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Abstract

The Hilbert-Schmidt Independence Criterion (HSIC) is a powerful kernel-based
statistic for assessing the generalized dependence between two multivariate vari-
ables. However, independence testing based on the HSIC is not directly possible
for cluster-correlated data. Such a correlation pattern among the observations arises
in many practical situations, e.g., family-based and longitudinal data, and requires
proper accommodation. Therefore, we propose a novel HSIC-based independence
test to evaluate the dependence between two multivariate variables based on cluster-
correlated data. Using the previously proposed empirical HSIC as our test statistic,
we derive its asymptotic distribution under the null hypothesis of independence
between the two variables but in the presence of sample correlation. Based on both
simulation studies and real data analysis, we show that, with clustered data, our
approach effectively controls type I error and has a higher statistical power than
competing methods.

1 Introduction

We are often interested in studying the dependence between two multivariate variables. For example,
in genetic studies, we may want to assess the association between multiple genetic variants within
a gene and a group of traits that likely share a common genetic mechanism [1, 2]. In microbiome
studies, we may wish to investigate the association between the overall composition of human
microbiota, including hundreds of microbial taxa, and multiple host metabolites from a particular
metabolic pathway [3, 4]. Such multivariate analyses aggregate information across variables and
are often more powerful than univariate analyses. Meanwhile, correlated observations arise in many
practical situations. Family-based designs are common in genetic studies [5], where multiple family
members are recruited together into the study. Longitudinal data are common in epidemiological
studies [6], where variables of interest are measured on the subjects repeatedly over time. Such study
designs introduce clustered dependence among the observations and require proper accommodation.
In this work, we aim to develop an approach for assessing the dependence between two multivariate
variables, based on cluster-correlated data.

A variety of parametric and semi-parametric methods has been proposed to study the association
between one or multiple exposure variables and a multivariate longitudinal (or other cluster-correlated)
outcome. These methods often extend upon existing tools for univariate longitudinal data. For
example, many studies stack the multivariate outcome into a single response vector and then apply the
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usual methods that account for clustered data, such as generalized estimating equations (GEE) [7, 8]
and random effects models [9, 10]. Such approaches generally apply to a low-dimensional setting
[11] and are subject to limitations typical of parametric and semi-parametric methods. Random-
effect-based methods require assumptions on the distribution of the multivariate outcome. GEE-based
methods rely on good estimation of the correlation structure within clusters as well as across different
outcome variables to achieve a high efficiency. Finally, both approaches assume parametric (often
linear) relationships between the exposure and the outcome. Therefore, they can only evaluate a
limited number of dependence patterns, and are not sufficient as independence tests.

Here we base our approach on the Hilbert-Schmidt Independence Criterion (HSIC), a non-parametric
kernel-based measure for assessing the generalized dependence between two multivariate, and
potentially high-dimensional, variables [12]. By mapping the two variables into reproducing kernel
Hilbert spaces (RKHS’s), the population HSIC can be viewed as a measure of maximized covariance
between functions in the two RKHS’s. When the RKHS’s being used are characteristic [13], the
population HSIC is zero if and only if the two variables are independent. This measure makes no
assumption on the distributions of the variables or the nature of the dependence.

The original HSIC-based independence test [14] applies to independent and identically distributed
(i.i.d.) observations. Several extensions have been made to accommodate non-i.i.d. data, but none
of the tests, to our knowledge, directly applies to clustered data at an observation level. Zhang et
al. (2008) [15] extended the HSIC to certain sequence data, such as XOR sequence and Gaussian
process, by specifying the correlation structure of the data as a graphical model and deriving the test
statistic based on the maximal cliques. Chwialkowski et al. [16] and Wang et al. [17] developed
HSIC-based tests to evaluate the dependence between two time series or random processes in general.
Flaxman et al. [18] considered spatial and temporal data; they proposed to first use Gaussian process
regression to remove dependence on space and time from the raw variables, and then perform the
HSIC test on the resulting de-correlated residuals. However, their approach generally applies to
independence testing between two univariate variables. A study with an aim closest to ours is by
Rudra et al. [19]: They analyzed the association between multiple genetic variants and a multivariate
longitudinal outcome. Rudra et al. concatenated the outcome measurements from different time
points at the subject level, and then applied the HSIC test to the subject-level data. Although this is a
straightforward approach to deal with clustered correlation, there could be a loss of statistical power
by analyzing data at the subject/cluster level rather than observation level.

In this work, we present the first HSIC-based independence test for cluster-correlated data. Using the
empirical HSIC [14] as our test statistic, we derive its asymptotic distribution under the null hypothesis
of independence between the two variables but in the presence of clustered correlation among
observations. We also examine the behavior of the test statistic under the alternative hypothesis and
establish the consistency of our test. Furthermore, we provide a way to approximate the asymptotic
null distribution of the test statistic and allow for statistical testing in practice. In simulation studies,
our proposed test controls type I error rates well and has a much higher statistical power than
competing methods across a range of scenarios. In an application to a longitudinal microbiome-
metabolite data set, compared to other approaches, our proposed test identifies a larger number of
metabolic pathways significantly associated with the overall microbiome composition, highlighting
the value of our test in scientific studies.

The remaining sections are organized as following. In Section 2, we provide our background
assumption on clustered data and an overview of the HSIC statistic. In Section 3, we study the
asymptotic behavior of the HSIC statistic under null and alternative hypotheses, and construct
a statistical test of independence for cluster-correlated data. In Section 4, we demonstrate the
performance of our proposed test on both simulated and real data. In Section 5, we summarize our
work, discuss the limitations of our proposed test and provide a conclusion.

2 Background

In this section, we introduce our assumption on cluster-correlated data and give an overview of the
HSIC statistic.
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2.1 General setting

Let PXY be a probability measure defined on a sample space X × Y , where both X and Y can
be multi-dimensional. Let PX and PY be the marginal distributions on X and Y , respectively.
The variables X and Y are statistically independent if PXY = PXPY (equivalently, we can write
X ⊥⊥ Y ).

We consider a sample of clustered data {(Xj , Yj)}nj=1 drawn from PXY , where the pattern of
clustered correlation is balanced and complete:
Assumption 2.1. The observations (X1, Y1), · · · , (Xn, Yn) are identically distributed according to
PXY , and can be divided into m clusters of fixed size d (i.e., n = md). In particular, the m clusters{[

(Xdi−d+1, Ydi−d+1), · · · , (Xdi, Ydi)
]}m

i=1

are independent from one another while having identical within-cluster correlation structure.

The specific correlation structure among the observations in each cluster can be arbitrary. We are
interested in studying the dependence between X and Y based on the sample {(Xj , Yj)}nj=1.

2.2 Hilbert-Schmidt Independence Criterion

We briefly review the Hilbert-Schmidt Independence Criterion (HSIC) proposed by Gretton et al.
(2005a) [12]. The HSIC measures the generalized dependence between two variables X and Y , by
embeddingX and Y into reproducing kernel Hilbert spaces (RKHS’s) and maximizing the covariance
between functions of X and Y in the RKHS’s.

Let HX be an RKHS on X with associated kernel function (i.e., inner product in the RKHS)
kX : X × X → R, and letHY be an RKHS on Y with associated kernel function kY : Y × Y → R.
Following Gretton et al. (2007) [14], the cross-covariance operator CXY : HY → HX can be defined
such that, for any f ∈ HX and g ∈ HY ,

〈f, CXY g〉HX
= EXY

[(
f(X)− EX [f(X)]

)(
g(Y )− EY [g(Y )]

)]
= Cov

(
f(X), g(Y )

)
.

As shown by Gretton et al. (2005b) [20], the operator norm (i.e., the largest singular value) of CXY ,
defined by ‖CXY ‖ := supf∈HX ,g∈HY ,‖f‖∞≤1,‖g‖∞≤1 Cov

(
f(X), g(Y )

)
, is zero if and only if

X ⊥⊥ Y , given that the kernels kX and kY are universal (see Definition 5 of [20]). In this sense,
‖CXY ‖ is a measure of independence between X and Y .

The largest singular value of CXY becomes zero when the sum of all squared singular values, denoted
as the squared Hilbert-Schmidt norm [12], is zero. Therefore, the squared Hilbert-Schmidt norm of
CXY , ‖CXY ‖2HS , is also an independence criterion. This measure is defined as the population HSIC,
which can be expressed conveniently in terms of kernel functions:

HSIC(PXY ) := ‖CXY ‖2HS = EXX′Y Y ′ [kX(X,X ′)kY (Y, Y
′)]

+ EXX′ [kX(X,X ′)]EY Y ′ [kY (Y, Y
′)]− 2EXY

[
EX′ [kX(X,X ′)]EY ′ [kY (Y, Y

′)]
]
,

where X ′ is an independent copy of X . It is obvious that, if X is independent from Y , then we have
HSIC(PXY ) = 0. Furthermore, for certain characteristic kX and kY [13], HSIC(PXY ) = 0 if and
only if X ⊥⊥ Y . Example characteristic kernels include Gaussian kernels and Laplacian kernels [21].

To estimate the population HSIC from a sample {(Xj , Yj)}nj=1, the empirical HSIC can be used:

HSIC(Pn) :=
1

n2

n∑
i,j

kX(Xi, Xj)kY (Yi, Yj) +
1

n4

n∑
i,j,q,r

kX(Xi, Xj)kY (Yq, Yr)

− 2

n3

n∑
i,j,q

kX(Xi, Xj)kY (Yi, Yq).

Define the kernel matrices KX and KY such that the (i, j)-th element of KX is kX(Xi, Xj) and
the (i, j)-th element ofKY is kY (Yi, Yj). Then the empirical HSIC can also be written in terms of
KX andKY :

HSIC(Pn) =
1

n2
tr(HKXHKY ),
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whereH = I − 1
n11T is a centering matrix.

Both Gretton et al. (2007) [14] and Zhang et al. (2012) [22] have derived the asymptotic distribution
of HSIC(Pn) under the null hypothesis of independence between X and Y as a weighted sum
of chi-square variables, when the observations are i.i.d. In Section 3, we examine the asymptotic
behavior of HSIC(Pn) based on cluster-correlated observations. It turns out that the null distribution
in this case is still a weighted sum of chi-square variables, where the weights are now modified.

3 HSIC for cluster-correlated data

Based on the clustered data setting in Section 2.1, we aim to test the null hypothesis H0 : X ⊥⊥ Y
using the empirical HSIC statistic. We first define some useful parameters and statistics.

Assume that the kernel matricesKX andKY defined in Section 2.2 are positive semi-definite. We
focus our attention on the centered kernel matrices: K̃X := HKXH and K̃Y := HKYH . Let
k̃X and k̃Y be the centered kernel functions 1 derived from kX and kY , with associated RKHS’s H̃X
and H̃Y , respectively. Note that the empirical HSIC can be written as HSIC(Pn) =

1
n2 tr(K̃XK̃Y ).

Let γX,r be the r-th largest eigenvalue and uX,r = (uX,r(X1), · · · , uX,r(Xn))
T be the r-th eigen-

vector of K̃X . Similarly, we define the eigenvalues γY,r’s and eigenvectors uY,r’s for K̃Y . On
the other hand, let λX,r be the r-th largest eigenvalue of the kernel k̃X with respect to PX , with
associated eigenfunction φX,r(·), such that

∫
k̃X(x, x′)φX,r(x

′)dPX(x′) = λX,rφX,r(x). Similarly,
we define the eigenvalues λY,r’s and eigenfunctions φY,r’s for the kernel k̃Y with respect to PY .

For any fixed R ∈ N, let k̃X,R(x, x′) :=
∑R
r=1 λX,rφX,r(x)φX,r(x

′). For each r where γX,r > 0,
let gX,r(x) :=

√
n

γX,r

∑n
j=1 k̃X(x,Xj)uX,r(Xj). Define k̃Y,R and gY,r similarly. The upcoming

theorems will rely on the following assumption:

Assumption 3.1. Suppose that E[k̃2X(X,X ′)] < ∞ and E[k̃2Y (Y, Y ′)] < ∞. Assume that, for
each R ∈ N, the classes CX := {x 7→ (k̃X − k̃X,R)

2(x, x′) : x′ ∈ X} and CY := {y 7→
(k̃Y − k̃Y,R)2(y, y′) : y′ ∈ Y} are PX -Donsker and PY -Donsker [23], respectively. Further assume
that, for each r, the functions x 7→ gX,r(x) and y 7→ gY,r(y) converge uniformly in probability as
m→∞, with their limit functions in L2(PX) and L2(PY ), respectively.

In general, Assumption 3.1 ensures that the data-dependent eigenvalues and (elements of) eigenvectors
of the kernel matrices K̃X and K̃Y converge in probability to eigenvalues and eigenfunctions of the
kernels k̃X and k̃Y . We show in Appendix A.1 that the Donsker class condition in Assumption 3.1
holds for Gaussian kernels. Now we can establish the asymptotic distribution of HSIC(Pn) under
H0 : X ⊥⊥ Y based on clustered data.

Theorem 3.2. Suppose that, for two multivariate random variables X and Y , we have centered
kernels k̃X and k̃Y with discrete eigenvalues. Suppose that Assumption 2.1 and Assumption 3.1 hold.
Under the null hypothesis H0 : X ⊥⊥ Y , we have

nHSIC(Pn) =
1

n
tr(K̃XK̃Y )

d→
∞∑
t=1

`tz
2
t as m→∞, (1)

where zt’s are i.i.d. standard normal variables, and `t’s are the solutions to the eigenvalue problem

`tψt,rs

=
1

d

∞∑
p,q=1

E
[( d∑

i=1

√
λX,rλY,sφX,r(Xi)φY,s(Yi)

)( d∑
i=1

√
λX,pλY,qφX,p(Xi)φY,q(Yi)

)]
ψt,pq

for some double sequence {ψt,rs}∞r,s=1 ∈ R.

1For the kernel function kX , the corresponding centered kernel function k̃X is: k̃X(x, x′) = kX(x, x′)−
EX [kX(X,x′)]− EX′ [kX(x,X ′)] + EXX′ [kX(X,X ′)].
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The proof of Theorem 3.2 is provided in Appendix B. To prove the theorem, we first show the
convergence of eigenvalues and eigenvectors of K̃X and K̃Y in the presence of clustered data. We
then adopt a strategy similar to that of Zhang et al. (2012) [22]: The test statistic nHSIC(Pn) can
be expressed as a sum of squared terms,

∑n
r,s=1Q

2
rs, where the terms Qrs’s depend on eigenvalues

and eigenvectors of the kernel matrices. We could show that Qrs’s are asymptotically jointly normal
with mean zero under H0, and the asymptotic variances and covariances of these terms depend on
eigenvalues and eigenfunctions of the kernels k̃X and k̃Y .

As a result, the asymptotic distribution of HSIC(Pn) under H0 is a weighted sum of chi-square
variables. In particular, we require the number of clusters, m, to be sufficiently large. Knowing the
null distribution of the test statistic enables us to construct a statistical test at a given significance
level. To examine the power of the proposed test, we further explore the behavior of the test statistic
when the null hypothesis is violated. The next theorem states the asymptotic behavior of HSIC(Pn)
under the alternative hypothesis H1 : X 6⊥⊥ Y .
Theorem 3.3. Suppose that, for two multivariate random variables X and Y , we have centered
kernels k̃X and k̃Y with discrete eigenvalues. Suppose that Assumption 2.1 and Assumption 3.1 hold.
If

there exists some r, s ∈ N such that E[φX,r(X)φY,s(Y )] 6= 0, (2)
then

nHSIC(Pn) =
1

n
tr(K̃XK̃Y )

p→∞ as m→∞.

When k̃X and k̃Y are characteristic kernels, Condition (2) is equivalent to H1 : X 6⊥⊥ Y .

Here Condition (2) is a sufficient condition for X 6⊥⊥ Y : If X ⊥⊥ Y , then E[φX,r(X)φY,s(Y )] =
E[φX,r(X)]E[φY,s(Y )] = 0 for all r, s ∈ N; as a contrapositive, (2) implies X 6⊥⊥ Y . When
characteristic kernels are used, based on the definition and property of the population HSIC, we can
show that X 6⊥⊥ Y also implies (2).

The proof of Theorem 3.3 is provided in Appendix C. To prove the theorem, we show that, under
Condition (2), there exists a statistic smaller than dHSIC(Pn) that converges in probability to a
positive constant, which results in nHSIC(Pn) = mdHSIC(Pn) going to infinity, as the number of
clusters (m) goes to infinity. When the test statistic goes to infinity, the rejection rate of the test would
approach one. Hence, based on Theorem 3.3, we have established the consistency of the proposed
test.

In practice, the weights `t’s in (1) of Theorem 3.2 are unknown and we need to estimate them with
empirical counterparts. In a similar spirit to Theorem 4 of Zhang et al. (2012) [22], the following
proposition provides an approximation for the asymptotic null distribution of HSIC(Pn) and allows
for independence testing in clustered data.
Proposition 3.4. Assume that the conditions in Theorem 3.2 hold. To test the null hypothesis
H0 : X ⊥⊥ Y at a significance level α, we can compare the statistic nHSIC(Pn) =

1
n tr(K̃XK̃Y )

against the (1− α)-quantile of the distribution of

T̃ =
1

m

n2∑
t=1

˜̀
tz

2
t ,

where zt’s are i.i.d. standard normal variables and ˜̀
t’s are eigenvalues of Ṽ Ṽ T , with Ṽ =

[ṽ1, · · · , ṽm]. Each vector ṽi is obtained by vectorizing (i.e., stacking the columns of) the n × n
matrix M̃i, whose (r, s)-th entry is

M̃i,rs =
1√
d

di∑
j=di−d+1

√
γX,rγY,suX,r(Xj)uY,s(Yj).

The proof of Proposition 3.4 is provided in Appendix D, where we show that T̃ has the same
asymptotic distribution as nHSIC(Pn) under H0. Note that the eigenvalues of Ṽ Ṽ T , an n2 × n2
matrix, are the same as the eigenvalues of Ṽ T Ṽ , an m×m matrix. In practice, we can calculate the
eigenvalues of Ṽ T Ṽ instead to avoid excessive computational burden.
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The distribution of T̃ , which is a mixture of chi-square variables, can be efficiently approximated by
Davies’ exact method [24]. This method is shown to work well in previous studies [1, 25] that have
statistical tests based on a mixture of chi-square distributions.

4 Experiments

In this section, we conduct simulation studies and real data analysis to demonstrate the performance
of our proposed test.

4.1 Simulation studies

4.1.1 Methods

We consider a longitudinal data setting, where a set of exposure variables X ∈ Rp and a set of
outcome variables Y ∈ Rq are measured on m subjects at 3 time points. In other words, the
observations {(Xj , Yj)}nj=1 are grouped into m clusters with cluster size d = 3. To introduce
correlation across different time points as well as across different variables, we use a Kronecker
product-based covariance structure [7], which has often been used to model multivariate longitudinal
data [11].

The general simulation setting is as following. For each cluster, let xij denote the i-th variable in X
measured at the j-th time point, for i = 1, · · · , p and j = 1, 2, 3. Let yij be defined similarly. Within
each cluster, we let (x11, x12, x13, · · · , xp1, xp2, xp3)T ∼ N (5×13p,ΣX), where ΣX = RX⊗Rcl,
with

RX =


1 ρX · · · ρX
ρX 1 · · · ρX

...
...

. . .
...

ρX ρX · · · 1


p×p

, Rcl =

 1 ρc ρ2c
ρc 1 ρc
ρ2c ρc 1

 .

Here ⊗ is the Kronecker product. Marginally, we have imposed an exchangeable correlation structure
RX across the p variables in X and an AR(1) correlation structureRcl across the three time points.
The correlations between distinct variables at different time points are products of the marginal
correlations: e.g., Corr(x11, x22) = ρXρc.

We simulate a situation where a single exposure (say, the r-th variable inX) affects multiple outcomes,
with different effect sizes on different outcomes. Within each cluster, we use the model:

(y11, y12, y13, · · · , yq1, yq2, yq3)T

= (β1f(xr1), β1f(xr2), β1f(xr3), · · · , βqf(xr1), βqf(xr2), βqf(xr3))T + ε,
(3)

where βs, with s = 1, · · · , q, is the effect size of the chosen exposure on the s-th outcome, and
ε ∼ N (0,ΣY ), with ΣY = RY ⊗Rcl. RY is the correlation matrix for the q variables in Y . In
simulations, we set p = q = 20, ρX = 0.5 and consider various levels of within-cluster correlation:
ρc = 0.3, 0.5 or 0.7. We also letRY = RX .

Type I error simulation To evaluate the type I error rate (rejection rate under H0), we let β1 =
· · · = βq = 0, so that the null hypothesis H0 : X ⊥⊥ Y is true. We perform both the proposed
HSIC test with proper accommodation for clustered correlation (HSICcl), and the original HSIC test
without any adjustment (HSICorig) as in [22] and [1]. These two methods are applied to the data
{(Xj , Yj)}nj=1 at the observation level. We consider m = 500, 1000 or 1500 clusters and calculate
the empirical type I error rates in each setting based on 1000 simulated data sets.

From Model (3), both X and Y have multivariate normal distributions under H0. While we focus on
normal data here, additional Type I error simulations based on non-normal data are considered in
Appendix F.1.

Power simulation To evaluate the power (rejection rate under H1), we randomly select one
exposure variable from X to be the causal exposure, and make the first η proportion (η =
10%, 20%, 30%, 40%) of outcomes in Y depend on that exposure (with nonzero βs’s). We let
the function f(x) take two forms: f(x) = x (Power Scenario 1) and f(x) = log((x− 4)2) (Power
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Scenario 2). For s = 1, · · · , ηq, the effect sizes βs’s are generated from a Uniform(0,
√
25/m)

distribution under Power Scenario 1, and from Uniform(0,
√
10/m) under Power Scenario 2.

In the power simulation, we perform HSICcl and two other HSIC-based competing methods. The
two competing methods analyze data at the cluster/subject level. In the first method (HSICmean),
for each cluster, we take an average of observations at different time points: We consider the new
variables X∗ := ( 13

∑3
j=1 x1j , · · · ,

1
3

∑3
j=1 xpj)

T and Y ∗ := ( 13
∑3
j=1 y1j , · · · ,

1
3

∑3
j=1 yqj)

T

and then perform the original HSIC test based on {(X∗i , Y ∗i )}mi=1. In the second method (HSICcat),
we follow the strategy of Rudra et al. [19] and concatenate the observations at different time
points for each cluster: We consider the new variables X∗∗ := (x11, x12, x13, · · · , xp1, xp2, xp3)T
and Y ∗∗ := (y11, y12, y13, · · · , yq1, yq2, yq3)T and then perform the original HSIC test based on
{(X∗∗i , Y ∗∗i )}mi=1.

We consider m = 500 clusters and calculate the empirical power in each setting based on 1000
simulated data sets.

Kernel choices For both X and Y , we consider two different kernels: the Gaussian kernel
kX(z1, z2) = kY (z1, z2) = exp(−‖z1 − z2‖22/τ) and the linear kernel kX(z1, z2) = kY (z1, z2) =
zT1 z2. For the Gaussian kernel, the shape parameter τ is chosen as the median of the Euclidean
distance between each sample pair. While the Gaussian kernel is a characteristic kernel [21], the
linear kernel is not characteristic and is designed to detect linear or close-to-linear relationships
between X and Y . Nevertheless, linear kernels have been shown to be reasonably powerful in
previous association studies [25, 2] and can be computationally efficient (see Appendix G.2).

Additional simulation studies are provided in Appendix F. Additional implementation details including
computation time and code availability are provided in Appendix G.

4.1.2 Results

Table 1 shows the empirical type I error rates of HSICorig and HSICcl for normal data. The type I
error rate of HSICorig is inflated in each setting, where the inflation becomes greater as the within-
cluster correlation (ρc) increases. In contrast, HSICcl has a well-controlled type I error rate across all
levels of within-cluster correlation. Using the linear kernel, HSICcl has type I error rates close to the
nominal α in all situations. Using the Gaussian kernel, HSICcl is conservative when the number of
clusters is moderate (m = 500), but its type I error rate gets close to the nominal α at a larger sample
size (m = 1500). For non-normal data (Figure F1 in Appendix), the pattern is similar: HSICcl is
able to control the type I error rate, either with the Gaussian kernel or with the linear kernel.

HSICcl based on the Gaussian kernel is more conservative, likely because the Gaussian kernel is
associated with a larger number of non-zero eigenvalues in finite samples than the linear kernel in our
simulation setting. The null distribution for Gaussian-kernel-based HSICcl thus involves more terms
in the weighted sum of chi-square variables (as the weights depend on eigenvalues), which might
aggregate more finite-sample errors and make the test statistic converge slower to the asymptotic
distribution.

Figure 1 shows the empirical power of HSICcl and the two competing methods under Power Scenario
1. In all situations, HSICcl has a higher power than both HSICmean and HSICcat, regardless of the
level of within-cluster correlation or the kernel being used. In addition, the power of HSICcl improves
quickly as a higher proportion of variables in Y is associated with X . Since X and Y are linearly
associated in Scenario 1, it is not surprising that the linear kernel is powerful in detecting this
dependence. The Gaussian kernel has a comparable performance as the linear kernel.

Figure 2 shows the empirical power under Power Scenario 2, where X and Y have a non-linear
relationship. Similar to Power Scenario 1, for both the Gaussian kernel and the linear kernel, HSICcl
achieves a higher power than the competing methods under all levels of within-cluster correlation.
When compared between kernels, HSICcl based on the Gaussian kernel is more powerful than
HSICcl based on the linear kernel in each setting, showing the advantage of the Gaussian kernel as a
characteristic kernel to detect general dependence patterns.

Overall, both Power Scenario 1 and 2 show the considerable power gain of HSICcl over analyzing
data at the cluster level. We also note that, the power gain of HSICcl decreases as the within-cluster
correlation increases. This is expected since there will be less pronounced information loss in
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Table 1: Empirical type I error rate of HSICorig and HSICcl at nominal level α for normal data under
simulation.

α m ρc
Gaussian kernel Linear kernel

HSICorig HSICcl HSICorig HSICcl

0.05 500 0.3 0.119 0.024 0.068 0.047
0.5 0.603 0.031 0.141 0.044
0.7 1.000 0.030 0.330 0.044

1000 0.3 0.115 0.029 0.070 0.043
0.5 0.591 0.034 0.166 0.054
0.7 1.000 0.034 0.348 0.043

1500 0.3 0.113 0.047 0.082 0.053
0.5 0.608 0.043 0.145 0.053
0.7 1.000 0.044 0.352 0.052

0.01 500 0.3 0.018 0.005 0.021 0.013
0.5 0.190 0.005 0.035 0.011
0.7 0.998 0.009 0.114 0.008

1000 0.3 0.022 0.006 0.015 0.010
0.5 0.180 0.010 0.050 0.008
0.7 0.999 0.010 0.111 0.010

1500 0.3 0.027 0.007 0.019 0.010
0.5 0.209 0.008 0.047 0.010
0.7 0.999 0.008 0.117 0.009

averaging or concatenating the data at the cluster level if observations within a cluster are highly
correlated.

Figure 1: Empirical power of HSICcl and competing methods at nominal level α = 0.05 under
Power Scenario 1. The x-axis represents the proportion of variables in Y that are associated with X .
The top row shows results based on the Gaussian kernel, and the bottom row shows results based on
the linear kernel.

While the above results are based on a fixed cluster size, we have also investigated the effect of
cluster size on the performance of HSICcl (Appendix F.2). When the number of clusters (m) and the
level of within-cluster correlation (ρc) are fixed, type I error control is similar for different cluster
sizes (Figure F2-F3), suggesting that the convergence speed of the test statistic under H0 is likely
not affected by cluster size. However, a larger cluster size tends to result in a higher statistical
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Figure 2: Empirical power of HSICcl and competing methods at nominal level α = 0.05 under
Power Scenario 2. The x-axis represents the proportion of variables in Y that are associated with X .
The top row shows results based on the Gaussian kernel, and the bottom row shows results based on
the linear kernel.

power (Figure F4), possibly due to an increase in the overall sample size, which allows for additional
information gain.

4.2 Application to real data

The vaginal microbiota plays an important role in maintaining vaginal homeostasis. Common vaginal
conditions, such as bacterial vaginosis, are characterized by shifts in vaginal microbiome composition
and changes in vaginal metabolites [4, 26]. Studying the association between the microbiome and the
metabolites helps us better understand how the vaginal microbiota contributes to the host metabolic
environment, and identifies potential metabolic biomarkers for vaginal conditions [4]. Here we apply
HSICcl and competing methods to test the dependence between the overall vaginal microbiome
composition and different metabolic pathways, using data from the Menopause Strategies: Finding
Lasting Answers for Symptoms and Health (MsFLASH) Vaginal Health Trial [27].

The MsFLASH trial was a 12-week randomized clinical trial to evaluate the treatment effect of
vaginal estradiol vs. placebo on vaginal discomfort in postmenopausal women [27] (see Appendix
H.1 for more details). As part of an effort to investigate the mechanism of postmenopausal vaginal
discomfort, vaginal microbiota and vaginal fluid metabolites were characterized longitudinally and
available in 141 participants at baseline, 4 and 12 weeks [28]. The vaginal microbiome profiles
included abundance data of 381 taxa. The metabolome profiles included abundance data of 171
metabolites, which were grouped into 95 metabolic pathways. We apply HSICcl , HSICmean and
HSICcat to assess the dependence between the overall vaginal microbiome composition and the
metabolites in each pathway, across all 95 pathways. In other words, for each test, we have m = 141,
d = 3, X ∈ R381 and Y ∈ Rq , where q is the number of metabolites in a pathway, ranging from 1 to
21 in this data set; 95 tests are performed in total.

Table 2 shows the number of metabolic pathways identified to be associated with the vaginal
microbiome composition, at a Bonferroni-corrected significance level α = 0.05/95 = 5.3× 10−4.
Due to the close relationship between vaginal microbiota and vaginal metabolites, all methods
have identified a considerable number of significant metabolic pathways. Still, HSICcl identifies
a larger number of pathways than HSICmean and HSICcat, either with the Gaussian kernel or with
the linear kernel. In particular, based on the Gaussian kernel, HSICcl successfully identifies all the
significant pathways discovered by HSICmean and HSICcat, and discovers 4 (7) additional pathways
compared to HSICcat (HSICmean) (Figure H1). 67 out of 68 pathways discovered by HSICcl using
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the linear kernel are also identified by HSICcl using the Gaussian kernel (Figure H2). For this
data set, the Gaussian kernel appears to be more powerful in detecting dependence than the linear
kernel, indicating a possibly non-linear relationship between certain metabolites and microbial taxa
abundances.

Table 2: Number of metabolic pathways identified to be associated with the vaginal microbiome
composition based on the MsFLASH data set (α = 5.3× 10−4).

Kernel HSICmean HSICcat HSICcl

Gaussian 68 71 75
Linear 64 64 68

We focus on some of the top pathways (with high statistical significance) identified using HSICcl and
highlight their biological relevance. The top pathways include multiple metabolic pathways for amino
acids. The human vaginal microbiota is dominated by bacteria in the Lactobacillus genus [29], which
are known to produce branched-chain amino acids including valine, leucine and isoleucine [30]. All
these amino acids are present in our top pathways. In particular, one pathway related to leucine
metabolism is only identified by HSICcl but not by HSICmean or HSICcat. Therefore, our finding
is consistent with previous studies on bacterial metabolism, confirming the power improvement in
using HSICcl for scientific discovery.

5 Discussion

We have introduced a novel kernel-based approach, HSICcl, to evaluate the generalized dependence
between two multivariate variables based on cluster-correlated data. Using the previously developed
HSIC statistic as our test statistic, we have derived its asymptotic null distribution in the presence of
clustered correlation and constructed a statistical test of independence accordingly. We have also
established the consistency of the proposed test. Both simulation studies and application to real
longitudinal data demonstrate the power gain in using our proposed test, compared to methods based
on measurements averaged or concatenated at the cluster level.

One limitation of our framework is that the proposed test only applies to balanced and complete
clustered data, which might not be always available in practice. In longitudinal studies, for example,
subjects might be followed at different time points from one another (resulting in unbalanced data),
or become lost to follow-up (resulting in incomplete data). For incomplete data, one solution is to
impute the missing data before applying HSICcl. Further extension of the test for unbalanced or
incomplete clustered data will be interesting for future study.

Another limitation is that our proposed test relies on asymptotic results, and the null distribution might
not be accurately approximated when the number of clusters is small, which is likely true of many
family-based or longitudinal studies. Permutation-based approaches could be a surrogate for HSICcl
at small sample sizes (see Appendix F.3), although their computational burden is large compared to
HSICcl (see Table G1). Computationally efficient adaptations of HSICcl to small sample sizes, such
as those proposed by Lee et al. [31] and Zhan et al. [32], would be another useful extension.

With the continuing emergence of high-dimensional data and the prevalence of cluster-correlated data
in different scientific fields, our proposed test is a promising approach to discover novel associations
and bring new scientific insights in these settings. Meanwhile, we need to be cautious about potential
risks to society that might result from misuse or misinterpretation of our proposed test. For example,
confounding is an important factor to consider in genetic and epidemiological studies. A confounder
affects both the exposure and the outcome, and could lead to spurious associations between the two
variables even if the variables themselves do not have causal relationships. Therefore, as one applies
our proposed test to evaluate the association between two variables, it is important to consider the
presence of potential confounders and be careful in interpreting the test results. Mistaking certain
observed correlation for causation could lead to misinformation in the scientific community and
would be especially concerning when the studies being conducted directly influence people’s life.
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