-distribution generalisation
of the model.

We want to point out that the trained transformers not only
outperform the baselines in terms of accuracy but also in
terms of speed. In the evaluation of the transformers and
the baselines, we use 12,800 instances of target functions
to evaluate their performance. The inference of the trained
transformers takes less than 1 minute, while the most promis-
ing baseline WassDRO takes around an hour. The reason for
this superior performance is that these transformers can be
parallelised on the GPUs, while the baselines can not, and
also the inference of these transformers has the quadratic
time complexity in the length of the input sequence, while
most of the baselines have higher time complexities in the
number of training samples and the dimension of the input
space.

Figure 3 shows the results of the experiments on the class
of functions based on the RBF kernel. The baselines
in this case are the kernel regression with and without
ridge regularisation (KernelRegression, KernelRidgeRe-
gression), the kernel-based averaging estimator f(x) =
1
N

∑N
i=1 y

(i)K(x, x(i)) (KernelAveraging), and the nearest-
neighbour algorithm (NearestNeighbours). Among the three
kernel-based baselines, only the kernel regression with regu-
larisation has the theoretically-guaranteed robustness to per-
turbations, but it performs worse than the nearest-neighbour
algorithm. Again, in each of the three perturbation types,
the transformer trained on the corresponding perturbation
type outperforms all the baselines.

Figure 4 shows the experimental results on the class of
shallow neural networks. In this case, we use only the
nearest-neighbour algorithm as the baseline, because the
other baselines are not designed for the DRO with neural
networks and are expected to perform poorly. We do not
try the neural network baseline where a separate neural
network is trained for each of the 12,800 DRO instances.

This is because of the high computational cost that goes
well beyond our computational resources. The results are
consistent with those for the other two function classes;
the trained transformers outperform the nearest-neighbour
algorithm on the DRO under all three types of perturbations.

4. Transformers and DRO
As explained in Section 3, the transformer trained with the
right type of perturbations outperforms all the baselines in
our experiments, demonstrating that transformers can solve
DRO problems through in-context learning. In this section,
we provide a possible explanation for this success of trans-
formers. Specifically we report the results of an additional
experiment on a simple robust-learning problem, where we
compare the in-context learning of transformers with an
ideal baseline. The results show that the trained transformer
and this ideal baseline performs nearly the same, indicating
the possible similarity between the inner workings of the
trained transformer and that of the ideal baseline.

Our additional experiment is on the problem of estimating
the mean and variance of an unknown multivariate diagonal
normal distribution from perturbed samples. We consider
only perturbations specified in terms of the TV distance.
This means that the perturbation works by arbitrarily chang-
ing the up-to-ϵ proportion of the samples in the clean train-
ing dataset. As a result, at least (1 − ϵ)N samples in the
dataset are still clean. Except the choice of this new predic-
tion problem, the rest of the experimental setting is identical
to the one used in our previous experiments.

An ideal algorithm for solving this DRO problem is to iden-
tify the perturbed samples in a given dataset and and predict
mean and variance only from the other clean samples. This
algorithm cannot be used in practice due to the assumption
that it knows which samples are perturbed and which are
not. But it can be tried in our experiment where we know all
the ground truths. Our baseline is this algorithm where the
prediction of mean and variance is done by a transformer
trained for solving this mean and variance prediction task
through in-context learning but with clean datasets.

Figure 5 describes the results of our experiment. We include
three naive baselines in this experiment, the empirical av-
erage of mean and variance (Averaging), and two robust
estimators where we trim items far from the mean in terms
of entries (EntryTrim) or the norm (NormTrim). We also
include the ideal empirical average, which takes the aver-
age of the clean samples only. As expected, both gpt2 and
gpt2 ideal outperform the baselines, and even the Averag-
ing ideal, which indicates that the gpt2 model also uses
the prior distribution of the training dataset and uses this
info to obtain the better prediction. If we compare the gpt2
and gpt2 ideal, it shows that the transformer trained for this
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Figure 2. Results of the experiments on the class of linear functions. The x-axis is the number of in-context samples, and the y-axis is the
L2 loss of the predictor. The dashed grey line is the loss of the trivial predictor, f = 0. (Left) Result of the TV distance-based DRO.
(Middle) Result of the Wasserstein distance-based DRO. (Right) Result of the outlier-robust Wasserstein distance-based DRO.
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Figure 3. Results of the experiments on the class of functions based on the RBF kernel. The x-axis is the number of in-context samples,
and the y-axis is the L2 loss of the predictor. The dashed grey line is the loss of the trivial predictor, f = 0. (Left) Result of the
TV distance-based DRO. (Middle) Result of the Wasserstein distance-based DRO. (Right) Result of the outlier-robust Wasserstein
distance-based DRO.
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Figure 4. Results of the experiments on the class of shallow neural networks. The x-axis is the number of in-context samples, and the
y-axis is the L2 loss of the predictor. The dashed grey line is the loss of the trivial predictor, f = 0. (Left) Result of the TV distance-based
DRO. (Middle) Result of the Wasserstein distance-based DRO. (Right) Result of the outlier-robust Wasserstein distance-based DRO.
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DRO problem and the ideal model has nearly the same per-
formance. This indicates that the trained transformer works
ideally; it approximately identifies the perturbed samples in
a given in-context dataset, filters them out, and uses only
the remaining samples for the mean and variance predic-
tion. This indication is also consistent with the visualisation
of the attention weight statistics of the trained transformer
shown in Figure 6; the attention pattern for perturbed sam-
ples (columns with the red line) is significantly different
from that for clean samples (columns without the red line),
e.g., the first head (bottom) in Layer 2 of left figure and the
last head (top) of Layer 2 in the right figure.

5. Related Works
In-Context Learning The base of our work aligns with
Garg et al. (2022), which shows that the small transformer
models (GPT2) can perform in-context learning when
trained on tasks such as linear regression or decision forest
prediction. Several researches followed this line of work
by varying several aspects, like how the prediction changes
as the diversity of pretraining diversity changes (Raventós
et al., 2023). Raventós et al. (2023) found that in the sparse
training sample regime, the transformer model predicts ac-
cording to the dMMSE algorithm which is Bayes optimal
on discrete distribution, whereas in the dense training sam-
ple regime, the transformer model predicts according to the
Ridge regression model which is again Bayes optimal on
continuous, Gaussian distribution. Our results in Section 4
extend this result to the DRO problem, the ideal model will
perform the Bayes optimal prediction on the clean distribu-
tion according to Raventós et al. (2023)’s result, and since
our transformer model trained on the DRO problem per-
forms nearly the same as the ideal model, we can infer that
the transformer model is predicting according to the Bayes
optimal prediction under the distributionally-robust setting.

Theoretically, Von Oswald et al. (2023) has shown that shal-
low transformer models can perform the linear regression
when trained by gradient flow, while not able to adapt to the
covariate shift even trained on the mixture of the training dis-
tribution. This result aligns with Garg et al. (2022)’s obser-
vation, that the standard transformer model’s performance
drops significantly under the covariate shift. This problem
is crucial in the application of distributionally-robust opti-
misation, where the training distribution itself should be a
mixture of several distributions, otherwise, the model can
memorise the single true distribution, not performing DRO.
By introducing the dropout on the attention weights, we
observe that such behaviour can be mitigated, and the trans-
former model can perform the DRO adapting to the mixture
of the training distribution.

Distributionally-Robust Optimisation

DRO was suggested as a theoretically well-founded method
to make the model robust to the distributional shift, es-
pecially in the adversarial setting. We discuss two main
types of DRO solutions, the duality-based method and the
resilience-based method. In Gao & Kleywegt (2016), which
belongs to the first type, a general DRO problem was han-
dled, which satisfies the so-called growth condition. One of
the practical examples satisfying this condition is the L1 lin-
ear regression under Wasserstein distance-based DRO. From
the duality, the worst-case distribution can be characterised
by the dual problem, and the min-max solution can be rewrit-
ten as regularised empirical risk minimisation. While this
method gives optimal min-max solution of Equation 1, their
method is limited by the growth condition, making L2 re-
gression or kernel regression out of scope. Also, due to its
reliance on a convex programming solver, the method is not
scalable to large-scale problems. An example of the second
type of DRO solution is Zhu et al. (2022), where the idea of
resilience is introduced to control the effect of the perturba-
tion on the loss function. The resilience property is defined
as the Lipschitz-ness property of the loss of ERM solution
w.r.t. the perturbation of the distribution. By introducing
the minimum distance distribution, which is the distribution
that is in a pre-specified family of distribution, and has the
minimum distance to the perturbed distribution, one can
show that the loss on the true distribution is close to the loss
on the minimum distance distribution, which is again close
to the loss on the perturbed distribution, by the resilience
property. In general such minimum distance distribution can
not be computed in closed form, hence the method usually
relies on the iterative refinement to weigh the training data
and certify the resilience property. Both approaches are lim-
ited in practice, the duality-based method is hard to extend
to the general models and while the resilience-based method
is more general, its computational complexity is scaled as
d8 where d is the dimension of the input space.

Unlike the existing works, our work is based on empiri-
cally training the transformer model on the DRO problems,
which can be seen as the extension of the adversarial train-
ing framework. Sinha et al. (2018) introduced the general
procedure for the non-linear model to be robust to the adver-
sarial perturbation, via adversarial training. The adversarial
training procedure depends on the types of perturbations
they allow, which is based on the dual formulation of Equa-
tion 1, similar to Gao & Kleywegt (2016)’s work. Unlike
most of the existing works, Sinha et al. (2018) provides the
theoretical guarantee for the robustness of the model using
the statistical learning theory.

6. Conclusion and Future Works
In this paper, we proposed the use of in-context learning for
the distributionally robust optimisation, showing that they
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Figure 5. Results of the experiments on the mean and variance estimation. The x-axis is the number of in-context samples, and the y-axis
is the Wasserstein-2 distance between the predicted and the true mean and variance.
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first sample. The red line indicates the perturbed samples. The x-axis is the index of in-context samples, and y-axis is the index of layer
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can be applied to various types of perturbations and models,
extending the existing works on DRO. Specifically, we show
three basic classes of perturbations, each represented by TV
distance, the Wasserstein distance, and the outlier-robust
Wasserstein distance can be handled by the transformer
model. We also show that the transformer can be used for
the non-linear class of functions, which is more flexible than
the existing works on DRO. We also provide the preliminary
interpretation of the success of the transformer in DRO, by
showing that the transformer’s performance on the mean
and variance prediction performance matches with the ideal
model that filters out the perturbed samples.

One of the future directions is extending our work to more
complex problems. Some of the recent works on DRO
consider more practical problems like decision problems
including contextual bandit (Si et al., 2020) or imitation
learning (Bashiri et al., 2021), which suggests that the use
of transformer for RL problems like decision transformer
(Chen et al., 2021) can be a good direction for the future
work. The other future works include extending the types
of perturbation that we allow, including Sinkhorn distance
(Wang et al., 2022) and the Kernel MMD (Staib & Jegelka,
2019; Zhu et al., 2021b).

Another future direction is to give theoretical guarantees for
the transformer’s performance in DRO. While we empiri-
cally show that the transformer can perform the DRO, the
theoretical guarantee is still missing. One possible direction
is using the adversarial training framework, and deriving the
theoretical guarantee for DRO in a similar manner of Sinha
et al. (2018). Also, recent theoretical works on in-context
learning (Von Oswald et al., 2023; Ahn et al., 2023) sug-
gest that transformers implement the gradient-based mesa-
optimiser. Extending this line of work to our setting can
suggest what algorithm the transformer is implementing,
which gives interpretable results that can be used to analyse
the transformer’s performance in DRO.
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Table 1. Hyperparameters for the experiments.

Hyperparameter Value

Batch size 64
Learning rate 1e-4
Training step 500K
Optimiser Adam
Attention dropout rate 0.1
Residual / Embedding dropout rate 0.0
Number of layers 12
Number of heads 8
Embedding dimension 256

A. Experiment Details
All the training and evaluations were done on four NVIDIA RTX A5000 GPUs, with two Intel Xeon Gold 6234 CPUs with
256GB of RAM. For TV distance-based DRO, the training takes around 10 GPU hours for a single model, whereas the
Wasserstein distance-based DRO takes around 12 GPU hours, due to the complexity of the Wasserstein distance computation.
The evaluations were done on the same machine and takes less than 1 GPU hour for all the experiments.

All our experiments assume that the input dimension is 20 and the output dimension is 1. We limit the number of points in a
single sequence to 40 for regression task and 100 for mean and variance estimation task. As in Garg et al. (2022), we employ
the curriculum learning schedules, where we begin from the input dimension 10, number of points 20, and the distribution
close to isotropic at the beginning, and gradually increase the input dimension, number of points, and the anisotropy of the
distribution. In detail, the training data generation is described in Algorithm 1.

Algorithm 1 Data point generation for the regressions.
1: Input : d the input dimension, N the number of points, α the anisotropy hyperparameter.
2: Sample the anisotropy parameter r ∼ β(α, 1).
3: Sample the mean µ ∼ N (0, Id).
4: Sample the isotropic noise z(i) ∼ N (0, Id).
5: Sample the anisotropic covariance Σ ∼ Wishart(Id/d, d).
6: Sample the anisotropic noise w(i) ∼ N (0,Σ).
7: Create data by x(i) = µ+ rz(i) + (1− r)w(i).

The training data generation of the experiment in Figure 5 is slightly different from the other experiments. The training data
generation is described in Algorithm 2.

Algorithm 2 Data point generation for the mean and variance estimation.
1: Input : d the input dimension, N the number of points, α the anisotropy hyperparameter.
2: Sample the anisotropy parameter r ∼ β(α, 1).
3: Sample the anisotropic standard deviation σj ∼ Γ(2, 2) for j = 1, . . . , d.
4: Compute the standard deviation as σj = (1− r) · σj + r.
5: Sample the mean µ ∼ N (0, Id).
6: Sample the data x(i) ∼ N (µ,diag(σ)).

The details on the hyperparameters are given in Table 1.

B. Additional Experiments
In this section, we report the results of the experiments on the out-of-distribution cases, where the strength of the perturbation
is weaker or stronger than the training strength. In Figure 7 and 8, we report the risk of the models trained on the linear
functions with the different strengths of the perturbation. The gpt2 id models are the models trained on in-distribution, i.e.,
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Figure 7. Results of the experiments on the class of linear functions with the weaker perturbation. (Left) Result of the TV distance-based
DRO. (Middle) Result of the Wasserstein distance-based DRO. (Right) Result of the outlier-robust Wasserstein distance-based DRO.
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Figure 8. Results of the experiments on the class of linear functions with the stronger perturbation. (Left) Result of the TV distance-based
DRO. (Middle) Result of the Wasserstein distance-based DRO. (Right) Result of the outlier-robust Wasserstein distance-based DRO.

in Figure 7, they are trained on the TV distance-based DRO with the strength ϵ = 0.05, Wasserstein distance-based DRO
with the strength ρ = 0.5, and the outlier-robust Wasserstein distance-based DRO with the strength ϵ = 0.025 and ρ = 0.25,
respectively, and in Figure 8, they are trained on the TV distance-based DRO with the strength ϵ = 0.2, Wasserstein
distance-based DRO with the strength ρ = 2.0, and the outlier-robust Wasserstein distance-based DRO with the strength
ϵ = 0.1 and ρ = 1.0, respectively. The gpt2 ood models are the models trained on out-of-distribution, in both Figures, they
are trained on the TV distance-based DRO with the strength ϵ = 0.1, Wasserstein distance-based DRO with the strength
ρ = 1.0, and the outlier-robust Wasserstein distance-based DRO with the strength ϵ = 0.05 and ρ = 0.5, respectively.
Surprisingly, the gpt2 ood model, which is the model trained on the different strengths of perturbation, performs the same in
both weaker and stronger perturbation cases, indicating that the transformer model can generalise to the out-of-distribution
cases.

C. Brief Introduction to DRO
In this section, we give a brief introduction to the distributionally-robust optimisation and prove that our Algorithm 3 is a
valid perturbation for the Wasserstein distance-based DRO.

Distributionally-robust optimisation (DRO) is a method to make the model robust to the distributional shift, especially in the
adversarial setting. The DRO problem considers the combination of adversarial optimisation and stochastic optimisation,
defined as

(DRO) min
θ∈Θ

max
p∈P

Ez∼pL(θ; z),

where L(θ; z) is the loss function, Θ is the parameter space. Here the P is usually called the ambiguity set, which defines
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the distributions that the model should generalise to. There is no restriction on the form of the ambiguity set, where we
focus on the balls in the probability spaces, i.e.,

P = {q ∈ P(Rd) : D(p, q) ≤ ϵ}

for the metric D on the probability space. The ambiguity set of these forms determines the types of perturbations that the
result of the DRO can be robust to, and the choice of the ambiguity set is crucial in the DRO. Two of the most well-known
ambiguity sets are based on the TV distance and the Wasserstein distance.

Total variation distance is defined as
TV(p, q) = sup

A∈A
|p(A)− q(A)|

where A is the set of all the measurable sets. If p, q has the densities, then the TV distance can be written as

TV(p, q) =
1

2

∫
|p(x)− q(x)|dx

and it also allows some dual formulation, i.e.,

TV(p, q) = sup
f :∥f∥∞≤1

∫
f(x)(p(x)− q(x))dx.

The TV distance can be understood as moving the densities without any restrictions, up to the proportion ϵ. For example, if
p and q has disjoint supports, then

TV(p, (1− ϵ)p+ ϵq) = ϵ.

The TV distance-based DRO can be understood as outlier-robust optimisation, where the model should be able to handle
outliers that can be arbitrarily far from the training distribution, up to some proportion of the training distribution.

The p-Wasserstein distance is defined as

Wp(µ, ν) = inf
π∈P(µ×ν)

(∫
d(x, y)pdπ(x, y)

)1/p

where d(x, y) is the metric on the space, and P(µ×ν) is the set of all the couplings of two measures µ, ν, i.e., p ∈ P(Rd×Rd)
is the coupling of µ, ν if

p(A× Rd) = µ(A), p(Rd ×B) = ν(B).

The Wasserstein distance can be understood as the minimum cost of transporting the mass from µ to ν, where the cost
depends on the metric d. The Wasserstein distance-based DRO can be understood as the geometrically robust optimisation,
where the model should be able to handle the distributional shift that can be transported to the training distribution with the
cost of ϵ.

The special case p = 2 which we focus on in this paper, has several nice properties that we can leverage.

Theorem C.1 (Breiner’s theorem). Let X,Y be the closure of bounded open sets in Rd and µ, ν be the probability measures
on X,Y respectively. If µ is absolutely continuous w.r.t. the Lebesgue measure, then the optimal coupling π∗ between µ and
ν can be written as

π∗ = (Id⊗ T )#µ

where T is a measurable function such that T#µ = ν and T (x) = ∇u(x) for some convex function u and we say this map
is the optimal transport map.

Lemma C.2 (Breiner’s theorem for discrete distribution). Suppose that µ, ν are discrete random variables with N particles
each, i.e.,

µ =
1

N

N∑
i=1

δxi
, ν =

1

N

N∑
i=1

δyi
,

then the optimal coupling π∗ between µ and ν can be written as

π∗ = (I ⊗ T )#(µ)

where T is a bijection between the set of particles, i.e., T (xi) = yj for some j.
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Breiner’s theorems allow us to understand the W2 optimal transport plan as a bijection between the particles, which allows
us to construct the perturbation by transporting the points. However, the generated perturbation can be too strong to be
contained in the Wasserstein ball, which requires rejection sampling to be contained in the Wasserstein ball. Instead, we use
displacement interpolation, which is the interpolation between the optimal transport map and the identity map, so that one
can scale the transport plan to be contained in the Wasserstein ball. This is known as McCann’s displacement interpolation,
which is given in the following theorem.
Theorem C.3 (McCann’s displacement interpolation). Let µ, ν be the probability measures on Rd and T be the optimal
transport map between them with π∗ the optimal transport plan. Define πt : Rd × Rd → Rd for 0 ≤ t ≤ 1 as

πt(x, y) = (1− t)x+ ty

then (πt)#π
∗ is displacement interpolation between µ and ν, i.e.,

W2(µ, (πt)#π
∗) = tW2(µ, ν).

C.1. Creating Perturbation

TV distance The TV distance is the simplest perturbation to implement. From its definition

TV(p, q) =

∫
|p(x)− q(x)|dx,

if two distribution p1, p2 has disjoint support, then

TV(p1, (1− ϵ)p1 + ϵp2) = ϵ

and if they do not have disjoint support, then

TV(p1, (1− ϵ)p1 + ϵp2) ≤ ϵ.

Leveraging this inequality, we sample another distribution q from the family of distribution Q, and replace the (x(i), y(i))
with probability ϵ.

W2-distance We recall the definition of the Wasserstein distance first.
Definition C.4 (Wasserstein distance). The Wasserstein distance on the metric space (X, d) is the distance between two
distribution µ, ν defined as

Wp,q(µ, ν) = inf
π∈P(µ×ν)

(∫
d(x, p)pdπ(x, y)

)q/p

where the infimum is taken over all the couplings of two measures µ, ν, which are the measures on the product space X ×X
whose marginals are µ and ν, i.e.,

π(A×X) = µ(A), π(X ×B) = ν(B).

In our paper, we focus on the case when p = 2, q = 2, which is the well-known 2-Wasserstein distance. Note that extending
it to arbitrary q is straightforward.

This Wasserstein distance satisfies the following property, which we leverage to create the ϵ-perturbation.
Lemma C.5. Let p and q be two distributions on Rd that are either both continuous, or discrete and satisfies

p =
1

N

N∑
i=1

δxi , q =
1

N

N∑
i=1

δyi ,

then the optimal coupling between p and q can be written as

π∗ = (I ⊗ g#)(p).

Moreover, the distribution
qδ = ((1− δ)id + δ(g − id))#p

satisfies
W2,2(p, qδ) = δW2,2(p, q).
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Algorithm 3 Perturbation for W2,2 distance.

1: Input : {x(i)}Ni=1 the training samples, ϵ the perturbation parameter.
2: Sample {z(i)}Ni=1 from other distribution q.
3: Compute d = W2,2(

1
N

∑N
i=1 δx(i) , 1

N

∑N
i=1 δz(i)) and the optimal pushforward map g between them via Hungarian

algorithm.
4: Define qδ as in Lemma C.5, with δ =

√
ϵ/d.

5: Return {qδ(x(i))}Ni=1.

Our procedure for creating the perturbation is given in Algorithm 3.

Outlier-robust Wasserstein distance

The outlier-robust Wasserstein distance is defined as

W ϵ
p(µ, ν) = inf

µ′∈P(Rd)
TV(µ,µ′)≤ϵ

Wp(µ
′, ν).

One can think of this as the sequential application of the TV distance-based perturbation, then the Wasserstein distance-based
perturbation, thus allowing both types of perturbations.

We adopt the Setting B of Nietert et al. (2023), where one can understand the outlier-robust Wasserstein distance W ϵ
2 based

DRO as the sequential application of the W2 then the TV distance-based DRO. Therefore, we apply Algorithm 3 first, then
apply the procedure described in TV distance-based DRO.
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